1
|
Alqithami SM, Machwe A, Orren DK. Cigarette Smoke-Induced Epithelial-to-Mesenchymal Transition: Insights into Cellular Mechanisms and Signaling Pathways. Cells 2024; 13:1453. [PMID: 39273025 PMCID: PMC11394110 DOI: 10.3390/cells13171453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
This review delves into the molecular complexities underpinning the epithelial-to-mesenchymal transition (EMT) induced by cigarette smoke (CS) in human bronchial epithelial cells (HBECs). The complex interplay of pathways, including those related to WNT//β-catenin, TGF-β/SMAD, hypoxia, oxidative stress, PI3K/Akt, and NF-κB, plays a central role in mediating this transition. While these findings significantly broaden our understanding of CS-induced EMT, the research reviewed herein leans heavily on 2D cell cultures, highlighting a research gap. Furthermore, the review identifies a stark omission of genetic and epigenetic factors in recent studies. Despite these shortcomings, the findings furnish a consolidated foundation not only for the academic community but also for the broader scientific and industrial sectors, including large tobacco companies and manufacturers of related products, both highlighting areas of current understanding and identifying areas for deeper exploration. The synthesis herein aims to propel further research, hoping to unravel the complexities of the EMT in the context of CS exposure. This review not only expands our understanding of CS-induced EMT but also reveals critical limitations in current methodologies, primarily the reliance on 2D cell cultures, which may not adequately simulate more complex biological interactions. Additionally, it highlights a significant gap in the literature concerning the genetic and epigenetic factors involved in CS-induced EMT, suggesting an urgent need for comprehensive studies that incorporate these types of experiments.
Collapse
Affiliation(s)
- Sarah Mohammed Alqithami
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | |
Collapse
|
2
|
Thorne D, McHugh D, Simms L, Lee KM, Fujimoto H, Moses S, Gaca M. Applying new approach methodologies to assess next-generation tobacco and nicotine products. FRONTIERS IN TOXICOLOGY 2024; 6:1376118. [PMID: 38938663 PMCID: PMC11208635 DOI: 10.3389/ftox.2024.1376118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 06/29/2024] Open
Abstract
In vitro toxicology research has accelerated with the use of in silico, computational approaches and human in vitro tissue systems, facilitating major improvements evaluating the safety and health risks of novel consumer products. Innovation in molecular and cellular biology has shifted testing paradigms, with less reliance on low-throughput animal data and greater use of medium- and high-throughput in vitro cellular screening approaches. These new approach methodologies (NAMs) are being implemented in other industry sectors for chemical testing, screening candidate drugs and prototype consumer products, driven by the need for reliable, human-relevant approaches. Routine toxicological methods are largely unchanged since development over 50 years ago, using high-doses and often employing in vivo testing. Several disadvantages are encountered conducting or extrapolating data from animal studies due to differences in metabolism or exposure. The last decade saw considerable advancement in the development of in vitro tools and capabilities, and the challenges of the next decade will be integrating these platforms into applied product testing and acceptance by regulatory bodies. Governmental and validation agencies have launched and applied frameworks and "roadmaps" to support agile validation and acceptance of NAMs. Next-generation tobacco and nicotine products (NGPs) have the potential to offer reduced risks to smokers compared to cigarettes. These include heated tobacco products (HTPs) that heat but do not burn tobacco; vapor products also termed electronic nicotine delivery systems (ENDS), that heat an e-liquid to produce an inhalable aerosol; oral smokeless tobacco products (e.g., Swedish-style snus) and tobacco-free oral nicotine pouches. With the increased availability of NGPs and the requirement of scientific studies to support regulatory approval, NAMs approaches can supplement the assessment of NGPs. This review explores how NAMs can be applied to assess NGPs, highlighting key considerations, including the use of appropriate in vitro model systems, deploying screening approaches for hazard identification, and the importance of test article characterization. The importance and opportunity for fit-for-purpose testing and method standardization are discussed, highlighting the value of industry and cross-industry collaborations. Supporting the development of methods that are accepted by regulatory bodies could lead to the implementation of NAMs for tobacco and nicotine NGP testing.
Collapse
Affiliation(s)
- David Thorne
- BAT (Investments) Ltd., Southampton, Hampshire, United Kingdom
| | - Damian McHugh
- PMI R&D Philip Morris Products S. A., Neuchâtel, Switzerland
| | - Liam Simms
- Imperial Brands, Bristol, United Kingdom
| | - K. Monica Lee
- Altria Client Services LLC, Richmond, VA, United States
| | | | | | - Marianna Gaca
- BAT (Investments) Ltd., Southampton, Hampshire, United Kingdom
| |
Collapse
|
3
|
Mark ZA, Yu L, Castro L, Gao X, Rodriguez NR, Sutton D, Scappini E, Tucker CJ, Wine R, Yan Y, Motley E, Dixon D. Tobacco Smoke Condensate Induces Morphologic Changes in Human Papillomavirus-Positive Cervical Epithelial Cells Consistent with Epithelial to Mesenchymal Transition (EMT) with Activation of Receptor Tyrosine Kinases and Regulation of TGFB. Int J Mol Sci 2024; 25:4902. [PMID: 38732119 PMCID: PMC11084578 DOI: 10.3390/ijms25094902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
High-risk human papillomavirus (HR-HPV; HPV-16) and cigarette smoking are associated with cervical cancer (CC); however, the underlying mechanism(s) remain unclear. Additionally, the carcinogenic components of tobacco have been found in the cervical mucus of women smokers. Here, we determined the effects of cigarette smoke condensate (CSC; 3R4F) on human ectocervical cells (HPV-16 Ect/E6E7) exposed to CSC at various concentrations (10-6-100 μg/mL). We found CSC (10-3 or 10 μg/mL)-induced proliferation, enhanced migration, and histologic and electron microscopic changes consistent with EMT in ectocervical cells with a significant reduction in E-cadherin and an increase in the vimentin expression compared to controls at 72 h. There was increased phosphorylation of receptor tyrosine kinases (RTKs), including Eph receptors, FGFR, PDGFRA/B, and DDR2, with downstream Ras/MAPK/ERK1/2 activation and upregulation of common EMT-related genes, TGFB SNAI2, PDGFRB, and SMAD2. Our study demonstrated that CSC induces EMT in ectocervical cells with the upregulation of EMT-related genes, expression of protein biomarkers, and activation of RTKs that regulate TGFB expression, and other EMT-related genes. Understanding the molecular pathways and environmental factors that initiate EMT in ectocervical cells will help delineate molecular targets for intervention and define the role of EMT in the initiation and progression of cervical intraepithelial neoplasia and CC.
Collapse
Affiliation(s)
- Zaniya A. Mark
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, NIH, Research Trriangle Park, Durham, NC 27709, USA (L.C.); (N.R.R.)
| | - Linda Yu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, NIH, Research Trriangle Park, Durham, NC 27709, USA (L.C.); (N.R.R.)
| | - Lysandra Castro
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, NIH, Research Trriangle Park, Durham, NC 27709, USA (L.C.); (N.R.R.)
| | - Xiaohua Gao
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, NIH, Research Trriangle Park, Durham, NC 27709, USA (L.C.); (N.R.R.)
| | - Noelle R. Rodriguez
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, NIH, Research Trriangle Park, Durham, NC 27709, USA (L.C.); (N.R.R.)
| | - Deloris Sutton
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC 27709, USA
| | - Erica Scappini
- Signal Transduction Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC 27709, USA; (E.S.); (C.J.T.); (R.W.)
| | - Charles J. Tucker
- Signal Transduction Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC 27709, USA; (E.S.); (C.J.T.); (R.W.)
| | - Rob Wine
- Signal Transduction Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC 27709, USA; (E.S.); (C.J.T.); (R.W.)
| | - Yitang Yan
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, NIH, Research Trriangle Park, Durham, NC 27709, USA (L.C.); (N.R.R.)
| | - Evangeline Motley
- Department of Microbiology, Immunology, Physiology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, NIH, Research Trriangle Park, Durham, NC 27709, USA (L.C.); (N.R.R.)
| |
Collapse
|
4
|
Park SH, Kim G, Yang GE, Yun HJ, Shin TH, Kim ST, Lee K, Kim HS, Kim SH, Leem SH, Cho WS, Lee JH. Disruption of phosphofructokinase activity and aerobic glycolysis in human bronchial epithelial cells by atmospheric ultrafine particulate matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132966. [PMID: 37976851 DOI: 10.1016/j.jhazmat.2023.132966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Exposure to ambient ultrafine particulate matter (UPM) causes respiratory disorders; however, the underlying molecular mechanisms remain unclear. In this study, we synthesized simulated UPM (sUPM) with controlled physicochemical properties using the spark-discharge method. Subsequently, we investigated the biological effects of sUPM using BEAS-2B human bronchial epithelial cells (HBECs) and a mouse intratracheal instillation model. High throughput RNA-sequencing and bioinformatics analyses revealed that dysregulation of the glycolytic metabolism is involved in the inhibited proliferation and survival of HBECs by sUPM treatment. Furthermore, signaling pathway and enzymatic analyses showed that the treatment of BEAS-2B cells with sUPM induces the inactivation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB, also known as AKT), resulting in the downregulation of phosphofructokinase 2 (PFK2) S483 phosphorylation, PFK enzyme activity, and aerobic glycolysis in HBECs in an oxidative stress-independent manner. Additionally, intratracheal instillation of sUPM reduced the phosphorylation of ERK, AKT, and PFK2, decreased proliferation, and increased the apoptosis of bronchial epithelial cells in mice. The findings of this study imply that UPM induces pulmonary toxicity by disrupting aerobic glycolytic metabolism in lung epithelial cells, which can provide novel insights into the toxicity mechanisms of UPM and strategies to prevent their toxic effects.
Collapse
Affiliation(s)
- Su Hwan Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Gyuri Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Gi-Eun Yang
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Hye Jin Yun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Tae Hwan Shin
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Hyuk Soon Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Sun-Hee Leem
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea.
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
5
|
Tyrrell J, Ghosh A, Manzo ND, Randell SH, Tarran R. Evaluation of chronic cigarette smoke exposure in human bronchial epithelial cultures. J Appl Toxicol 2023; 43:862-873. [PMID: 36594405 DOI: 10.1002/jat.4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Cigarette smoke (CS) exposure induces both cytotoxicity and inflammation, and often causes COPD, a growing cause of morbidity and mortality. CS also inhibits the CFTR Cl- channel, leading to airway surface liquid dehydration, which is predicated to impair clearance of inhaled pathogens and toxicants. Numerous in vitro studies have been performed that utilize acute (≤24 h) CS exposures. However, CS exposure is typically chronic. We evaluated the feasibility of using British-American Tobacco (BAT)-designed CS exposure chambers for chronically exposing human bronchial epithelial cultures (HBECs) to CS. HBECs are polarized and contain mucosal and serosal sides. In vivo, inhaled CS interacts with mucosal membranes, and BAT chambers are designed to direct CS to HBEC mucosal surfaces while keeping CS away from serosal surfaces via a perfusion system. We found that serosal perfusion was absolutely required to maintain HBEC viability over time following chronic CS exposure. Indeed, with this system, we found that CS increased inflammation and mucin levels, while decreasing CFTR function. Without this serosal perfusion, CS was extremely toxic within 24 h. We therefore propose that 5- and 10-day CS exposures with serosal perfusion are suitable for measuring chronic CS exposure and can be used for monitoring new and emerging tobacco products.
