1
|
Sarailoo M, Asghariazar V, Seifimansour S, Kadkhodayi M, Zare E, Vajdi P, Vostakolaei MA. Assessment of the Cytotoxicity Mechanism of Diazinon on HFFF2 Cells: A Bioinformatic and Experimental Study. J Biochem Mol Toxicol 2025; 39:e70146. [PMID: 39987520 DOI: 10.1002/jbt.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/05/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025]
Abstract
Pesticide exposure can cause many skin diseases such as hypopigmentation and contact dermatitis, but the underlying mechanisms remain unclear. Furthermore, Organophosphate pesticides (OPs) including Diazinon (DZN) can affect cellular pathways like ATPase, leading to mitochondrial energy deficit and even apoptosis in the cell's functions. Following cell exposure to the OP pesticide DZN through treatment, we evaluated alteration in gene expression and DNA damage. Bioinformatic analysis was performed based on the AutoDock, Protein Data Bank, STRING, Way2Drug, and Comparative Toxicogenomics databases and tools. The MTT assay, wound healing, DAPI staining, flow cytometry, and real-time PCR were applied in the current study. The results showed that the viability and migration capacity of HFFF2 cells decreased, and the apoptosis rate increased in the DZN-treated group. These findings revealed that DZN regulated the expression of the apoptotic genes in DZN cells.
Collapse
Affiliation(s)
- Mehdi Sarailoo
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sina Seifimansour
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahtab Kadkhodayi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Zare
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Parnia Vajdi
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Asghari Vostakolaei
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
2
|
Ataş M, Bereketoglu C. The toxicity assessment of phosmet on development, reproduction, and gene expression in Daphnia magna. PeerJ 2024; 12:e17034. [PMID: 38436013 PMCID: PMC10908259 DOI: 10.7717/peerj.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
The use of pesticides to control pests, weeds, and diseases or to regulate plant growth is indispensable in agricultural production. However, the excessive use of these chemicals has led to significant concern about their potential negative impacts on health and the environment. Phosmet is one such pesticide that is commonly used on plants and animals against cold moth, aphids, mites, suckers, and fruit flies. Here, we investigated the effects of phosmet on a model organism, Daphnia magna using acute and chronic toxicity endpoints such as lethality, mobility, genotoxicity, reproduction, and gene expression. We performed survival experiments in six-well plates at seven different concentrations (0.01, 0.1, 1, 10, 25, 50, 100 μM) as well as the control in three replicates. We observed statistically significant mortality rates at 25 µM and above upon 24 h of exposure, and at 1 µM and above following 48 h of exposure. Genotoxicity analysis, reproduction assay and qPCR analysis were carried out at concentrations of 0.01 and 0.1 μM phosmet as these concentrations did not show any lethality. Comet assay showed that exposure to phosmet resulted in significant DNA damage in the cells. Interestingly, 0.1 μM phosmet produced more offspring per adult compared to the control group indicating a hormetic response. Gene expression profiles demonstrated several genes involved in different physiological pathways, including oxidative stress, detoxification, immune system, hypoxia and iron homeostasis. Taken together, our results indicate that phosmet has negative effects on Daphnia magna in a dose- and time-dependent manner and could also induce lethal and physiological toxicities to other aquatic organisms.
Collapse
Affiliation(s)
- Mustafa Ataş
- Managing Chemical, Biological, Radioactive, Nuclear Risks, Iskenderun Technical University, Hatay, Turkey
| | - Ceyhun Bereketoglu
- Department of Bioengineering, Marmara University, Istanbul, Turkey
- Department of Biomedical Engineering, Iskenderun Technical University, Hatay, Turkey
| |
Collapse
|
3
|
Bai J, Deng S, Fu H, Yang Q, Ren F, Zeng S, Chen Z, Yang Y, Wu Z. Chlorpyrifos induces placental oxidative stress and barrier dysfunction by inducing mitochondrial apoptosis through the ERK/MAPK signaling pathway: In vitro and in vivo studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166449. [PMID: 37634732 DOI: 10.1016/j.scitotenv.2023.166449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphorus pesticide that is widely used in agricultural production and residential environments worldwide. In this study, we determined the harmful effects and toxicological mechanism of CPF in porcine trophectoderm (pTr) cells and the placenta of female mice during pregnancy. The findings revealed that CPF significantly decreased cell viability and increased intracellular lactate dehydrogenase (LDH) release in pTr cells. Similarly, CPF induced reproductive toxicity in pregnant maternal mice, including decreased maternal, fetal, and placental weights. Moreover, following CPF treatment, pTr cells and the placenta of female mice showed significant apoptosis. JC-1 staining and flow cytometry analysis also revealed that the mitochondrial membrane potential (MMP) of pTr cells treated with CPF was significantly depolarized. Additionally, CPF can induce an increase in reactive oxygen species (ROS) and barrier dysfunction in pTr cells and the placenta of female mice. We further verified that CPF-induced mitochondrial apoptosis is mediated by the MAPK signaling pathway, as shown by using of small molecular inhibitors of related proteins. Also, CPF-induced oxidative stress, barrier dysfunction, and mitochondrial apoptosis in pTr cells were alleviated by U0126, an inhibitor of the ERK/MAPK signaling pathway. These findings suggested that exposure to CPF in early pregnancy might be a potential risk fator affecting placental formation and function in humans and animals.
