1
|
Zhou S, Cai H, Tang Z, Lu S. Carbon dots encapsulated zeolitic imidazolate framework-8 as an enhanced multi-antioxidant for efficient cytoprotection to HK-2 cells. J Colloid Interface Sci 2024; 676:726-738. [PMID: 39059279 DOI: 10.1016/j.jcis.2024.07.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Excessive reactive oxygen species (ROS) can lead to the imbalance of antioxidant system in the body and cause oxidative damage to cells. It is imperative to rationally design nanomaterials with high catalytic activity and multiple antioxidant activities. Here, line peppers-derived carbon dots (CDs) is encapsulated into zeolitic imidazolate framework-8 (CDs@ZIF-8) to achieve enhanced antioxidant activities for improved protective effect on cells. This nanosystem has a broad spectrum of antioxidant properties, which can effectively remove a variety of intracellular ROS and protect cells from ROS-induced death and cytoskeleton damage. In addition, CDs@ZIF-8 can reduce malondialdehyde (MDA) level and increase the enzyme activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), as well as the level of glutathione (GSH) in human kidney proximal tubular epithelial cells (HK-2) cells. Mechanism studies demonstrated that CDs@ZIF-8 can up-regulate the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), allowing the regulation of antioxidant enzymes to further achieve antioxidant effect. Besides, CDs@ZIF-8 inhibited the secretion of proinflammatory cytokines. This work demonstrates that the constructed CDs@ZIF-8 with multi-antioxidant activity can act as a highly efficient intracellular ROS scavenger and provide potential for the application in related oxidative stress-induced diseases.
Collapse
Affiliation(s)
- Shuwen Zhou
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Huijuan Cai
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
2
|
Huang YQ, Huang ZW, Zhang XJ. Targeting nuclear factor erythroid 2-related factor 2-regulated ferroptosis to treat nervous system diseases. World J Clin Cases 2024; 12:6655-6659. [DOI: 10.12998/wjcc.v12.i33.6655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
By critically examining the work, we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2 (NRF2) in nervous system diseases. We also proposed suggestions for future bibliometric studies, including the integration of multiple websites, analytical tools, and analytical approaches, The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases. Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases. Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems. In particular, nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs.
Collapse
Affiliation(s)
- Ye-Qi Huang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong Province, China
| | - Zheng-Wei Huang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong Province, China
| | - Xue-Juan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong Province, China
| |
Collapse
|
3
|
Chen S, Luo X, Ma R, Guo Z, Zhao J, Gao J, He R, Jin W. Promotes M1-polarization and diabetic wound healing using Prussian blue nanozymes. Int Immunopharmacol 2024; 141:113009. [PMID: 39191123 DOI: 10.1016/j.intimp.2024.113009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Long-term inflammation and impaired angiogenesis are the main reasons for the difficulty of diabetic wound healing. What to do to effectively promote vascular endothelial cell response and immune cell reprogramming is the key to diabetic skin healing. However, contemporary therapies cannot simultaneously coordinate the promotion of vascular endothelial cells and macrophage polarization, which leads to an increased rate of disability in patients with chronic diabetes. Therefore, we developed a method of repair composed of self-assembling Prussian blue nanoenzymes, which achieved synergistic support for the immune microenvironment, and also contributed to macrophage polarization in the tissue regeneration cycle, and enhanced vascular endothelial cell activity. The template hydrothermal synthesis PB-Zr nanoplatform was prepared and locally applied to wounds to accelerate wound healing through the synergistic effect of reactive oxygen species (ROS). PB-Zr significantly normalized the wound microenvironment, thereby inhibiting ROS production and inflammatory response, which may be because it inhibited the M1 polarization of macrophages in a rat model of wound. PB-Zr treatment significantly promoted the activity of vascular endothelial cells, which better promoted the growth and regeneration of other tissues in the body. The results confirmed the disease microenvironment of PB-Zr-mediated wound therapy and indicated its application in other inflammation-related diseases.
Collapse
Affiliation(s)
- ShuRui Chen
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China
| | - Xiang Luo
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China
| | - Ruixi Ma
- Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Zeyu Guo
- Department of Orthopedic, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jiyu Zhao
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jinpeng Gao
- Department of Orthopedic, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| | - Rongrong He
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China; Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.
| | - Wen Jin
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Avery TD, Li J, Turner DJL, Rasheed MSU, Cherry FR, Stachura DL, Rivera-Escalera F, Ruiz DM, Lacagnina MJ, Gaffney CM, Aguilar C, Yu J, Wang Y, Xie H, Liang D, Shepherd AJ, Abell AD, Grace PM. Site-specific drug release of monomethyl fumarate to treat oxidative stress disorders. Nat Biotechnol 2024:10.1038/s41587-024-02460-4. [PMID: 39496929 DOI: 10.1038/s41587-024-02460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
Treatment of diseases of oxidative stress through activation of the antioxidant nuclear factor E2-related factor 2 (NRF2) is limited by systemic side effects. We chemically functionalize the NRF2 activator monomethyl fumarate to require Baeyer-Villiger oxidation for release of the active drug at sites of oxidative stress. This prodrug reverses chronic pain in mice with reduced side effects and could be applied to other disorders of oxidative stress.
Collapse
Affiliation(s)
- Thomas D Avery
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jiahe Li
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dion J L Turner
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mohd S U Rasheed
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fisher R Cherry
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Damian L Stachura
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Fátima Rivera-Escalera
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David M Ruiz
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caitlyn M Gaffney
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clarissa Aguilar
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Yang Wang
- Department of Pharmaceutical Science, Texas Southern University, Houston, TX, USA
| | - Huan Xie
- Department of Pharmaceutical Science, Texas Southern University, Houston, TX, USA
| | - Dong Liang
- Department of Pharmaceutical Science, Texas Southern University, Houston, TX, USA
| | - Andrew J Shepherd
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia, Australia.
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia, Australia.
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
D'Amato A, Altomare A, Gilardoni E, Baron G, Carini M, Melloni E, Padoani G, Vailati S, Caponetti G, Aldini G. A quantitative proteomic approach to evaluate the efficacy of carnosine in a murine model of chronic obstructive pulmonary disease (COPD). Redox Biol 2024; 77:103374. [PMID: 39393288 DOI: 10.1016/j.redox.2024.103374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
The aim of the work was to study a dose-dependent effect of inhaled carnosine (10, 50 or 100 mg/kg/day) in mice exposed to cigarette smoke as a model of chronic obstructive pulmonary disease (COPD). A dose-dependent loading of the dipeptide in lung tissue and bronchoalveolar lavage (BAL) was firstly demonstrated by LC-ESI-MS analysis. Cigarette smoke exposure induced a significant lung inflammation and oxidative stress in mice which was dose-dependently reduced by carnosine. Inflammation was firstly evaluated by measuring the cytokines content in the BAL. All the measured cytokines were found significantly higher in the smoke group in respect to control, although the data are affected by a significant variability. Carnosine was found effective only at the highest dose tested and significantly only for keratinocyte-derived cytokine (KC). Due to the high variability of cytokines, a quantitative proteomic approach to better understand the functional effect of carnosine and its molecular mechanisms was used. Proteomic data clearly indicate that smoke exposure had a great impact on lung tissue with 692 proteins differentially expressed above a threshold of 1.5-fold. Protein network analysis identified the activation of some pathways characteristic of COPD, including inflammatory response, fibrosis, induction of immune system by infiltration and migration of leukocyte pathways, altered pathway of calcium metabolism and oxidative stress. Carnosine at the tested dose of 100 mg/kg was found effective in reverting all the pathways evoked by smoke. Only a partial reverse of the dysregulated proteins was evident at low- and mid-tested doses, although, for some specific proteins, indicating an overall dose-dependent effect. Regarding the molecular mechanisms involved, we found that carnosine upregulated some key enzymes related to Nrf2 activation and in particular glutathione peroxidase, reductase, transferase, SOD, thioredoxins, and carbonyl reductase. Such mechanism would explain the antioxidant and anti-inflammatory effects of the dipeptide.
Collapse
Affiliation(s)
- Alfonsina D'Amato
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Elsa Melloni
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | - Gloria Padoani
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | - Silvia Vailati
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
6
|
Barakat M, Han C, Chen L, David BP, Shi J, Xu A, Skowron KJ, Johnson T, Woods RA, Ankireddy A, Reddy SP, Moore TW, DiPietro LA. Non-electrophilic NRF2 activators promote wound healing in human keratinocytes and diabetic mice and demonstrate selective downstream gene targeting. Sci Rep 2024; 14:25258. [PMID: 39448644 PMCID: PMC11502821 DOI: 10.1038/s41598-024-75786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
The transcription factor NRF2 plays an important role in many biological processes and is a promising therapeutic target for many disease states. NRF2 is highly expressed in the skin and is known to play a critical role in diabetic wound healing, a serious disease process for which treatment options are limited. However, many existing NRF2 activators display off-target effects due to their electrophilic mechanism, underscoring the need for alternative approaches. In this work, we investigated two recently described non-electrophilic NRF2 activators, ADJ-310 and PRL-295, and demonstrated their efficacy in vitro and in vivo in human keratinocytes and Leprdb/db diabetic mice. We also compared the downstream targets of PRL-295 to those of the widely used electrophilic NRF2 activator CDDO-Me by RNA sequencing. Both ADJ-310 and PRL-295 maintained human keratinocyte cell viability at increasing concentrations and maintained or improved cell proliferation over time. Both compounds also increased cell migration, improving in vitro wound closure. ADJ-310 and PRL-295 enhanced the oxidative stress response in vitro, and RNA-sequencing data showed that PRL-295 activated NRF2 with a narrower transcriptomic effect than CDDO-Me. In vivo, both ADJ-310 and PRL-295 improved wound healing in Leprdb/db diabetic mice and upregulated known downstream NRF2 target genes in treated tissue. These results highlight the non-electrophilic compounds ADJ-310 and PRL-295 as effective, innovative tools for investigating the function of NRF2. These compounds directly address the need for alternative NRF2 activators and offer a new approach to studying the role of NRF2 in human disease and its potential as a therapeutic across multiple disease states.
Collapse
Affiliation(s)
- May Barakat
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago College of Dentistry, Chicago, IL, USA
- Medical Scientist Training Program, University of Illinois Chicago College of Medicine, Chicago, IL, USA
| | - Chen Han
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago College of Dentistry, Chicago, IL, USA
- Medical Scientist Training Program, University of Illinois Chicago College of Medicine, Chicago, IL, USA
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago College of Dentistry, Chicago, IL, USA
| | - Brian P David
- Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Junhe Shi
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago College of Dentistry, Chicago, IL, USA
- Institute of Clinical Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Angela Xu
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago College of Dentistry, Chicago, IL, USA
| | - Kornelia J Skowron
- Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Tatum Johnson
- Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Reginald A Woods
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago College of Dentistry, Chicago, IL, USA
- Medical Scientist Training Program, University of Illinois Chicago College of Medicine, Chicago, IL, USA
| | - Aparna Ankireddy
- Department of Pediatrics, University of Illinois Chicago College of Medicine, Chicago, IL, USA
| | - Sekhar P Reddy
- Department of Pediatrics, University of Illinois Chicago College of Medicine, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Terry W Moore
- Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois Chicago College of Dentistry, Chicago, IL, USA.
| |
Collapse
|
7
|
Li X, Cui M, Xu L, Guo Q. Low miR-936-mediated upregulation of Pim-3 drives sorafenib resistance in liver cancer through ferroptosis inhibition by activating the ANKRD18A/Src/NRF2 pathway. Front Oncol 2024; 14:1483660. [PMID: 39507762 PMCID: PMC11540556 DOI: 10.3389/fonc.2024.1483660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Objective Sorafenib, a multikinase inhibitor, is currently the standard treatment for advanced liver cancer. However, its application has become limited by the development of drug resistance. We intended to explore the mechanisms underlying the development of sorafenib resistance, therefore identifying an effective strategy to overcome sorafenib resistance remain challenges. Methods Here, the follow-up of liver cancer patients undergoing sorafenib therapy, as well as animal tumor challenge and treatment were performed. The sorafenib-resistant liver cancer cell lines Huh7/SOR and HepG2/SOR were also established. miRNA and mRNA microarray analyses, TargetScan prediction, dual luciferase reporter assay, RNA pull-down assay, co-mmunoprecipitation (Co-IP) and pull-down assays, a transcription factor-specific NRF2 assay, an iron detection assay, a lipid peroxidation quantification assay, a ROS measurement assay, and GSH/GSSG and GSH-px standard quantitative assays were used. Results We showed that upregulation of the provirus-integrating site for Moloney murine leukemia virus 3 (Pim-3) predicted poor response and unsatisfactory prognosis in sorafenib-treated liver cancer patients. Similarly, Pim-3 expression was positively associated with sorafenib resistance in liver cancer cells. Furthermore, microRNA-936 (miR-936) targeted the 3'-noncoding region (3'-UTR) of Pim-3 but exhibited lower expression in sorafenib-resistant liver cancer cells than in their parental cells. The high expression of Pim-3 mediated by miR-936 insufficiency activated the ANKRD18A/Src/NRF2 pathway which rearranged the expression of the indicated markers involved in iron distribution and lipid peroxidation homeostasis. MiR-936 overexpression and GV102-Pim-3-shRNA significantly attenuated the activity of the ANKRD18A/Src/NRF2 pathway to decrease the expression of Ankyrin repeat domain-containing protein 18A (ANKRD18A), Src, and Nuclear factor (erythroid-derived 2)-like 2 (NRF2), especially decreasing NRF2 nuclear retention and transcriptional activity. The transcriptional activity of NRF2 prompted cell ferroptosis because the transfection of miR-936 mimics, GV102-Pim-3-shRNA and GV102-NRF2-shRNA plasmid increased the expression of transferrin receptor 1 (TFR1) and divalent metal transporter 1 (DMT1) but decreased the expression of solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), quinone oxidoreductase 1 (NQO1), and heme oxygenase-1 (HO-1), thus facilitating the accumulation of intracellular Fe2+, lipid peroxides, and reactive oxygen species (ROS) but reducing the glutathione (GSH) level. Moreover, the elevated expression of Pim-3, resulting from the absence of miR-936 enhances sorafenib resistance in liver cancer by inhibiting cell ferroptosis. Conclusion Pim-3 can be regarded as a target in the treatment of sorafenib-resistant liver cancer.