Collapse
Affiliation(s)
- Jean Tyrrell
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Arunava Ghosh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nicholas D Manzo
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Dwyer-Nield LD, McArthur DG, Hudish TM, Hudish LI, Mirita C, Sompel K, Smith AJ, Alavi K, Ghosh M, Merrick DT, Tennis MA, Keith RL. PPARgamma agonism inhibits progression of premalignant lesions in a murine lung squamous cell carcinoma model. Int J Cancer 2022; 151:2195-2205. [PMID: 35830207 DOI: 10.1002/ijc.34210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/07/2022]
Abstract
The N-nitroso-trischloroethylurea (NTCU)-induced mouse model of squamous lung carcinoma recapitulates human disease from premalignant dysplasia through invasive tumors, making it suitable for preclinical chemoprevention drug testing. Pioglitazone is a peroxisome proliferator-activated receptor γ (PPARγ) agonist shown to prevent lung tumors in preclinical models. We investigated pioglitazone's effect on lesion development and markers of potential preventive mechanisms in the NTCU model. Female FVB/N mice were exposed to vehicle, NTCU or NTCU + oral pioglitazone for 32 weeks. NTCU induces the appearance of basal cells in murine airways while decreasing/changing their epithelial cell makeup, resulting in development of bronchial dysplasia. H&E and keratin 5 (KRT5) staining were used to detect and grade squamous lesions in formalin fixed lungs. mRNA expression of epithelial to mesenchymal transition (EMT) markers and basal cell markers were measured by qPCR. Dysplasia persistence markers desmoglein 3 and polo like kinase 1 were measured by immunohistochemistry. Basal cell markers KRT14 and p63, club cell specific protein and ciliated cell marker acetylated tubulin were measured by immunofluorescence. Pioglitazone treatment significantly reduced squamous lesions and the presence of airway basal cells, along with increasing normal epithelial cells in the airways of NTCU-exposed mice. Pioglitazone also significantly influenced EMT gene expression to promote a more epithelial, and less mesenchymal, phenotype. Pioglitazone reduced the presence of squamous dysplasia and maintained normal airway cell composition. This work increases the knowledge of mechanistic pathways in PPARγ agonism for lung cancer interception and provides a basis for further investigation to advance this chemoprevention strategy.
Collapse
Affiliation(s)
- Lori D Dwyer-Nield
- Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Tyler M Hudish
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Laura I Hudish
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Carol Mirita
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Kayla Sompel
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alex J Smith
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kiana Alavi
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Moumita Ghosh
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel T Merrick
- Division of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Meredith A Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Robert L Keith
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Aiyer A, Das T, Whiteley GS, Glasbey T, Kriel FH, Farrell J, Manos J. The Efficacy of an N-Acetylcysteine-Antibiotic Combination Therapy on Achromobacter xylosoxidans in a Cystic Fibrosis Sputum/Lung Cell Model. Biomedicines 2022; 10:2886. [PMID: 36359406 PMCID: PMC9687303 DOI: 10.3390/biomedicines10112886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 09/29/2023] Open
Abstract
Cystic fibrosis (CF) is a disorder causing dysfunctional ion transport resulting in the accumulation of viscous mucus. This environment fosters a chronic bacterial biofilm-associated infection in the airways. Achromobacter xylosoxidans, a gram-negative aerobic bacillus, has been increasingly associated with antibiotic resistance and chronic colonisation in CF. In this study, we aimed to create a reproducible model of CF infection using an artificial sputum medium (ASMDM-1) with bronchial (BEAS-2B) and macrophage (THP-1) cells to test A. xylosoxidans infection and treatment toxicity. This study was conducted in three distinct stages. First, the tolerance of BEAS-2B cell lines and two A. xylosoxidans strains against ASMDM-1 was optimised. Secondly, the cytotoxicity of combined therapy (CT) comprising N-acetylcysteine (NAC) and the antibiotics colistin or ciprofloxacin was tested on cells alone in the sputum model in both BEAS-2B and THP-1 cells. Third, the efficacy of CT was assessed in the context of a bacterial infection within the live cell/sputum model. We found that a model using 20% ASMDM-1 in both cell populations tolerated a colistin-NAC-based CT and could significantly reduce bacterial loads in vitro (~2 log10 CFU/mL compared to untreated controls). This pilot study provides the foundation to study other bacterial opportunists that infect the CF lung to observe infection and CT kinetics. This model also acts as a springboard for more complex co-culture models.
Collapse
Affiliation(s)
- Aditi Aiyer
- Charles Perkins Centre, Infection, Immunity and Inflammation, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Theerthankar Das
- Charles Perkins Centre, Infection, Immunity and Inflammation, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gregory S. Whiteley
- Charles Perkins Centre, Infection, Immunity and Inflammation, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Whiteley Corporation, Level 5, 12 Mount Street North Sydney, Sydney, NSW 2060, Australia
- School of Medicine, Western Sydney University, Sydney, NSW 2566, Australia
| | - Trevor Glasbey
- Whiteley Corporation, 19-23 Laverick Avenue, Tomago, NSW 2322, Australia
| | - Frederik H. Kriel
- Whiteley Corporation, 19-23 Laverick Avenue, Tomago, NSW 2322, Australia
| | - Jessica Farrell
- Charles Perkins Centre, Infection, Immunity and Inflammation, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Whiteley Corporation, Level 5, 12 Mount Street North Sydney, Sydney, NSW 2060, Australia
| | - Jim Manos
- Charles Perkins Centre, Infection, Immunity and Inflammation, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Lehner R, Zanoni I, Banuscher A, Costa AL, Rothen-Rutishauser B. Fate of engineered nanomaterials at the human epithelial lung tissue barrier in vitro after single and repeated exposures. FRONTIERS IN TOXICOLOGY 2022; 4:918633. [PMID: 36185318 PMCID: PMC9524228 DOI: 10.3389/ftox.2022.918633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The understanding of the engineered nanomaterials (NMs) potential interaction with tissue barriers is important to predict their accumulation in cells. Herein, the fate, e.g., cellular uptake/adsorption at the cell membrane and translocation, of NMs with different physico-chemical properties across an A549 lung epithelial tissue barrier, cultured on permeable transwell inserts, were evaluated. We assessed the fate of five different NMs, known to be partially soluble, bio-persistent passive and bio-persistent active. Single exposure measurements using 100 µg/ml were performed for barium sulfate (BaSO4), cerium dioxide (CeO2), titanium dioxide (TiO2), and zinc oxide (ZnO) NMs and non-nanosized crystalline silica (DQ12). Elemental distribution of the materials in different compartments was measured after 24 and 80 h, e.g., apical, apical wash, intracellular and basal, using inductively coupled plasma optical emission spectrometry. BaSO4, CeO2, and TiO2 were mainly detected in the apical and apical wash fraction, whereas for ZnO a significant fraction was detected in the basal compartment. For DQ12 the major fraction was found intracellularly. The content in the cellular fraction decreased from 24 to 80 h incubation for all materials. Repeated exposure measurements were performed exposing the cells on four subsequent days to 25 µg/ml. After 80 h BaSO4, CeO2, and TiO2 NMs were again mainly detected in the apical fraction, ZnO NMs in the apical and basal fraction, while for DQ12 a significant concentration was measured in the cell fraction. Interestingly the cellular fraction was in a similar range for both exposure scenarios with one exception, i.e., ZnO NMs, suggesting a potential different behavior for this material under single exposure and repeated exposure conditions. However, we observed for all the NMs, a decrease of the amount detected in the cellular fraction within time, indicating NMs loss by cell division, exocytosis and/or possible dissolution in lysosomes. Overall, the distribution of NMs in the compartments investigated depends on their composition, as for inert and stable NMs the major fraction was detected in the apical and apical wash fraction, whereas for partially soluble NMs apical and basal fractions were almost similar and DQ12 could mainly be found in the cellular fraction.
Collapse
Affiliation(s)
- Roman Lehner
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Ilaria Zanoni
- CNR-ISTEC-National Research Council of Italy, Institute of Science and Technology for Ceramics, Faenza, Ravenna, Italy
| | - Anne Banuscher
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Anna Luisa Costa
- CNR-ISTEC-National Research Council of Italy, Institute of Science and Technology for Ceramics, Faenza, Ravenna, Italy
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- *Correspondence: Barbara Rothen-Rutishauser,
| |
Collapse
|
9
|
Lin F, Liao C, Zhang J, Sun Y, Lu W, Bai Y, Liao Y, Li M, Qi Y, Chen Y. Hydrogen Sulfide Inhibits Bronchial Epithelial Cell Epithelial Mesenchymal Transition Through Regulating Endoplasm Reticulum Stress. Front Mol Biosci 2022; 9:828766. [PMID: 35495633 PMCID: PMC9039047 DOI: 10.3389/fmolb.2022.828766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 02/02/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a contributing factor in remodeling events of chronic obstructive pulmonary disease (COPD). Hydrogen sulfide (H2S) has been implicated in the pathogenesis of COPD, but the effect of H2S in regulating EMT and the underlying mechanisms is not clear. In this study, we assessed endoplasmic reticulum (ER) stress markers, EMT markers and associated signal molecules in rat lungs, bronchial epithelial cells, and human peripheral lung tissues to investigate the effect of H2S in regulating EMT and the underlying mechanisms. We found that EMT and ER stress occurred in lung epithelial cells, especially in the bronchial epithelial cells of smokers and COPD patients. In cigarette smoke (CS)-exposed rats, intraperitoneal injection of NaHS significantly alleviated CS-induced lung tissue damage, small airway fibrosis, ER stress, and EMT, while intraperitoneal injection of propargylglycine (cystathionine-gamma-lyase inhibitor) aggravated these effects induced by CS. In the nicotine-exposed 16HBE cells, an appropriate concentration of H2S donor not only inhibited nicotine-induced ER stress, but also inhibited nicotine-induced enhancement of cell migration ability and EMT. ER stress nonspecific inhibitors taurine and 4-phenyl butyric acid also inhibited nicotine-induced enhancement of cell migration ability and EMT. Both H2S and inositol-requiring enzyme 1 (IRE1) activation inhibitor 4μ8C inhibited nicotine-induced activation of IRE1, Smad2/3 and EMT. These results suggest that H2S inhibits CS- or nicotine-induced ER stress and EMT in bronchial epithelial cells and alleviates CS-induced lung tissue damage and small airway fibrosis. The IRE1 signal pathway and Smad2/3 may be responsible for the inhibitory effect of H2S.
Collapse
Affiliation(s)
- Fan Lin
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Geriatric Medicine Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Chengcheng Liao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jinsheng Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yun Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Weiwei Lu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yu Bai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yixuan Liao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Minxia Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yongfen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
- *Correspondence: Yahong Chen, ; Yongfen Qi,
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- *Correspondence: Yahong Chen, ; Yongfen Qi,
| |
Collapse
|
10
|
Yedier SK, Şekeroğlu ZA, Şekeroğlu V, Aydın B. Cytotoxic, genotoxic, and carcinogenic effects of acrylamide on human lung cells. Food Chem Toxicol 2022; 161:112852. [DOI: 10.1016/j.fct.2022.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
11
|
Kim S, Kim M, Sung JS. Exposure of Toluene Diisocyanate Induces DUSP6 and p53 through Activation of TRPA1 Receptor. Int J Mol Sci 2022; 23:ijms23010517. [PMID: 35008945 PMCID: PMC8745568 DOI: 10.3390/ijms23010517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Abstract
Toluene diisocyanate (TDI), a major intermediate agent used in the manufacturing industry, causes respiratory symptoms when exposed to the human body. In this study, we aimed to determine the molecular mechanism of TDI toxicity. To investigate the impact of TDI exposure on global gene expression, we performed transcriptomic analysis of human bronchial epithelial cells (BEAS-2B) after TDI treatment. Differentially expressed genes (DEGs) were sorted and used for clustering and network analysis. Among DEGs, dual-specificity phosphatase 6 (DUSP6) was one of the genes significantly changed by TDI exposure. To verify the expression level of DUSP6 and its effect on lung cells, the mRNA and protein levels of DUSP6 were analyzed. Our results showed that DUSP6 was dose-dependently upregulated by TDI treatment. Thereby, the phosphorylation of ERK1/2, one of the direct inhibitory targets of DUSP6, was decreased. TDI exposure also increased the mRNA level of p53 along with its protein and activity which trans-activates DUSP6. Since TRPA1 is known as a signal integrator activated by TDI, we analyzed the relevance of TRPA1 receptor in DUSP6 regulation. Our data revealed that up-regulation of DUSP6 mediated by TDI was blocked by a specific antagonist against TRPA1. TDI exposure attenuated the apoptotic response, which suggests that it promotes the survival of cancerous cells. In conclusion, our results suggest that TDI induces DUSP6 and p53, but attenuates ERK1/2 activity through TRPA1 receptor activation, leading to cytotoxicity.