Collapse
Affiliation(s)
- Jun Bai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Siwei Deng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Qing Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, PR China
| | - Shenming Zeng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Zhaohui Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
4
|
Zou M, Huang M, Zhang J, Chen R. Exploring the effects and mechanisms of organophosphorus pesticide exposure and hearing loss. Front Public Health 2022; 10:1001760. [PMID: 36438228 PMCID: PMC9692084 DOI: 10.3389/fpubh.2022.1001760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Many environmental factors, such as noise, chemicals, and heavy metals, are mostly produced by human activities and easily induce acquired hearing loss. Organophosphorus pesticides (OPs) constitute a large variety of chemicals and have high usage with potentiate damage to human health. Moreover, their metabolites also show a serious potential contamination of soil, water, and air, leading to a serious impact on people's health. Hearing loss affects 430 million people (5.5% of the global population), bringing a heavy burden to individual patients and their families and society. However, the potential risk of hearing damage by OPs has not been taken seriously. In this study, we summarized the effects of OPs on hearing loss from epidemiological population studies and animal experiments. Furthermore, the possible mechanisms of OP-induced hearing loss are elucidated from oxidative stress, DNA damage, and inflammatory response. Overall, this review provides an overview of OP exposure alone or with noise that leads to hearing loss in human and experimental animals.
Collapse
|
5
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
6
|
Marinello WP, Patisaul HB. Endocrine disrupting chemicals (EDCs) and placental function: Impact on fetal brain development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:347-400. [PMID: 34452690 DOI: 10.1016/bs.apha.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Pregnancy is a critical time of vulnerability for the development of the fetal brain. Exposure to environmental pollutants at any point in pregnancy can negatively impact many aspects of fetal development, especially the organization and differentiation of the brain. The placenta performs a variety of functions that can help protect the fetus and sustain brain development. However, disruption of any of these functions can have negative impacts on both the pregnancy outcome and fetal neurodevelopment. This review presents current understanding of how environmental exposures, specifically to endocrine disrupting chemicals (EDCs), interfere with placental function and, in turn, neurodevelopment. Some of the key differences in placental development between animal models are presented, as well as how placental functions such as serving as a xenobiotic barrier and exchange organ, immune interface, regulator of growth and fetal oxygenation, and a neuroendocrine organ, could be vulnerable to environmental exposure. This review illustrates the importance of the placenta as a modulator of fetal brain development and suggests critical unexplored areas and possible vulnerabilities to environmental exposure.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
7
|
Silver bionanoparticles toxicity in trophoblast is mediated by nitric oxide and glutathione pathways. Toxicology 2021; 454:152741. [PMID: 33662506 DOI: 10.1016/j.tox.2021.152741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/30/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Silver bionanoparticles (AgNPs) biosynthesized by Pseudomonas aeruginosa culture supernatant have an important antibacterial activity mediated by ROS increase; however their toxicity in human cells is not known. Due to the high susceptibility of the developing tissues to xenobiotics, the aim of this study was to investigate the AgNPs effect on first trimester human trophoblasts. The HTR8/SVneo cell line was treated with AgNPs (0.3-1.5 pM), for 6 and 24 h. Cell viability, reactive nitrogen and oxygen species (RNS and ROS) production, nitric oxide synthase expression, antioxidant defenses and biomolecule damage were evaluated. The exposure to AgNPs produced changes in HTR8/SVneo cell morphology and decreased cell viability. Alterations in redox balance were observed, with an increase in ROS and RNS levels, and NOS2 protein expression. Superoxide dismutase and catalase augmented their activity accompanied with a decreased in glutathione content and glutathione S-transferase activity. Protein oxidation and genotoxic damage were observed at concentrations greater than 0.6 pM. The pre-incubation with l-NMMA, NAC, mannitol and peroxidase demonstrated that AgNPs-induced cytotoxicity was not mediated by HO and H2O2, but nitric oxide and glutathione pathways were implicated in cell death. Since reported AgNPs microbicidal mechanism is mediated by increasing ROS (mainly HO and H2O2) without an increase in RNS, this work indicates an interesting difference in the reactive species and oxidative pathways involved in AgNPs toxicity in eukaryotic and prokaryotic cells. Highlighting the importance of toxicity evaluation to determine the safety of AgNPs with pharmaceutical potential uses.
