1
|
Gogoi B, Acharjee SA, Bharali P, Sorhie V, Walling B, Alemtoshi. A critical review on the ecotoxicity of heavy metal on multispecies in global context: A bibliometric analysis. ENVIRONMENTAL RESEARCH 2024; 248:118280. [PMID: 38272294 DOI: 10.1016/j.envres.2024.118280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Heavy metals (HMs) have become a significant concern in the current era, with deleterious effects on diverse living organisms when exposed beyond threshold concentrations. Both nature and human beings have been constantly casting out HMs into environmental matrices through various activities. Innumerable cases of threatened diseases such as cancer, respiratory ailments, reproductive defects, skin diseases, and several others have been a cause of significant concern for humans as the number of instances has been increasing with each decade. HMs migrates via several pathways to infiltrate biological organisms and amass within them. Even though numerous treatment approaches are available for remediating HM pollution, however, they are expensive, along with other setbacks. Due to such constraints, combating HM contamination requires environmentally conscious strategies like bioremediation, which employs an array of biological systems to remove HMs from the environment. Nonetheless, to address the current global HM pollution situation, it is critical to comprehend not only how these hazardous HMs cause toxicity in various living organisms but also the knowledge gaps that currently exist concerning the subject of HM ecotoxicity. In the present investigation, data was extracted from Google Scholar using software program called Harzing's Publish or Perish. The collected information has been subsequently displayed as a network file using the VOSViewer software tool. Thus, the current review presents a significant insight with the inclusion of a readily accessible bibliometric analysis to comprehend the present status of HMs research, global research trends, existing knowledge discrepancies, and research challenges. Further, it also provides an in-depth review of HMs ecotoxicity, with a focus on arsenic (As), cadmium (Cd), and lead (Pb). Thus, as indicated by the bibliometric study, the present review will assist future investigators studying HMs ecotoxicity by providing baseline data concerning a wide range of living organisms and by addressing research gaps.
Collapse
Affiliation(s)
- Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India.
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, HQ: Lumami, Zunheboto-798627, Nagaland, India
| |
Collapse
|
2
|
Capriello T, Monteiro SM, Félix LM, Donizetti A, Aliperti V, Ferrandino I. Apoptosis, oxidative stress and genotoxicity in developing zebrafish after aluminium exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105872. [PMID: 34052719 DOI: 10.1016/j.aquatox.2021.105872] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Aluminium is a non-essential metal and potentially toxic to organisms whose environmental concentration increases due to pollution. In our previous studies, the behavioral changes induced by aluminium were already shown on zebrafish, a model organism widely used for ecotoxicology screening. To examine in depth the knowledge about the toxicity mechanism induced by this metal, zebrafish embryos, at 6 hpf, have been exposed to 50, 100 and 200 µM of AlCl3 for 72 h. Phenotypic alterations, apoptosis and oxidative stress responses have been assessed by evaluations of antioxidant defence and changes in metabolism at the end of treatment. The mRNA expression level of c-fos, appa and appb as marker genes of neural development and function were analyzed by qPCR for the highest used concentration. The data showed that aluminium significantly affected the development of zebrafish inducing morphological alterations and cell death. The oxidative state of larvae was altered, although the formation of reactive oxygen species and the levels of metallothioneins, and the activity of some antioxidant enzymes, decreased at the maximum concentration tested. In addition, at this concentration, the expression of the evaluated genes increased. The comprehensive information obtained gives a realistic snapshot of the aluminium toxicity and provides new information on the mechanism of action of this metal.
Collapse
Affiliation(s)
- Teresa Capriello
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Luis M Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Laboratory Animal Science (LAS), Institute for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal.
| | - Aldo Donizetti
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Vincenza Aliperti
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Ida Ferrandino
- Department of Biology, University of Naples "Federico II", Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, Portici, Italy.
| |
Collapse
|
3
|
Lee MS, Lee JH, An YJ, Park CH, Lee SH, Park JH, Lee JK, Park TJ. Development of water quality criteria for arsenic to protect aquatic life based on species sensitivity distribution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109933. [PMID: 31757511 DOI: 10.1016/j.ecoenv.2019.109933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Arsenic is a hazardous environmental pollutant widely distributed globally. Arsenic toxicity is well known and it is regulated by many countries in terms of managing water quality and protecting aquatic organisms. Unfortunately, water quality criterion (WQC) to protect aquatic organisms has not been introduced in Korea yet. Thus, it is of great importance and necessity to introduce WQC to protect aquatic organisms from arsenic, as WQC play a significant role in protecting aquatic ecosystems from pollutants. Therefore, the purpose of this study is to derive arsenic water quality criterion for aquatic life in Korea. Arsenic acute toxicity tests were performed with 10 Korean native aquatic species, which belong to 7 different taxonomic groups. Based on the results of acute toxicity test and additional toxicity data from literature, the species sensitivity distribution (SSD) method was used in ecological risk assessment. The arsenic concentration of 95% protection level for aquatic life was 0.229 mg L-1 in this study. An assessment factor 3 and a background concentration 0.0004 mg L-1 were applied to the concentration value in consideration of the uncertainty of the data and the amount of arsenic natural generation. Consequently, the WQC value derived for arsenic was found to be 0.077 mg L-1. These results will serve as reference values to establish water quality criterion for the protection of aquatic life in Korea.