Collapse
Affiliation(s)
| | | | | | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Khramtsov YV, Ulasov AV, Rosenkranz AA, Slastnikova TA, Lupanova TN, Georgiev GP, Sobolev AS. Modular Nanotransporters Deliver Anti-Keap1 Monobody into Mouse Hepatocytes, Thereby Inhibiting Production of Reactive Oxygen Species. Pharmaceutics 2024; 16:1345. [PMID: 39458673 PMCID: PMC11511107 DOI: 10.3390/pharmaceutics16101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The study of oxidative stress in cells and ways to prevent it attract increasing attention. Antioxidant defense of cells can be activated by releasing the transcription factor Nrf2 from a complex with Keap1, its inhibitor protein. The aim of the work was to study the effect of the modular nanotransporter (MNT) carrying an R1 anti-Keap1 monobody (MNTR1) on cell homeostasis. Methods: The murine hepatocyte AML12 cells were used for the study. The interaction of fluorescently labeled MNTR1 with Keap1 fused to hrGFP was studied using the Fluorescence-Lifetime Imaging Microscopy-Förster Resonance Energy Transfer (FLIM-FRET) technique on living AML12 cells transfected with the Keap1-hrGFP gene. The release of Nrf2 from the complex with Keap1 and its levels in the cytoplasm and nuclei of the AML12 cells were examined using a cellular thermal shift assay (CETSA) and confocal laser scanning microscopy, respectively. The effect of MNT on the formation of reactive oxygen species was studied by flow cytometry using 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate. Results: MNTR1 is able to interact with Keap1 in the cytoplasm, leading to the release of Nrf2 from the complex with Keap1 and a rapid rise in Nrf2 levels both in the cytoplasm and nuclei, ultimately causing protection of cells from the action of hydrogen peroxide. The possibility of cleavage of the monobody in endosomes leads to an increase in the observed effects. Conclusions: These findings open up a new approach to specifically modulating the interaction of intracellular proteins, as demonstrated by the example of the Keap1-Nrf2 system.
Collapse
Affiliation(s)
- Yuri V. Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Alexey V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Andrey A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1–12 Leninskie Gory St., 119234 Moscow, Russia
| | - Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Tatiana N. Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Georgii P. Georgiev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
| | - Alexander S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (A.A.R.); (T.A.S.); (T.N.L.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1–12 Leninskie Gory St., 119234 Moscow, Russia
| |
Collapse
|
9
|
Qin Y, Poulsen C, Narayanan D, Chan CB, Chen X, Montes BR, Tran KT, Mukminova E, Lin C, Gajhede M, Bullock AN, Olagnier D, Bach A. Structure-Guided Conformational Restriction Leading to High-Affinity, Selective, and Cell-Active Tetrahydroisoquinoline-Based Noncovalent Keap1-Nrf2 Inhibitors. J Med Chem 2024. [PMID: 39418396 DOI: 10.1021/acs.jmedchem.4c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Inhibition of the protein-protein interaction between Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) has been recognized as an attractive approach for treating oxidative stress-related diseases. Here, we present a new series of noncovalent Keap1-Nrf2 inhibitors developed by a conformational restriction strategy of our fluorenone-based compounds previously identified by fragment-based drug discovery. The design was guided by X-ray cocrystal structures, and the subsequent optimization process aimed at improving affinity, cellular activity, and metabolic stability. From the noncyclic compound 7 (Ki = 2.9 μM), a new series of tetrahydroisoquinoline-based Keap1 inhibitors with up to 223-fold improvement in binding affinity (57, Ki = 13 nM), better metabolic stability, and enhanced cellular activity was obtained. In addition, the compounds showed selectivity for the Keap1 Kelch domain across a panel of 15 homologous proteins. We thereby demonstrate the utility of cyclic rigidification in the design of potent and more drug-like Keap1-Nrf2 inhibitors.
Collapse
Affiliation(s)
- Yuting Qin
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Cecilie Poulsen
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Camilla B Chan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Xiangrong Chen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Beatriz Ralsi Montes
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Kim T Tran
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Elina Mukminova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Chunyu Lin
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - David Olagnier
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Suyal S, Choudhury C, Kaur D, Bachhawat AK. Identification of inhibitors of human ChaC1, a cytoplasmic glutathione degrading enzyme through high throughput screens in yeast. Biochem J 2024; 481:1475-1495. [PMID: 39400295 DOI: 10.1042/bcj20240447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The cytosolic glutathione-degrading enzyme, ChaC1, is highly up-regulated in several cancers, with the up-regulation correlating to poor prognosis. The ability to inhibit ChaC1 is therefore important in different pathophysiological situations, but is challenging owing to the high substrate Km of the enzyme. As no inhibitors of ChaC1 are known, in this study we have focussed on this goal. We have initially taken a computational approach where a systemic structure-based virtual screening was performed. However, none of the predicted hits proved to be effective inhibitors. Synthetic substrate analogs were also not inhibitory. As both these approaches targeted the active site, we shifted to developing two high-throughput, robust, yeast-based assays that were active site independent. A small molecule compound library was screened using an automated liquid handling system using these screens. The hits were further analyzed using in vitro assays. Among them, juglone, a naturally occurring naphthoquinone, completely inhibited ChaC1 activity with an IC50 of 8.7 µM. It was also effective against the ChaC2 enzyme. Kinetic studies indicated that the inhibition was not competitive with the substrate. Juglone is known to form adducts with glutathione and is also known to selectively inhibit enzymes by covalently binding to active site cysteine residues. However, juglone continued to inhibit a cysteine-free ChaC1 variant, indicating that it was acting through a novel mechanism. We evaluated different inhibitory mechanisms, and also analogues of juglone, and found plumbagin effective as an inhibitor. These compounds are the first inhibitor leads against the ChaC enzymes using a robust yeast screen.
Collapse
Affiliation(s)
- Shradha Suyal
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, S.A.S. Nagar, Punjab 140306, India
| | - Chinmayee Choudhury
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, S.A.S. Nagar, Punjab 140306, India
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh 160012, India
| | - Deepinder Kaur
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh 160012, India
| | - Anand K Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, S.A.S. Nagar, Punjab 140306, India
| |
Collapse
|
11
|
Dewanjee S, Bhattacharya H, Bhattacharyya C, Chakraborty P, Fleishman J, Alexiou A, Papadakis M, Jha SK. Nrf2/Keap1/ARE regulation by plant secondary metabolites: a new horizon in brain tumor management. Cell Commun Signal 2024; 22:497. [PMID: 39407193 PMCID: PMC11476647 DOI: 10.1186/s12964-024-01878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Brain cancer is regarded as one of the most life-threatening forms of cancer worldwide. Oxidative stress acts to derange normal brain homeostasis, thus is involved in carcinogenesis in brain. The Nrf2/Keap1/ARE pathway is an important signaling cascade responsible for the maintenance of redox homeostasis, and regulation of anti-inflammatory and anticancer activities by multiple downstream pathways. Interestingly, Nrf2 plays a somewhat, contradictory role in cancers, including brain cancer. Nrf2 has traditionally been regarded as a tumor suppressor since its cytoprotective functions are considered to be the principle cellular defense mechanism against exogenous and endogenous insults, such as xenobiotics and oxidative stress. However, hyperactivation of the Nrf2 pathway supports the survival of normal as well as malignant cells, protecting them against oxidative stress, and therapeutic agents. Plants possess a pool of secondary metabolites with potential chemotherapeutic/chemopreventive actions. Modulation of Nrf2/ARE and downstream activities in a Keap1-dependant manner, with the aid of plant-derived secondary metabolites exhibits promise in the management of brain tumors. Current article highlights the effects of Nrf2/Keap1/ARE cascade on brain tumors, and the potential role of secondary metabolites regarding the management of the same.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Chiranjib Bhattacharyya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India.
| |
Collapse
|
12
|
Lin YC, Ku CC, Wuputra K, Wu DC, Yokoyama KK. Vulnerability of Antioxidant Drug Therapies on Targeting the Nrf2-Trp53-Jdp2 Axis in Controlling Tumorigenesis. Cells 2024; 13:1648. [PMID: 39404411 PMCID: PMC11475825 DOI: 10.3390/cells13191648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Control of oxidation/antioxidation homeostasis is important for cellular protective functions, and disruption of the antioxidation balance by exogenous and endogenous ligands can lead to profound pathological consequences of cancerous commitment within cells. Although cancers are sensitive to antioxidation drugs, these drugs are sometimes associated with problems including tumor resistance or dose-limiting toxicity in host animals and patients. These problems are often caused by the imbalance between the levels of oxidative stress-induced reactive oxygen species (ROS) and the redox efficacy of antioxidants. Increased ROS levels, because of abnormal function, including metabolic abnormality and signaling aberrations, can promote tumorigenesis and the progression of malignancy, which are generated by genome mutations and activation of proto-oncogene signaling. This hypothesis is supported by various experiments showing that the balance of oxidative stress and redox control is important for cancer therapy. Although many antioxidant drugs exhibit therapeutic potential, there is a heterogeneity of antioxidation functions, including cell growth, cell survival, invasion abilities, and tumor formation, as well as the expression of marker genes including tumor suppressor proteins, cell cycle regulators, nuclear factor erythroid 2-related factor 2, and Jun dimerization protein 2; their effectiveness in cancer remains unproven. Here, we summarize the rationale for the use of antioxidative drugs in preclinical and clinical antioxidant therapy of cancer, and recent advances in this area using cancer cells and their organoids, including the targeting of ROS homeostasis.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
13
|
Zhang Y, Sun C, Ma L, Xiao G, Gu Y, Yu W. O-GlcNAcylation promotes malignancy and cisplatin resistance of lung cancer by stabilising NRF2. Clin Transl Med 2024; 14:e70037. [PMID: 39358921 PMCID: PMC11447106 DOI: 10.1002/ctm2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/01/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The transcription factor NRF2 plays a significant role in regulating genes that protect cells from oxidative damage. O-GlcNAc modification, a type of posttranslational modification, is crucial for cellular response to stress. Although the involvement of both NRF2 and O-GlcNAc in maintaining cellular redox balance and promoting cancer malignancy has been demonstrated, the potential mechanisms remain elusive. METHODS The immunoblotting, luciferase reporter, ROS assay, co-immunoprecipitation, and immunofluorescence was used to detect the effects of global cellular O-GlcNAcylation on NRF2. Mass spectrometry was utilised to map the O-GlcNAcylation sites on NRF2, which was validated by site-specific mutagenesis and O-GlcNAc enzymatic labelling. Human lung cancer samples were employed to verify the association between O-GlcNAc and NRF2. Subsequently, the impact of NRF2 O-GlcNAcylation in lung cancer malignancy and cisplatin resistance were evaluated in vitro and in vivo. RESULTS NRF2 is O-GlcNAcylated at Ser103 residue, which hinders its binding to KEAP1 and thus enhances its stability, nuclear localisation, and transcription activity. Oxidative stress and cisplatin can elevate the phosphorylation of OGT at Thr444 through the activation of AMPK kinase, leading to enhanced binding of OGT to NRF2 and subsequent elevation of NRF2 O-GlcNAcylation. Both in cellular and xenograft mouse models, O-GlcNAcylation of NRF2 at Ser103 promotes the malignancy of lung cancer. In human lung cancer tissue samples, there was a significant increase in global O-GlcNAcylation, and elevated levels of NRF2 and its O-GlcNAcylation compared to paired adjacent normal tissues. Chemotherapy promotes NRF2 O-GlcNAcylation, which in turn decreases cellular ROS levels and drives lung cancer cell survival. CONCLUSION Our findings indicate that OGT O-GlcNAcylates NRF2 at Ser103, and this modification plays a role in cellular antioxidant, lung cancer malignancy, and cisplatin resistance.