Collapse
Affiliation(s)
| | - Min Kim
- Correspondence: (M.K.); (J.-S.S.); Tel.: +82-31-961-5132 (J.-S.S.); Fax: +82-31-961-5108 (J.-S.S.)
| | - Jung-Suk Sung
- Correspondence: (M.K.); (J.-S.S.); Tel.: +82-31-961-5132 (J.-S.S.); Fax: +82-31-961-5108 (J.-S.S.)
| |
Collapse
|
12
|
Zhang H, Liu B, Jiang S, Wu JF, Qi CH, Mohammadtursun N, Li Q, Li L, Zhang H, Sun J, Dong JC. Baicalin ameliorates cigarette smoke-induced airway inflammation in rats by modulating HDAC2/NF-κB/PAI-1 signalling. Pulm Pharmacol Ther 2021; 70:102061. [PMID: 34314854 DOI: 10.1016/j.pupt.2021.102061] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease distinguished by airway remodelling and progressive inflammation. PAI-1 is an important regulator of fibrosis. Recent studies have shown that PAI-1 seems to be involved in COPD progression. Elevated levels of PAI-1 have been found in the lungs of patients with acute inflammation. PAI-1 has been shown to regulate the levels of proinflammatory cytokines in the lungs, such as tumour necrosis factor (TNF)-α and interleukin (IL)-6, indicating that PAI-1 may play a fundamental role during inflammation. In the present study, we investigated the anti-inflammatory role of baicalin, the main active component of Scutellaria baicalensis, against cigarette smoke (extract) (CS/CSE)-induced airway inflammation in vivo and in vitro. For the in vivo study, SD rats were exposed to CS for 1 h/day, 6 days/week, for 24 weeks and treated with baicalin (40, 80 and 160 mg/kg) or budesonide (0.2 mg/kg). For this study, HBE cells were pretreated with baicalin (10, 20, 40 μM) or dexamethasone (10-7 M) and then exposed to CSE. We found that baicalin treatment could ameliorate CS-induced airway inflammatory infiltration in rats and decrease PAI-1 expression. The ELISA results showed that baicalin significantly inhibited the levels of TNF-α and IL-1β in CS/CSE-exposed rats and cells. Mechanistic studies showed that baicalin enhanced histone deacetylase 2 (HDAC2) protein expression and inhibited the expression of NF-κB and its downstream target PAI-1, and these effects were reversed by the HDAC2 inhibitor CAY-10683. In conclusion, baicalin ameliorated CS-induced airway inflammation in rats, and these effects were partially attributed to the modulation of HDAC2/NF-κB/PAI-1 signalling.
Collapse
Affiliation(s)
- Hu Zhang
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Baojun Liu
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Shan Jiang
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Jin-Feng Wu
- Huashan Hospital, Fudan University, Shanghai, China; Department of Dermatology, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Chun-Hui Qi
- Department of Respiratory Medicine, Qingpu District Traditional Chinese Medicine Hospital, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Nabijan Mohammadtursun
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Qiuping Li
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Lulu Li
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Hongying Zhang
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Jing Sun
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| | - Jing-Cheng Dong
- Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| |
Collapse
|
13
|
Selman M, Pardo A. When things go wrong: exploring possible mechanisms driving the progressive fibrosis phenotype in interstitial lung diseases. Eur Respir J 2021; 58:13993003.04507-2020. [PMID: 33542060 DOI: 10.1183/13993003.04507-2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Interstitial lung diseases (ILDs) comprise a large and heterogeneous group of disorders of known and unknown aetiology characterised by diffuse damage of the lung parenchyma. In recent years it has become evident that patients with different types of ILD are at risk of developing progressive pulmonary fibrosis, known as progressive fibrosing ILD (PF-ILD). This is a phenotype that behaves similar to idiopathic pulmonary fibrosis, the archetypical example of progressive fibrosis. PF-ILD is not a distinct clinical entity but describes a group of ILDs with similar clinical behaviour. This phenotype may occur in diseases displaying distinct aetiologies and different biopathology during their initiation and development. Importantly, these entities may have the potential for improvement or stabilisation prior to entering the progressive fibrosing phase. The crucial questions are: 1) why does a subset of patients develop a progressive and irreversible fibrotic phenotype even with appropriate treatment? and 2) what are the possible pathogenic mechanisms driving progression? Here, we provide a framework highlighting putative mechanisms underlying progression, including genetic susceptibility, ageing, epigenetics, structural fibrotic distortion, aberrant composition and stiffness of the extracellular matrix, and the emergence of distinct pro-fibrotic cell subsets. Understanding the cellular and molecular mechanisms behind PF-ILD will provide the basis for identifying risk factors and appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|
14
|
Ballesteros S, Barguilla I, Marcos R, Hernández A. Nanoceria, alone or in combination with cigarette-smoke condensate, induce transforming and epigenetic cancer-like features in vitro. Nanomedicine (Lond) 2021; 16:293-305. [PMID: 33501851 DOI: 10.2217/nnm-2020-0367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To detect cell transformation effects of nanoceria after long-term exposure (up to 6 weeks) and to determine their potential interactions with cigarette smoke condensate, as a model of environmental carcinogenic pollutant. Materials & methods: Human bronchial epithelial BEAS-2 cells were used to determine transformation effects (invasion and tumorspheres induction), as well as changes in the expression of a battery of miRNAs related to the carcinogenesis process. Results: Nanoceria- and co-exposed cells exhibit cell transforming potential, with significantly increased invasion and tumorsphere formation abilities. Likewise, these exposures produced a high impact on the battery of miRNAs used. Conclusion: Nanoceria exposure induces cell-transformation and shows a positive interaction with the cell-transforming effects of cigarette smoke condensate. Besides, cerium dioxide nanoparticles and the co-exposure produced potential toxicity at the transcriptome level, which is related to tumorigenesis.
Collapse
Affiliation(s)
- Sandra Ballesteros
- Department of Genetics & Microbiology, Group of Mutagenesis, Universitat Autònoma de Barcelona, Spain
| | - Irene Barguilla
- Department of Genetics & Microbiology, Group of Mutagenesis, Universitat Autònoma de Barcelona, Spain
| | - Ricard Marcos
- Department of Genetics & Microbiology, Group of Mutagenesis, Universitat Autònoma de Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Alba Hernández
- Department of Genetics & Microbiology, Group of Mutagenesis, Universitat Autònoma de Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
15
|
Lin DQ, Zhu JG, Xu XH, Xiao K, Wen XQ, Zheng QF, Zhou YH, Cai XY. Chronic Progression of Lung Cancer Recurrence After Surgery: Warning Role of Postoperative Pneumonia. Cancer Manag Res 2021; 13:7387-7398. [PMID: 34602824 PMCID: PMC8481098 DOI: 10.2147/cmar.s327646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/11/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The association between the process of postoperative pneumonia and lung cancer recurrence remains elusive in lung cancer surgery. Herein, the association between postoperative pneumonia and lung cancer recurrence was investigated, emphasizing the warning role of postoperative specific pneumonia in primary lung cancer resection patients. METHODS The occurrence of postoperative pneumonia was assessed in 4-6 months (PPFS), 7-12 months (PPST), and lung cancer recurrence within 1 year (LRO) in 332 patients. The primary outcome was the development of PPST and LRO according to PPFS occurrence. The relevant risk factors of PPFS, PPST, and LRO were identified through multivariable regression analysis. RESULTS During follow-up, 151 (45.48%) participants experienced PPFS. Irrespective of the existing postoperative pneumonia in 1-3 months (PPOT), PPFS significantly increased the risk of PPST (P < 0.01) and LRO (P < 0.01), and persistent PPST further increased the risk of LRO (P < 0.001). The generalized estimating equation identified chemotherapy as an independent risk factor for PPFS and PPST. CONCLUSION PPFS was associated with the increased risk of PPST and LRO. Postoperative pulmonary inflammation assessed 4 months post-surgery also significantly influenced LRO development, indicating a need for close follow-up of lung inflammatory conditions to improve patient outcomes.
Collapse
Affiliation(s)
- Dong-qi Lin
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Jin-guo Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Xiao-hua Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Ke Xiao
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Xu-qing Wen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Qi-fa Zheng
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Yu-hua Zhou
- Nursing Department, Shantou Central Hospital, Shantou, Guangdong, People’s Republic of China
| | - Xin-ying Cai
- Clinical Research Center, Shantou Central Hospital, Shantou, Guangdong, People’s Republic of China
- Correspondence: Xin-ying Cai Clinical Research Center, Shantou Central Hospital, Wai-ma Road 114, Shantou, Guangdong, People’s Republic of ChinaTel +86 754-88903584Fax +86 754-88548117 Email
| |
Collapse
|
16
|
Hou W, Hu S, Yong KT, Zhang J, Ma H. Cigarette smoke-induced malignant transformation via STAT3 signalling in pulmonary epithelial cells in a lung-on-a-chip model. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00092-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Zhou H, Liu Y, Wang Z, Yang Y, Li M, Yuan D, Zhang X, Li Y. CD147 Promoted Epithelial Mesenchymal Transition in Airway Epithelial Cells Induced by Cigarette Smoke via Oxidative Stress Signaling Pathway. COPD 2020; 17:269-279. [PMID: 32366134 DOI: 10.1080/15412555.2020.1758051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common airway disease, and epithelial mesenchymal transition (EMT) is participated in the pathogenesis of COPD. However, the role of CD147 in COPD remains largely unknown. In order to clarify the role of CD147 in EMT induced by cigarette smoke, we established animal and cell model of EMT by mean of cigarette smoke exposure and detected the expressions of CD147 and EMT markers via PCR, WB and IF. RNA inference was applied to study the role of CD147 in CSE induced EMT in vitro. NAC and H2O2 were used to study oxidative stress signaling pathway in this model. As a result, cigarette smoke exposure upregulated the expressions of CD147, α-SMA, and Vimentin and downregulated the expression of Ecadherin and ZO1 both in vivo and in vitro, which was accompanied by augmented level of oxidative stress. CD147 knockdown would partly inhibit CSE induced EMT, while preincubation of H2O2 could inverse this effect. In conclusion, CD147 promoted EMT in mice and HBE cells induced by cigarette smoke via oxidative stress signaling pathway.
Collapse
Affiliation(s)
- Hongbin Zhou
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Yuanshun Liu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Zhehua Wang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Yang Yang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Mengyu Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Dong Yuan
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Xiaoqin Zhang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Yaqing Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
18
|
Hasan NAHM, Harith HH, Israf DA, Tham CL. The differential effects of commercial specialized media on cell growth and transforming growth factor beta 1-induced epithelial-mesenchymal transition in bronchial epithelial cells. Mol Biol Rep 2020; 47:3511-3519. [PMID: 32279207 DOI: 10.1007/s11033-020-05439-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is one of the mechanisms that contribute to bronchial remodelling which underlie chronic inflammatory airway diseases such as chronic obstructive pulmonary disorder (COPD) and asthma. Bronchial EMT can be triggered by many factors including transforming growth factor β1 (TGFβ1). The majority of studies on TGFβ1-mediated bronchial EMT used BEGM as the culture medium. LHC-9 medium is another alternative available which is more economical but a less common option. Using normal human bronchial epithelial cells (BEAS-2B) cultured in BEGM as a reference, this study aims to validate the induction of EMT by TGFβ1 in cells cultured in LHC-9. Briefly, the cells were maintained in either LHC-9 or BEGM, and induced with TGFβ1 (5, 10 and 20 ng/ml) for 48 h. EMT induction was confirmed by morphological analysis and EMT markers expression by immunoblotting. In both media, cells induced with TGFβ1 displayed spindle-like morphology with a significantly higher radius ratio compared to non-induced cells which displayed a cobblestone morphology. Correspondingly, the expression of the epithelial marker E-cadherin was significantly lower, whereas the mesenchymal marker vimentin expression was significantly higher in induced cells, compared to non-induced cells. By contrast, a slower cell growth rate was observed in LHC-9 compared to that of BEGM. This study demonstrates that neither LHC-9 nor BEGM significantly influence TGFβ1-induced bronchial EMT. However, LHC-9 is less optimal for bronchial epithelial cell growth compared to BEGM. Thus, LHC-9 may be a more cost-effective substitute for BEGM, provided that time is not a factor.