Collapse
Affiliation(s)
- Myung-Sung Lee
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea
| | - Jong-Hyun Lee
- EH R&C, 114, A-dong, Environmental Industry Research Park, Jeongseojin-ro 410, Incheon, 22689, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Chang-Hee Park
- Water Environmental Chemistry Research Division, Yeongsan River Environmental Research Center, Cheomdangwagi-ro 208-5, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Soo-Hyung Lee
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Environmental Research Complex, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea
| | - Ji-Hyoung Park
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea
| | - Jae-Kwan Lee
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea
| | - Tae-Jin Park
- Water Environmental Engineering Research Division, National Institute of Environmental Research, Environmental Research Complex, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Republic of Korea.
| |
Collapse
|
4
|
AnvariFar H, Amirkolaie AK, Jalali AM, Miandare HK, Sayed AH, Üçüncü Sİ, Ouraji H, Ceci M, Romano N. Environmental pollution and toxic substances: Cellular apoptosis as a key parameter in a sensible model like fish. AQUATIC TOXICOLOGY 2018; 204:144-159. [PMID: 30273782 DOI: 10.1016/j.aquatox.2018.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/06/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
The industrial wastes, sewage effluents, agricultural run-off and decomposition of biological waste may cause high environmental concentration of chemicals that can interfere with the cell cycle activating the programmed process of cells death (apoptosis). In order to provide a detailed understanding of environmental pollutants-induced apoptosis, here we reviewed the current knowledge on the interactions of environmental chemicals and programmed cell death. Metals (aluminum, arsenic, cadmium, chromium, cobalt, zinc, copper, mercury and silver) as well as other chemicals including bleached kraft pulp mill effluent (BKME), persistent organic pollutants (POPs), and pesticides (organo-phosphated, organo-chlorinated, carbamates, phyretroids and biopesticides) were evaluated in relation to apoptotic pathways, heat shock proteins and metallothioneins. Although research performed over the past decades has improved our understanding of processes involved in apoptosis in fish, yet there is lack of knowledge on associations between environmental pollutants and apoptosis. Thus, this review could be useful tool to study the cytotoxic/apoptotic effects of different pollutants in fish species.
Collapse
Affiliation(s)
- Hossein AnvariFar
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran; University of Applied Science and Technology, Provincial Unit, P.O. Box: 4916694338, Golestan, Iran
| | - A K Amirkolaie
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - Ali M Jalali
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran; Sturgeon Affairs Management, Gorgan, Golestan, Iran; Center for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, VIC, 3280, Australia
| | - H K Miandare
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran
| | - Alaa H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Sema İşisağ Üçüncü
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, İzmir, Turkey
| | - Hossein Ouraji
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - Marcello Ceci
- Department Ecological and Biological Sciences, University of Tuscia, Tuscia University, Viterbo, 01100, Italy
| | - Nicla Romano
- Department Ecological and Biological Sciences, University of Tuscia, Tuscia University, Viterbo, 01100, Italy.
