1
|
Tian Y, Jiang F, Liu N, Xu L, Cai Y. Non-target analysis of organic pollutants in oil-production wastewater treatment stations and surrounding soils: Their profiles, electro-transformation, and environmental risks. CHEMOSPHERE 2024; 368:143779. [PMID: 39571948 DOI: 10.1016/j.chemosphere.2024.143779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Although pollution during crude oil production has been paid attention, there is lack of studies on organic pollutants generated/emitted from oil-production wastewater (OPW) treatment processes, especially advanced oxidation process. Based on GC-Q-Orbitrap-HRMS, the present study performed non-target analysis of volatile/semi-volatile organic compounds in physical and electro-oxidation units of OPW treatment stations located in Shengli Oilfield of China. Overall, 64-227 organic compounds were respectively identified in different units, and electro-oxidation was found elevating (by 2.7-66 times) specie numbers (25-71) of CHO, CHNO and halogenated compounds as well as inducing generation of 38 alkanes and 6 alkyl-PAHs in wastewater, indicating the important roles of reactive oxygen and halogen species in pollutant transformation. In soils (n = 22) closed to OPW treatment stations, 580 compounds were identified with hydrocarbons (45%), esters (24.3%), and others (30.7%, including aldehydes, ketones, phenols, amines, nitriles and heteroatomic compounds), while esters had largest concentration contribution (up to 53.0%) to total compounds. The calculated hazard quotients (HQ) showed 55 compounds in OPW effluents and 314 compounds in soils having medium-high risks, considerable portions of which (23.6% for effluent and 12.7% for soil) were generated from electro-oxidation process, especially including esters and halogenated hydrocarbons, highlighting the contribution of OPW electro-oxidation treatment to ecological risk in oil-production areas.
Collapse
Affiliation(s)
- Youliang Tian
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 330106, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100085, China; Guizhou Environmental Scientific Research and Design Institute, Guiyang, Guizhou, 550081, China
| | - Fengjiao Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nannan Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Lin Xu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 330106, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yaqi Cai
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 330106, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Song Q, Li X, Hou N, Pei C, Li D. Chemotaxis-mediated degradation of PAHs and heterocyclic PAHs under low-temperature stress by Pseudomonas fluorescens S01: Insights into the mechanisms of biodegradation and cold adaptation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133905. [PMID: 38422734 DOI: 10.1016/j.jhazmat.2024.133905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/06/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
As wellknown persistent contaminants, polycyclic aromatic hydrocarbons (PAHs) and heterocyclic polyaromatic hydrocarbons (Heterocyclic PAHs)'s fates in cryogenic environments are remains uncertain. Herein, strain S01 was identified as Pseudomonas fluorescens, a novel bacterium tolerant to low temperature and capable of degrading PAHs and heterocyclic PAHs. Strain S01 exhibited growth at 5-40 ℃ and degradation rate of mixed PAHs and heterocyclic PAHs reached 52% under low-temperature. Through comprehensive metabolomic, genomic, and transcriptomic analyses, we reconstructed the biodegradation pathway for PAHs and heterocyclic PAHs in S01 while investigating its response to low temperature. Further experiments involving deletion and replacement of methyl-accepting chemotaxis protein (MCP) confirmed its crucial role in enabling strain S01's adaptation to dual stress of low temperature and pollutants. Additionally, our analysis revealed that MCP was upregulated under cold stress which enhanced strain S01's motility capabilities leading to increased biofilm formation. The establishment of biofilm promoted preservation of distinct cellular membrane stability, thereby enhancing energy metabolism. Consequently, this led to heightened efficiency in pollutant degradation and improved cold resistance capabilities. Our findings provide a comprehensive understanding of the environmental fate of both PAHs and heterocyclic PAHs under low-temperature conditions while also shedding light on cold adaptation mechanism employed by strain S01.