Collapse
Affiliation(s)
- Nur Amilia Hanie Mohamad Hasan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
19
|
Han X, Na T, Wu T, Yuan BZ. Human lung epithelial BEAS-2B cells exhibit characteristics of mesenchymal stem cells. PLoS One 2020; 15:e0227174. [PMID: 31900469 PMCID: PMC6941928 DOI: 10.1371/journal.pone.0227174] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
BEAS-2B was originally established as an immortalized but non-tumorigenic epithelial cell line from human bronchial epithelium. Because of general recognition for its bronchial epithelial origin, the BEAS-2B cell line has been widely used as an in vitro cell model in a large variety of studies associated with respiratory diseases including lung carcinogenesis. However, very few studies have discussed non-epithelial features of BEAS-2B cells, especially the features associated with mesenchymal stem cells (MSCs), which represent a group of fibroblast-like cells with limited self-renewal and differentiation potential to various cell lineages. In this study, we compared BEAS-2B with a human umbilical cord-derived MSCs (hMSCs) cell line, hMSC1, which served as a representative of hMSCs in terms of expressing common features of hMSCs. It was observed that both BEAS-2B and hMSC1 shared the same expression profile of surface markers of hMSCs and exhibited similar osteogenic and adipogenic differentiation potential. In addition, like hMSC1, the BEAS-2B cell line exhibited suppressive activities on proliferation of mitogen-activated total T lymphocytes as well as Th1 lymphocytes, and IFNγ-induced expression of IDO1, all thus demonstrating that BEAS-2B cells exhibited an almost identical characteristic profile with hMSCs, even though, there was a clear difference between BEAS-2B and hMSCs in the effects on type 2 macrophage polarization. Most importantly, the hMSCs features of BEAS-2B were unlikely a consequence of epithelial-mesenchymal transition. Therefore, this study provided a set of evidence to provoke reconsideration of epithelial origin of BEAS-2B.
Collapse
Affiliation(s)
- Xiaoyan Han
- Cell Collection and Research Center, National Institutes for Food and Drug Control, Beijing, China
| | - Tao Na
- Cell Collection and Research Center, National Institutes for Food and Drug Control, Beijing, China
| | - Tingting Wu
- Cell Collection and Research Center, National Institutes for Food and Drug Control, Beijing, China
| | - Bao-Zhu Yuan
- Cell Collection and Research Center, National Institutes for Food and Drug Control, Beijing, China
- * E-mail:
| |
Collapse
|
20
|
Guan R, Wang J, Cai Z, Li Z, Wang L, Li Y, Xu J, Li D, Yao H, Liu W, Deng B, Lu W. Hydrogen sulfide attenuates cigarette smoke-induced airway remodeling by upregulating SIRT1 signaling pathway. Redox Biol 2020; 28:101356. [PMID: 31704583 PMCID: PMC6854091 DOI: 10.1016/j.redox.2019.101356] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 11/30/2022] Open
Abstract
Airway remodeling is one of the characteristics for chronic obstructive pulmonary disease (COPD). The mechanism underlying airway remodeling is associated with epithelial-mesenchymal transition (EMT) in the small airways of smokers and patients with COPD. Sirtuin 1 (SIRT1) is able to reduce oxidative stress, and to modulate EMT. Here, we investigated the effects and mechanisms of hydrogen sulfide (H2S) on pulmonary EMT in vitro and in vivo. We found that H2S donor NaHS inhibited cigarette smoke (CS)-induced airway remodeling, EMT and collagen deposition in mouse lungs. In human bronchial epithelial 16HBE cells, NaHS treatment also reduced CS extract (CSE)-induced EMT, collagen deposition and oxidative stress. Mechanistically, NaHS upregulated SIRT1 expression, but inhibited activation of TGF-β1/Smad3 signaling in vivo and in vitro. SIRT1 inhibition by a specific inhibitor EX527 significantly attenuated or abolished the ability of NaHS to reverse the CSE-induced oxidative stress. SIRT1 inhibition also abolished the protection of NaHS against CSE-induced EMT. Moreover, SIRT1 activation attenuated CSE-induced EMT by modifying TGF-β1-mediated Smad3 transactivation. In conclusion, H2S prevented CS-induced airway remodeling in mice by reversing oxidative stress and EMT, which was partially ameliorated by SIRT1 activation. These findings suggest that H2S may have therapeutic potential for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Ruijuan Guan
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhou Cai
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziying Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lan Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanyuan Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingyi Xu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongwei Yao
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Liu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bingxian Deng
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Liang X, He X, Li Y, Wang J, Wu D, Yuan X, Wang X, Li G. Lyn regulates epithelial-mesenchymal transition in CS-exposed model through Smad2/3 signaling. Respir Res 2019; 20:201. [PMID: 31477108 PMCID: PMC6720409 DOI: 10.1186/s12931-019-1166-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation that is progressive and not fully reversible. Cigarette smoking is one of the most commonly and important risk factors for COPD, which contributes to airway remodeling, the outstanding pathological changes in COPD. One potential mechanism which might be important for airway remodeling is the process called epithelial-mesenchymal transition (EMT). However, the underlying molecular mechanisms of EMT in CS-induced COPD are still poorly understood. METHODS Two Gene Expression Omnibus (GEO) datasets (GSE108134 and GSE5058) were combined to identify the key genes involved in COPD. Then, single-gene analysis of Lyn was performed. Lyn expression was confirmed in patients with COPD. 16HBE cells were treated with cigarette smoking extracts (CSE). Wild type (WT) C57BL/6 J mice and Lyn+/+ transgenic mice were exposed to CSE to establish CS-exposed model. Pathological changes were observed by hematoxylin-eosin staining. The expression levels of EMT markers were examined by using western blot and immunofluorescence. The expression and phosphorylation levels of Lyn and Smad2/3 were detected as well. RESULTS The gain of mesenchymal markers vimentin and α-SMA with a concomitant loss of E-cadherin was observed in both in vivo and in vitro studies. Meanwhile, cigarette smoking extracts (CSE) induced EMT in 16HBE cells in a time- and dose- dependent manner. Furthermore, by analyzing GEO datasets and using molecular methods, we explored a kinase, Lyn, its expression correlated with the expression of E-cadherin, vimentin and α-SMA in CS-exposed model. Moreover, we found that EMT induced by CSE was regulated by activated Lyn through phosphorylation of Smad2/3. CONCLUSIONS In summary, we found that Lyn regulates epithelial-mesenchymal transition in CS-exposed model through Smad2/3 signaling. As a kinase, Lyn is "druggable", and might provide a therapeutic opportunity for targeting EMT. Therefore, our research might provide a new method to treat COPD by targeting Lyn kinase specifically.
Collapse
Affiliation(s)
- Xiaobo Liang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
- First Department of Respiratory Disease, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Xiang He
- Laboratory of Allergy and Inflammation of Allergy Department, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
- Department of Respiratory Disease, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
| | - Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Affiliated Hospital of Fudan University, Shanghai, 200032 China
| | - Junyi Wang
- Laboratory of Allergy and Inflammation of Allergy Department, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
- Department of Respiratory Disease, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
| | - Dehong Wu
- Laboratory of Allergy and Inflammation of Allergy Department, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
- Department of Respiratory Disease, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
| | - Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Xiaoyun Wang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Guoping Li
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
- Laboratory of Allergy and Inflammation of Allergy Department, Chengdu Institute of Respiratory Health, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
- Department of Respiratory Disease, the Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031 China
| |
Collapse
|
22
|
Luo F, Wei H, Guo H, Li Y, Feng Y, Bian Q, Wang Y. LncRNA MALAT1, an lncRNA acting via the miR-204/ZEB1 pathway, mediates the EMT induced by organic extract of PM2.5 in lung bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2019; 317:L87-L98. [DOI: 10.1152/ajplung.00073.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extensive cohort studies have explored the hazards of particulate matter with aerodynamic diameter 2.5 μm or smaller (PM2.5) to human respiratory health; however, the molecular mechanisms for PM2.5 carcinogenesis are poorly understood. Long non-coding RNAs (lncRNAs) are involved in various pathophysiological processes. In the present study, we investigated the effect of PM2.5 on the epithelial-mesenchymal transition (EMT) in lung bronchial epithelial cells and the underlying mechanisms mediated by an lncRNA. Organic extracts of PM2.5 from Shanghai were used to treat human bronchial epithelial cell lines (HBE and BEAS-2B). The PM2.5 organic extracts induced the EMT and cell transformation. High levels of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), mediated by NF-κB, were involved in the EMT process. For both cell lines, there was a similar response. In addition, MALAT1 interacted with miR-204 and reversed the inhibitory effect of its target gene, ZEB1, thereby contributing to the EMT and malignant transformation. In sum, these findings show that NF-κB transcriptionally regulates MALAT1, which, by binding with miR-204 and releasing ZEB1, promotes the EMT. These results offer an understanding of the regulatory network of the PM2.5-induced EMT that relates to the health risks associated with PM2.5.
Collapse
Affiliation(s)
- Fei Luo
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongying Wei
- The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaqi Guo
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Feng
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Bian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yan Wang
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- The Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Cigarette Smoke Induced Lung Barrier Dysfunction, EMT, and Tissue Remodeling: A Possible Link between COPD and Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2025636. [PMID: 31341890 PMCID: PMC6613007 DOI: 10.1155/2019/2025636] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer, closely related to smoking, are major lung diseases affecting millions of individuals worldwide. The generated gas mixture of smoking is proved to contain about 4,500 components such as carbon monoxide, nicotine, oxidants, fine particulate matter, and aldehydes. These components were considered to be the principle factor driving the pathogenesis and progression of pulmonary disease. A large proportion of lung cancer patients showed a history of COPD, which demonstrated that there might be a close relationship between COPD and lung cancer. In the early stages of smoking, lung barrier provoked protective response and DNA repair are likely to suppress these changes to a certain extent. In the presence of long-term smoking exposure, these mechanisms seem to be malfunctioned and lead to disease progression. The infiltration of inflammatory cells to mucosa, submucosa, and glandular tissue caused by inhaled cigarette smoke is responsible for the destruction of matrix, blood supply shortage, and epithelial cell death. Conversely, cancer cells have the capacity to modulate the proliferation of epithelial cells and produce of new vascular networks. Comprehension understanding of mechanisms responsible for both pathologies is necessary for the prevention and treatment of COPD and lung cancer. In this review, we will summarize related articles and give a glance of possible mechanism between cigarette smoking induced COPD and lung cancer.
Collapse
|
24
|
Hasan F, Yadav V, Katiyar T, Yadav S, Pandey R, Mehrotra D, Hadi R, Singh S, Bhatt MLB, Parmar D. Validation of gene expression profiles of candidate genes using low density array in peripheral blood of tobacco consuming head and neck cancer patients and auto/taxi drivers with preneoplastic lesions. Genomics 2019; 112:513-519. [PMID: 30951801 DOI: 10.1016/j.ygeno.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/11/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
TaqMan Low-Density Array (TLDA) based Real-Time PCR (RT-PCR) of selected genes showed increased expression of polycyclic aromatic hydrocarbons (PAHs) metabolizing cytochrome P450s (CYPs), glutathione S-transferases (GSTs) and associated transcription factors in biopsy and peripheral blood samples isolated from head and neck squamous cell carcinoma (HNSCC) patients when compared to the controls. The genes involved in DNA repair, signal transduction pathway, EMT pathway, apoptosis, and cell adhesion/motility were found to be altered in both peripheral blood and biopsy samples of HNSCC patients. Transcription profiles in blood isolated from auto/taxi drivers, with pre-neoplastic lesions and history of tobacco use, also showed similar alterations. The present TLDA data thus demonstrates that low-density array of selected genes in peripheral blood has the potential to be used as a surrogate for providing insight into cancer progression pathways and possibly as an early biomarker for monitoring tobacco induced HNSCC.