| |
Collapse
|
5
|
Costa SR, Velasques RR, Rovani MT, Souza MM, Sandrini JZ. Comparison of the Base Excision Repair Activity in Liver Cell Models of Zebrafish (Danio rerio). Zebrafish 2018; 15:107-111. [DOI: 10.1089/zeb.2017.1507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Simone Rutz Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | - Robson Rabelo Velasques
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | - Monique Tomazele Rovani
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | - Marta Marques Souza
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | - Juliana Zomer Sandrini
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| |
Collapse
|
6
|
Lushchak VI. Contaminant-induced oxidative stress in fish: a mechanistic approach. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:711-747. [PMID: 26607273 DOI: 10.1007/s10695-015-0171-5] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/19/2015] [Indexed: 06/05/2023]
Abstract
The presence of reactive oxygen species (ROS) in living organisms was described more than 60 years ago and virtually immediately it was suggested that ROS were involved in various pathological processes and aging. The state when ROS generation exceeds elimination leading to an increased steady-state ROS level has been called "oxidative stress." Although ROS association with many pathological states in animals is well established, the question of ROS responsibility for the development of these states is still open. Fish represent the largest group of vertebrates and they inhabit a broad range of ecosystems where they are subjected to many different aquatic contaminants. In many cases, the deleterious effects of contaminants have been connected to induction of oxidative stress. Therefore, deciphering of molecular mechanisms leading to such contaminant effects and organisms' response may let prevent or minimize deleterious impacts of oxidative stress. This review describes general aspects of ROS homeostasis, in particular highlighting its basic aspects, modification of cellular constituents, operation of defense systems and ROS-based signaling with an emphasis on fish systems. A brief introduction to oxidative stress theory is accompanied by the description of a recently developed classification system for oxidative stress based on its intensity and time course. Specific information on contaminant-induced oxidative stress in fish is covered in sections devoted to such pollutants as metal ions (particularly iron, copper, chromium, mercury, arsenic, nickel, etc.), pesticides (insecticides, herbicides, and fungicides) and oil with accompanying pollutants. In the last section, certain problems and perspectives in studies of oxidative stress in fish are described.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
7
|
Zhang XH, Zhu HS, Qian Z, Tang S, Wu D, Kemper N, Hartung J, Bao ED. The association of Hsp90 expression induced by aspirin with anti-stress damage in chicken myocardial cells. J Vet Sci 2016; 17:35-44. [PMID: 27051338 PMCID: PMC4808642 DOI: 10.4142/jvs.2016.17.1.35] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 01/08/2023] Open
Abstract
The protective effect of aspirin during exposure to heat stress in broiler chickens was investigated. We assayed pathological damage, expression and distribution of Hsp90 protein and hsp90 mRNA expression in chicken heart tissues after oral administration of aspirin following exposure to high temperature for varying times. Heat stress induced increases in plasma aspartate aminotransferase, creatine kinase and lactate dehydrogenase activities while causing severe heart damage, which was characterized by granular and vacuolar degeneration, nuclear shrinkage and even myocardium fragmentation in cardiac muscle fibers. After aspirin administration, myocardial cells showed fewer pathological lesions than broilers treated with heat alone. A high positive Hsp90 signal was always detected in the nuclei of myocardial cells from broilers treated with aspirin, while in myocardial cells treated with heat alone, Hsp90 in the nuclei decreased, as did that in the cytoplasm. Aspirin induced rapid and significant synthesis of Hsp90 before and at the initial phase of heat stress, and significant expression of hsp90 mRNA was stimulated throughout the experiment when compared with cells exposed to heat stress alone. Thus, specific pre-induction of Hsp90 in cardiovascular tissue was useful for resisting heat stress damage because it produced stable damage-related enzymes and fewer pathologic changes.
Collapse
Affiliation(s)
- Xiao-hui Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huai-sen Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Hannover 30173, Germany
| | - Joerg Hartung
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Hannover 30173, Germany
| | - En-dong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Lachner D, Oliveira LF, Martinez CB. Effects of the water soluble fraction of gasoline on ZFL cell line: Cytotoxicity, genotoxicity and oxidative stress. Toxicol In Vitro 2015; 30:225-30. [DOI: 10.1016/j.tiv.2015.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/02/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
|
9
|
Sayed AEDH, Elbaghdady HAM, Zahran E. Arsenic-induced genotoxicity in Nile tilapia (Orechromis niloticus); the role of Spirulina platensis extract. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:751. [PMID: 26573688 DOI: 10.1007/s10661-015-4983-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023]
Abstract