Collapse
Affiliation(s)
- Qiuying Song
- Northeast Agricultural University, School of Resources and Environment, China
| | - Xianyue Li
- Northeast Agricultural University, School of Resources and Environment, China
| | - Ning Hou
- Northeast Agricultural University, School of Resources and Environment, China.
| | - Chenghao Pei
- Northeast Agricultural University, School of Resources and Environment, China
| | - Dapeng Li
- Northeast Agricultural University, School of Resources and Environment, China.
| |
Collapse
|
3
|
Çelik G, Stolte S, Markiewicz M. NSO-heterocyclic PAHs - Controlled exposure study reveals high acute aquatic toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132428. [PMID: 37690200 DOI: 10.1016/j.jhazmat.2023.132428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
Environmental occurrence and hazardous nature of heterocyclic polyaromatic hydrocarbons (heterocyclic PAHs) has the potential to threaten the health of aquatic ecosystems. Here, we investigate the acute toxicity of heterocyclic PAHs (log KOW 3.7-6.9) to aquatic organisms: marine bacteria (Aliivibrio fischeri), freshwater green algae (Raphidocelis subcapitata), and water fleas (Daphnia magna) using passive dosing to maintain stable exposure. The membrane-water partition coefficient (KMW) of the heterocycles was measured to elucidate its relationship with toxicity. Our findings show that the tested heterocycles had little inhibitory effect on A. fischeri, while most compounds were highly toxic to R. subcapitata and D. magna. Toxicity generally increased with increasing KMW values, and nonpolar narcosis was identified as the most likely mode of toxic action of the heterocycles. Comparison of standard protocols with passive dosing emphasizes the importance of maintaining a constant concentration during toxicity testing, as very high losses occurred in standard tests and passive dosing experiments revealed higher toxicities. These results indicate a potentially high risk to aquatic life and call for more in-depth investigation of the (eco)toxic effects of NSO-PAHs.
Collapse
Affiliation(s)
- Göksu Çelik
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062 Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062 Dresden, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062 Dresden, Germany.
| |
Collapse
|
4
|
Çelik G, Beil S, Stolte S, Markiewicz M. Environmental Hazard Screening of Heterocyclic Polyaromatic Hydrocarbons: Physicochemical Data and In Silico Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:570-581. [PMID: 36542499 DOI: 10.1021/acs.est.2c06915] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Heterocyclic polyaromatic hydrocarbons (heterocyclic PAHs) are frequently found in the environment yet, compared to homocyclic PAHs, little attention has been paid to their environmental behavior and a comprehensive hazard assessment has not been undertaken. Surprisingly, the physicochemical data necessary to perform at least a screening-level assessment are also limited. To address this, we began by experimentally determining the physicochemical properties of heterocyclic PAHs, namely, water solubility (Sw), n-octanol-water partition coefficients (Kow), and organic carbon-water partition coefficients (Koc). The physicochemical data obtained in this study allowed for the development of clear structure-property relationships and evaluation of the predictive power of in silico models including conductor-like screening model for realistic solvation, the poly-parameter linear solvation energy relationship, and the quantitative structure-property relationship. Finally, heterocyclic and homocyclic PAHs were evaluated in terms of persistence, bioaccumulation, mobility, and toxicity to perform a screening-level comparative hazard assessment by integrating the data and evidence from multiple sources.