Collapse
Affiliation(s)
- Feza Hasan
- Developmental Toxicology Laboratory, System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, U.P., India; Babu Banarsi Das University, Faizabad Road, Lucknow 226028, U.P., India
| | - Vinay Yadav
- Developmental Toxicology Laboratory, System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, U.P., India
| | - Tridiv Katiyar
- Developmental Toxicology Laboratory, System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, U.P., India; Babu Banarsi Das University, Faizabad Road, Lucknow 226028, U.P., India
| | - Sanjay Yadav
- Developmental Toxicology Laboratory, System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, U.P., India
| | - Rahul Pandey
- Department of Radiotherapy, Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow 226003, U.P., India
| | - Divya Mehrotra
- Department of Radiotherapy, Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow 226003, U.P., India
| | - Rahat Hadi
- Department of Radiation Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Gomti Nagar, Lucknow 226010, U.P., India
| | - Sudhir Singh
- Department of Radiotherapy, Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow 226003, U.P., India
| | - Madan L B Bhatt
- Department of Radiotherapy, Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow 226003, U.P., India
| | - Devendra Parmar
- Developmental Toxicology Laboratory, System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, U.P., India.
| |
Collapse
|
25
|
Kang N, Choi SY, Kim BN, Yeo CD, Park CK, Kim YK, Kim TJ, Lee SB, Lee SH, Park JY, Park MS, Yim HW, Kim SJ. Hypoxia-induced cancer stemness acquisition is associated with CXCR4 activation by its aberrant promoter demethylation. BMC Cancer 2019; 19:148. [PMID: 30760238 PMCID: PMC6375212 DOI: 10.1186/s12885-019-5360-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 02/07/2019] [Indexed: 01/17/2023] Open
Abstract
Background A hypoxic microenvironment leads to an increase in the invasiveness and the metastatic potential of cancer cells within tumors via the epithelial-mesenchymal transition (EMT) and cancer stemness acquisition. However, hypoxia-induced changes in the expression and function of candidate stem cell markers and their possible molecular mechanism is still not understood. Methods Lung cell lines were analyzed in normoxic or hypoxic conditions. For screening among the stem cell markers, a transcriptome analysis using next-generation sequencing was performed. For validation, the EMT and stem cell characteristics were analyzed. To determine whether an epigenetic mechanism was involved, the cell lines were treated with a DNA methyltransferase inhibitor (AZA), and methylation-specific PCR and bisulfite sequencing were performed. Results Next-generation sequencing revealed that the CXCR4 expression was significantly higher after the hypoxic condition, which functionally resulted in the EMT and cancer stemness acquisition. The acquisition of the EMT and stemness properties was inhibited by treatment with CXCR4 siRNA. The CXCR4 was activated by either the hypoxic condition or treatment with AZA. The methylation-specific PCR and bisulfite sequencing displayed a decreased CXCR4 promoter methylation in the hypoxic condition. Conclusions These results suggest that hypoxia-induced acquisition of cancer stem cell characteristics was associated with CXCR4 activation by its aberrant promoter demethylation.
Collapse
Affiliation(s)
- Nahyeon Kang
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Su Yeon Choi
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Bit Na Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Young Kyoon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong-Beom Lee
- Department of Pathology, Institute of Hansen's Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sug Hyung Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mi Sun Park
- Department of Biostatistics, Clinical Research Coordinating Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon Woo Yim
- Department of Biostatistics, Clinical Research Coordinating Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
26
|
Oxidative stress induced by electronic nicotine delivery systems (ENDS): Focus on respiratory system. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Loiselle JJ, Knee JM, Sutherland LC. Human lung epithelial cells cultured in the presence of radon-emitting rock experience gene expression changes similar to those associated with tobacco smoke exposure. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 196:64-81. [PMID: 30396064 DOI: 10.1016/j.jenvrad.2018.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Radon is the second leading cause of lung cancer, after tobacco smoke. While tobacco smoke-induced carcinogenesis has been studied extensively, far less is known about radon-induced carcinogenesis, particularly in relation to the influence of radon on gene expression. The objectives of the work described herein were to (a) determine if and how exposure to low dose radon-emitting rock influences cells, at the gene expression level, and (b) compare any gene expression changes resulting from the exposure to radon-emitting rock with those induced by exposure to tobacco smoke. Any potential radiation-induced gene expression changes were also compared to those induced by exposure to cannabis smoke, a non-carcinogen at low doses, used here as a smoke exposure comparator. Human lung epithelial cells were exposed to radon-emitting rock, tobacco smoke or cannabis smoke, over months, and RNA-sequencing was carried out. We found that the rock-exposed cells experienced significant gene expression changes, particularly of the gene AKR1C3, and that these changes, over time, increasingly reflected those associated with exposure to tobacco, but not cannabis, smoke. We postulate that the early gene expression changes common to both the radiation and tobacco smoke exposures constitute a related - potentially pre-carcinogenic - response. Our findings suggest that the length of time a dividing population of cells is exposed to a constant low concentration of radon (with a potential cumulative absorbed dose) could be an important risk parameter for neoplastic transformation/carcinogenesis.
Collapse
Affiliation(s)
- Julie J Loiselle
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON, P3E 2H3, Canada.
| | - Jose M Knee
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON, P3E 2H3, Canada.
| | - Leslie C Sutherland
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON, P3E 2H3, Canada; Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
28
|
Stabile A, Marinucci L, Balloni S, Giuliani A, Pistilli A, Bodo M, Rende M. Long term effects of cigarette smoke extract or nicotine on nerve growth factor and its receptors in a bronchial epithelial cell line. Toxicol In Vitro 2018; 53:29-36. [DOI: 10.1016/j.tiv.2018.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
29
|
Chen L, He X, Xie Y, Huang Y, Wolff DW, Abel PW, Tu Y. Up-regulated miR-133a orchestrates epithelial-mesenchymal transition of airway epithelial cells. Sci Rep 2018; 8:15543. [PMID: 30341388 PMCID: PMC6195555 DOI: 10.1038/s41598-018-33913-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) contributes to epithelial-mesenchymal transition (EMT) of cancer, but the pathological roles of miRNAs in airway EMT of lung diseases remains largely unknown. We performed sequencing and real-time PCR analysis of the miRNA expression profile of human airway epithelial cells undergoing EMT, and revealed miR-133a to be one of the most common up-regulated miRNAs. MiR-133a was previously reported to be persistently up-regulated in airway epithelial cells of smokers. We found that mice exposed to cigarette smoke (CS) showed airway hyper-responsiveness, a typical symptom occurring in CS-related lung diseases, up-regulation of miR-133a and EMT marker protein N-cadherin in airway epithelium. Importantly, miR-133a overexpression induces airway epithelial cells to undergo spontaneous EMT via down-regulation of grainyhead-like 2 (GRHL2), an epithelial specific transcriptional factor. Loss of GRHL2 causes down-regulation of epithelial splicing regulatory protein 1 (ESRP1), a central coordinator of alternative splicing processes that are critical in the regulation of EMT. Down-regulation of ESRP1 induces isoform switching of adherens junction-associated protein p120-catenin, and leads to the loss of E-cadherin. Our study is the first to demonstrate that up-regulated miR-133a orchestrates airway EMT via alternative splicing processes, which points to novel therapeutic possibilities for the treatment of CS-related lung disease.
Collapse
Affiliation(s)
- Linjie Chen
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Xiaobai He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Yan Xie
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Yapei Huang
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Dennis W Wolff
- Kansas City University of Medicine and Biosciences-Joplin, Joplin, MO, USA
| | - Peter W Abel
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Yaping Tu
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
30
|
Zahedi A, Phandthong R, Chaili A, Remark G, Talbot P. Epithelial-to-mesenchymal transition of A549 lung cancer cells exposed to electronic cigarettes. Lung Cancer 2018; 122:224-233. [PMID: 30032837 PMCID: PMC6397801 DOI: 10.1016/j.lungcan.2018.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Epithelial-to-mesenchymal transition (EMT) is the initial step enabling the metastasis of cancer cells, which often leads to death. Although smoking is a major risk factor for lung cancer, there is still widespread use of conventional cigarettes. Recently, the tobacco industry has been transformed by the introduction of electronic cigarettes (ECs), which have lower levels of carcinogens and may provide a safer alternative. Here, we investigate the ability of EC liquids and aerosols to induce an EMT in A549 lung cancer cells. MATERIALS AND METHODS Human adenocarcinoma alveolar basal epithelial cells (A549) were exposed to EC liquids and aerosols from a popular product for 3-8 days. Live cell imaging, EMT biomarker analysis, and machine learning/image processing algorithms were used to characterize changes associated with EMT. RESULTS Long-term exposure of A549 cells to menthol or tobacco-flavored EC liquids or aerosols induced an EMT that was characterized by acquisition of a fibroblast-like morphology, loss of cell-to-cell junctions, internalization of E-cadherin, increased motility, and upregulation of other EMT markers. The EMT was concurrent with plasma membrane to nuclear translocation of active β-catenin. CONCLUSION This is the first known study to show an EMT of lung cancer cells during exposure to EC products. Because an EMT is an initial step leading to metastasis, an intractable problem that often leads to patient death, this critical finding has significant implications for former or heavy cigarette smokers who are using EC and may be at risk for lung cancer or who may already have a lung tumor.
Collapse
Affiliation(s)
- Atena Zahedi
- Bioengineering Graduate Program, University of California, Riverside, California, USA; Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
| | - Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
| | - Angela Chaili
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
| | - Guadalupe Remark
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
| | - Prue Talbot
- Bioengineering Graduate Program, University of California, Riverside, California, USA; Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA.
| |
Collapse
|
31
|
Malinska D, Szymański J, Patalas-Krawczyk P, Michalska B, Wojtala A, Prill M, Partyka M, Drabik K, Walczak J, Sewer A, Johne S, Luettich K, Peitsch MC, Hoeng J, Duszyński J, Szczepanowska J, van der Toorn M, Wieckowski MR. Assessment of mitochondrial function following short- and long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product and reference cigarettes. Food Chem Toxicol 2018; 115:1-12. [PMID: 29448087 DOI: 10.1016/j.fct.2018.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/07/2018] [Indexed: 12/25/2022]
Abstract
Mitochondrial dysfunction caused by cigarette smoke is involved in the oxidative stress-induced pathology of airway diseases. Reducing the levels of harmful and potentially harmful constituents by heating rather than combusting tobacco may reduce mitochondrial changes that contribute to oxidative stress and cell damage. We evaluated mitochondrial function and oxidative stress in human bronchial epithelial cells (BEAS 2B) following 1- and 12-week exposures to total particulate matter (TPM) from the aerosol of a candidate modified-risk tobacco product, the Tobacco Heating System 2.2 (THS2.2), in comparison with TPM from the 3R4F reference cigarette. After 1-week exposure, 3R4F TPM had a strong inhibitory effect on mitochondrial basal and maximal oxygen consumption rates compared to TPM from THS2.2. Alterations in oxidative phosphorylation were accompanied by increased mitochondrial superoxide levels and increased levels of oxidatively damaged proteins in cells exposed to 7.5 μg/mL of 3R4F TPM or 150 μg/mL of THS2.2 TPM, while cytosolic levels of reactive oxygen species were not affected. In contrast, the 12-week exposure indicated adaptation of BEAS-2B cells to long-term stress. Together, the findings indicate that 3R4F TPM had a stronger effect on oxidative phosphorylation, gene expression and proteins involved in oxidative stress than TPM from the candidate modified-risk tobacco product THS2.2.
Collapse
Affiliation(s)
- Dominika Malinska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Jędrzej Szymański
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Paulina Patalas-Krawczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Bernadeta Michalska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Aleksandra Wojtala
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Monika Prill
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Małgorzata Partyka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Karolina Drabik
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Jarosław Walczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Stephanie Johne
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Jerzy Duszyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Joanna Szczepanowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Marco van der Toorn
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Mariusz R Wieckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
32
|
Chi Y, Huang Q, Lin Y, Ye G, Zhu H, Dong S. Epithelial-mesenchymal transition effect of fine particulate matter from the Yangtze River Delta region in China on human bronchial epithelial cells. J Environ Sci (China) 2018; 66:155-164. [PMID: 29628082 DOI: 10.1016/j.jes.2017.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/01/2017] [Accepted: 05/02/2017] [Indexed: 06/08/2023]
Abstract
Epidemiological studies have demonstrated that fine particulate matter (PM2.5) exposure causes airway inflammation, which may lead to lung cancer. The activation of epithelial-mesenchymal transition (EMT) is assumed to be a crucial step in lung tumor metastasis and development. We assessed the EMT effect of low concentrations (0, 0.1, 1.0, and 5.0μg/mL) of PM2.5 organic extract on a human bronchial epithelial cell line (BEAS-2B). PM2.5 samples were collected from three cities (Shanghai, Ningbo, and Nanjing) in the Yangtze River Delta (YRD) region in autumn 2014. BEAS-2B cells were exposed to the PM2.5 extract to assess cell viability, invasion ability as well as the relative mRNA and protein expressions of EMT markers. Our findings revealed that BEAS-2B cells changed from the epithelial to mesenchymal phenotype after exposure. In all groups, PM2.5 exposure dose-dependently decreased the expression of E-cadherin and increased the expression of Vimentin. The key transcription factors, including ZEB1 and Slug, were significantly up-regulated upon exposure. These results indicated that the PM2.5 organic extract induced different degrees of EMT progression in BEAS-2B cells. The cell invasion ability increased in a concentration-dependent manner after 48hr of treatment with the extract. This study offers a novel insight into the effects of PM2.5 on EMT and the potential health risks associated with PM2.5 in the YRD region.