Collapse
|
8
|
Wang X, Li M, Zhang X, Li Y, He G, Dinnyés A, Sun Q, Xu W. CYP11A1 Upregulation Leads to Trophoblast Oxidative Stress and Fetal Neurodevelopmental Toxicity That can be Rescued by Vitamin D. Front Mol Biosci 2021; 7:608447. [PMID: 33659272 PMCID: PMC7917044 DOI: 10.3389/fmolb.2020.608447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/30/2020] [Indexed: 11/29/2022] Open
Abstract
During normal pregnancy, the placental trophoblast secretes a variety of steroid hormones and participates in the regulation of maternal physiological functions and fetal development. The CYP11A1 gene encodes the cholesterol side-chain cleavage enzyme P450scc, which catalyzes the production of pregnenolone from cholesterol, which is the first step in the synthesis of all steroid hormones. Under the influence of genetic susceptibility and certain environmental factors, such as drugs and toxins, the expression of CYP11A1 can be upregulated, thereby affecting steroid metabolism and physiological functions in trophoblast cells, as well as fetal development. Here, we demonstrate that upregulation of CYP11A1 in the BeWo cell line triggers excessive mitochondrial oxidative stress, leads to mitochondrial damage and interleukin-6 release, and contributes to the inhibition of proliferation and DNA damage in neuronal stem cells (NSCs). Furthermore, oxidative stress and inflammation can be ameliorated by vitamin D3 in a dose-dependent manner, thereby facilitating the rescue of NSC impairment. Our findings reveal the underlying mechanism in which upregulation of CYP11A1 is detrimental to the physiological function of trophoblasts and demonstrate the beneficial effects of vitamin D supplementation in preventing placental and neurodevelopmental damage associated with CYP11A1 upregulation during pregnancy.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mengxue Li
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xueguang Zhang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yaqian Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, GödöllőChengdu, Hungary
| | - Guolin He
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, GödöllőChengdu, Hungary
| | - Andras Dinnyés
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,BioTalentum Ltd.,, Gödöllő, Hungary
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Gingrich J, Ticiani E, Veiga-Lopez A. Placenta Disrupted: Endocrine Disrupting Chemicals and Pregnancy. Trends Endocrinol Metab 2020; 31:508-524. [PMID: 32249015 PMCID: PMC7395962 DOI: 10.1016/j.tem.2020.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 01/06/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are chemicals that can interfere with normal endocrine signals. Human exposure to EDCs is particularly concerning during vulnerable periods of life, such as pregnancy. However, often overlooked is the effect that EDCs may pose to the placenta. The abundance of hormone receptors makes the placenta highly sensitive to EDCs. We have reviewed the most recent advances in our understanding of EDC exposures on the development and function of the placenta such as steroidogenesis, spiral artery remodeling, drug-transporter expression, implantation and cellular invasion, fusion, and proliferation. EDCs reviewed include those ubiquitous in the environment with available human biomonitoring data. This review also identifies critical gaps in knowledge to drive future research in the field.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Elvis Ticiani
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
10
|
Park AS, Ritz B, Yu F, Cockburn M, Heck JE. Prenatal pesticide exposure and childhood leukemia - A California statewide case-control study. Int J Hyg Environ Health 2020; 226:113486. [PMID: 32087503 PMCID: PMC7174091 DOI: 10.1016/j.ijheh.2020.113486] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/17/2020] [Accepted: 02/10/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND A number of epidemiologic studies with a variety of exposure assessment approaches have implicated pesticides as risk factors for childhood cancers. Here we explore the association of pesticide exposure in pregnancy and early childhood with childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) utilizing land use and pesticide use data in a sophisticated GIS tool. METHODS We identified cancer cases less than 6 years of age from the California Cancer Registry and cancer-free controls from birth certificates. Analyses were restricted to those living in rural areas and born 1998-2011, resulting in 162 cases of childhood leukemia and 9,805 controls. Possible carcinogens were selected from the Environmental Protection Agency's classifications and pesticide use was collected from the California Department of Pesticide Regulation's (CDPR) Pesticide Use Reporting (PUR) system and linked to land-use surveys. Exposures for subjects were assessed using a 4000m buffer around the geocoded residential addresses at birth. Unconditional logistic and hierarchical regression models were used to assess individual pesticide and pesticide class associations. RESULTS We observed elevated risks for ALL with exposure to any carcinogenic pesticide (adjusted Odds Ratio (aOR): 2.83, 95% CI: 1.67-4.82), diuron (Single-pesticide model, adjusted (OR): 2.38, 95% CI: 1.57-3.60), phosmet (OR: 2.10, 95% CI: 1.46-3.02), kresoxim-methyl (OR: 1.77, 95% CI: 1.14-2.75), and propanil (OR: 2.58, 95% CI: 1.44-4.63). Analyses based on chemical classes showed elevated risks for the group of 2,6-dinitroanilines (OR: 2.50, 95% CI: 1.56-3.99), anilides (OR: 2.16, 95% CI: 1.38-3.36), and ureas (OR: 2.18, 95% CI: 1.42-3.34). CONCLUSION Our findings suggest that in rural areas of California exposure to certain pesticides or pesticide classes during pregnancy due to residential proximity to agricultural applications may increase the risk of childhood ALL and AML. Future studies into the mechanisms of carcinogenicity of these pesticides may be beneficial.
Collapse
Affiliation(s)
- Andrew S Park
- Department of Epidemiology, Fielding School of Public Health, University of California, 650 Charles E. Young Dr. S, Box 951772, Los Angeles, CA, 90095-1772, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, 650 Charles E. Young Dr. S, Box 951772, Los Angeles, CA, 90095-1772, USA
| | - Fei Yu
- Department of Biostatistics, Fielding School of Public Health, University of California, 650 Charles E. Young Dr. S, Box 951772, Los Angeles, CA, 90095-1772, USA
| | - Myles Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001, N. Soto Street, Suite 318-A, Los Angeles, CA, USA
| | - Julia E Heck
- Department of Epidemiology, Fielding School of Public Health, University of California, 650 Charles E. Young Dr. S, Box 951772, Los Angeles, CA, 90095-1772, USA; Jonsson Comprehensive Cancer Center, University of California, Box 951781, Los Angeles, CA, 90095-1781, USA.
| |
Collapse
|
11
|
Gomez SD, Bustos PS, Sánchez VG, Ortega MG, Guiñazú N. Trophoblast toxicity of the neonicotinoid insecticide acetamiprid and an acetamiprid-based formulation. Toxicology 2020; 431:152363. [DOI: 10.1016/j.tox.2020.152363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/11/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
|
12
|
Effect of Chlorpyrifos on human extravillous-like trophoblast cells. Reprod Toxicol 2019; 90:118-125. [PMID: 31509763 DOI: 10.1016/j.reprotox.2019.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/11/2023]
Abstract
An increased risk of pregnancy disorders has been reported in women and animal models exposed to organophosphate pesticides. However, less information is available on impacts to human placental function. Here, we addressed the impact of chlorpyrifos (CPF) on extravillous cytotrophoblasts (evCTB) employing HTR8/SVneo cells as an in vitro model. Cell proliferation, migration and invasion were not affected by CPF under conditions where cell viability was not compromised; however, we observed reduced expression of genes for vascular endothelial growth factor receptor 1, hypoxia-inducible factor 1-alpha, peroxisome proliferator activated receptor gamma, and the β-subunit of human chorionic gonadotropin. These results are the first effects reported by organophosphate pesticide in evCTB cells and show altered expression of several genes important for placental development that could serve as potential biomarkers for future research.