Collapse
Affiliation(s)
- Göksu Çelik
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062Dresden, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Technische Universität Dresden, Bergstr. 66, D-01062Dresden, Germany
| |
Collapse
|
5
|
Yang R, Liu S, Yin N, Zhang Y, Faiola F. Tox21-Based Comparative Analyses for the Identification of Potential Toxic Effects of Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14668-14679. [PMID: 36178254 DOI: 10.1021/acs.est.2c04467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemical pollution has become a prominent environmental problem. In recent years, quantitative high-throughput screening (qHTS) assays have been developed for the fast assessment of chemicals' toxic effects. Toxicology in the 21st Century (Tox21) is a well-known and continuously developing qHTS project. Recent reports utilizing Tox21 data have mainly focused on setting up mathematical models for in vivo toxicity predictions, with less attention to intuitive qHTS data visualization. In this study, we attempted to reveal and summarize the toxic effects of environmental pollutants by analyzing and visualizing Tox21 qHTS data. Via PubMed text mining, toxicity/structure clustering, and manual classification, we detected a total of 158 chemicals of environmental concern (COECs) from the Tox21 library that we classified into 13 COEC groups based on structure and activity similarities. By visualizing these COEC groups' bioactivities, we demonstrated that COECs frequently displayed androgen and progesterone antagonistic effects, xenobiotic receptor agonistic roles, and mitochondrial toxicity. We also revealed many other potential targets of the 13 COEC groups, which were not well illustrated yet, and that current Tox21 assays may not correctly classify known teratogens. In conclusion, we provide a feasible method to intuitively understand qHTS data.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, U.K
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Carrillo JC, Kamelia L, Romanuka J, Kral O, Isola A, Niemelä H, Steneholm A. Comparison of PAC and MOAH for understanding the carcinogenic and developmental toxicity potential of mineral oils. Regul Toxicol Pharmacol 2022; 132:105193. [PMID: 35618173 DOI: 10.1016/j.yrtph.2022.105193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/31/2022] [Accepted: 05/19/2022] [Indexed: 11/12/2022]
Abstract
The carcinogenicity and developmental toxicity of unrefined mineral oil is related to its 3-7 ring polycyclic aromatic compounds (PAC) content. Therefore, refining operations focus on the targeted removal PAC from mineral oil that may contain aromatics of low toxicological concern. There are thus, two types of aromatic substances in mineral oil: hazardous and non-hazardous. The first type consists of 3-7 ring PAC which may be naked (unsubstituted) or lowly alkylated. The second type or non-hazardous consists of 1-7 ring aromatics with high degree of alkylation or lack of bay or fjord regions. Although these are toxicologically different, they may both elute in the same fraction when using chromatography. To understand how these two aromatic types are related we have assessed the entire mineral oil refinement process by measuring total mineral oil aromatic hydrocarbons (MOAH) content by chromatography next to regulatory hazard tests which focus on 3-7 ring PAC. MOAH content is positively correlated to its molecular weight resulting in aromatic content bias for high viscosity substances. Hazard to 3-7 ring PAC is best controlled by the validated IP346 or modified Ames test. We explain the concept of high vs low alkylation by shortly reviewing new data on alkylated PAC.
Collapse
Affiliation(s)
- Juan-Carlos Carrillo
- Shell Global Solutions B.V, PO Box 162, 2501, AN, The Hague, the Netherlands; CONCAWE, Boulevard Du Souverain 165, Mineral Hydrocarbons Task Force, B-1160, Brussels, Belgium.
| | - Lenny Kamelia
- Shell Global Solutions B.V, PO Box 162, 2501, AN, The Hague, the Netherlands; CONCAWE, Boulevard Du Souverain 165, Mineral Hydrocarbons Task Force, B-1160, Brussels, Belgium
| | - Julija Romanuka
- Shell Global Solutions B.V, PO Box 162, 2501, AN, The Hague, the Netherlands
| | - Olaf Kral
- Shell Deutschland Oil GmbH, Suhrenkamp 71-77, 22284, Hamburg, Germany
| | - Allison Isola
- ExxonMobil Biomedical Sciences, Inc, 1545 US Highway 22 East Annandale, NJ, 08801-3059, USA; CONCAWE, Boulevard Du Souverain 165, Mineral Hydrocarbons Task Force, B-1160, Brussels, Belgium
| | - Helena Niemelä
- CONCAWE, Boulevard Du Souverain 165, Mineral Hydrocarbons Task Force, B-1160, Brussels, Belgium.