Collapse
Affiliation(s)
- Yulang Chi
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiansheng Huang
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Yi Lin
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guozhu Ye
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huimin Zhu
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sijun Dong
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
33
|
Popadić D, Heßelbach K, Richter-Brockmann S, Kim GJ, Flemming S, Schmidt-Heck W, Häupl T, Bonin M, Dornhof R, Achten C, Günther S, Humar M, Merfort I. Gene expression profiling of human bronchial epithelial cells exposed to fine particulate matter (PM 2.5) from biomass combustion. Toxicol Appl Pharmacol 2018; 347:10-22. [PMID: 29596927 DOI: 10.1016/j.taap.2018.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Affiliation(s)
- Désirée Popadić
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Katharina Heßelbach
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Sigrid Richter-Brockmann
- Institute of Geology and Palaeontology - Applied Geology, University of Muenster, Muenster, Germany
| | - Gwang-Jin Kim
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Stephan Flemming
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Wolfgang Schmidt-Heck
- Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité University Hospital Berlin, Berlin, Germany
| | - Marc Bonin
- Department of Rheumatology and Clinical Immunology, Charité University Hospital Berlin, Berlin, Germany
| | - Regina Dornhof
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Christine Achten
- Institute of Geology and Palaeontology - Applied Geology, University of Muenster, Muenster, Germany
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Matjaz Humar
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.
| | - Irmgard Merfort
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
34
|
Lavrich KS, Corteselli EM, Wages PA, Bromberg PA, Simmons SO, Gibbs-Flournoy EA, Samet JM. Investigating mitochondrial dysfunction in human lung cells exposed to redox-active PM components. Toxicol Appl Pharmacol 2018; 342:99-107. [PMID: 29407367 DOI: 10.1016/j.taap.2018.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 11/16/2022]
Abstract
Exposure to ambient particulate matter (PM) causes cardiopulmonary morbidity and mortality through mechanisms that involve oxidative stress. 1,2-naphthoquinone (1,2-NQ) is a ubiquitous component of PM and a potent redox-active electrophile. We previously reported that 1,2-NQ increases mitochondrial H2O2 production through an unidentified mechanism. We sought to characterize the effects of 1,2-NQ exposure on mitochondrial respiration as a source of H2O2 in human airway epithelial cells. We measured the effects of acute exposure to 1,2-NQ on oxygen consumption rate (OCR) in the human bronchial epithelial cell line BEAS-2B and mitochondrial preparations using extracellular flux analysis. Complex-specific assays and NADPH depletion by glucose deprivation distinguished between mitochondrial and non-mitochondrial oxygen utilization. 1,2-NQ exposure of BEAS cells caused a rapid, marked dose-dependent increase in OCR that was independent of mitochondrial respiration, exceeded the OCR observed after mitochondrial uncoupling, and remained sensitive to NADPH depletion, implicating extra-mitochondrial redox cycling processes. Similar effects were observed with the environmentally relevant redox-cycling quinones 1,4-naphthoquinone and 9,10-phenanthrenequinone, but not with quinones that do not redox cycle, such as 1,4-benzoquinone. In mitochondrial preparations, 1,2-NQ caused a decrease in Complex I-linked substrate oxidation, suggesting impairment of pyruvate utilization or transport, a novel mechanism of mitochondrial inhibition by an environmental exposure. This study also highlights the methodological utility and challenges in the use of extracellular flux analysis to elucidate the mechanisms of action of redox-active electrophiles present in ambient air.
Collapse
Affiliation(s)
- Katelyn S Lavrich
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Elizabeth M Corteselli
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Phillip A Wages
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Steven O Simmons
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
| | | | - James M Samet
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, NC 27599, USA.
| |
Collapse
|
35
|
Kim BG, Lee PH, Lee SH, Baek AR, Park JS, Lee J, Park SW, Kim DJ, Park CS, Jang AS. Impact of the Endothelial Tight Junction Protein Claudin-5 on Clinical Profiles of Patients With COPD. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:533-542. [PMID: 30088372 PMCID: PMC6082819 DOI: 10.4168/aair.2018.10.5.533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 12/26/2022]
Abstract
Purpose The tight junction protein claudin-5 (CLDN5) is critical to the control of endothelial cellular polarity and pericellular permeability. The role of CLDN5 in chronic obstructive pulmonary disease (COPD) remains unclear. The aim of this study was to investigate the association between CLDN5 levels and clinical variables in patients with COPD. Methods In total, 30 patients with COPD and 30 healthy controls were enrolled in the study. The plasma CLDN5 level was checked in patients with stable or exacerbated COPD and in healthy controls. Results The mean plasma CLDN5 level of patients with COPD was 0.63 ± 0.05 ng/mL and that of healthy controls was 6.9 ± 0.78 ng/mL (P = 0.001). The mean plasma CLDN5 level was 0.71 ± 0.05 ng/mL in exacerbated COPD patients and 0.63 ± 0.04 ng/mL in patients with stable COPD (P < 0.05). The plasma CLDN5 level among COPD subjects was correlated with the smoking amount (r = −0.530, P = 0.001). The plasma CLDN5 level in stable COPD patients was correlated with forced expiratory volume in one second (FEV1, %pred.) (r = −0.481, P = 0.037). Conclusions The plasma CLDN5 level was not correlated with age. CLDN5 may be involved in the pathogenesis of COPD. Further studies having a larger sample size will be needed to clarify CLDN5 in COPD.
Collapse
Affiliation(s)
- Byeong Gon Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Pureun Haneul Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sun Hye Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Ae Rin Baek
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jong Sook Park
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Junehyuk Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sung Woo Park
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Do Jin Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Choon Sik Park
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - An Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
36
|
Airway Epithelial Repair by a Prebiotic Mannan Derived from Saccharomyces cerevisiae. J Immunol Res 2017; 2017:8903982. [PMID: 28770233 PMCID: PMC5523272 DOI: 10.1155/2017/8903982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 01/01/2023] Open
Abstract
In asthmatic airways, repeated epithelial damage and repair occur. No current therapy directly targets this process. We aimed to determine the effects of mannan derived from S. cerevisiae (SC-MN) on airway epithelial wound repair, in vitro. The presence of functional mannose receptors in bronchial epithelial cells was shown by endocytosis of colloidal gold-Man BSA via clathrin-coated pits in 16HBE cells. In primary normal human bronchial epithelial cells (NHBEC), SC-MN significantly facilitated wound closure. Treatment with SC-MN stimulated cell spreading as indicated by a significant increase in the average lamellipodial width of wound edge 16HBE cells. In addition, NHBEC treated with SC-MN showed increased expression and activation of Krüppel-like factors (KLFs) 4 and 5, transcription factors important in epithelial cell survival and regulation of epithelial-mesenchymal transition. We conclude that SC-MN facilitates wound repair in human bronchial epithelium, involving mannose receptors.
Collapse
|
37
|
Dornhof R, Maschowski C, Osipova A, Gieré R, Seidl M, Merfort I, Humar M. Stress fibers, autophagy and necrosis by persistent exposure to PM2.5 from biomass combustion. PLoS One 2017; 12:e0180291. [PMID: 28671960 PMCID: PMC5495337 DOI: 10.1371/journal.pone.0180291] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
Fine particulate matter (PM2.5) can adversely affect human health. Emissions from residential energy sources have the largest impact on premature mortality globally, but their pathological and molecular implications on cellular physiology are still elusive. In the present study potential molecular consequences were investigated during long-term exposure of human bronchial epithelial BEAS-2B cells to PM2.5, collected from a biomass power plant. Initially, we observed that PM2.5 did not affect cellular survival or proliferation. However, it triggered an activation of the stress response p38 MAPK which, along with RhoA GTPase and HSP27, mediated morphological changes in BEAS-2B cells, including actin cytoskeletal rearrangements and paracellular gap formation. The p38 inhibitor SB203580 prevented phosphorylation of HSP27 and ameliorated morphological changes. During an intermediate phase of long-term exposure, PM2.5 triggered proliferative regression and activation of an adaptive stress response necessary to maintain energy homeostasis, including AMPK, repression of translational elongation, and autophagy. Finally, accumulation of intracellular PM2.5 promoted lysosomal destabilization and cell death, which was dependent on lysosomal hydrolases and p38 MAPK, but not on the inflammasome and pyroptosis. TEM images revealed formation of protrusions and cellular internalization of PM2.5, induction of autophagosomes, amphisomes, autophagosome-lysosomal fusion, multiple compartmental fusion, lysosomal burst, swollen mitochondria and finally necrosis. In consequence, persistent exposure to PM2.5 may impair epithelial barriers and reduce regenerative capacity. Hence, our results contribute to a better understanding of PM-associated lung and systemic diseases on the basis of molecular events.
Collapse
Affiliation(s)
- Regina Dornhof
- Institute of Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Christoph Maschowski
- Institute of Earth and Environmental Sciences, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Anastasiya Osipova
- Institute of Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Reto Gieré
- Department of Earth and Environmental Science and Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maximilian Seidl
- Institute for Surgical Pathology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Irmgard Merfort
- Institute of Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Albert-Ludwigs University Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs University Freiburg, Freiburg, Germany
- * E-mail: (IM); (MH)
| | - Matjaz Humar
- Institute of Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Albert-Ludwigs University Freiburg, Freiburg, Germany
- * E-mail: (IM); (MH)
| |
Collapse
|
38
|
Acute cigarette smoke exposure activates apoptotic and inflammatory programs but a second stimulus is required to induce epithelial to mesenchymal transition in COPD epithelium. Respir Res 2017; 18:82. [PMID: 28468623 PMCID: PMC5415733 DOI: 10.1186/s12931-017-0565-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
Background Smoking and aberrant epithelial responses are risk factors for lung cancer as well as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. In these conditions, disease progression is associated with epithelial damage and fragility, airway remodelling and sub-epithelial fibrosis. The aim of this study was to assess the acute effects of cigarette smoke on epithelial cell phenotype and pro-fibrotic responses in vitro and in vivo. Results Apoptosis was significantly greater in unstimulated cells from COPD patients compared to control, but proliferation and CXCL8 release were not different. Cigarette smoke dose-dependently induced apoptosis, proliferation and CXCL8 release with normal epithelial cells being more responsive than COPD patient derived cells. Cigarette smoke did not induce epithelial-mesenchymal transition. In vivo, cigarette smoke exposure promoted epithelial apoptosis and proliferation. Moreover, mimicking a virus-induced exacerbation by exposing to mice to poly I:C, exaggerated the inflammatory responses, whereas expression of remodelling genes was similar in both. Conclusions Collectively, these data indicate that cigarette smoke promotes epithelial cell activation and hyperplasia, but a secondary stimulus is required for the remodelling phenotype associated with COPD. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0565-2) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Sun X, Deng Q, Liang Z, Liu Z, Geng H, Zhao L, Zhou Q, Liu J, Ma J, Wang D, Yu D, Zhong C. Cigarette smoke extract induces epithelial-mesenchymal transition of human bladder cancer T24 cells through activation of ERK1/2 pathway. Biomed Pharmacother 2017; 86:457-465. [PMID: 28012925 DOI: 10.1016/j.biopha.2016.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 12/22/2022] Open
Abstract
Bladder cancer is a common genitourinary malignant disease worldwide. Abundant evidence has shown that cigarette smoke (CS) is a crucial risk factor for bladder cancer. Nevertheless, the mechanism underlying the relationship between cigarette smoking and bladder cancer remains unclear. In the present study, we investigated the effects of cigarette smoke extract (CSE) on mitogen-activated protein kinase (MAPK) pathway activation and EMT alterations in human bladder cancer T24 cells, and the preventive effect of extracellular regulated protein kinases 1 and 2 (ERK1/2) inhibitor U0126 was further examined. Our results illustrated that CSE exposure induced morphological change of human bladder cancer T24 cells, enhanced migratory and invasive capacities, reduced epithelial marker expression and elevated mesenchymal marker expression. Meanwhile, exposure of T24 cells to CSE resulted in activation of ERK1/2 pathway as well as activator protein 1 (AP-1) proteins. Interestingly, treatment with ERK1/2 inhibitor U0126 effectively abrogated CSE-triggered EMT and ERK1/2/AP-1 activation. These findings provide novel insight into the molecular mechanisms of CS-associated bladder cancer and may open up new avenues in the search for potential target of bladder cancer intervention.