Arsenic (As) is one of the most relevant environmental global single substance toxicants that have long been regarded as a carcinogenic and genotoxic potential. In this respect, we evaluated the cytogenetic effect of arsenic exposure in Nile tilapia (Oreochromis niloticus), in terms of erythrocyte alteration, apoptosis, and induction of micronuclei. Spirulina platensis (SP) is a filamentous cyanobacterium microalgae with potent dietary phytoantioxidant, anti-inflammatory, and anti-cancerous properties supplementation. The protective role of Spirulina as supplementary feeds was studied in Nile tilapia (O. niloticus) against arsenic-induced cytogenotoxicity. Four groups were assigned as control group (no SP or As), As group (exposed to water-born As in the form of NaAsO2 at 7 ppm), SP1 (SP at 7.5% + As at the same level of exposure), and SP2 (SP at 10% + As at the same level of exposure). As-treated group had a significant increase in all cytogenetic analyses including erythrocyte alteration, apoptosis, and induction of micronuclei after 2 weeks with continuous increase in response after 3 weeks. The combined treatment of Spirulina at two different concentrations of 7.5 and 10% had significantly declined the induction of erythrocyte alteration, apoptosis, and micronuclei formation induced by arsenic intoxication.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
| | | | - Eman Zahran
- Department of Internal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
10
|
Cavalcante DG, da Silva ND, Marcarini JC, Mantovani MS, Marin-Morales MA, Martinez CB. Cytotoxic, biochemical and genotoxic effects of biodiesel produced by different routes on ZFL cell line. Toxicol In Vitro 2014; 28:1117-25. [DOI: 10.1016/j.tiv.2014.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 01/19/2023]
|
11
|
Baršienė J, Butrimavičienė L, Grygiel W, Lang T, Michailovas A, Jackūnas T. Environmental genotoxicity and cytotoxicity in flounder (Platichthys flesus), herring (Clupea harengus) and Atlantic cod (Gadus morhua) from chemical munitions dumping zones in the southern Baltic Sea. MARINE ENVIRONMENTAL RESEARCH 2014; 96:56-67. [PMID: 24064039 DOI: 10.1016/j.marenvres.2013.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 06/02/2023]
Abstract
The data on environmental genotoxicity and cytotoxicity levels as well as on genotoxicity risk in flounder (Platichthys flesus), herring (Clupea harengus) and cod (Gadus morhua) collected in 2010-2012 at 42 stations located in chemical munitions dumping areas of the southern Baltic Sea are presented. The frequency of micronuclei, nuclear buds and nucleoplasmic bridges in erythrocytes was used as genotoxicity endpoint and the induction of fragmented-apoptotic, bi-nucleated and 8-shaped erythrocytes as cytotoxicity endpoint. The most significantly increased geno-cytotoxicity levels were determined in fish collected near known chemical munitions dumpsites. Extremely high genotoxicity risk for flounder were identified at 21 out of 24 stations, for herring at 29 out of 31 and for cod at 5 out of 10 stations studied. The reference level of genotoxicity was not recorded at any of the stations revealing that in the sampling area fish were affected generally.
Collapse
Affiliation(s)
- Janina Baršienė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, 08412 Vilnius, Lithuania.
| | - Laura Butrimavičienė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, 08412 Vilnius, Lithuania
| | - Wlodzimierz Grygiel
- National Marine Fisheries Research Institute in Gdynia, 1 Kollataja Street, 81-332 Gdynia, Poland
| | - Thomas Lang
- Thünen Institute of Fisheries Ecology, Deichstraße 12, 27472 Cuxhaven, Germany
| | | | - Tomas Jackūnas
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, 08412 Vilnius, Lithuania
| |
Collapse
|
12
|
Eide M, Rusten M, Male R, Jensen KHM, Goksøyr A. A characterization of the ZFL cell line and primary hepatocytes as in vitro liver cell models for the zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 147:7-17. [PMID: 24355757 DOI: 10.1016/j.aquatox.2013.11.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 06/03/2023]
Abstract
The zebrafish (Danio rerio) is a widely used model species in biomedical research. The ZFL cell line, established from zebrafish liver, and freshly isolated primary hepatocytes from zebrafish have been used in several toxicological studies. However, no previous report has compared and characterized these two systems at the level of gene expression. The aim of this study was to evaluate the ZFL cell line in comparison to primary hepatocytes as in vitro models for studying effects of environmental contaminants in zebrafish liver. Using quantitative real-time PCR, the basal level and transcriptional induction potential of key genes involved in toxic responses in the ZFL cell line, primary hepatocytes and whole liver from zebrafish were compared. The study showed that the ZFL cells have lower levels of mRNA of most selected genes compared to zebrafish liver. The induced gene transcription following exposure to ligand was much lower in ZFL cells compared to zebrafish primary hepatocytes at the doses tested. Importantly, oestrogen receptor and vitellogenin genes showed low basal transcription and no induction response in the ZFL cell line. In conclusion, it appears that primary hepatocytes are well suited for studying environmental contaminants including xenoestrogens, but may show large sex-dependent differences in gene transcription. The ZFL cell line shows potential in toxicological studies involving the aryl hydrocarbon receptor pathway. However, low potential for transcriptional induction of genes in general should be expected, especially notable when studying estrogenic responses.