| | - Anna Steneholm
- Nynas AB, P.O. Box 10 700, SE-121 29, Stockholm, Sweden; CONCAWE, Boulevard Du Souverain 165, Mineral Hydrocarbons Task Force, B-1160, Brussels, Belgium
| |
Collapse
|
7
|
Aranguren-Abadía L, Yadetie F, Donald CE, Sørhus E, Myklatun LE, Zhang X, Lie KK, Perrichon P, Nakken CL, Durif C, Shema S, Browman HI, Skiftesvik AB, Goksøyr A, Meier S, Karlsen OA. Photo-enhanced toxicity of crude oil on early developmental stages of Atlantic cod (Gadus morhua). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150697. [PMID: 34610396 DOI: 10.1016/j.scitotenv.2021.150697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Photo-enhanced toxicity of crude oil is produced by exposure to ultraviolet (UV) radiation. Atlantic cod (Gadus morhua) embryos were exposed to crude oil with and without UV radiation (290-400 nm) from 3 days post fertilization (dpf) until 6 dpf. Embryos from the co-exposure experiment were continually exposed to UV radiation until hatching at 11 dpf. Differences in body burden levels and cyp1a expression in cod embryos were observed between the exposure regimes. High doses of crude oil produced increased mortality in cod co-exposed embryos, as well as craniofacial malformations and heart deformities in larvae from both experiments. A higher number of differentially expressed genes (DEGs) and pathways were revealed in the co-exposure experiment, indicating a photo-enhanced effect of crude oil toxicity. Our results provide mechanistic insights into crude oil and photo-enhanced crude oil toxicity, suggesting that UV radiation increases the toxicity of crude oil in early life stages of Atlantic cod.
Collapse
Affiliation(s)
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Elin Sørhus
- Institute of Marine Research, Bergen, Norway
| | | | - Xiaokang Zhang
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Kai K Lie
- Institute of Marine Research, Bergen, Norway
| | | | | | - Caroline Durif
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Steven Shema
- Grótti ehf., Grundarstíg 4, 101 Reykjavík, Iceland
| | - Howard I Browman
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | | | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
8
|
Ren K, Wei Y, Li J, Han C, Deng Y, Su G. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated PAHs, azaarenes, and sulfur / oxygen-containing heterocyclic PAHs) in surface soils from a typical city, south China. CHEMOSPHERE 2021; 283:131190. [PMID: 34157620 DOI: 10.1016/j.chemosphere.2021.131190] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons derivatives (dPAHs) were reported to be more mutagenic than parent analogues, however, studies that involving dPAHs in environmental samples are still limited. Thirty-six polycyclic aromatic compounds (PACs; 17 parent PAHs, 1 alkyl-PAH, 6 oxygenated PAHs, 6 azaarenes, 3 sulfur-containing heterocyclic PAHs, and 3 oxygen-containing heterocyclic PAHs) were analyzed in n = 100 surface soil samples collected from a prefecture-level city (hereafter referred to as D city) in South China, in the year 2019. Total concentrations of 36 PACs ranged from 3.61 to 4930 ng g-1 with a median concentration of 86.1 ng g-1. Regardless of functional zones, parent PAHs were the most abundant with the proportion of 78.9%, followed by oxygenated PAHs accounting for 16.8%, whereas contents of heterocyclic PAHs were far below the formers. Besides, PAHs with 4-6 rings were the most prevalent components. Among the five functional zones, industrial zone was contaminated most severely with a mean sum PAC concentration of 485 ng g-1, implying effects of long-term industrial emission. Total PAC concentrations in scenic and agricultural zones were significantly lower than those in industrial and residential zones. On the basis of PMF calculation, we proposed that traffic emission and biomass combustion could be responsible for PAC contamination. According to total lifetime cancer risk index, it suggested that there could be slightly health risks for children following exposure to PACs in some places.
Collapse
Affiliation(s)
- Kefan Ren
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yu Wei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Cunliang Han
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou, 510045, PR China
| | - Yirong Deng
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou, 510045, PR China.