Collapse
|
13
|
Yang C, Song G, Lim W. A mechanism for the effect of endocrine disrupting chemicals on placentation. CHEMOSPHERE 2019; 231:326-336. [PMID: 31132539 DOI: 10.1016/j.chemosphere.2019.05.133] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 05/28/2023]
Abstract
Numerous recent studies have shown that endocrine disrupting chemicals (EDCs) in the body of pregnant women can pass through the placenta and be exposed to the fetus, leading to fetal development and cognitive impairment. Placentation through invasion of trophoblast cells and vascular remodeling is essential to maintaining maternal and fetal health throughout the pregnancy. Abnormal placentation can lead to pregnancy disorders such as preeclampsia (PE) and intrauterine growth retardation (IUGR). However, many studies have not been conducted on whether EDCs can inhibit the development and function of the placenta. Isolating placental tissues to analyze the effect of EDCs on placentation has several limitations. In this review, we discussed the types of EDCs that can pass through the placental barrier and accumulate in the placenta with relative outcome. EDCs can be released from a variety of products including plasticizers, pesticides, and retardant. We also discussed the development and dysfunction of the placenta when EDCs were treated on trophoblast cells or pregnant rodent models. The effects of EDCs on the placenta of livestock are also discussed, together with the molecular mechanism of EDCs acting in trophoblast cells. We describe how EDCs cross the membrane of trophoblasts to regulate signaling pathways, causing genetic and epigenetic changes that lead to changes in cell viability and invasiveness. Further studies on the effects of EDCs on placenta may draw attention to the correct use of products containing EDCs during pregnancy.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
14
|
Lim W, An Y, Yang C, Bazer FW, Song G. Trichlorfon inhibits proliferation and promotes apoptosis of porcine trophectoderm and uterine luminal epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:555-564. [PMID: 30005267 DOI: 10.1016/j.envpol.2018.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Trichlorfon is an organophosphate insecticide widely used in agriculture. Additionally, it is applied to pigs for control of endo- and ectoparasites. Previous studies have shown the effects of trichlorfon in pigs during late stages of gestation; however, little is known about its effects during early pregnancy, including implantation and placentation. We investigated whether trichlorfon affects proliferation and apoptosis of porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells. Trichlorfon inhibited the proliferation of pTr and pLE cells, as evidenced by cell cycle arrest, and altered the expression of proliferation-related proteins. In addition, trichlorfon induced cell death and apoptotic features, such as loss of mitochondrial membrane potential and DNA fragmentation, in pTr and pLE cells. Moreover, trichlorfon treatment decreased concentrations of Ca2+ in the cytoplasm in both cell lines and increased concentrations of Ca2+ in mitochondria of pTr cells. Trichlorfon inhibited the activation of phosphoinositide 3-kinase/AKT and mitogen-activated protein kinase signaling pathways in pTr and pLE cells. Therefore, we suggest that trichlorfon-treated pTr and pLE cells exhibited abnormal cell physiology which might lead to early pregnancy failure.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, 25601, Republic of Korea
| | - Yikyung An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, 77843, Texas, USA
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW To assess the strength of evidence for associations between environmental toxicants and hypertensive disorders of pregnancy, suggest potential biological mechanisms based on animal and in vitro studies, and highlight avenues for future research. RECENT FINDINGS Evidence is strongest for links between persistent chemicals, including lead, cadmium, organochlorine pesticides, and polycyclic biphenyls, and preeclampsia, although associations are sometimes not detectable at low-exposure levels. Results have been inconclusive for bisphenols, phthalates, and organophosphates. Biological pathways may include oxidative stress, epigenetic changes, endocrine disruption, and abnormal placental vascularization. Additional prospective epidemiologic studies beginning in the preconception period and extending postpartum are needed to assess the life course trajectory of environmental exposures and women's reproductive and cardiovascular health. Future studies should also consider interactions between chemicals and consider nonlinear associations. These results confirm recommendations by the International Federation of Gynecology and Obstetrics, the American Society for Reproductive Medicine, the American Academy of Pediatrics, and the Endocrine Society that providers counsel their pregnant patients to limit exposure to environmental toxicants.