Collapse
Affiliation(s)
- Marta Eide
- Department of Biology, University of Bergen, Bergen, Norway.
| | - Marte Rusten
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Rune Male
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Anders Goksøyr
- Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
N-Acetyl cysteine blunts proteotoxicity in a heat shock protein-dependent manner. Neuroscience 2013; 255:19-32. [DOI: 10.1016/j.neuroscience.2013.09.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/11/2013] [Accepted: 09/25/2013] [Indexed: 11/23/2022]
|
14
|
Kim KT, Tanguay RL. Integrating zebrafish toxicology and nanoscience for safer product development. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2013; 15:872-880. [PMID: 23772181 PMCID: PMC3680127 DOI: 10.1039/c3gc36806h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The design, manufacture and application of safer products and manufacturing processes have been important goals over the last decade and will advance in the future under the umbrella of "Green Chemistry". In this review, we focus on the burgeoning diversity of new engineered nanomaterials (ENMs) and the prescient need for a nanotoxicology paradigm that quickly identifies potentially hazardous nanochemistries. Advances in predictive toxicological modeling in the developing zebrafish offer the most immediate translation to human hazard that is practically achievable with high throughput approaches. Translation in a vertebrate model that is also a low cost alternative to rodents for hazard prediction has been a desirable but elusive testing paradigm. The utility of zebrafish, if applied early in the ENM discovery pipeline, could greatly enhance efforts toward greener and more efficient nanoscience. Early pipeline detection of human and environmental health impacts will quickly inform decisions in the design and production of safer commercial ENMs.
Collapse
Affiliation(s)
- Ki-Tae Kim
- Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR
- Safer Nanomaterials Nanomanufacturing Initiative, Oregon Nanoscience and Microtechnologies Institute, Eugene, OR, USA
| | - Robert L. Tanguay
- Department of Environmental and Molecular Toxicology, the Environmental Health Sciences Center, Oregon State University, Corvallis, OR
- Safer Nanomaterials Nanomanufacturing Initiative, Oregon Nanoscience and Microtechnologies Institute, Eugene, OR, USA
| |
Collapse
|
15
|
Selvaraj V, Cohenford M, Armistead MY, Murray E. Arsenic trioxide (As(2)O(3)) induces apoptosis and necrosis mediated cell death through mitochondrial membrane potential damage and elevated production of reactive oxygen species in PLHC-1 fish cell line. CHEMOSPHERE 2013; 90:1201-9. [PMID: 23121984 PMCID: PMC4351966 DOI: 10.1016/j.chemosphere.2012.09.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/08/2012] [Indexed: 05/07/2023]
Abstract
Several environmental pollutants, including metals can induce toxicological effect on aquatic animal species. Most studies to understand the toxicity of arsenic compounds were performed in mammalian cells; however, the study of the arsenic toxicity to the aquatic animals' species, including fish, is limited. So the objective of this study was first to investigate the effects of As(2)O(3) induced toxicity particularly on apoptosis and necrosis mediated cell death in fish cell PLHC-1 as compared to the mechanism of toxicity from known mammalian cell lines, secondly to relate in vitro effects in fish to those demonstrated by in vivo systems. To conduct this study, PLHC-1 cells were exposed to various concentrations of As(2)O(3) (0-100 μM) for 10, 20 and 40 h. The results indicate that As(2)O(3) exposure promoted apoptotic and necrotic mediated cell death in a concentration and time dependent manner. Cell death (apoptotic and necrotic) induced by As(2)O(3) was further confirmed by changes in various phases of cell cycle, DNA fragmentation (necro- comet and apo-comet) in the comet assay, alteration in mitochondrial membrane potential and formation of increased reactive oxygen species (ROS). Apoptotic mediated cell death was confirmed further by observing the increased caspase-3 activity and elevated expression of p53, cytochrome c and Bax proteins levels in the same experimental conditions. PLHC-1 cells were shown to be a good model for evaluating biochemical/cytotoxic effects following exposure to various reference chemicals and environmental contaminants. In vitro data obtained from this study provides a comprehensive approach for the elucidating the actual molecular mechanism for As(2)O(3) induced toxicity particularly apoptosis and necrosis mediated cell death in PLHC-1 cell line.
Collapse
|
16
|
Azevedo Costa CL, Chaves IS, Ventura-Lima J, Ferreira JLR, Ferraz L, de Carvalho LM, Monserrat JM. In vitro evaluation of co-exposure of arsenium and an organic nanomaterial (fullerene, C₆₀) in zebrafish hepatocytes. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:206-12. [PMID: 21889614 DOI: 10.1016/j.cbpc.2011.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/15/2011] [Accepted: 08/15/2011] [Indexed: 01/30/2023]
Abstract
Taking into account the concept of the "Trojan Horse", where contaminants may have its entry into specific organs potentiated by its association with nanomaterials, the aim of this study was to analyze the joint toxic effects induced by an organic nanomaterial, fullerene (C(60)) with the metalloid arsenic (As(III)). Hepatocytes of zebrafish Danio rerio were exposed to As(III) (2.5 or 100 μM), C(60) or As+C(60) for 4h, not altering cells viability. Intracellular reactive oxygen species concentration was reduced in cells exposed only to the C(60) (1mg/L) and in the treatment of 100 μM As(III)+C(60). Co-exposure with C(60) abolished the peak of the antioxidant glutathione (GSH) registered in cells exposed to the lowest As(III) concentration (2.5 μM). A similar result was observed in terms of lipid damage (TBARS). Total antioxidant capacity was significantly higher at both As(III) concentrations co-exposed to C(60) when compared with the control group. Activity of glutathione-S-transferase omega, a limiting enzyme in the methylation pathway of As(III), was reduced in the 100 μM As(III)+C(60) treatment. Cells co-exposed to C(60) had a significantly higher accumulation of As(III), showing a "Trojan Horse" effect which did not result in higher cell toxicity. Instead, co-exposure of As(III) with C(60) showed to reduce cellular injury.