Collapse
Affiliation(s)
- Xin Sun
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, 80 Feicui Rd, Hefei, Anhui 230032, PR China
| | - Qifei Deng
- Department of Urology, Anhui Provincial Children's Hospital, 39 East Wangjiang Road, Hefei, Anhui 230032, PR China
| | - Zhaofeng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhiqi Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, 80 Feicui Rd, Hefei, Anhui 230032, PR China
| | - Hao Geng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, 80 Feicui Rd, Hefei, Anhui 230032, PR China
| | - Li Zhao
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, 80 Feicui Rd, Hefei, Anhui 230032, PR China
| | - Qirui Zhou
- Anhui International Travel Health Care Center, Anhui Entry-Exit Inspection and Quarantine Bureau, 329 Tunxi Road, Hefei, Anhui 230022, PR China
| | - Jie Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, 80 Feicui Rd, Hefei, Anhui 230032, PR China
| | - Jiaxing Ma
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, 80 Feicui Rd, Hefei, Anhui 230032, PR China
| | - Daming Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, 80 Feicui Rd, Hefei, Anhui 230032, PR China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, 80 Feicui Rd, Hefei, Anhui 230032, PR China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 818 East Tianyuan Road, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
40
|
Singh J, Luquet E, Smith DP, Potgieter HJ, Ragazzon P. Toxicological and analytical assessment of e-cigarette refill components on airway epithelia. Sci Prog 2016; 99:351-398. [PMID: 28742478 PMCID: PMC10365464 DOI: 10.3184/003685016x14773090197706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
There are over 2.6 million users of e-cigarettes in the United Kingdom alone as they have been promoted as a safer alternative to traditional cigarettes. The addition of flavours and aromas has also proven to be popular with younger generations. In this review, we survey the range of studies in the short timeframe since e-cigarettes reached the market to draw attention to the health associated risks and benefits of their introduction. We complement this review with a case study reporting on the composition of selected e-cigarette refills with particular emphasis on the toxicological activity of its components on lung cells.
Collapse
Affiliation(s)
- Jasjot Singh
- Department of Biology and Chemistry at the University of Applied Sciences Bremen
| | - Emilie Luquet
- Department of Biology at the IUT Universite d'Auvergne
| | - David P.T. Smith
- Specialist Research Infrastructure Technician at the School of Environment and Life Sciences at the University of Salford
| | - Herman J. Potgieter
- Division of Chemistry and Environmental Science, Manchester Metropolitan University
| | | |
Collapse
|
41
|
Wu W, Zhang W, Booth JL, Hutchings DC, Wang X, White VL, Youness H, Cross CD, Zou MH, Burian D, Metcalf JP. Human primary airway epithelial cells isolated from active smokers have epigenetically impaired antiviral responses. Respir Res 2016; 17:111. [PMID: 27604339 PMCID: PMC5013564 DOI: 10.1186/s12931-016-0428-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cigarette smoking (CS) is the main risk factor for the development of chronic obstructive pulmonary disease (COPD) and most COPD exacerbations are caused by respiratory infections including influenza. Influenza infections are more severe in smokers. The mechanism of the increased risk and severity of infections in smokers is likely multifactorial, but certainly includes changes in immunologic host defenses. METHODS We investigated retinoic acid-inducible protein I (RIG-I) and interferon (IFN) induction by influenza A virus (IAV) in human bronchial epithelial cells (HBEC) isolated from smokers or nonsmokers. Subcultured HBEC cells were infected with A/Puerto Rico/8/1934 (PR8) IAV at an MOI of 1. After 24 h of infection, cells and supernatants were collected for qRT-PCR, immunoblot or ELISA to determine RIG-I, Toll-like receptor3 (TLR3) and IFN expression levels. RESULTS IAV exposure induced a vigorous IFN-β, IFN-λ 1 and IFN-λ 2/3 antiviral response in HBEC from nonsmokers and significant induction of RIG-I and TLR3. In cells from smokers, viral RIG-I and TLR3 mRNA induction was reduced 87 and 79 % compared to the response from nonsmokers. CS exposure history was associated with inhibition of viral induction of the IFN-β, IFN-λ1 and IFN-λ 2/3 mRNA response by 85, 96 and 95 %, respectively, from that seen in HBEC from nonsmokers. The demethylating agent 5-Aza-2-deoxycytidine reversed the immunosuppressive effects of CS exposure in HBEC since viral induction of all three IFNs was restored. IFN-β induction of RIG-I and TLR3 was also suppressed in the cells from smokers. CONCLUSION Our results suggest that active smoking reduces expression of antiviral cytokines in primary HBEC cells. This effect likely occurs via downregulation of RIG-I and TLR3 due to smoke-induced epigenetic modifications. Reduction in lung epithelial cell RIG-I and TLR3 responses may be a major mechanism contributing to the increased risk and severity of viral respiratory infections in smokers and to viral-mediated acute exacerbations of COPD.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei Zhang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Leland Booth
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Xiaoqiu Wang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vicky L White
- Civil Aerospace Medical Institute, Federal Aviation Administration, Oklahoma City, OK, USA
| | - Houssein Youness
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cory D Cross
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ming-Hui Zou
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Dennis Burian
- Civil Aerospace Medical Institute, Federal Aviation Administration, Oklahoma City, OK, USA
| | - Jordan P Metcalf
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
42
|
Long-term exposures to low doses of silver nanoparticles enhanced in vitro malignant cell transformation in non-tumorigenic BEAS-2B cells. Toxicol In Vitro 2016; 37:41-49. [PMID: 27596524 DOI: 10.1016/j.tiv.2016.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/01/2016] [Indexed: 11/23/2022]
Abstract
To predict carcinogenic potential of AgNPs on the respiratory system, BEAS-2B cells (human bronchial epithelial cells) were chronically exposed to low- and non-cytotoxic dose (0.13 and 1.33μg/ml) of AgNPs for 4months (#40 passages). To assess malignant cell transformation of chronic exposure to AgNPs, several bioassays including anchorage independent agar colony formation, cell migration/invasion assay, and epithelial-mesenchymal transition (EMT) were performed in BEAS-2B cells. Chronic exposure to AgNPs showed a significant increase of anchorage independent agar colony formation and cell migration/invasion. EMT, which is the loss of epithelial markers (E-Cadherin and Keratin) and the gain of mesenchymal marker (N-cadherin and Vimentin), was induced by chronic exposure to AgNPs. These responses indicated that chronic exposure to AgNPs could acquire characteristics of tumorigenic cells from normal BEAS-2B cells. In addition, caspase-3, p-p53, p-p38, and p-JNK were significantly decreased, while p-ERK1/2 was significantly increased. MMP-9 related to cell migration/invasion was upregulated, while a MMP-9 inhibitor, TIMP-1 was down-regulated. These results indicated that BEAS-2B cells exposed to AgNPs could induce anti-apoptotic response/anoikis resistance, and cell migration/invasion by complex regulation of MAPK kinase (p38, JNK, and ERK) and p53 signaling pathways. Therefore, we suggested that long-term exposure to low-dose of AgNPs could enhance malignant cell transformation in non-tumorigenic BEAS-2B cells. Our findings provide useful information needed to assess the carcinogenic potential of AgNPs.
Collapse
|
43
|
He X, Despeaux E, Stueckle TA, Chi A, Castranova V, Dinu CZ, Wang L, Rojanasakul Y. Role of mesothelin in carbon nanotube-induced carcinogenic transformation of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 311:L538-49. [PMID: 27422997 PMCID: PMC5142212 DOI: 10.1152/ajplung.00139.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023] Open
Abstract
Carbon nanotubes (CNTs) have been likened to asbestos in terms of morphology and toxicity. CNT exposure can lead to pulmonary fibrosis and promotion of tumorigenesis. However, the mechanisms underlying CNT-induced carcinogenesis are not well defined. Mesothelin (MSLN) is overexpressed in many human tumors, including mesotheliomas and pancreatic and ovarian carcinomas. In this study, the role of MSLN in the carcinogenic transformation of human bronchial epithelial cells chronically exposed to single-walled CNT (BSW) was investigated. MSLN overexpression was found in human lung tumors, lung cancer cell lines, and BSW cells. The functional role of MSLN in the BSW cells was then investigated by using stably transfected MSLN knockdown (BSW shMSLN) cells. MSLN knockdown resulted in significantly decreased invasion, migration, colonies on soft agar, and tumor sphere formation. In vivo, BSW shMSLN cells formed smaller primary tumors and less metastases. The mechanism by which MSLN contributes to these more aggressive behaviors was investigated by using ingenuity pathway analysis, which predicted that increased MSLN could induce cyclin E expression. We found that BSW shMSLN cells had decreased cyclin E, and their proliferation rate was reverted to nearly that of untransformed cells. Cell cycle analysis showed that the BSW shMSLN cells had an increased G2 population and a decreased S phase population, which is consistent with the decreased rate of proliferation. Together, our results indicate a novel role of MSLN in the malignant transformation of bronchial epithelial cells following CNT exposure, suggesting its utility as a potential biomarker and drug target for CNT-induced malignancies.
Collapse
Affiliation(s)
- Xiaoqing He
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia
| | - Emily Despeaux
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia
| | - Todd A Stueckle
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia; HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Alexander Chi
- WVU Cancer Institute, West Virginia University, Morgantown, West Virginia; and
| | - Vincent Castranova
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia
| | - Cerasela Zoica Dinu
- Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia
| | - Liying Wang
- HELD, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia; WVU Cancer Institute, West Virginia University, Morgantown, West Virginia; and
| |
Collapse
|
44
|
Jeon SY, Go RE, Heo JR, Kim CW, Hwang KA, Choi KC. Effects of cigarette smoke extracts on the progression and metastasis of human ovarian cancer cells via regulating epithelial-mesenchymal transition. Reprod Toxicol 2016; 65:1-10. [PMID: 27327412 DOI: 10.1016/j.reprotox.2016.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 01/21/2023]
Abstract
Cigarette smoke (CS) contains over 60 well-established carcinogens, and there are strong links between these carcinogens and smoking-induced cancers. In this study we investigated whether three types of cigarette smoke extracts (CSEs), 3R4F (standard cigarette), CSE1 and CSE2 (two commercial cigarettes), affect the proliferation, migration, and invasive activity of BG-1 human ovarian cancer cells. All three types of CSEs increased BG-1 cell proliferation at nicotine concentrations of 1.5μM-2.1μM in a cell viability assay. The protein expressions of cyclin D1 and cyclin E1 were increased, while p21 and p27 expression was decreased by Western blot assay. However, they did not show a consistent dose-dependent tendency. The protein expressions of Bax and p53, pro-apoptotic genes, were also decreased by CSEs. The expression of E-cadherin, an epithelial marker, was reduced in the treatment of CSEs while the expression of its reverse transition marker, N-cadherin, was slightly increased by CSEs containing 2.1μM of nicotine, but a statistical significance was not observed. Epithelial-mesenchymal transition (EMT)-associated transcriptional factors, Snail and Slug, were also up-regulated by treatment with CSEs, indicating that CSEs can increase the EMT process in BG-1 ovarian cancer cells. In addition, CSEs increased the migratory and invasive propensity of cancer cells. These functional alterations were associated with changes in metastasis-related gene expression. Upon exposure to CSEs, the expression of MMP-9 and cathepsin D was increased. Taken together, we confirmed that CSEs increased the growth, migration, and invasion of human ovarian cancer cells by regulating cell cycle, apoptosis, EMT, and metastasis related cellular markers and signaling proteins. Based on the results, cigarette smokers of women might be at a higher risk of ovarian cancer than non-smokers.