Collapse
Affiliation(s)
- Yihan Zhang
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| | - Changning Sun
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| | - Leina Ma
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| | - Guokai Xiao
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| | - Yuchao Gu
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| | - Wengong Yu
- Key Laboratory of Marine DrugsSchool of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao Marine Science and Technology CenterQingdaoChina
- Key Laboratory of Glycoscience & Glycotechnology of Shandong ProvinceQingdaoChina
| |
Collapse
|
14
|
Medoro A, Saso L, Scapagnini G, Davinelli S. NRF2 signaling pathway and telomere length in aging and age-related diseases. Mol Cell Biochem 2024; 479:2597-2613. [PMID: 37917279 PMCID: PMC11455797 DOI: 10.1007/s11010-023-04878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/07/2023] [Indexed: 11/04/2023]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is well recognized as a critical regulator of redox, metabolic, and protein homeostasis, as well as the regulation of inflammation. An age-associated decline in NRF2 activity may allow oxidative stress to remain unmitigated and affect key features associated with the aging phenotype, including telomere shortening. Telomeres, the protective caps of eukaryotic chromosomes, are highly susceptible to oxidative DNA damage, which can accelerate telomere shortening and, consequently, lead to premature senescence and genomic instability. In this review, we explore how the dysregulation of NRF2, coupled with an increase in oxidative stress, might be a major determinant of telomere shortening and age-related diseases. We discuss the relevance of the connection between NRF2 deficiency in aging and telomere attrition, emphasizing the importance of studying this functional link to enhance our understanding of aging pathologies. Finally, we present a number of compounds that possess the ability to restore NRF2 function, maintain a proper redox balance, and preserve telomere length during aging.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy.
| |
Collapse
|
15
|
Wang TT, Yu LL, Zheng JM, Han XY, Jin BY, Hua CJ, Chen YS, Shang SS, Liang YZ, Wang JR. Berberine Inhibits Ferroptosis and Stabilizes Atherosclerotic Plaque through NRF2/SLC7A11/GPX4 Pathway. Chin J Integr Med 2024; 30:906-916. [PMID: 39167283 DOI: 10.1007/s11655-024-3666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE To investigate potential mechanisms of anti-atherosclerosis by berberine (BBR) using ApoE-/- mice. METHODS Eight 8-week-old C57BL/6J mice were used as a blank control group (normal), and 56 8-week-old AopE-/- mice were fed a high-fat diet for 12 weeks, according to a completely random method, and were divided into the model group, BBR low-dose group (50 mg/kg, BBRL), BBR medium-dose group (100 mg/kg, BBRM), BBR high-dose group (150 mg/kg, BBRH), BBR+nuclear factor erythroid 2-related factor 2 (NRF2) inhibitor group (100 mg/kg BBR+30 mg/kg ML385, BBRM+ML385), NRF2 inhibitor group (30 mg/kg, ML385), and positive control group (2.5 mg/kg, atorvastatin), 8 in each group. After 4 weeks of intragastric administration, samples were collected and serum, aorta, heart and liver tissues were isolated. Biochemical kits were used to detect serum lipid content and the expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in all experimental groups. The pathological changes of atherosclerosis (AS) were observed by aorta gross Oil Red O, aortic sinus hematoxylin-eosin (HE) and Masson staining. Liver lipopathy was observed in mice by HE staining. The morphology of mitochondria in aorta cells was observed under transmission electron microscope. Flow cytometry was used to detect reactive oxygen species (ROS) expression in aorta of mice in each group. The content of ferrous ion Fe2+ in serum of mice was detected by biochemical kit. The mRNA and protein relative expression levels of NRF2, glutathione peroxidase 4 (GPX4) and recombinant solute carrier family 7 member 11 (SLC7A11) were detected by quantitative real time polymerase chain reaction (RT-qPCR) and Western blot, respectively. RESULTS BBRM and BBRH groups delayed the progression of AS and reduced the plaque area (P<0.01). The characteristic morphological changes of ferroptosis were rarely observed in BBR-treated AS mice, and the content of Fe2+ in BBR group was significantly lower than that in the model group (P<0.01). BBR decreased ROS and MDA levels in mouse aorta, increased SOD activity (P<0.01), significantly up-regulated NRF2/SLC7A11/GPX4 protein and mRNA expression levels (P<0.01), and inhibited lipid peroxidation. Compared with the model group, the body weight, blood lipid level and aortic plaque area of ML385 group increased (P<0.01); the morphology of mitochondria showed significant ferroptosis characteristics; the serum Fe2+, MDA and ROS levels increased (P<0.05 or P<0.01), and the activity of SOD decreased (P<0.01). Compared with BBRM group, the iron inhibition effect of BBRM+ML385 group was significantly weakened, and the plaque area significantly increased (P<0.01). CONCLUSION Through NRF2/SLC7A11/GPX4 pathway, BBR can resist oxidative stress, inhibit ferroptosis, reduce plaque area, stabilize plaque, and exert anti-AS effects.
Collapse
Affiliation(s)
- Ting-Ting Wang
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Li-Li Yu
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Jun-Meng Zheng
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Xin-Yi Han
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Bo-Yuan Jin
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Cheng-Jun Hua
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Yu-Shan Chen
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| | - Sha-Sha Shang
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Ya-Zhou Liang
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Jian-Ru Wang
- Heart Center, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| |
Collapse
|
16
|
Gao W, Li Y, Lin X, Deng K, Long X, Li D, Huang M, Wang X, Xu Y, She X, Wu M. Procyanidin B1 Promotes PSMC3-NRF2 Ubiquitination to Induce Ferroptosis in Glioblastoma. Phytother Res 2024. [PMID: 39293861 DOI: 10.1002/ptr.8328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024]
Abstract
NRF2 signaling is a crucial antioxidant defense mechanism against ferroptosis in tumors, and targeting NRF2 is essential for tumor therapy. However, the effectiveness of NRF2 inhibitors remains unexplored. The active ingredients of traditional Chinese medicine serve as important sources of NRF2 inhibitors. In this study, we established an intracranial glioblastoma (GBM) orthotopic model and observed the effects of procyanidin B1 on tumor growth and ferroptosis. Using protein-small-molecule docking, z-stack assay of laser confocal imaging, surface plasmon resonance assay, immunoprecipitation, mass spectrometry, and western blotting, we detected the binding between procyanidin B1 and NRF2 and the effect of PSMC3 on the ubiquitin-dependent degradation of NRF2 in GBM cells. Our results showed that procyanidin B1 acted as a novel NRF2 inhibitor to suppress GBM cell proliferation and prolonged the survival of GBM-bearing mice; it also mediated the interaction between PSMC3 and NRF2 to promote ubiquitin-dependent protein degradation of NRF2, which induced ferroptosis in GBM cells. In addition, we found that procyanidin B1 enhanced H₂O₂ accumulation by downregulating NRF2 during ferroptosis in GBM cells. The botanical agent procyanidin B1 induced ferroptosis and exerted anti-tumor effects through PSMC3-mediated ubiquitin-dependent degradation of NRF2 proteins, providing a potential drug candidate for adjuvant therapy in patients with GBM.
Collapse
Affiliation(s)
- Wei Gao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yuan Li
- Department of Respiratory and Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Kun Deng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xinmiao Long
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Danyang Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Meng Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yucong Xu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoling She
- Department of Pathology, The Second Xiangya Hospital, Central South University Changsha, Changsha, China
| | - Minghua Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
17
|
Li X, Zhou W, Chen J, Zhou L, Li Y, Wu X, Peng X. Circ_001653 alleviates sepsis associated-acute kidney injury by recruiting BUD13 to regulate KEAP1/NRF2/HO-1 signaling pathway. J Inflamm (Lond) 2024; 21:37. [PMID: 39289683 PMCID: PMC11406777 DOI: 10.1186/s12950-024-00409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The kidney is exceptionally vulnerable during sepsis, often resulting in sepsis-associated acute kidney injury (SA-AKI), a condition that not only escalates morbidity but also significantly raises sepsis-related mortality rates. Circular RNA circ_001653 has been previously reported to be upregulated in the serum of SA-AKI patients, while the role and underlying mechanism of circ_001653 in SA-AKI remains unknown. In this study, we aimed to explore the functional role and the molecular mechanism of circ_001653 in the pathogenesis of SA-AKI. METHODS LPS-stimulated HK-2 cells and ligation and perforation of cecum (CLP)-induced rats were used as in vitro and in vivo models of SA-AKI. The target gene expression levels were measured using qRT-PCR and western blot. Renal function (BUN, sCr, uNGAL, and uKIM-1), and renal pathological changes were detected in septic mice. TUNEL and EdU assays were conducted to measure apoptosis and proliferation rates in vitro. DCFH-DA staining was used to detect ROS levels in vitro and in vivo. Oxidative stress markers (SOD, GSH-Px, MDA, and SOD), and inflammation markers (IL-1β, IL-6, and TNF-α) were determined using commercial kits both in vitro and in vivo. Additionally, gain-and-loss-of-function assays and mechanistic experiments were conducted to explore the regulatory role of circ_001653 in SA-AKI pathogenesis. RESULTS Data showed that circ_001653 expression was high in LPS-stimulated HK-2 cells and CLP-induced rat renal tissue and was mainly localized in the cytoplasm. Notably, circ_001653 silencing alleviated SA-AKI by reducing apoptosis and alleviating oxidative stress and inflammation in HK-2 cells and renal tissue of rats. Mechanistically, it was found that circ_001653 alleviated SA-AKI by recruiting BUD13 to activate the KEAP1/Nrf2/HO-1 signaling pathway. CONCLUSIONS To summarize, our study is the first to reveal elevated expression of circ_001653 in sepsis-associated AKI, and its downregulation effectively attenuates AKI by reducing apoptosis, inflammation, and oxidative stress. Mechanistically, circ_001653 exerts its effects by recruiting BUD13 to activate the KEAP1/Nrf2/HO-1 signaling pathway. These findings suggest circ_001653 as a potential therapeutic target for the drug development of sepsis-associated AKI.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Wei Zhou
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Jianjun Chen
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Liangliang Zhou
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Yingbing Li
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Xufeng Wu
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Xia Peng
- Department of Respiratory and Critical Care Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China.
| |
Collapse
|
18
|
Montero L, Okraine YV, Orlowski J, Matzkin S, Scarponi I, Miranda MV, Nusblat A, Gottifredi V, Alonso LG. Conserved cysteine-switches for redox sensing operate in the cyclin-dependent kinase inhibitor p21(CIP/KIP) protein family. Free Radic Biol Med 2024; 224:494-505. [PMID: 39277119 DOI: 10.1016/j.freeradbiomed.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The cell cycle is a tightly regulated, dynamic process controlled by multiple checkpoints. When the prevention of cell cycle progression is needed, key effectors such as members of the p21 (CIP/KIP) inhibit cyclin-dependent kinases (CDKs). It is accepted that p21 does not sense DNA damage and that stress signals affect p21 indirectly. A plethora of DNA damaging events activate the tumor suppressor p53, which in turn transcriptionally activates p21, steeply changing its levels to reach CDK inhibition. The levels of p21 are also controlled by phosphorylation and ubiquitination events, which are relevant as they modulate p21 activity, localization, and stability. Intriguingly, here we report the first evidence of the direct control of p21 cell proliferation inhibition by DNA damaging signals. Specifically, we have identified a redox regulating mechanism that controls p21 capacity to reduce cell proliferation. Using the human p21 protein, we identified two cysteine-switches that independently regulate its cyclin-binding and linker (LH) modules respectively. Additionally, we provide a mechanistic explanation of how reactive cysteines embedded in unstructured regions of intrinsically disordered proteins respond to ROS without the guidance of protein structure, contributing to a vastly unexplored area of research. Cellular experiments utilizing p21KID mutants that disrupt disulfide-based switches demonstrate their impact on the capacity of p21 to inhibit cell cycle progression, thus highlighting the functional relevance of our findings. Furthermore, our investigation reveals that reactive cysteine residues are highly conserved across the Kinase Inhibitory Domain (KID) sequences of p21 proteins from higher eukaryotes, and the p27 and p57 human paralogs. We propose that the presence of conserved regulatory cysteines within the KIDs of p21 family members from multiple taxa provides those proteins with the capability for directly sensing ROS, enabling the direct regulation of cyclin kinase activity by ROS levels.