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
9
|
Krzyszczak A, Czech B. Occurrence and toxicity of polycyclic aromatic hydrocarbons derivatives in environmental matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147738. [PMID: 34023603 DOI: 10.1016/j.scitotenv.2021.147738] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
In the last years, there is great attention paid to the determination of polycyclic aromatic hydrocarbons (PAHs) in different environmental matrices. Extensive reviews on PAHs presence and toxicity were published recently. However, PAHs formation and transformation in the environment lead to the production of PAHs derivatives containing oxygen (O-PAHs), nitrogen (N-PAHs and aazarenes AZA) or sulfur (PASHs) in the aromatic ring. The development of new analytical methods enabled the determination of these novel contaminants. The presence of oxygen, nitrogen, or sulfur in PAHs aromatic rings increased their toxicity. The most common primary sources of PAHs derivatives are biological processes such as microbial activity (in soil, water, and wastewater treatment plants (O-PAHs)) and all processes involving combustion of fuel, coal, and biomass (O-PAHs, N-PAHs, AZA, PASHs). The secondary resources involved i) photochemical (UV light), ii) radical-mediated (OH, NO3), and iii) reactions with oxidants (O3, NOx) (O-PAHs, N-PAHs, AZA). Furthermore, N-PAHs were able to transform to their corresponding O-PAHs, while other derivatives were not. It indicated that N-PAHs are more vulnerable to photooxidation in the environment. 85% of O- and N-PAHs were detected with particle matter below 2.5 μm suggesting their easier bioaccessibility. More than 90% of compounds with four and more aromatic cycles were present in the particle phase in the air. Although the concentrations of N-PAHs or O-PAHs may be similar to PAHs concentration or even 1000 times lower than parent PAHs, PAHs derivatives accounted for a significant portion of the total mutagenicity. The present review is describing the results of the studies on the determination of PAHs derivatives in different environmental matrices including airborne particles, sediments, soil, and organisms. The mechanisms of their formation and toxicity were assessed.
Collapse
Affiliation(s)
- Agnieszka Krzyszczak
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, University of Maria Curie-Sklodowska, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, University of Maria Curie-Sklodowska, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
10
|
RXR Expression in Marine Gastropods with Different Sensitivity to Imposex Development. Sci Rep 2020; 10:9507. [PMID: 32528077 PMCID: PMC7289818 DOI: 10.1038/s41598-020-66402-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/07/2020] [Indexed: 01/05/2023] Open
Abstract
The superposition of male sexual characteristics in female marine gastropods (imposex) represents one of the clearest ecological examples of organotin-mediated endocrine disruption. Recent evidences suggest that signaling pathways mediated by members of the nuclear receptor superfamily, RXR and PPARγ, are involved in the development of this pseudohermaphroditic condition. Here, we identified significant differences in RXR expression in two caenogastropod species from Nuevo Gulf, Argentina, Buccinanops globulosus and Trophon geversianus, which present clear contrast in imposex incidence. In addition, B. globulosus males from a polluted and an unpolluted area showed differences in RXR expression. Conversely, PPARγ levels were similar between both analyzed species. These findings indicate specie-specific RXR and PPARγ expression, suggesting a major role of RXR in the induction of imposex.
Collapse
|
11
|
Idowu O, Semple KT, Ramadass K, O'Connor W, Hansbro P, Thavamani P. Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. ENVIRONMENT INTERNATIONAL 2019; 123:543-557. [PMID: 30622079 DOI: 10.1016/j.envint.2018.12.051] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/02/2018] [Accepted: 12/21/2018] [Indexed: 05/07/2023]
Abstract
The genotoxic, mutagenic and carcinogenic effects of polar polycyclic aromatic hydrocarbons (polar PAHs) are believed to surpass those of their parent PAHs; however, their environmental and human health implications have been largely unexplored. Oxygenated PAHs (oxy-PAHs) is a critical class of polar PAHs associated with carcinogenic effects without enzymatic activation. They also cause an upsurge in reactive oxygen species (ROS) in living cells. This results in oxidative stress and other consequences, such as abnormal gene expressions, altered protein activities, mutagenesis, and carcinogenesis. Similarly, some nitrated PAHs (N-PAHs) are probable human carcinogens as classified by the International Agency for Research on Cancer (IARC). Heterocyclic PAHs (polar PAHs containing nitrogen, sulphur and oxygen atoms within the aromatic rings) have been shown to be potent endocrine disruptors, primarily through their estrogenic activities. Despite the high toxicity and enhanced environmental mobility of many polar PAHs, they have attracted only a little attention in risk assessment of contaminated sites. This may lead to underestimation of potential risks, and remediation end points. In this review, the toxicity of polar PAHs and their associated mechanisms of action, including their role in mutagenic, carcinogenic, developmental and teratogenic effects are critically discussed. This review suggests that polar PAHs could have serious toxicological effects on human health and should be considered during risk assessment of PAH-contaminated sites. The implications of not doing so were argued and critical knowledge gaps and future research requirements discussed.