Collapse
Affiliation(s)
- So-Ye Jeon
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jae-Rim Heo
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
45
|
Rzehak P, Saffery R, Reischl E, Covic M, Wahl S, Grote V, Xhonneux A, Langhendries JP, Ferre N, Closa-Monasterolo R, Verduci E, Riva E, Socha P, Gruszfeld D, Koletzko B. Maternal Smoking during Pregnancy and DNA-Methylation in Children at Age 5.5 Years: Epigenome-Wide-Analysis in the European Childhood Obesity Project (CHOP)-Study. PLoS One 2016; 11:e0155554. [PMID: 27171005 PMCID: PMC4865176 DOI: 10.1371/journal.pone.0155554] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/29/2016] [Indexed: 01/04/2023] Open
Abstract
Mounting evidence links prenatal exposure to maternal tobacco smoking with disruption of DNA methylation (DNAm) profile in the blood of infants. However, data on the postnatal stability of such DNAm signatures in childhood, as assessed by Epigenome Wide Association Studies (EWAS), are scarce. Objectives of this study were to investigate DNAm signatures associated with in utero tobacco smoke exposure beyond the 12th week of gestation in whole blood of children at age 5.5 years, to replicate previous findings in young European and American children and to assess their biological role by exploring databases and enrichment analysis. DNA methylation was measured in blood of 366 children of the multicentre European Childhood Obesity Project Study using the Illumina Infinium HM450 Beadchip (HM450K). An EWAS was conducted using linear regression of methylation values at each CpG site against in utero smoke exposure, adjusted for study characteristics, biological and technical effects. Methylation levels at five HM450K probes in MYO1G (cg12803068, cg22132788, cg19089201), CNTNAP2 (cg25949550), and FRMD4A (cg11813497) showed differential methylation that reached epigenome-wide significance according to the false-discovery-rate (FDR) criteria (q-value<0.05). Whereas cg25949550 showed decreased methylation (-2% DNAm ß-value), increased methylation was observed for the other probes (9%: cg12803068; 5%: cg22132788; 4%: cg19089201 and 4%: cg11813497) in exposed relative to non-exposed subjects. This study thus replicates previous findings in children ages 3 to 5, 7 and 17 and confirms the postnatal stability of MYO1G, CNTNAP2 and FRMD4A differential methylation. The role of this differential methylation in mediating childhood phenotypes, previously associated with maternal smoking, requires further investigation.
Collapse
Affiliation(s)
- Peter Rzehak
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Richard Saffery
- Cancer and Disease Epigenetics Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, 3052 Victoria Australia
| | - Eva Reischl
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum Muenchen, Munich, Germany
| | - Marcela Covic
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Simone Wahl
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum Muenchen, Munich, Germany
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | | | | | | | | | | | | | - Piotr Socha
- Children’s Memorial Health Institute, Warsaw, Poland
| | | | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | | |
Collapse
|
46
|
Cheng L, Liu J, Li B, Liu S, Li X, Tu H. Cigarette Smoke-Induced Hypermethylation of the GCLC Gene Is Associated With COPD. Chest 2016; 149:474-482. [PMID: 26087411 DOI: 10.1378/chest.14-2309] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cigarette smoking is a major environmental contributor to COPD, but understanding its epigenetic regulation of oxidative genes involved in the pathogenesis of COPD remains elusive. METHODS We analyzed DNA methylation on glutamate-cysteine ligase catalytic subunit (GCLC), glutathione S-transferase M1 (GSTM1), glutathione S-transferase P1 (GSTP1), and superoxide dismutase 3 (SOD3) promoters in clinical samples from patients with COPD (current-smoker [CS-COPD]; ex-smoker [ES-COPD]) and subjects with normal pulmonary function (current-smoker [CS-NS]; ex-smoker [ES-NS]; never-smoker [NC]). Expression of GCLC messenger RNA (mRNA) and glutathione (GSH) synthesis in these clinical samples and human bronchial epithelial (BEAS-2B) cells stimulated by cigarette-smoke extract (CSE) was evaluated. GCLC mRNA and protein levels were measured to determine effects of demethylation and deacetylation agents on CSE-treated BEAS-2B cells. RESULTS The DNA methylation level of the GCLC promoter was significantly increased in CS-COPD, CS-NS, and ES-COPD groups compared with ES-NS and NC groups. However, there were no significant differences in DNA methylation values of GSTM1, GSTP1, and SOD3 promoters among these groups. Expression of GCLC mRNA was downregulated in the lungs, and GSH levels decreased in plasma as a consequence of hypermethylation of the GCLC promoter. Similarly, CSE-treated BEAS-2B cells had hypermethylation of the GCLC gene, mRNA downregulation, and a decreased intracellular GSH level. GCLC expression in CSE-treated BEAS-2B cells was restored by the methylation inhibitor, 5-aza-2'-deoxycytidine, but not by the deacetylation agent, trichostatin A. CONCLUSIONS Cigarette smoke-induced hypermethylation of the GCLC promoter is related to the initiation and progression of COPD. Our finding may provide a new strategy for COPD intervention by developing demethylation agents targeting GCLC hypermethylation.
Collapse
Affiliation(s)
- Linling Cheng
- The State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jun Liu
- The State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bing Li
- Research Center for Experimental Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shengming Liu
- Department of Respiratory Medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xianyan Li
- Department of Respiratory Medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Hongbin Tu
- The State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China; Research Center for Experimental Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
47
|
Liang Z, Wu R, Xie W, Geng H, Zhao L, Xie C, Wu J, Geng S, Li X, Zhu M, Zhu W, Zhu J, Huang C, Ma X, Zhong C, Han H. Curcumin Suppresses MAPK Pathways to Reverse Tobacco Smoke-induced Gastric Epithelial-Mesenchymal Transition in Mice. Phytother Res 2015; 29:1665-71. [PMID: 26074474 DOI: 10.1002/ptr.5398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 02/06/2023]
Abstract
Tobacco smoke (TS) has been shown to cause gastric cancer. Epithelial-mesenchymal transition (EMT) is a crucial pathophysiological process in cancer development. Mitogen-activated protein kinase (MAPK) pathways play central roles in tumorigenesis including EMT process. Curcumin is a promising chemopreventive agent for several types of cancers. In the present study, we investigated the effects of TS on MAPK pathway activation and EMT alterations in the stomach of mice, and the preventive effect of curcumin was further examined. Results showed that exposure of mice to TS for 12 weeks resulted in activation of extracellular regulated protein kinases 1 and 2 (ERK1/2), the Jun N-terminal kinase (JNK), p38, and ERK5 MAPK pathways as well as activator protein 1 (AP-1) proteins in stomach. TS reduced the mRNA and protein expression levels of the epithelial markers E-cadherin and ZO-1, while the mRNA and protein expression levels of the mesenchymal markers vimentin and N-cadherin were increased. Treatment of curcumin effectively abrogated TS-triggered gastric activation of ERK1/2 and JNK MAPK pathways, AP-1 proteins, and EMT alterations. These results suggest for the first time the protective effects of curcumin in long-term TS exposure-induced gastric MAPK activation and EMT, thus providing new insights into the pathogenesis and chemoprevention of TS-associated gastric cancer.
Collapse
Affiliation(s)
- Zhaofeng Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Rui Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hao Geng
- Department of Surgery, Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Li Zhao
- Department of Surgery, Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Chunfeng Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jieshu Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shanshan Geng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingming Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Weiwei Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jianyun Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Cong Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Caiyun Zhong
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongyu Han
- Department of Clinical Nutrition, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| |
Collapse
|
48
|
Brown AN, Vied C, Dennis JH, Bhide PG. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes. PLoS One 2015; 10:e0139103. [PMID: 26414157 PMCID: PMC4586372 DOI: 10.1371/journal.pone.0139103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y) exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.
Collapse
Affiliation(s)
- Amber N. Brown
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States of America
| | - Cynthia Vied
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States of America
| | - Jonathan H. Dennis
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Pradeep G. Bhide
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States of America
- * E-mail:
| |
Collapse
|
49
|
Geng H, Zhao L, Liang Z, Zhang Z, Xie D, Bi L, Wang Y, Zhang T, Cheng L, Yu D, Zhong C. ERK5 positively regulates cigarette smoke-induced urocystic epithelial-mesenchymal transition in SV‑40 immortalized human urothelial cells. Oncol Rep 2015; 34:1581-8. [PMID: 26177962 DOI: 10.3892/or.2015.4130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/15/2015] [Indexed: 11/06/2022] Open
Abstract
Bladder cancer is universally acknowledged as a significant public health issue. Abundant evidence shows that cigarette smoke (CS) is the primary risk factor for bladder cancer. However, the mechanism of CS-induced bladder cancer has not been fully elucidated. CS-induced epithelial-mesenchymal transition (EMT) is critically involved in cell malignant transformation. The role of ERK5, the lesser studied member of the MAPK family, in regulating CS-triggered EMT has not yet been investigated. The objective of the present study was to investigate the regulatory role of ERK5 in CS-induced urocystic EMT. SV-40 immortalized normal human urothelial cells (SV-HUC-1) were used as in vitro CS exposure models. EMT phenotypic alterations were assessed by changes in cell morphology, invasive capacity, as well as expression of epithelial and mesenchymal markers. Protein and mRNA expression levels were analyzed by western blotting and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). ERK5 inhibition studies were performed with a specific inhibitor. Exposure of SV-HUC-1 cells to CS induced morphological change, enhanced invasive capacity, reduced epithelial marker expression and increased mesenchymal marker expression. Importantly, we demonstrated for the first time that ERK5 positively regulated CS-mediated EMT in urothelial cells, as evidenced by the findings that CS promoted ERK5 activation, and that the CS-triggered alteration in the EMT phenotype was reversed by ERK5 inhibition.
Collapse
Affiliation(s)
- Hao Geng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Li Zhao
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhaofeng Liang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhiqiang Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dongdong Xie
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liangkuan Bi
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yi Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Tao Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lei Cheng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Caiyun Zhong
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
50
|
Liang Z, Xie W, Wu R, Geng H, Zhao L, Xie C, Li X, Huang C, Zhu J, Zhu M, Zhu W, Wu J, Geng S, Zhong C. ERK5 negatively regulates tobacco smoke-induced pulmonary epithelial-mesenchymal transition. Oncotarget 2015; 6:19605-18. [PMID: 25965818 PMCID: PMC4637308 DOI: 10.18632/oncotarget.3747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/06/2015] [Indexed: 12/21/2022] Open
Abstract
As the primary cause of lung cancer, tobacco smoke (TS) promotes the initiation and progression of lung tumorigenesis. Epithelial-mesenchymal transition (EMT) is a crucial process involved in cell malignant transformation. The role of ERK5, the lesser studied member of MAPKs family, in regulating TS-triggered pulmonary EMT has not been investigated. Normal human bronchial epithelial cells and BALB/c mice were used as in vitro and in vivo TS exposure models. Exposure of normal human bronchial epithelial cells to TS for 7 days induced morphological change, enhanced migratory and invasive capacities, reduced epithelial marker expression and increased mesenchymal marker expression. Importantly, we demonstrated for the first time that ERK5 negatively regulated TS-mediated lung epithelial EMT, as evidenced by the findings that TS suppressed ERK5 activation, and that TS-triggered EMT was mimicked with ERK5 inhibition and reversed by ERK5 overexpression. The negative regulation of ERK5 on pulmonary EMT was further confirmed in mice exposed to TS for 12 weeks. Taken together, our data suggest that ERK5 negatively regulates TS-mediated pulmonary EMT. These findings provide new insight into the molecular mechanisms of TS-associated lung tumorigenesis and may open up new avenues in the search for potential target of lung cancer intervention.
Collapse
Affiliation(s)
- Zhaofeng Liang
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Xie
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Wu
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hao Geng
- Department of Surgery, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Li Zhao
- Department of Surgery, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Chunfeng Xie
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoting Li
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cong Huang
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianyun Zhu
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mingming Zhu
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weiwei Zhu
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jieshu Wu
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shanshan Geng
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Caiyun Zhong
- Department of Toxicology and Nutritional Science, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|