Collapse
Affiliation(s)
- Luciano Montero
- Instituto de Nanobiotecnologıa (NANOBIOTEC), UBA-CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Juan Orlowski
- Instituto de Nanobiotecnologıa (NANOBIOTEC), UBA-CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shadia Matzkin
- Instituto de Nanobiotecnologıa (NANOBIOTEC), UBA-CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ignacio Scarponi
- Instituto de Nanobiotecnologıa (NANOBIOTEC), UBA-CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Miranda
- Instituto de Nanobiotecnologıa (NANOBIOTEC), UBA-CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Nusblat
- Instituto de Nanobiotecnologıa (NANOBIOTEC), UBA-CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Leonardo G Alonso
- Instituto de Nanobiotecnologıa (NANOBIOTEC), UBA-CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina; Fundación Instituto Leloir, IIB-BA Conicet, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Lu R, Zhou X, Zhang L, Hao M, Yang X. Nrf2 Deficiency Exacerbates Parkinson's Disease by Aggravating NLRP3 Inflammasome Activation in MPTP-Induced Mouse Models and LPS-Induced BV2 Cells. J Inflamm Res 2024; 17:6277-6295. [PMID: 39281779 PMCID: PMC11401530 DOI: 10.2147/jir.s478683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024] Open
Abstract
Background Parkinson's disease (PD) is a movement disorder characterized by the progressive loss of dopamine neurons. Microglia-mediated neuroinflammation drives disease progression and becomes a critical factor in neuronal degeneration. Recent studies have found that nuclear factor-erythroid 2-related-2 (Nrf2) expression levels are reduced during aging and neurodegenerative diseases, but its regulatory mechanism on microglia-induced neuroinflammation has not been fully elucidated. Methods In vivo, we used the intraperitoneal injection of the neurotoxic drug neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to establish an animal model of PD and, at the same time, administered Nrf2 inhibitors ML385 and dimethyl fumarate to regulate Nrf2 protein levels. In vitro, we used si-RNA to knock out the Nrf2 gene to intervene in BV2 cells and used lipopolysaccharide (LPS) to stimulate and induce the cell model. Results The study found that inhibition of Nrf2 expression aggravated the motor defects of PD mice, accompanied by a significant loss of dopaminergic neurons in the substantia nigra and striatum of the brain. In addition, after inhibition of Nrf2, the malondialdehyde (MDA) level in the substantia nigra of the midbrain of mice increased, and the levels of superoxide dismutase (SOD) and heme oxygenase-1 (HO-1) decreased, accompanied by the proliferation of microglia and astrocytes. In addition, the activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome, the assembly of apoptosis-associated speck-like protein containing a CARD (ASC) protein in microglia, and the release of downstream inflammatory factors caspase-1 and interleukin (IL)-1β, were aggravated. At the cellular level, it was found that knocking out the expression of Nrf2 would aggravate the activation of NLRP3 inflammasomes and the assembly of ASC in LPS-induced BV2 cells. Conclusion Inhibited Nrf2 activity can reduce the downstream antioxidant enzyme HO-1 and antioxidant levels, induce NLRP3 inflammasome activation and ASC protein assembly in microglia, and ultimately aggravate PD inflammatory response and dopamine neuron degeneration.
Collapse
Affiliation(s)
- Ranran Lu
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
- Xinjiang Key Laboratory of Neurological Disease Research, Ürümqi, Xinjiang, People's Republic of China
| | - Xu Zhou
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
- Xinjiang Key Laboratory of Neurological Disease Research, Ürümqi, Xinjiang, People's Republic of China
| | - Lijie Zhang
- Xinjiang Production and Construction Corps Hospital, Ürümqi, Xinjiang, People's Republic of China
| | - Mengdie Hao
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
- Xinjiang Key Laboratory of Neurological Disease Research, Ürümqi, Xinjiang, People's Republic of China
| | - Xinling Yang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
- Xingjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| |
Collapse
|
20
|
Karunatilleke NC, Brickenden A, Choy WY. Molecular basis of the interactions between the disordered Neh4 and Neh5 domains of Nrf2 and CBP/p300 in oxidative stress response. Protein Sci 2024; 33:e5137. [PMID: 39150085 PMCID: PMC11328122 DOI: 10.1002/pro.5137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/21/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major transcription factor that functions in maintaining redox homeostasis in cells. It mediates the transcription of cytoprotective genes in response to environmental and endogenous stresses to prevent oxidative damage. Thus, Nrf2 plays a significant role in chemoprevention. However, aberrant activation of Nrf2 has been shown to protect cancer cells from apoptosis and contribute to their chemoresistance. The interaction between Nrf2 and CBP is critical for the gene transcription activation. CBP and its homologue p300 interact with two transactivation domains in Nrf2, Neh4, and Neh5 domains through their TAZ1 and TAZ2 domains. To date, the molecular basis of this crucial interaction is not known, hindering a more detailed understanding of the regulation of Nrf2. To close this knowledge gap, we have used a set of biophysical experiments to dissect the Nrf2-CBP/p300 interactions. Structural properties of Neh4 and Neh5 and their binding with the TAZ1 and TAZ2 domains of CBP/p300 were characterized. Our results show that the Neh4 and Neh5 domains of Nrf2 are intrinsically disordered, and they both can bind the TAZ1 and TAZ2 domains of CBP/p300 with micromolar affinities. The findings provide molecular insight into the regulation of Nrf2 by CBP/p300 through multi-domain interactions.
Collapse
Affiliation(s)
- Nadun C Karunatilleke
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Anne Brickenden
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
21
|
Liu MJ, Xu ZP, Guan YQ, Wang YY, Wen XS, Li GH, Wang XN, Shen T. Ethyl acetate fraction of Thesium chinense Turcz. alleviates chronic obstructive pulmonary disease through inhibition of ferroptosis mediated by activating Nrf2/SLC7A11/GPX4 axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118776. [PMID: 39222758 DOI: 10.1016/j.jep.2024.118776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thesium chinense Turcz., a traditional Chinese herbal medicine, displays good therapeutic efficiency against respiratory diseases (e.g. pneumonia, pharyngitis) in clinical applications, however, its effects on COPD and the mechanism of action are still unclear. AIM OF THE STUDY This study aims to investigate the therapeutic effect of the ethyl acetate fraction of Thesium chinense Turcz. (TCEA) on COPD and reveal the underlying mechanism. MATERIALS AND METHODS A cigarette smoke (CS)-induced mouse COPD model was established, and the efficacy of TCEA was evaluated using peripheral blood testing, HE and Masson staining, qRT-PCR and ELISA assays. TCEA was analyzed for chemical composition by LC-MS/MS and HPLC. Prediction of major signaling pathways and potential targets was performed by network pharmacology. The molecular mechanism of TCEA was explored by immunoblotting, immunofluorescence staining, flow cytometry, and ubiquitination assay. Finally, potential active small molecules in TCEA were identified by molecular virtual screening. RESULTS TCEA treatment significantly inhibited the secretion of pro-inflammatory factors and attenuated pathological emphysema. The main chemical constituents of TCEA were identified as flavonoids by UPLC-MS/MS. Network pharmacology analysis enriched the Nrf2 signaling pathway closely related to oxidative stress. Our results suggested that TCEA inhibited ferroptosis by activating Nrf2/SLC7A11/GPX4 axis and inhibiting lipid metabolism-related proteins, ACSL4, ALOX5 and COX2 in vivo and in vitro. Noteworthily, the beneficial impact of TCEA on regulation of SLC7A11 and GPX4 vanished after silencing Nrf2. Moreover, Nrf2 ubiquitination was inhibited by TCEA treatment. Finally, several flavonoids modulating Nrf2 were identified by molecular virtual screening. CONCLUSIONS TCEA significantly alleviated COPD progression by inhibiting ferroptosis primarily through activation of Nrf2/SLC7A11/GPX4 signaling. Flavonoids are the main active components that exert their effects. These findings shed light on the mechanism of action of TCEA and its potential active components, providing a feasible approach for the treatment of COPD.
Collapse
Affiliation(s)
- Ming-Jie Liu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zhen-Peng Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yue-Qin Guan
- Jiuhua Huayuan Pharmaceutical Co., Ltd., Chuzhou, People's Republic of China
| | - Ying-Yue Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xue-Sen Wen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Guo-Hui Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China; Department of Pharmacy, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
22
|
Petrikonis K, Bernatoniene J, Kopustinskiene DM, Casale R, Davinelli S, Saso L. The Antinociceptive Role of Nrf2 in Neuropathic Pain: From Mechanisms to Clinical Perspectives. Pharmaceutics 2024; 16:1068. [PMID: 39204413 PMCID: PMC11358986 DOI: 10.3390/pharmaceutics16081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Neuropathic pain, a chronic condition resulting from nerve injury or dysfunction, presents significant therapeutic challenges and is closely associated with oxidative stress and inflammation, both of which can lead to mitochondrial dysfunction. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, a critical cellular defense mechanism against oxidative stress, has emerged as a promising target for neuropathic pain management. Nrf2 modulators enhance the expression of antioxidant and cytoprotective genes, thereby reducing oxidative damage, inflammation, and mitochondrial impairment. This review explores the antinociceptive effects of Nrf2, highlighting how pharmacological agents and natural compounds may be used as potential therapeutic strategies against neuropathic pain. Although preclinical studies demonstrate significant pain reduction and improved nerve function through Nrf2 activation, several clinical challenges need to be addressed. However, emerging clinical evidence suggests potential benefits of Nrf2 modulators in several conditions, such as diabetic neuropathy and multiple sclerosis. Future research should focus on further elucidating the molecular role of Nrf2 in neuropathic pain to optimize its modulation efficacy and maximize clinical utility.
Collapse
Affiliation(s)
- Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Roberto Casale
- Opusmedica Persons, Care & Research-NPO, 29121 Piacenza, Italy;
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, La Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
23
|
Luo G, Kumar H, Aldridge K, Rieger S, Han E, Jiang E, Chan ER, Soliman A, Mahdi H, Letterio JJ. A Core NRF2 Gene Set Defined Through Comprehensive Transcriptomic Analysis Predicts Selective Drug Resistance and Poor Multicancer Prognosis. Antioxid Redox Signal 2024. [PMID: 39028025 DOI: 10.1089/ars.2023.0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Aims: The nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (NRF2-KEAP1) pathway plays an important role in the cellular response to oxidative stress but may also contribute to metabolic changes and drug resistance in cancer. However, despite its pervasiveness and important role, most of nuclear factor erythroid 2-related factor 2 (NRF2) target genes are defined in context-specific experiments and analysis, making it difficult to translate from one situation to another. Our study investigates whether a core NRF2 gene signature can be derived and used to represent NRF2 activation in various contexts, allowing better reproducibility and understanding of NRF2. Results: We define a core set of 14 upregulated NRF2 target genes from 7 RNA-sequencing datasets that we generated and analyzed. This NRF2 gene signature was validated using analyses of published datasets and gene sets. An NRF2 activity score based on expression of these core target genes correlates with resistance to drugs such as PX-12 and necrosulfonamide but not to paclitaxel or bardoxolone methyl. We validated these findings in our Kelch-like ECH-associated protein 1 (KEAP1) knockout cancer cell lines. Finally, our NRF2 score is prognostic for cancer survival and validated in additional independent cohorts for lung adenocarcinoma and also novel cancer types not associated with NRF2-KEAP1 mutations such as clear cell renal carcinoma, hepatocellular carcinoma, and acute myeloid leukemia. Innovation and Conclusions: These analyses define a core NRF2 gene signature that is robust, versatile, and useful for evaluating NRF2 activity and for predicting drug resistance and cancer prognosis. Using this gene signature, we uncovered novel selective drug resistance and cancer prognosis associated with NRF2 activation.
Collapse
Affiliation(s)
- George Luo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Harshita Kumar
- Department of Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Stevie Rieger
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - EunHyang Han
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Ethan Jiang
- Booth School of Business, University of Chicago, Chicago, Illinois, USA
| | - Ernest R Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ahmed Soliman
- Department of Pediatrics, SUNY Downstate Hospital, Brooklyn, New York, USA
| | - Haider Mahdi
- Magee Women's Research Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Magee Women's Hospital, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John J Letterio
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
- The Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Dong Y, Kang H, Peng R, Liu Z, Liao F, Hu SA, Ding W, Wang P, Yang P, Zhu M, Wang S, Wu M, Ye D, Gan X, Li F, Song K. A clinical-stage Nrf2 activator suppresses osteoclast differentiation via the iron-ornithine axis. Cell Metab 2024; 36:1679-1695.e6. [PMID: 38569557 DOI: 10.1016/j.cmet.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/14/2023] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Activating Nrf2 by small molecules is a promising strategy to treat postmenopausal osteoporosis. However, there is currently no Nrf2 activator approved for treating chronic diseases, and the downstream mechanism underlying the regulation of Nrf2 on osteoclast differentiation remains unclear. Here, we found that bitopertin, a clinical-stage glycine uptake inhibitor, suppresses osteoclast differentiation and ameliorates ovariectomy-induced bone loss by activating Nrf2. Mechanistically, bitopertin interacts with the Keap1 Kelch domain and decreases Keap1-Nrf2 binding, leading to reduced Nrf2 ubiquitination and degradation. Bitopertin is associated with less adverse events than clinically approved Nrf2 activators in both mice and human subjects. Furthermore, Nrf2 transcriptionally activates ferroportin-coding gene Slc40a1 to reduce intracellular iron levels in osteoclasts. Loss of Nrf2 or iron supplementation upregulates ornithine-metabolizing enzyme Odc1, which decreases ornithine levels and thereby promotes osteoclast differentiation. Collectively, our findings identify a novel clinical-stage Nrf2 activator and propose a novel Nrf2-iron-ornithine metabolic axis in osteoclasts.
Collapse
Affiliation(s)
- Yimin Dong
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renpeng Peng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fuben Liao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi-An Hu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhong Ding
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengju Wang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengchao Yang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meipeng Zhu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sibo Wang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglong Wu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Gan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kehan Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
25
|
Nandi I, Ji L, Smith HW, Avizonis D, Papavasiliou V, Lavoie C, Pacis A, Attalla S, Sanguin-Gendreau V, Muller WJ. Targeting fatty acid oxidation enhances response to HER2-targeted therapy. Nat Commun 2024; 15:6587. [PMID: 39097623 PMCID: PMC11297952 DOI: 10.1038/s41467-024-50998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Metabolic reprogramming, a hallmark of tumorigenesis, involves alterations in glucose and fatty acid metabolism. Here, we investigate the role of Carnitine palmitoyl transferase 1a (Cpt1a), a key enzyme in long-chain fatty acid (LCFA) oxidation, in ErbB2-driven breast cancers. In ErbB2+ breast cancer models, ablation of Cpt1a delays tumor onset, growth, and metastasis. However, Cpt1a-deficient cells exhibit increased glucose dependency that enables survival and eventual tumor progression. Consequently, these cells exhibit heightened oxidative stress and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Inhibiting Nrf2 or silencing its expression reduces proliferation and glucose consumption in Cpt1a-deficient cells. Combining the ketogenic diet, composed of LCFAs, or an anti-ErbB2 monoclonal antibody (mAb) with Cpt1a deficiency significantly perturbs tumor growth, enhances apoptosis, and reduces lung metastasis. Using an immunocompetent model, we show that Cpt1a inhibition promotes an antitumor immune microenvironment, thereby enhancing the efficacy of anti-ErbB2 mAbs. Our findings underscore the importance of targeting fatty acid oxidation alongside HER2-targeted therapies to combat resistance in HER2+ breast cancer patients.