Collapse
Affiliation(s)
- Carmen L Azevedo Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
17
|
McCollum CW, Ducharme NA, Bondesson M, Gustafsson JA. Developmental toxicity screening in zebrafish. ACTA ACUST UNITED AC 2011; 93:67-114. [DOI: 10.1002/bdrc.20210] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Wang ZF, Guo X. Arsenite-induced apoptosis is prevented by selenite in A375 cell line. Biol Trace Elem Res 2011; 140:7-17. [PMID: 20390378 DOI: 10.1007/s12011-010-8674-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
Abstract
Arsenic trioxide induces apoptosis and clinical remission in patients diagnosed with acute promyelocytic leukemia. The human malignant melanoma A375 cells were treated with NaAsO2 (0.1–130 μM) and also treated with combined 10 μM NaAsO2 and 10 μM Na2SeO3. NaAsO2 arrested cell growth in the G1 phase and induced apoptosis in a concentration- and time-dependent manner. In contrast, administration of Na2SeO3 antagonized the cell growth inhibition and apoptosis induced by NaAsO2. The NaAsO2 treatment resulted in a marked increase in p53 protein as early as 4 h and in Bcl-2 protein level by 12 h. In addition, p53 downregulation accompanied the combined treatment of NaAsO2 and Na2SeO3. Thus, our results indicate upregulation of p53 and Bcl-2 play acrucial role in the NaAsO2-induced G1 arrest and apoptosis of A375 cells and that downregulation p53 appears to contribute to the inhibition by Na2SeO3 of the effects induced by NaAsO2.
Collapse
Affiliation(s)
- Zhi-Fang Wang
- Faculty of Public Health, College of Medicine, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | | |
Collapse
|
19
|
Ventura-Lima J, Bogo MR, Monserrat JM. Arsenic toxicity in mammals and aquatic animals: a comparative biochemical approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:211-218. [PMID: 21112631 DOI: 10.1016/j.ecoenv.2010.11.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 09/16/2010] [Accepted: 11/08/2010] [Indexed: 05/30/2023]
Abstract
Arsenic (As) is a widespread pollutant in the world and its toxicity is related to its chemical form, with inorganic forms being considered more toxic than the organic form, and huge differences in effects and processes of metabolism. This paper reviews the potential biochemical mechanisms of uptake of arsenic by aquaporins, capacity for metabolism and cellular efflux of As. It is known that As can affect signaling pathways since it can activate proteins such as ERK2, p38 and JNK, as shown in mammals. A comparison between phosphorylation sites of these proteins is presented in order to determine whether the same effect triggered by As in mammals might be observed in aquatic animals. The toxicity resulting from As exposure is considered to be linked to an imbalance between pro-oxidant and antioxidant homeostasis that results in oxidative stress. So, present review analyzes examples of oxidative stress generation by arsenic. Biotransformation of As is a process where firstly the arsenate is converted into arsenite and then transformed into mono-, di-, and trimethylated products. In the methylation process, the role of the omega isoform of glutathione-S-transferase (GST) is discussed. In addition, a phylogenetic tree was constructed for aquaporin proteins of different species, including aquatic animals, taking into account their importance in trivalent arsenic uptake.