Collapse
Affiliation(s)
- Oluyoye Idowu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Wayne O'Connor
- Port Stephens Fisheries Institute, NSW Department of Primary Industries, Port Stephens, Australia
| | - Phil Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; University of Technology Sydney, Faculty of Science, Ultimo, NSW 2007, Australia
| | - Palanisami Thavamani
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
12
|
Multi-class determination of undesirables in aquaculture samples by gas chromatography/tandem mass spectrometry with atmospheric pressure chemical ionization: A novel approach for polycyclic aromatic hydrocarbons. Talanta 2017; 172:109-119. [DOI: 10.1016/j.talanta.2017.05.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 11/21/2022]
|
13
|
Berntssen MHG, Ørnsrud R, Rasinger J, Søfteland L, Lock EJ, Kolås K, Moren M, Hylland K, Silva J, Johansen J, Lie K. Dietary vitamin A supplementation ameliorates the effects of poly-aromatic hydrocarbons in Atlantic salmon (Salmo salar). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:171-183. [PMID: 27060237 DOI: 10.1016/j.aquatox.2016.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
Several studies have reported on the interaction between vitamin A (VA) and aryl hydrocarbon receptor (AhR)-binding toxicants, including poly-aromatic hydrocarbons (PAHs). In aquaculture, the use of plant oils in novel aquafeeds can increase PAH levels while simultaneously lowering natural VA background levels, causing the need to supplement plant oil-based feeds with synthetic VA. To study dietary VA-PAH interactions, Atlantic salmon (initial weight 195±0.15g) were fed four identical plant-based diets that were supplemented with PAHs (100 and 10mgkg(-1) benzo[a]pyrene (BaP) and phenanthrene (Phe), respectively) or VA (retinyl acetate 8721IUkg(-1)) separately or combined for 2.5 months in a 2×2 factorial design, with triplicate net-pens per diet. Dietary PAH significantly reduced hepatic VA storage, and VA-enriched diets restored hepatic VA. There was a significant PAH-VA interaction effect on hepatic BaP, but not Phe, accumulation, with reduced hepatic BaP concentrations in fish fed VA+PAH compared to fish fed PAH alone. Concurrently, PAH and VA significantly interacted in their effects on CYP1A phase I biotransformation as observed from increased ethoxyresorufin-O-deethylase (EROD) activity, increased CYP1A protein concentration, and elevated transcription (cyp1a1 gene expression) in fish fed PAH+VA compared to PAH alone. Dietary VA supplementation alone had no significant effect on CYP1A phase I biotransformation. Metabolomic assessment showed that dietary VA caused a restoration of metabolic intermediates involved in energy metabolism that were affected by dietary PAH. Moreover, a PAH-induced growth inhibition was partially ameliorated by dietary VA supplementation. In conclusion, dietary VA interacted with PAH toxicity on the level of CYP1A-mediated detoxification, hepatic PAH accumulation, energy allocation, and growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ketil Hylland
- University of Oslo, Department of Bioscience, N-0316 Oslo, Norway
| | | | | | | |
Collapse
|
14
|
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33:378-455. [PMID: 22419778 PMCID: PMC3365860 DOI: 10.1210/er.2011-1050] [Citation(s) in RCA: 2028] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/07/2012] [Indexed: 02/08/2023]
Abstract
For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Tufts University, Center for Regenerative and Developmental Biology, Department of Biology, 200 Boston Avenue, Suite 4600, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pavlíková N, Bláhová L, Klán P, Bathula SR, Sklenář V, Giesy JP, Bláha L. Enantioselective effects of alpha-hexachlorocyclohexane (HCH) isomers on androgen receptor activity in vitro. CHEMOSPHERE 2012; 86:65-69. [PMID: 21962538 DOI: 10.1016/j.chemosphere.2011.08.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 08/24/2011] [Indexed: 05/31/2023]
Abstract