Collapse
Affiliation(s)
- Ipshita Nandi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Linjia Ji
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Harvey W Smith
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Daina Avizonis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Vasilios Papavasiliou
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Cynthia Lavoie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Alain Pacis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada
| | - Sherif Attalla
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Virginie Sanguin-Gendreau
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
26
|
Bartman AE, Raeisi M, Peiris CD, Jacobsen IE, Martin DB, Doorn JA. A Novel Analog of the Natural Product Fraxinellone Protects against Endogenous and Exogenous Neurotoxicants. ACS Chem Neurosci 2024; 15:2612-2622. [PMID: 38925635 PMCID: PMC11258694 DOI: 10.1021/acschemneuro.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Numerous insults, both endogenous (e.g., glutamate) and exogenous (e.g., pesticides), compromise the function of the nervous system and pose risk factors for damage or later disease. In previous reports, limonoids such as fraxinellone showed significant neuroprotective activity against glutamate (Glu) excitotoxicity and reactive oxygen species (ROS) production in vitro, albeit with minimal mechanistic information provided. Given these findings, a library of novel fraxinellone analogs (including analogs 1 and 2 described here) was synthesized with the goal of identifying compounds exhibiting neuroprotection against insults. Analog 2 was found to be protective against Glu-mediated excitotoxicity with a measured EC50 of 44 and 39 nM for in vitro assays using PC12 and SH-SY5Y cells, respectively. Pretreatment with analog 2 yielded rapid induction of antioxidant genes, namely, Gpx4, Sod1, and Nqo1, as measured via qPCR. Analog 2 mitigated Glu-mediated ROS. Cytoprotection could be replicated using sulforaphane (SFN), a Nrf2 activator, and inhibited via ML-385, which inhibits Nrf2 binding to regulatory DNA sequences, thereby blocking downstream gene expression. Nrf2 DNA-binding activity was demonstrated using a Nrf2 ELISA-based transcription factor assay. In addition, we found that pretreatment with the thiol N-acetyl Cys completely mitigated SFN-mediated induction of antioxidant genes but had no effect on the activity of analog 2, suggesting thiol modification is not critical for its mechanism of action. In summary, our data demonstrate a fraxinellone analog to be a novel, potent, and rapid activator of the Nrf2-mediated antioxidant defense system, providing robust protection against insults.
Collapse
Affiliation(s)
- Anna E. Bartman
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Mersad Raeisi
- Department
of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, Iowa 52242, United States
| | - Clarence D. Peiris
- Department
of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, Iowa 52242, United States
| | - Isabella E. Jacobsen
- Department
of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, Iowa 52242, United States
| | - David B.C. Martin
- Department
of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan A. Doorn
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
27
|
Xiao JL, Liu HY, Sun CC, Tang CF. Regulation of Keap1-Nrf2 signaling in health and diseases. Mol Biol Rep 2024; 51:809. [PMID: 39001962 DOI: 10.1007/s11033-024-09771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) functions as a central regulator in modulating the activities of diverse antioxidant enzymes, maintaining cellular redox balance, and responding to oxidative stress (OS). Kelch-like ECH-associated protein 1 (Keap1) serves as a principal negative modulator in controlling the expression of detoxification and antioxidant genes. It is widely accepted that OS plays a pivotal role in the pathogenesis of various diseases. When OS occurs, leading to inflammatory infiltration of neutrophils, increased secretion of proteases, and the generation of large quantities of reactive oxygen radicals (ROS). These ROS can oxidize or disrupt DNA, lipids, and proteins either directly or indirectly. They also cause gene mutations, lipid peroxidation, and protein denaturation, all of which can result in disease. The Keap1-Nrf2 signaling pathway regulates the balance between oxidants and antioxidants in vivo, maintains the stability of the intracellular environment, and promotes cell growth and repair. However, the antioxidant properties of the Keap1-Nrf2 signaling pathway are reduced in disease. This review overviews the mechanisms of OS generation, the biological properties of Keap1-Nrf2, and the regulatory role of its pathway in health and disease, to explore therapeutic strategies for the Keap1-Nrf2 signaling pathway in different diseases.
Collapse
Affiliation(s)
- Jiang-Ling Xiao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan, 410012, China
| | - Heng-Yuan Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan, 410012, China
| | - Chen-Chen Sun
- Institute of Physical Education, Hunan First Normal University, Changsha, Hunan, 410205, China.
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan, 410012, China.
| |
Collapse
|
28
|
Long F, Wang P, Ma Y, Zhang X, Wang T. Chemopreventive effects of atractylenolide-III on mammary tumorigenesis via activation of the Nrf2/ARE pathway through autophagic degradation of Keap1. Biomed Pharmacother 2024; 176:116852. [PMID: 38834007 DOI: 10.1016/j.biopha.2024.116852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
The incidence of breast cancer is increasing annually, making it a major health threat for women. Chemoprevention using natural, dietary, or synthetic products has emerged as a promising approach to address this growing burden. Atractylenolide-III (AT-III), a sesquiterpenoid present in various medicinal herbs, has demonstrated potential therapeutic effects against several diseases, including tumors, nonalcoholic fatty liver disease, and cerebral ischemic injury. However, its impact on breast cancer chemoprevention remains unexplored. In this study, we used an N-methyl-N-nitrosourea (NMU)-induced rat breast cancer model and 17β-estradiol (E2)-treated MCF-10A cells to evaluate the chemopreventive potential of AT-III on mammary tumorigenesis. AT-III inhibited mammary tumor progression, evidenced by reduced tumor volume and multiplicity, prolonged tumor latency, and the reversal of NMU-induced weight loss. Furthermore, AT-III suppressed NMU-induced inflammation and oxidative stress through the Nrf2/ARE pathway in breast cancer tissues. In vitro, AT-III effectively suppressed E2-induced anchorage-independent growth and cell migration in MCF-10A cells. Nrf2 knockdown attenuated the protective effects of AT-III, highlighting the pivotal role of Nrf2 in AT-III-mediated suppression of tumorigenesis. The mechanism involves the induction of Nrf2 expression by AT-III through the autophagic degradation of Kelch-like ECH-associated protein 1 (Keap1). Overall, the results of this study indicate that AT-III is a promising candidate for breast cancer chemoprevention and provide valuable insights into its molecular interactions and signaling pathways.
Collapse
Affiliation(s)
- Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu 610032, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu 610032, China
| | - Yu Ma
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China.
| |
Collapse
|
29
|
Lu M, Ji J, Lv Y, Zhao J, Liu Y, Jiao Q, Liu T, Mou Y, You Q, Jiang Z. Bivalent inhibitors of the BTB E3 ligase KEAP1 enable instant NRF2 activation to suppress acute inflammatory response. Cell Chem Biol 2024; 31:1188-1202.e10. [PMID: 38157852 DOI: 10.1016/j.chembiol.2023.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Most BTB-containing E3 ligases homodimerize to recognize a single substrate by engaging multiple degrons, represented by E3 ligase KEAP1 dimer and its substrate NRF2. Inactivating KEAP1 to hinder ubiquitination-dependent NRF2 degradation activates NRF2. While various KEAP1 inhibitors have been reported, all reported inhibitors bind to KEAP1 in a monovalent fashion and activate NRF2 in a lagging manner. Herein, we report a unique bivalent KEAP1 inhibitor, biKEAP1 (3), that engages cellular KEAP1 dimer to directly release sequestered NRF2 protein, leading to an instant NRF2 activation. 3 promotes the nuclear translocation of NRF2, directly suppressing proinflammatory cytokine transcription. Data from in vivo experiments showed that 3, with unprecedented potency, reduced acute inflammatory burden in several acute inflammation models in a timely manner. Our findings demonstrate that the bivalent KEAP1 inhibitor can directly enable sequestered substrate NRF2 to suppress inflammatory transcription response and dampen various acute inflammation injuries.
Collapse
Affiliation(s)
- Mengchen Lu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou 215123, China
| | - Jianai Ji
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yifei Lv
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuting Liu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qiong Jiao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tian Liu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Mou
- College of Pharmacy and Chemistry and Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
30
|
Singh AK, Ruiz D, Rasheed MSU, Avery TD, Turner DJL, Abell AD, Grace PM. Systemic and targeted activation of Nrf2 reverses doxorubicin-induced cognitive impairments and sensorimotor deficits in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598291. [PMID: 38915544 PMCID: PMC11195070 DOI: 10.1101/2024.06.10.598291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
While cancer survivorship has increased due to advances in treatments, chemotherapy often carries long-lived neurotoxic side effects which reduce quality of life. Commonly affected domains include memory, executive function, attention, processing speed and sensorimotor function, colloquially known as chemotherapy-induced cognitive impairment (CICI) or "chemobrain". Oxidative stress and neuroimmune signaling in the brain have been mechanistically linked to the deleterious effects of chemotherapy on cognition and sensorimotor function. With this in mind, we tested if activation of the master regulator of antioxidant response nuclear factor E2-related factor 2 (Nrf2) alleviates cognitive and sensorimotor impairments induced by doxorubicin. The FDA-approved systemic Nrf2 activator, diroximel fumarate (DRF) was used, along with our recently developed prodrug 1c which has the advantage of specifically releasing monomethyl fumarate at sites of oxidative stress. DRF and 1c both reversed doxorubicin-induced deficits in executive function, spatial and working memory, as well as decrements in fine motor coordination and grip strength, across both male and female mice. Both treatments reversed doxorubicin-induced loss of synaptic proteins and microglia phenotypic transition in the hippocampus. Doxorubicin-induced myelin damage in the corpus callosum was reversed by both Nrf2 activators. These results demonstrate the therapeutic potential of Nrf2 activators to reverse doxorubicin-induced cognitive impairments, motor incoordination, and associated structural and phenotypic changes in the brain. The localized release of monomethyl fumarate by 1c has the potential to diminish unwanted effects of fumarates while retaining efficacy.
Collapse
Affiliation(s)
- Anand Kumar Singh
- Laboratories of Neuroimmunology, Department of Symptom Research, and the MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, USA
| | - David Ruiz
- Laboratories of Neuroimmunology, Department of Symptom Research, and the MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Mohd Sami Ur Rasheed
- Laboratories of Neuroimmunology, Department of Symptom Research, and the MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Thomas D Avery
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, Adelaide, Australia
| | - Dion J L Turner
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, Adelaide, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, Adelaide, Australia
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, and the MD Anderson Pain Research Consortium, University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
31
|
Muzammil K, Sabah Ghnim Z, Saeed Gataa I, Fawzi Al-Hussainy A, Ali Soud N, Adil M, Ali Shallan M, Yasamineh S. NRF2-mediated regulation of lipid pathways in viral infection. Mol Aspects Med 2024; 97:101279. [PMID: 38772081 DOI: 10.1016/j.mam.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
The first line of defense against viral infection of the host cell is the cellular lipid membrane, which is also a crucial first site of contact for viruses. Lipids may sometimes be used as viral receptors by viruses. For effective infection, viruses significantly depend on lipid rafts during the majority of the viral life cycle. It has been discovered that different viruses employ different lipid raft modification methods for attachment, internalization, membrane fusion, genome replication, assembly, and release. To preserve cellular homeostasis, cells have potent antioxidant, detoxifying, and cytoprotective capabilities. Nuclear factor erythroid 2-related factor 2 (NRF2), widely expressed in many tissues and cell types, is one crucial component controlling electrophilic and oxidative stress (OS). NRF2 has recently been given novel tasks, including controlling inflammation and antiviral interferon (IFN) responses. The activation of NRF2 has two effects: it may both promote and prevent the development of viral diseases. NRF2 may also alter the host's metabolism and innate immunity during viral infection. However, its primary function in viral infections is to regulate reactive oxygen species (ROS). In several research, the impact of NRF2 on lipid metabolism has been examined. NRF2 is also involved in the control of lipids during viral infection. We evaluated NRF2's function in controlling viral and lipid infections in this research. We also looked at how lipids function in viral infections. Finally, we investigated the role of NRF2 in lipid modulation during viral infections.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | | | | | | | - Nashat Ali Soud
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
32
|
Papapetropoulos A, Topouzis S, Alexander SPH, Cortese-Krott M, Kendall DA, Martemyanov KA, Mauro C, Nagercoil N, Panettieri RA, Patel HH, Schulz R, Stefanska B, Stephens GJ, Teixeira MM, Vergnolle N, Wang X, Ferdinandy P. Novel drugs approved by the EMA, the FDA, and the MHRA in 2023: A year in review. Br J Pharmacol 2024; 181:1553-1575. [PMID: 38519837 DOI: 10.1111/bph.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 03/25/2024] Open
Abstract
In 2023, seventy novel drugs received market authorization for the first time in either Europe (by the EMA and the MHRA) or in the United States (by the FDA). Confirming a steady recent trend, more than half of these drugs target rare diseases or intractable forms of cancer. Thirty drugs are categorized as "first-in-class" (FIC), illustrating the quality of research and innovation that drives new chemical entity discovery and development. We succinctly describe the mechanism of action of most of these FIC drugs and discuss the therapeutic areas covered, as well as the chemical category to which these drugs belong. The 2023 novel drug list also demonstrates an unabated emphasis on polypeptides (recombinant proteins and antibodies), Advanced Therapy Medicinal Products (gene and cell therapies) and RNA therapeutics, including the first-ever approval of a CRISPR-Cas9-based gene-editing cell therapy.