Collapse
Affiliation(s)
- Juliane Ventura-Lima
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Cx. P. 474, CEP 96.201-900, Rio Grande, RS, Brazil
| | | | | |
Collapse
|
20
|
Ventura-Lima J, Fattorini D, Regoli F, Monserrat JM. Effects of different inorganic arsenic species in Cyprinus carpio (Cyprinidae) tissues after short-time exposure: bioaccumulation, biotransformation and biological responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:3479-3484. [PMID: 19632019 DOI: 10.1016/j.envpol.2009.06.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/18/2009] [Accepted: 06/10/2009] [Indexed: 05/28/2023]
Abstract
Differences in the toxicological and metabolic pathway of inorganic arsenic compounds are largely unknown for aquatic species. In the present study the effects of short-time and acute exposure to As(III) and As(V) were investigated in gills and liver of the common carp, Cyprinus carpio (Cyprinidae), measuring accumulation and chemical speciation of arsenic, and the activity of glutathione-S-transferase omega (GST Omega), the rate limiting enzyme in biotransformation of inorganic arsenic. Oxidative biomarkers included antioxidant defenses (total glutathione-S-transferases, glutathione reductase, glutathione, and glucose-6-phosphate dehydrogenase), total scavenging capacity toward peroxyl radicals, reactive oxygen species (ROS) measurement and lipid peroxidation products. A marked accumulation of arsenic was observed only in gills of carps exposed to 1000 ppb As(V). Also in gills, antioxidant responses were mostly modulated through a significant induction of glucose-6-phosphate dehydrogenase activity which probably contributed to reduce ROS formation; however this increase was not sufficient to prevent lipid peroxidation. No changes in metal content were measured in liver of exposed carps, characterized by lower activity of GST Omega compared to gills. On the other hand, glutathione metabolism was more sensitive in liver tissue, where a significant inhibition of glutathione reductase was concomitant with increased levels of glutathione and higher total antioxidant capacity toward peroxyl radicals, thus preventing lipid peroxidation and ROS production. The overall results of this study indicated that exposure of C. carpio to As(III) and As(V) can induce different responses in gills and liver of this aquatic organism.
Collapse
Affiliation(s)
- Juliane Ventura-Lima
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | | | | | | |
Collapse
|
21
|
Naranmandura H, Ogra Y, Iwata K, Lee J, Suzuki KT, Weinfeld M, Le XC. Evidence for toxicity differences between inorganic arsenite and thioarsenicals in human bladder cancer cells. Toxicol Appl Pharmacol 2009; 238:133-40. [DOI: 10.1016/j.taap.2009.05.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/17/2009] [Accepted: 05/04/2009] [Indexed: 11/15/2022]
|
22
|
Ventura-Lima J, de Castro MR, Acosta D, Fattorini D, Regoli F, de Carvalho LM, Bohrer D, Geracitano LA, Barros DM, Marins LFF, da Silva RS, Bonan CD, Bogo MR, Monserrat JM. Effects of arsenic (As) exposure on the antioxidant status of gills of the zebrafish Danio rerio (Cyprinidae). Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:538-43. [PMID: 19138757 DOI: 10.1016/j.cbpc.2008.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 11/23/2022]
Abstract
In fishes, arsenic (As) is absorbed via the gills and is capable of causing disturbance to the antioxidant system. The objective of present study was to evaluate antioxidant responses after As exposure in gills of zebrafish (Danio rerio, Cyprinidae). Fish were exposed for 48 h to three concentration of As, including the highest As concentration allowed by current Brazilian legislation (10 microg As/L). A control group was exposed to tap water (pH 8.0; 26 degrees C; 7.20 mg O(2)/L). As exposure resulted in (1) an increase (p<0.05) of glutathione (GSH) levels after exposure to 10 and 100 microg As/L, (2) an increase of the glutamate cysteine ligase (GCL) activity in the same concentrations (p<0.05), (3) no significant differences in terms of glutathione reductase, glutathione-S-transferase and catalase activities; (4) a significantly lower (p<0.05) oxygen consumption after exposure to 100 microg As/L; (4) no differences in terms of oxygen reactive species generation and lipid peroxidation content (p>0,05). In the gills, only inorganic As was detected. Overall, it can be concluded that As affected the antioxidant responses increasing GCL activity and GSH levels, even at concentration considered safe by Brazilian legislation.
Collapse
Affiliation(s)
- Juliane Ventura-Lima
- Programa de Pós-Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Agarwal S, Roy S, Ray A, Mazumder S, Bhattacharya S. Arsenic trioxide and lead acetate induce apoptosis in adult rat hepatic stem cells. Cell Biol Toxicol 2008; 25:403-13. [PMID: 18618274 DOI: 10.1007/s10565-008-9094-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Accepted: 06/14/2008] [Indexed: 12/29/2022]
Abstract
In the present study, the toxicity of arsenic trioxide and lead acetate was assessed in adult hepatic stem cells induced in the 2-acetyl-aminofluorene/partial hepatectomy rat model. Isolated oval cells were incubated separately for 6 h with 40 muM each of arsenic trioxide and lead acetate. 3-(4,5-Dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay denoted significant time-dependent cell death in arsenic and lead treated oval cells. The degree of stress imposed by these metals was evidenced by induction of heat shock protein (HSP) 70 and HSP 90. Arsenic and lead were found to trigger apoptosis as revealed by DNA ladder formation, Western blots of apoptotic factors, and reverse transcriptase polymerase chain reaction analyses of bax and bcl-2. Results clearly indicate that both arsenic and lead induced apoptosis is caspase-mediated and accompanied by extracellular signal-regulated kinase (ERK) dephosphorylation. Full-length BH3-interacting-domain death agonist expression in presence of caspase 3 inhibitor unravels a direct involvement of caspase in As and Pb induced apoptosis. Expression patterns of apoptosis inducing factor, B cell lymphoma-2 (Bcl-2) antagonist of cell death, Bcl-2-associated X protein, and Bcl2 also signify mitochondrial regulation of apoptosis effected by lead and arsenic. It is concluded that stimulation of caspase cascade and simultaneous ERK dephosphorylation are the most significant operative pathways directly associated with apoptotic signals triggered by arsenic and lead in the oval cells.