Alpha-hexachlorocyclohexane (alpha-HCH), a part of the HCH pesticide mixture, is one of the most widespread persistent organic pollutants. Interestingly, only limited number of studies addressed the toxicity of alpha-HCH and the effects of its individual optical isomers have not been investigated in detail. In the present study we separated two alpha-HCH enantiomers by preparative HPLC and studied their activities towards androgen receptor (AR) using the MDA-kb2 cell line stably transfected with the luciferase reporter gene under the control of AR. There was no direct effect of alpha-HCH on AR but both isomers significantly suppressed the activity of AR in co-exposure with the natural ligand dihydrotestosterone in a concentration-dependent manner. One of the enantiomers appeared to be more active at lower concentration, which was also supported by the molecular modeling calculations with AR that showed a slight difference in estimated free energy of binding and inhibition constant between two enantiomers. Although studies with other pesticides demonstrated strong enantioselective differences in toxicity, the present research shows rather minor differences in modulations of AR by both alpha-HCH enantiomers. For the first time, enantioselective effects of alpha-HCH were demonstrated and the results suggest interaction with multiple regulatory events controlling the AR activity. Full elucidation of the toxicity mechanism will require further research.
Collapse
Affiliation(s)
- Nela Pavlíková
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 3, CZ625 00 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
16
|
Beníšek M, Kubincová P, Bláha L, Hilscherová K. The effects of PAHs and N-PAHs on retinoid signaling and Oct-4 expression in vitro. Toxicol Lett 2011; 200:169-75. [DOI: 10.1016/j.toxlet.2010.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 11/03/2010] [Accepted: 11/18/2010] [Indexed: 12/20/2022]
|
17
|
Cave MR, Wragg J, Harrison I, Vane CH, Wiele TVD, Groeve ED, Nathanail CP, Ashmore M, Thomas R, Robinson J, Daly P. Comparison of batch mode and dynamic physiologically based bioaccessibility tests for PAHs in soil samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:2654-2660. [PMID: 20201516 DOI: 10.1021/es903258v] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A fed state in vitro methodology capable of use in commercial testing laboratories has been developed for measuring the human ingestion bioaccessibility of polyaromatic hydrocarbons (PAHs) in soil (Fed ORganic Estimation human Simulation Test- FOREhST). The protocol for measuring PAHs in the simulated gastro-intestinal fluids used methanolic KOH saponification followed by a combination of polymeric sorbent solid phase extraction and silica sorbent cartridges for sample cleanup and preconcentration. The analysis was carried out using high pressure liquid chromatography with fluorescence detection. The repeatability of the method, assessed by the measurement of the bioaccessibility of 6 PAHs (benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[ah]anthracene, and indeno[1,2,3-c,d]pyrene) in eleven gas works soils, was approximately 10% RSD. The method compared well with the results from an independent dynamic human simulation reactor comprising of the stomach, duodenal and colon compartments tested on the same soils. The measured bioaccessible fraction of the soils varied from 10-60% for soils containing 10-300 mg kg(-1) PAH (the sum of the six studied) with total organic carbon concentrations in the soils ranging from 1-13%. A multiple regression model showed that the PAH bioaccessible fraction could be explained using the PAH compound, the soil type and the total PAH to soil organic carbon content. The method described here has potential for site specific detailed quantitative risk assessment either to modify the risk estimation or to contribute to the risk evaluation.
Collapse
Affiliation(s)
- Mark R Cave
- British Geological Survey, Keyworth, Nottingham, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|