Collapse
Affiliation(s)
- Andreas Papapetropoulos
- Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stavros Topouzis
- Laboratory of Molecular Pharmacology Department of Pharmacy, University of Patras, Patras, Greece
| | | | - Miriam Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pneumology, Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany
| | | | | | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | - Hemal H Patel
- VA San Diego Healthcare System and University of California/San Diego, San Diego, CA, USA
| | | | | | | | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Xin Wang
- University of Manchester, Manchester, UK
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
33
|
Morgenstern C, Lastres-Becker I, Demirdöğen BC, Costa VM, Daiber A, Foresti R, Motterlini R, Kalyoncu S, Arioz BI, Genc S, Jakubowska M, Trougakos IP, Piechota-Polanczyk A, Mickael M, Santos M, Kensler TW, Cuadrado A, Copple IM. Biomarkers of NRF2 signalling: Current status and future challenges. Redox Biol 2024; 72:103134. [PMID: 38643749 PMCID: PMC11046063 DOI: 10.1016/j.redox.2024.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/24/2024] [Indexed: 04/23/2024] Open
Abstract
The cytoprotective transcription factor NRF2 regulates the expression of several hundred genes in mammalian cells and is a promising therapeutic target in a number of diseases associated with oxidative stress and inflammation. Hence, an ability to monitor basal and inducible NRF2 signalling is vital for mechanistic understanding in translational studies. Due to some caveats related to the direct measurement of NRF2 levels, the modulation of NRF2 activity is typically determined by measuring changes in the expression of one or more of its target genes and/or the associated protein products. However, there is a lack of consensus regarding the most relevant set of these genes/proteins that best represents NRF2 activity across cell types and species. We present the findings of a comprehensive literature search that according to stringent criteria identifies GCLC, GCLM, HMOX1, NQO1, SRXN1 and TXNRD1 as a robust panel of markers that are directly regulated by NRF2 in multiple cell and tissue types. We assess the relevance of these markers in clinically accessible biofluids and highlight future challenges in the development and use of NRF2 biomarkers in humans.
Collapse
Affiliation(s)
- Christina Morgenstern
- Department of Otorhinolaryngology, Medical University of Vienna, General Hospital of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria; Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010, Graz, Austria
| | - Isabel Lastres-Becker
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid (UAM), Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Birsen Can Demirdöğen
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Andreas Daiber
- Department of Cardiology 1, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Roberta Foresti
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France
| | | | | | - Burak I Arioz
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey; Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Monika Jakubowska
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387, Krakow, Poland
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | | | - Michel Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552, Garbatka, Poland
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Thomas W Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid (UAM), Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Sols-Morreale" UAM-CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ian M Copple
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK.
| |
Collapse
|
34
|
Wolf KMP, Maffeis V, Schoenenberger CA, Zünd T, Bar-Peled L, Palivan CG, Vogel V. Tweaking the NRF2 signaling cascade in human myelogenous leukemia cells by artificial nano-organelles. Proc Natl Acad Sci U S A 2024; 121:e2219470121. [PMID: 38776365 PMCID: PMC11145192 DOI: 10.1073/pnas.2219470121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
NRF2 (nuclear factor erythroid-2-related factor 2) is a key regulator of genes involved in the cell's protective response to oxidative stress. Upon activation by disturbed redox homeostasis, NRF2 promotes the expression of metabolic enzymes to eliminate reactive oxygen species (ROS). Cell internalization of peroxisome-like artificial organelles that harbor redox-regulating enzymes was previously shown to reduce ROS-induced stress and thus cell death. However, if and to which extent ROS degradation by such nanocompartments interferes with redox signaling pathways is largely unknown. Here, we advance the design of H2O2-degrading artificial nano-organelles (AnOs) that exposed surface-attached cell penetrating peptides (CPP) for enhanced uptake and were equipped with a fluorescent moiety for rapid visualization within cells. To investigate how such AnOs integrate in cellular redox signaling, we engineered leukemic K562 cells that report on NRF2 activation by increased mCherry expression. Once internalized, ROS-metabolizing AnOs dampen intracellular NRF2 signaling upon oxidative injury by degrading H2O2. Moreover, intracellular AnOs conferred protection against ROSinduced cell death in conditions when endogenous ROS-protection mechanisms have been compromised by depletion of glutathione or knockdown of NRF2. We demonstrate CPP-facilitated AnO uptake and AnO-mediated protection against ROS insults also in the T lymphocyte population of primary peripheral blood mononuclear cells from healthy donors. Overall, our data suggest that intracellular AnOs alleviated cellular stress by the on-site reduction of ROS.
Collapse
Affiliation(s)
- Konstantin M. P. Wolf
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, 8006Zurich, Switzerland
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
| | - Viviana Maffeis
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
- Department of Chemistry, University of Basel, 4002Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
- Department of Chemistry, University of Basel, 4002Basel, Switzerland
| | - Tamara Zünd
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, 8006Zurich, Switzerland
| | - Liron Bar-Peled
- Center for Cancer Research, Massachusetts General Hospital/Department of Medicine, Harvard Medical School, Boston, MA02129, USA
| | - Cornelia G. Palivan
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
- Department of Chemistry, University of Basel, 4002Basel, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, 8006Zurich, Switzerland
- Swiss National Centre of Competence in Research, Molecular Systems Engineering, 4002Basel, Switzerland
| |
Collapse
|
35
|
Moerland JA, Liby KT. The Triterpenoid CDDO-Methyl Ester Reduces Tumor Burden, Reprograms the Immune Microenvironment, and Protects from Chemotherapy-Induced Toxicity in a Preclinical Mouse Model of Established Lung Cancer. Antioxidants (Basel) 2024; 13:621. [PMID: 38929060 PMCID: PMC11201246 DOI: 10.3390/antiox13060621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
NRF2 activation protects epithelial cells from malignancy, but cancer cells can upregulate the pathway to promote survival. NRF2 activators including CDDO-Methyl ester (CDDO-Me) inhibit cancer in preclinical models, suggesting NRF2 activation in other cell types may promote anti-tumor activity. However, the immunomodulatory effects of NRF2 activation remain poorly understood in the context of cancer. To test CDDO-Me in a murine model of established lung cancer, tumor-bearing wildtype (WT) and Nrf2 knockout (KO) mice were treated with 50-100 mg CDDO-Me/kg diet, alone or combined with carboplatin/paclitaxel (C/P) for 8-12 weeks. CDDO-Me decreased tumor burden in an Nrf2-dependent manner. The combination of CDDO-Me plus C/P was significantly (p < 0.05) more effective than either drug alone, reducing tumor burden by 84% in WT mice. CDDO-Me reduced the histopathological grade of WT tumors, with a significantly (p < 0.05) higher proportion of low-grade tumors and a lower proportion of high-grade tumors. These changes were augmented by combination with C/P. CDDO-Me also protected WT mice from C/P-induced toxicity and improved macrophage and T cell phenotypes in WT mice, reducing the expression of CD206 and PD-L1 on macrophages, decreasing immunosuppressive FoxP3+ CD4+ T cells, and increasing activation of CD8+ T cells in a Nrf2-dependent manner.
Collapse
Affiliation(s)
- Jessica A. Moerland
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Karen T. Liby
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, 980 W. Walnut Street, Indianapolis, IN 46202, USA
| |
Collapse
|
36
|
Gao M, Meng T, Chen F, Peng M, Li Q, Li L, Yang L, Yan Y, Deng T, Pan X, Luo Z, Yang J, Yang X. Inhibitory effect of Incarvillea diffusa Royle extract in the formation of calcium oxalate nephrolithiasis by regulating ROS-induced Nrf2/HO-1 pathway in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117619. [PMID: 38272103 DOI: 10.1016/j.jep.2023.117619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Calcium oxalate (CaOx) kidney stones are widely acknowledged as the most prevalent type of urinary stones, with high incidence and recurrence rates. Incarvillea diffusa Royle (ID) is a traditionally used medicinal herb in the Miao Minzu of Guizhou province, China, for treating urolithiasis. However, the active components and the underlying mechanism of its pharmacodynamic effects remain unclear. AIM OF THE STUDY This study aimed to investigate the potential inhibitory effect of the active component of ID on the formation of CaOx nephrolithiasis and elucidate the underlying mechanism. MATERIALS AND METHODS In vivo, a CaOx kidney stone model was induced in Sprague-Dawley (SD) rats using an ethylene glycol and ammonium chloride protocol for four weeks. Forty-eight male SD rats were randomly assigned to 6 groups (n = 8): blank group, model group, apocynin group, and low, medium, and high dose of ID's active component (IDW) groups. After three weeks of administration, rat urine, serum, and kidney tissues were collected. Renal tissue damage and crystallization, Ox, BUN, Ca2+, CRE, GSH, MDA, SOD contents, and levels of IL-1β, IL-18, MCP-1, caspase-1, IL-6, and TNF-α in urine, serum, and kidney tissue were assessed using HE staining and relevant assay kits, respectively. Protein expression of Nrf2, HO-1, p38, p65, and Toll-4 in kidney tissues was quantified via Western blot. The antioxidant capacities of major compounds were evaluated through DPPH, O2·-, and ·OH radical scavenging assays, along with their effects on intracellular ROS production in CaOx-induced HK-2 cells. RESULTS We found that IDW could significantly reduce the levels of CRE, GSH, MDA, Ox, and BUN, and enhancing SOD activity. Moreover, it could inhibit the secretion of TNF-α, IL-1β, IL-18, MCP-1, caspase-1, and decreased protein expression of Nrf2, HO-1, p38, p65, and Toll-4 in renal tissue. Three major compounds isolated from IDW exhibited promising antioxidant activities and inhibited intracellular ROS production in CaOx-induced HK-2 cells. CONCLUSIONS IDW facilitated the excretion of supersaturated Ca2+ and decreased the production of Ox, BUN in SD rat urine, and mitigated renal tissue damage by regulating Nrf2/HO-1 signaling pathway. Importantly, the three major compounds identified as active components of IDW contributed to the inhibition of CaOx nephrolithiasis formation. Overall, IDW holds significant potential for treating CaOx nephrolithiasis.
Collapse
Affiliation(s)
- Ming Gao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Tengteng Meng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Faju Chen
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Mei Peng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Qiji Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Liangqun Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Lishou Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Yanfang Yan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Tingfei Deng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xiong Pan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Zhongsheng Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Juan Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xiaosheng Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| |
Collapse
|
37
|
Tuerhong A, Xu J, Wang W, Shi S, Meng Q, Hua J, Liu J, Zhang B, Yu X, Liang C. CPT1B maintains redox homeostasis and inhibits ferroptosis to induce gemcitabine resistance via the KEAP1/NRF2 axis in pancreatic cancer. Surgery 2024; 175:1264-1275. [PMID: 38302326 DOI: 10.1016/j.surg.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/31/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Although we have made progress in treatment and have increased the 5-year survival by ≤30% in pancreatic cancer, chemotherapy resistance remains a major obstacle. However, whether reprogrammed lipid metabolism contributes to chemoresistance still needs to be further studied. METHODS Gene expression was determined using Western blotting and quantitative reverse transcription polymerase chain reaction. Cell cloning formation assay, Cell Counting Kit-8, EdU assay, wound healing assay, transwell assay, and flow cytometry were used to detect apoptosis, cell proliferation capacity, migration capacity, and cytotoxicity of gemcitabine. Confocal fluorescence microscopy, transmission electron microscopy, etc., were used to detect the changes in intracellular reactive oxygen species, glutathione, lipid peroxidation level, and cell morphology. An animal study was performed to evaluate the effect of CPT1B knockdown on tumor growth and gemcitabine efficacy. RESULTS In our study, we observed that the CPT1B expression level was higher in pancreatic ductal adenocarcinoma tissues than in normal tissues and correlated with a low rate of survival. Moreover, silencing of CPT1B significantly suppressed the proliferative ability and metastasis of pancreatic cancer cells. Furthermore, we discovered that CPT1B interacts with Kelch-like ECH-associated protein 1, and CPT1B knockdown led to decreased NRF2 expression and ferroptosis induction. In addition, CPT1B expression increased after gemcitabine treatment, and it was highly expressed in gemcitabine-resistant pancreatic ductal adenocarcinoma cells. Finally, we discovered that ferroptosis induced by CPT1B knockdown enhanced the gemcitabine toxicity in pancreatic ductal adenocarcinoma. CONCLUSION CPT1B may act as a promising target in treating patients with gemcitabine-resistant pancreatic ductal adenocarcinoma .