Collapse
Affiliation(s)
- Soumik Agarwal
- Environmental Toxicology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | | | | | | | | |
Collapse
|
24
|
Bopp SK, Lettieri T. Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharmacol 2008; 8:8. [PMID: 18513395 PMCID: PMC2438350 DOI: 10.1186/1471-2210-8-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 05/30/2008] [Indexed: 12/03/2022] Open
Abstract
Background A broad spectrum of cytotoxicity assays is currently used in the fields of (eco)toxicology and pharmacology. To choose an appropriate assay, different parameters like test compounds, detection mechanism, specificity, and sensitivity have to be considered. Furthermore, tissue or cell line can influence test performance. For zebrafish (Danio rerio), as emerging model organism, cell lines are now increasingly used, but few studies examined cytotoxicity in these cell systems. Therefore, we compared four cytotoxicity assays in the zebrafish liver cell line, ZFL, to test four differently acting model compounds. The tests comprised two colorimetric assays (MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, and the LDH assay detecting lactate dehydrogenase activity) and two fluorometric assays (alamarBlue® using resazurin, and CFDA-AM based on 5-carboxyfluorescein diacetate acetoxymethyl ester). Model compounds were the pharmaceutical Tamoxifen, its metabolite 4-Hydroxy-Tamoxifen, the fungicide Flusilazole and the polycyclic aromatic hydrocarbon Benzo[a]pyrene. Results All four assays performed well in the ZFL cells and led to reproducible dose-response curves for all test compounds. Effective concentrations causing 10% or 50% loss of cell viability (EC10 and EC50 values) varied by a maximum factor of 7.0 for the EC10 values and a maximum factor of 1.8 for the EC50 values. The EC values were not statistically different between the four assays, which is due to the assessed unspecific effects of the compounds. However, most often, the MTT assay and LDH assay showed the highest and lowest EC values, respectively. Nevertheless, the LDH assay showed the highest intra- and inter-assay variabilities and the lowest signal-to-noise ratios. In contrast to MTT, the other three assays have the advantage of being non-destructive, easy to handle, and less time consuming. Furthermore, AB and CFDA-AM can be combined on the same set of cells without damaging the cells, allowing later on their use for the investigation of other endpoints. Conclusion We recommend the alamarBlue and CFDA-AM assays for cytotoxicity assessment in ZFL cells, which can be applied either singly or combined.
Collapse
Affiliation(s)
- Stephanie K Bopp
- European Commission - Joint Research Centre, Institute for Environment and Sustainability, Rural, Water, and Ecosystem Resources Unit, Via E, Fermi 2749, 21027 Ispra (VA), Italy.
| | | |
Collapse
|
25
|
Almeida B, Silva A, Mesquita A, Sampaio-Marques B, Rodrigues F, Ludovico P. Drug-induced apoptosis in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1436-48. [PMID: 18252203 DOI: 10.1016/j.bbamcr.2008.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/21/2007] [Accepted: 01/07/2008] [Indexed: 01/04/2023]
Abstract
In order to alter the impact of diseases on human society, drug development has been one of the most invested research fields. Nowadays, cancer and infectious diseases are leading targets for the design of effective drugs, in which the primary mechanism of action relies on the modulation of programmed cell death (PCD). Due to the high degree of conservation of basic cellular processes between yeast and higher eukaryotes, and to the existence of an ancestral PCD machinery in yeast, yeasts are an attractive tool for the study of affected pathways that give insights into the mode of action of both antitumour and antifungal drugs. Therefore, we covered some of the leading reports on drug-induced apoptosis in yeast, revealing that in common with mammalian cells, antitumour drugs induce apoptosis through reactive oxygen species (ROS) generation and altered mitochondrial functions. The evidence presented suggests that yeasts may be a powerful model for the screening/development of PCD-directed drugs, overcoming the problem of cellular specificity in the design of antitumour drugs, but also enabling the design of efficient antifungal drugs, targeted to fungal-specific apoptotic regulators that do not have major consequences for human cells.
Collapse
Affiliation(s)
- B Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal
| | | | | | | | | | | |
Collapse
|