Collapse
|
16
|
Ling C, Liew Z, von Ehrenstein OS, Heck JE, Park AS, Cui X, Cockburn M, Wu J, Ritz B. Prenatal Exposure to Ambient Pesticides and Preterm Birth and Term Low Birthweight in Agricultural Regions of California. TOXICS 2018; 6:E41. [PMID: 30037110 PMCID: PMC6160921 DOI: 10.3390/toxics6030041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/29/2022]
Abstract
Findings from studies of prenatal exposure to pesticides and adverse birth outcomes have been equivocal so far. We examined prenatal exposure to agricultural pesticides in relation to preterm birth and term low birthweight, respectively, in children born between 1998 and 2010, randomly selected from California birth records. We estimated residential exposure to agriculturally applied pesticides within 2 km of residential addresses at birth by pregnancy trimester for 17 individual pesticides and three chemical classes (organophosphates, pyrethroids, and carbamates). Among maternal addresses located within 2 km of any agricultural pesticide application, we identified 24,693 preterm and 220,297 term births, and 4412 term low birthweight and 194,732 term normal birthweight infants. First or second trimester exposure to individual pesticides (e.g., glyphosates, paraquat, imidacloprid) or exposure to 2 or more pesticides in the three chemical classes were associated with a small increase (3⁻7%) in risk for preterm birth; associations were stronger for female offspring. We did not find associations between term low birthweight and exposure to pesticides other than myclobutanil (OR: 1.11; 95% CI: 1.04⁻1.20) and possibly the pyrethroids class. Our improved exposure assessment revealed that first and second trimester exposure to pesticides is associated with preterm delivery but is rarely linked with term low birthweight.
Collapse
Affiliation(s)
- Chenxiao Ling
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA 90095, USA.
| | - Zeyan Liew
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA 90095, USA.
| | - Ondine S von Ehrenstein
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA 90095, USA.
- Department of Community Health Sciences, Fielding School of Public Health, UCLA, Los Angeles, CA 90095, USA.
| | - Julia E Heck
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA 90095, USA.
| | - Andrew S Park
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA 90095, USA.
| | - Xin Cui
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA 90095, USA.
| | - Myles Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO 80045, USA.
- Colorado Comprehensive Cancer Center, University of Colorado, Aurora, CO 80045, USA.
| | - Jun Wu
- Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA.
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Zhou C, Li X. Cytotoxicity of chlorpyrifos to human liver hepatocellular carcinoma cells: effects on mitochondrial membrane potential and intracellular free Ca2+. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1386686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chune Zhou
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
18
|
Xu G, Huo D, Hou C, Zhao Y, Bao J, Yang M, Fa H. A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers-single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talanta 2017; 178:1046-1052. [PMID: 29136795 DOI: 10.1016/j.talanta.2017.08.086] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/21/2017] [Accepted: 08/27/2017] [Indexed: 01/12/2023]
Abstract
Chlorpyrifos is a commonly used organophosphorus pesticide in agriculture. However, its neurotoxicity poses a huge threat to human health. To detect trace amounts of chlorpyrifos, we herein developed a regenerative electrochemical aptasensor for the sensitive detection of chlorpyrifos. The nanocomposite consisting of copper oxide nanoflowers (CuO NFs) and carboxyl-functionalized single walled carbon nanotubes (c-SWCNTs) was prepared to improve the sensing performance for chlorpyrifos detection. Various characterization methods such as scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR) and cyclic voltammetry (CV) were used to demonstrate the successful fabrication of biosensor. Differential pulse voltammetry (DPV) was utilized to optimize test conditions and quantify chlorpyrifos. Under optimal conditions, the biosensor obtained a good linearity for chlorpyrifos ranging from 0.1 to 150ng/mL, with a lower detection limit of 70pg/mL. This aptasensor also exhibited high selectivity and outstanding repeatability, and was successfully applied to the determination of chlorpyrifos in spiked apple and celery cabbage with satisfactory recoveries. Furthermore, the sensor can be easily regenerated by urea for continuous application. With all the features, the proposed strategy provides an excellent platform for regenerative and selective detection of chlorpyrifos.