Collapse
Affiliation(s)
- Abudureyimu Tuerhong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China.
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China.
| |
Collapse
|
38
|
Guo S, Li Z, Liu Y, Cheng Y, Jia D. Ferroptosis: a new target for hepatic ischemia-reperfusion injury? Free Radic Res 2024; 58:396-416. [PMID: 39068663 DOI: 10.1080/10715762.2024.2386075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) can seriously affect graft survival and prognosis and is an unavoidable event during liver transplantation. Ferroptosis is a novel iron-dependent form of cell death characterized by iron accumulation and overwhelming lipid peroxidation; it differs morphologically, genetically, and biochemically from other well-known cell death types (autophagy, necrosis, and apoptosis). Accumulating evidence has shown that ferroptosis is involved in the pathogenesis of hepatic IRI, and targeting ferroptosis may be a promising therapeutic approach. Here, we review the pathways and phenomena involved in ferroptosis, explore the associations and implications of ferroptosis and hepatic IRI, and discuss possible strategies for modulating ferroptosis to alleviate the hepatic IRI.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zexin Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ying Cheng
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Degong Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
39
|
Yuan T, Wang T, Zhang J, Ye F, Gu Z, Li Y, Xu J. Functional Polyphenol-Based Nanoparticles Boosted the Neuroprotective Effect of Riluzole for Acute Spinal Cord Injury. Biomacromolecules 2024; 25:2607-2620. [PMID: 38530873 DOI: 10.1021/acs.biomac.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Riluzole is commonly used as a neuroprotective agent for treating traumatic spinal cord injury (SCI), which works by blocking the influx of sodium and calcium ions and reducing glutamate activity. However, its clinical application is limited because of its poor solubility, short half-life, potential organ toxicity, and insufficient bioabilities toward upregulated inflammation and oxidative stress levels. To address this issue, epigallocatechin gallate (EGCG), a natural polyphenol, was employed to fabricate nanoparticles (NPs) with riluzole to enhance the neuroprotective effects. The resulting NPs demonstrated good biocompatibility, excellent antioxidative properties, and promising regulation effects from the M1 to M2 macrophages. Furthermore, an in vivo SCI model was successfully established, and NPs could be obviously aggregated at the SCI site. More interestingly, excellent neuroprotective properties of NPs through regulating the levels of oxidative stress, inflammation, and ion channels could be fully demonstrated in vivo by RNA sequencing and sophisticated biochemistry evaluations. Together, the work provided new opportunities toward the design and fabrication of robust and multifunctional NPs for oxidative stress and inflammation-related diseases via biological integration of natural polyphenols and small-molecule drugs.
Collapse
Affiliation(s)
- Taoyang Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Ye
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
40
|
Liu L, Wang L, Liu L, Qu X, Zhao W, Ding J, Zhao S, Xu B, Yu H, Liu B, Chai J. Acyltransferase zinc finger DHHC-type containing 2 aggravates gastric carcinoma growth by targeting Nrf2 signaling: A mechanism-based multicombination bionic nano-drug therapy. Redox Biol 2024; 70:103051. [PMID: 38301594 PMCID: PMC10844977 DOI: 10.1016/j.redox.2024.103051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
The significant regulatory role of palmitoylation modification in cancer-related targets has been demonstrated previously. However, the biological functions of Nrf2 in stomach cancer and whether the presence of Nrf2 palmitoylation affects gastric cancer (GC) progression and its treatment have not been reported. Several public datasets were used to look into the possible link between the amount of palmitoylated Nrf2 and the progression and its outcome of GC in patients. The palmitoylated Nrf2 levels in tumoral and peritumoral tissues from GC patients were also evaluated. Both loss-of-function and gain-of-function via transgenic experiments were performed to study the effects of palmitoylated Nrf2 on carcinogenesis and the pharmacological function of 2-bromopalmitate (2-BP) on the suppression of GC progression in vitro and in vitro. We discovered that Nrf2 was palmitoylated in the cytoplasmic domain, and this lipid posttranslational modification causes Nrf2 stabilization by inhibiting ubiquitination, delaying Nrf2 destruction via the proteasome and boosting nuclear translocation. Importantly, we also identify palmitoyltransferase zinc finger DHHC-type palmitoyltransferase 2 (DHHC2) as the primary acetyltransferase required for the palmitoylated Nrf2 and indicate that the suppression of Nrf2 palmitoylation via 2-bromopalmitate (2-BP), or the knockdown of DHHC2, promotes anti-cancer immunity in vitro and in mice model-bearing xenografts. Of note, based on the antineoplastic mechanism of 2-BP, a novel anti-tumor drug delivery system ground 2-BP and oxaliplatin (OXA) dual-loading gold nanorods (GNRs) with tumor cell membrane coating biomimetic nanoparticles (CM@GNRs-BO) was established. In situ photothermal therapy is done using near-infrared (NIR) laser irradiation to help release high-temperature-triggered drugs from the CM@GNRs-BO reservoir when needed. This is done to achieve photothermal/chemical synergistic therapy. Our findings show the influence and linkage of palmitoylated Nrf2 with tumoral and peritumoral tissues in GC patients, the underlying mechanism of palmitoylated Nrf2 in GC progression, and novel possible techniques for addressing Nrf2-associated immune evasion in cancer growth. Furthermore, the bionic nanomedicine developed by us has the characteristics of dual drugs delivery, homologous tumor targeting, and photothermal and chemical synergistic therapy, and is expected to become a potential platform for cancer treatment.
Collapse
Affiliation(s)
- Luguang Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Longgang Wang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Liqing Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Xianlin Qu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Weizhu Zhao
- Department of Radiology, Shandong University, Shandong Cancer Hospital and Institute, Jinan 270000, Shandong, China; Department of Oncology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou 256600, Shandong, China
| | - Jishuang Ding
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Siwei Zhao
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Botao Xu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Hang Yu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Bing Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 270000, Shandong, China.
| |
Collapse
|
41
|
Gong Z, Xue L, Li H, Fan S, van Hasselt CA, Li D, Zeng X, Tong MCF, Chen GG. Targeting Nrf2 to treat thyroid cancer. Biomed Pharmacother 2024; 173:116324. [PMID: 38422655 DOI: 10.1016/j.biopha.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Oxidative stress (OS) is recognized as a contributing factor in the development and progression of thyroid cancer. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor involved in against OS generated by excessive reactive oxygen species (ROS). It governs the expression of a wide array of genes implicated in detoxification and antioxidant pathways. However, studies have demonstrated that the sustained activation of Nrf2 can contribute to tumor progression and drug resistance in cancers. The expression of Nrf2 was notably elevated in papillary thyroid cancer tissues compared to normal tissues, indicating that Nrf2 may play an oncogenic role in the development of papillary thyroid cancer. Nrf2 and its downstream targets are involved in the progression of thyroid cancer by impacting the prognosis and ferroptosis. Furthermore, the inhibition of Nrf2 can increase the sensitivity of target therapy in thyroid cancer. Therefore, Nrf2 appears to be a potential therapeutic target for the treatment of thyroid cancer. This review summarized current data on Nrf2 expression in thyroid cancer, discussed the function of Nrf2 in thyroid cancer, and analyzed various strategies to inhibit Nrf2.
Collapse
Affiliation(s)
- Zhongqin Gong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Lingbin Xue
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Huangcan Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Simiao Fan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Charles Andrew van Hasselt
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China
| | - Dongcai Li
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Xianhai Zeng
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - Michael Chi Fai Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China.
| | - George Gong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region of China.
| |
Collapse
|
42
|
Long MB, Abo-Leyah H, Giam YH, Vadiveloo T, Hull RC, Keir HR, Pembridge T, Alferes De Lima D, Delgado L, Inglis SK, Hughes C, Gilmour A, Gierlinski M, New BJ, MacLennan G, Dinkova-Kostova AT, Chalmers JD. SFX-01 in hospitalised patients with community-acquired pneumonia during the COVID-19 pandemic: a double-blind, randomised, placebo-controlled trial. ERJ Open Res 2024; 10:00917-2023. [PMID: 38469377 PMCID: PMC10926007 DOI: 10.1183/23120541.00917-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Sulforaphane can induce the transcription factor, Nrf2, promoting antioxidant and anti-inflammatory responses. In this study, hospitalised patients with community-acquired pneumonia (CAP) were treated with stabilised synthetic sulforaphane (SFX-01) to evaluate impact on clinical status and inflammation. Methods Double-blind, randomised, placebo-controlled trial of SFX-01 (300 mg oral capsule, once daily for 14 days) conducted in Dundee, UK, between November 2020 and May 2021. Patients had radiologically confirmed CAP and CURB-65 (confusion, urea >7 mmol·L-1, respiratory rate ≥30 breaths·min-1, blood pressure <90 mmHg (systolic) or ≤60 mmHg (diastolic), age ≥65 years) score ≥1. The primary outcome was the seven-point World Health Organization clinical status scale at day 15. Secondary outcomes included time to clinical improvement, length of stay and mortality. Effects on Nrf2 activity and inflammation were evaluated on days 1, 8 and 15 by measurement of 45 serum cytokines and mRNA sequencing of peripheral blood leukocytes. Results The trial was terminated prematurely due to futility with 133 patients enrolled. 65 patients were randomised to SFX-01 treatment and 68 patients to placebo. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was the cause of CAP in 103 (77%) cases. SFX-01 treatment did not improve clinical status at day 15 (adjusted OR 0.87, 95% CI 0.41-1.83; p=0.71), time to clinical improvement (adjusted hazard ratio (aHR) 1.02, 95% CI 0.70-1.49), length of stay (aHR 0.84, 95% CI 0.56-1.26) or 28-day mortality (aHR 1.45, 95% CI 0.67-3.16). The expression of Nrf2 targets and pro-inflammatory genes, including interleukin (IL)-6, IL-1β and tumour necrosis factor-α, was not significantly changed by SFX-01 treatment. At days 8 and 15, respectively, 310 and 42 significant differentially expressed genes were identified between groups (false discovery rate adjusted p<0.05, log2FC >1). Conclusion SFX-01 treatment did not improve clinical status or modulate key Nrf2 targets in patients with CAP primarily due to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Merete B. Long
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- These authors contributed equally
| | - Hani Abo-Leyah
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- These authors contributed equally
| | - Yan Hui Giam
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Thenmalar Vadiveloo
- Centre for Healthcare Randomised Trials, University of Aberdeen, Aberdeen, UK
| | - Rebecca C. Hull
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Holly R. Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Thomas Pembridge
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Daniela Alferes De Lima
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Lilia Delgado
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Sarah K. Inglis
- Tayside Clinical Trials Unit, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Chloe Hughes
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Amy Gilmour
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Marek Gierlinski
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Graeme MacLennan
- Centre for Healthcare Randomised Trials, University of Aberdeen, Aberdeen, UK
| | - Albena T. Dinkova-Kostova
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
43
|
Gupta N, El-Gawaad NSA, Mallasiy LO, Gupta H, Yadav VK, Alghamdi S, Qusty NF. Microbial dysbiosis and the aging process: a review on the potential age-deceleration role of Lactiplantibacillus plantarum. Front Microbiol 2024; 15:1260793. [PMID: 38440135 PMCID: PMC10909992 DOI: 10.3389/fmicb.2024.1260793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Gut microbiota dysbiosis has been a serious risk factor for several gastric and systemic diseases. Recently, gut microbiota's role in aging was discussed. Available preclinical evidence suggests that the probiotic bacteria Lactiplantibacillus plantarums (LP) may influence the aging process via modulation of the gut microbiota. The present review summarized compelling evidence of LP's potential effect on aging hallmarks such as oxidative stress, inflammation, DNA methylation, and mitochondrial dysfunction. LP gavage modulates gut microbiota and improves overall endurance in aging animal models. LP cell constituents exert considerable antioxidant potential which may reduce ROS levels directly. In addition, restored gut microbiota facilitate a healthy intestinal milieu and accelerate multi-channel communication via signaling factors such as SCFA and GABA. Signaling factors further activate specific transcription factor Nrf2 in order to reduce oxidative damage. Nrf2 regulates cellular defense systems involving anti-inflammatory cytokines, MMPs, and protective enzymes against MAPKs. We concluded that LP supplementation may be an effective approach to managing aging and associated health risks.
Collapse
Affiliation(s)
- Nishant Gupta
- Medical Research and Development, River Engineering, Noida, India
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - L. O. Mallasiy
- Department of Home Economics, Faculty of Science and Arts in Tihama, King Khalid University, Muhayil, Saudi Arabia
| | | | | | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F. Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
44
|
Zhang JB, Wang F, Tang YT, Pang MZ, Li D, Liu CF. Inhibition of GluN2D-Containing NMDA Receptors Protects Dopaminergic Neurons against 6-OHDA-Induced Neurotoxicity via Activating ERK/NRF2/HO-1 Signaling. ACS Chem Neurosci 2024; 15:572-581. [PMID: 38277219 DOI: 10.1021/acschemneuro.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024] Open
Abstract
Abnormal glutamate signaling is implicated in the heightened vulnerability of dopaminergic neurons in Parkinson's disease (PD). NMDA receptors are ion-gated glutamate receptors with high calcium permeability, and their GluN2D subunits are prominently distributed in the basal ganglia and brainstem nuclei. Previous studies have reported that dopamine depletion led to the dysfunctions of GluN2D-containing NMDA receptors in PD animal models. However, it remains unknown whether selective modulation of GluN2D could protect dopaminergic neurons against neurotoxicity in PD. In this study, we found that allosteric activation of GluN2D-containing NMDA receptors decreased the cell viability of MES23.5 dopaminergic cells and the GluN2D inhibitor, QNZ46, showed antioxidant effects and significantly relieved apoptosis in 6-OHDA-treated cells. Meanwhile, we demonstrated that QNZ46 might act via activation of the ERK/NRF2/HO-1 pathway. We also verified that QNZ46 could rescue abnormal behaviors and attenuate dopaminergic cell loss in a 6-OHDA-lesioned rat model of PD. Although the precise mechanisms underlying the efficacy of QNZ46 in vivo remain elusive, the inhibition of the GluN2D subunit should be a considerable way to treat PD. More GluN2D-selective drugs, which present minimal side effects and broad therapeutic windows, need to be developed for PD treatment in future studies.
Collapse
Affiliation(s)
- Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Yu-Ting Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Meng-Zhu Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
| | - Dan Li
- Department of Neurology, Suqian First Hospital, Suqian 223800, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215004, China
- Department of Neurology, Suqian First Hospital, Suqian 223800, China
| |
Collapse
|
45
|
Dinkova-Kostova AT, Hakomäki H, Levonen AL. Electrophilic metabolites targeting the KEAP1/NRF2 partnership. Curr Opin Chem Biol 2024; 78:102425. [PMID: 38241876 DOI: 10.1016/j.cbpa.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Numerous electrophilic metabolites are formed during cellular activity, particularly under conditions of oxidative, inflammatory and metabolic stress. Among them are lipid oxidation and nitration products, and compounds derived from amino acid and central carbon metabolism. Here we focus on one cellular target of electrophiles, the Kelch-like ECH associated protein 1 (KEAP1)/nuclear factor erythroid 2 p45-related factor 2 (NRF2) partnership. Many of these reactive compounds modify C151, C273 and/or C288 within KEAP1. Other types of modifications include S-lactoylation of C273, N-succinylation of K131, and formation of methylimidazole intermolecular crosslink between two KEAP1 monomers. Modified KEAP1 relays the initial signal to transcription factor NRF2 and its downstream targets, the ultimate effectors that provide means for detoxification, adaptation and survival. Thus, by non-enzymatically covalently modifying KEAP1, the electrophilic metabolites discussed here serve as chemical signals connecting metabolism with stress responses.
Collapse
Affiliation(s)
- Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Henriikka Hakomäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
46
|
Guo C, Geng HJ, Wang WJ, Liu YX, Deng L, Tian JM, Gao JM, Tang JJ. Dimerized sesquiterpenoid [4 + 2] adducts with ferroptosis-promoting activity from Inula britannica Linn. PHYTOCHEMISTRY 2024; 218:113951. [PMID: 38096962 DOI: 10.1016/j.phytochem.2023.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Inubritanolides C and D (1 and 2), two exo sesquiterpenoid [4 + 2] adducts with unprecedented interconverting conformations of twist-chair and chair, together with two previously undescribed endo [4 + 2] dimers (3 and 4) were discovered from Inula britannica flowers. Dimers 1 and 2 have an undescribed carbon skeleton comprising of eudesmanolide and guaianolide units with the linkage mode of C-11/C-1' and C-13/C-3' via a Diels-Alder cycloaddition reaction. Their structures were elucidated using 1D/2D NMR, X-ray diffraction, ECD, and variable-temperature NMR experiments. Dimer 2 displayed a strong inhibitory effect on breast cancer cells by promoting lipid ROS production, showing its potential as ferroptosis inducer.
Collapse
Affiliation(s)
- Cong Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Hui-Jun Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wen-Ji Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Yan-Xiang Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun-Mian Tian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
47
|
Tian L, Tian Q, Tamer E. Screening stabilisers for cyanoenone triterpenoid TX101 in rat plasma samples by simultaneous analysis of parent drug and the epoxidation product. ANALYTICAL SCIENCE ADVANCES 2024; 5:2300058. [PMID: 38828082 PMCID: PMC11142389 DOI: 10.1002/ansa.202300058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 06/05/2024]
Abstract
In the development of bioanalytical methods, stabilizing drug molecules in biological matrices is crucial for ensuring reliable exposure data in pharmacokinetic and toxicokinetic sample analyses. This study focuses on the evaluation of stabilizing effects on the synthetic triterpenoid TX101, a cyanoenone triterpenoid Nrf2 activator with known instability in plasma samples. The molecule's unsaturated double bond is susceptible to oxidation, either nonenzymatically via oxygen or enzymatically through cytochrome P450 enzyme-catalyzed epoxidation. The research explores the impact of antioxidants (L-ascorbic acid, sodium metabisulfite, sodium sulfite) and P450 enzyme inhibitors (sodium diethyldithiocarbamate, memantine hydrochloride, 1-aminobenzotriazole) on TX101 stability in rat plasma samples. Results reveal that adding 2.5 mg/mL sodium sulfite or sodium metabisulfite effectively inhibits the nonenzymatic oxidation of TX101 to TX101-epoxide, while L-ascorbic acid shows minimal stabilizing effect. Among P450 enzyme inhibitors, sodium diethyldithiocarbamate and memantine hydrochloride exhibit modest stabilizing effects, likely attributed to their antioxidant activity. The developed High-formance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) method, incorporating Supported Liquid Extraction for sample cleanup, allows simultaneous monitoring of TX101 and TX101-epoxide. Application of this method in a rat dose-range finding study confirms successful inhibition of TX101-epoxide formation in samples treated with sodium sulfite or sodium metabisulfite. Overall, the study emphasizes the importance of stabilizers in preventing nonenzymatic oxidation reactions during sample storage, providing valuable insights for bioanalytical method development and validation.
Collapse
Affiliation(s)
- Lynn Tian
- Reata Pharmaceuticals, Inc.IrvingTexasUSA
| | | | | |
Collapse
|
48
|
Yuan S, Wang Y, Yang J, Tang Y, Wu W, Meng X, Jian Y, Lei Y, Liu Y, Tang C, Zhao Z, Zhao F, Liu W. Treadmill exercise can regulate the redox balance in the livers of APP/PS1 mice and reduce LPS accumulation in their brains through the gut-liver-kupffer cell axis. Aging (Albany NY) 2024; 16:1374-1389. [PMID: 38295303 PMCID: PMC10866404 DOI: 10.18632/aging.205432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 02/02/2024]
Abstract
A growing body of clinical data has shown that patients with Alzheimer's disease (AD) have symptoms such as liver dysfunction and microbial-gut-brain axis dysfunction in addition to brain pathology, presenting a systemic multisystemic pathogenesis. Considering the systemic benefits of exercise, here, we first observed the effects of long-term treadmill exercise on liver injuries in APP/PS1 transgenic AD mice and explored the potential mechanisms of the gut-liver-brain axis's role in mediating exercise's ability to reduce bacterial lipopolysaccharide (LPS) pathology in the brain. The results showed that the livers of the AD mice were in states of oxidative stress, while the mice after long-term treadmill exercise showed alleviation of their oxidative stress, their intestinal barriers were protected, and the ability of their Kupffer cells to hydrolyze LPS was improved, in addition to the accumulation of LPS in their brains being reduced. Notably, the livers of the AD mice were in immunosuppressed states, with lower pro-oxidative and antioxidative levels than the livers of the wild-type mice, while exercise increased both their oxidative and antioxidative levels. These results suggest that long-term exercise modulates hepatic redox homeostasis in AD mice, attenuates oxidative damage, and reduces the accumulation of LPS in the brain through the combined action of the intestine-liver-Kupffer cells.
Collapse
Affiliation(s)
- Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yirong Wang
- Hunan Sports Vocational College, Changsha 410019, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yong Lei
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yang Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Changfa Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zhe Zhao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Fei Zhao
- Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha 410199, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| |
Collapse
|
49
|
Li J, Guo Q, Wei X, Zhu Y, Luo M, Luo P. Association of serum Nrf2 protein levels with disease activity and renal impairment in lupus nephritis. Front Immunol 2024; 15:1304167. [PMID: 38304428 PMCID: PMC10830626 DOI: 10.3389/fimmu.2024.1304167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Introduction We aimed to investigate the relationship between nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression levels, lupus nephritis (LN) disease activity, and the degree of renal injury (based on the estimated glomerular filtration rate [eGFR]) in patients with LN. Methods We selected 40 healthy control participants and 102 patients with LN who were treated in the Second Hospital of Jilin University, China, for inclusion in this study. Patients with LN were classified into LN with high-eGFR and LN with low-eGFR groups. Nrf2 protein levels were measured in the serum and renal tissues of the participants in both groups to assess the correlation between Nrf2 protein levels and different LN disease states. Results There was a significantly positive correlation between serum Nrf2 protein levels, the degree of renal injury, and systemic lupus erythematosus disease activity index (SLEDAI) scores in patients with LN. Nrf2 protein levels were higher in the LN with high-eGFR group than in the healthy control and LN with low-eGFR groups. In follow-up patients in the LN high eGFR group, Nrf2 protein levels decreased significantly after remission of disease activity. Conclusion Nrf2 protein expression has a dual role in patients with LN. Nrf2 protein levels not only correlate with disease activity in patients with LN, but also with the degree of kidney injury. Before implementing targeted therapy for Nrf2, evaluating both Nrf2 protein expression and the disease state in patients with LN is necessary to better identify and place each patient in an appropriate patient group.
Collapse
Affiliation(s)
- Jicui Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Qiaoyan Guo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xianping Wei
- Department of Clinical Research, The Second Hospital of Jilin University, Changchun, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
50
|
Dindi UMR, Al-Ghamdi S, Alrudian NA, Dayel SB, Abuderman AA, Saad Alqahtani M, Bahakim NO, Ramesh T, Vilwanathan R. Ameliorative inhibition of sirtuin 6 by imidazole derivative triggers oxidative stress-mediated apoptosis associated with Nrf2/Keap1 signaling in non-small cell lung cancer cell lines. Front Pharmacol 2024; 14:1335305. [PMID: 38235110 PMCID: PMC10791838 DOI: 10.3389/fphar.2023.1335305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Background: Redox homeostasis is the vital regulatory system with respect to antioxidative response and detoxification. The imbalance of redox homeostasis causes oxidative stress. Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2, also called Nfe2l2)/Kelchlike ECH-associated protein 1 (Keap1) signaling is the major regulator of redox homeostasis. Nrf2/Keap1 signaling is reported to be involved in cancer cell growth and survival. A high level of Nrf2 in cancers is associated with poor prognosis, resistance to therapeutics, and rapid proliferation, framing Nrf2 as an interesting target in cancer biology. Sirtuins (SIRT1-7) are class III histone deacetylases with NAD + dependent deacetylase activity that have a remarkable impact on antioxidant and redox signaling (ARS) linked with Nrf2 deacetylation thereby increasing its transcription by epigenetic modifications which has been identified as a crucial event in cancer progression under the influence of oxidative stress in various transformed cells. SIRT6 plays an important role in the cytoprotective effect of multiple diseases, including cancer. This study aimed to inhibit SIRT6 using an imidazole derivative, Ethyl 2-[5-(4-chlorophenyl)-2-methyl-1-H-Imidazole-4-yl] acetate, to assess its impact on Nrf2/Keap1 signaling in A549 and NCI-H460 cell lines. Method: Half maximal inhibitory concentration (IC50) of Ethyl 2-[5-(4-chlorophenyl)-2-methyl-1-H-Imidazole-4-yl] acetate was fixed by cell viability assay. The changes in the gene expression of important regulators involved in this study were examined using quantitative real-time PCR (qRT-PCR) and protein expression changes were confirmed by Western blotting. The changes in the antioxidant molecules are determined by biochemical assays. Further, morphological studies were performed to observe the generation of reactive oxygen species, mitochondrial damage, and apoptosis. Results: We inhibited SIRT6 using Ethyl 2-[5-(4-chlorophenyl)-2-methyl-1-H-Imidazole-4-yl] acetate and demonstrated that SIRT6 inhibition impacts the modulation of antioxidant and redox signaling. The level of antioxidant enzymes and percentage of reactive oxygen species scavenging activity were depleted. The morphological studies showed ROS generation, mitochondrial damage, nuclear damage, and apoptosis. The molecular examination of apoptotic factors confirmed apoptotic cell death. Further, molecular studies confirmed the changes in Nrf2 and Keap1 expression during SIRT6 inhibition. Conclusion: The overall study suggests that SIRT6 inhibition by imidazole derivative disrupts Nrf2/Keap1 signaling leading to oxidative stress and apoptosis induction.
Collapse
Affiliation(s)
- Uma Maheswara Rao Dindi
- Cancer Biology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sameer Al-Ghamdi
- Department of Family and Community Medicine, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Naif Abdurhman Alrudian
- Department of Family and Community Medicine, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Salman Bin Dayel
- Dermatology Unit, Internal Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulwahab Ali Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed Saad Alqahtani
- Department of Internal Medicine, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nasraddin Othman Bahakim
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ravikumar Vilwanathan
- Cancer Biology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|