Collapse
Affiliation(s)
- Guoli Xu
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Danqun Huo
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Changjun Hou
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yanan Zhao
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jing Bao
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Mei Yang
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Huanbao Fa
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
19
|
Chauhan LKS, Varshney M, Pandey V, Sharma P, Verma VK, Kumar P, Goel SK. ROS-dependent genotoxicity, cell cycle perturbations and apoptosis in mouse bone marrow cells exposed to formulated mixture of cypermethrin and chlorpyrifos. Mutagenesis 2016; 31:635-642. [DOI: 10.1093/mutage/gew031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
20
|
Espinoza M, Rivero Osimani V, Sánchez V, Rosenbaum E, Guiñazú N. B-esterase determination and organophosphate insecticide inhibitory effects in JEG-3 trophoblasts. Toxicol In Vitro 2016; 32:190-7. [PMID: 26790371 DOI: 10.1016/j.tiv.2016.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/15/2015] [Accepted: 01/06/2016] [Indexed: 01/31/2023]
Abstract
The placenta and trophoblasts express several B-esterases. This family includes acethylcholinesterase (AChE), carboxylesterase (CES) and butyrylcholinesterase (BChE), which are important targets of organophosphate insecticide (OP) toxicity. To better understand OP effects on trophoblasts, B-esterase basal activity and kinetic behavior were studied in JEG-3 choriocarcinoma cell cultures. Effects of the OP azinphos-methyl (Am) and chlorpyrifos (Cp) on cellular enzyme activity were also evaluated. JEG-3 cells showed measurable activity levels of AChE and CES, while BChE was undetected. Recorded Km for AChE and CES were 0.33 and 0.26 mM respectively. Native gel electrophoresis and RT-PCR analysis demonstrated CES1 and CES2 isoform expression. Cells exposed for 4 and 24 h to the OP Am or Cp, showed a differential CES and AChE inhibition profiles. Am inhibited CES and AChE at 4 h treatment while Cp showed the highest inhibition profile at 24 h. Interestingly, both insecticides differentially affected CES1 and CES2 activities. Results demonstrated that JEG-3 trophoblasts express AChE, CES1 and CES2. B-esterase enzymes were inhibited by in vitro OP exposure, indicating that JEG-3 cells metabolization capabilities include phase I enzymes, able to bioactivate OP. In addition, since CES enzymes are important for medicinal drug activation/deactivation, OP exposure may interfere with trophoblast CES metabolization, probably being relevant in a co-exposure scenario during pregnancy.
Collapse
Affiliation(s)
- Marlon Espinoza
- Departamento de Ciencias del Ambiente, Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, Neuquén, Argentina
| | | | - Victoria Sánchez
- LIBIQUIMA, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Enrique Rosenbaum
- LIBIQUIMA, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Natalia Guiñazú
- Departamento de Ciencias del Ambiente, Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, Neuquén, Argentina; LIBIQUIMA, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina.
| |
Collapse
|
21
|
Adebambo OA, Ray PD, Shea D, Fry RC. Toxicological responses of environmental mixtures: Environmental metal mixtures display synergistic induction of metal-responsive and oxidative stress genes in placental cells. Toxicol Appl Pharmacol 2015; 289:534-41. [PMID: 26472158 DOI: 10.1016/j.taap.2015.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/24/2015] [Accepted: 10/09/2015] [Indexed: 11/18/2022]
Abstract
Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metal mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu(2+) transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals.
Collapse
Affiliation(s)
| | - Paul D Ray
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, United States
| | - Damian Shea
- Department of Biological Sciences, North Carolina State University, United States
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, United States.
| |
Collapse
|
22
|
Deleterious effects of benomyl and carbendazim on human placental trophoblast cells. Reprod Toxicol 2014; 51:64-71. [PMID: 25530041 DOI: 10.1016/j.reprotox.2014.12.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 11/06/2014] [Accepted: 12/10/2014] [Indexed: 12/20/2022]
Abstract
Benomyl and carbendazim are benzimidazole fungicides that are used throughout the world against a wide range of fungal diseases of agricultural products. There is as yet little information regarding the toxicity of benzimidazole fungicides to human placenta. In this study, we utilized human placental trophoblast cell line HTR-8/SVneo (HTR-8) to access the toxic effects of benomyl and carbendazim. Our data showed that these two fungicides decreased cell viability and the percentages of cells in G0/G1 phase, as well as induced apoptosis of HTR-8 cells. The invasion and migration of HTR-8 cells were significantly inhibited by benomyl and carbendazim. We further found that benomyl and carbendazim altered the expression of protease systems (MMPs/TIPMs and uPA/PAI-1) and adhesion molecules (integrin α5 and β1) in HTR-8 cells. Our present study firstly shows the deleterious effects of benomyl and carbendazim on placental cells and suggests a potential risk of benzimidazole fungicides to human reproduction.
Collapse
|
23
|
Chen D, Zhang Z, Yao H, Cao Y, Xing H, Xu S. Pro- and anti-inflammatory cytokine expression in immune organs of the common carp exposed to atrazine and chlorpyrifos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 114:8-15. [PMID: 25175644 DOI: 10.1016/j.pestbp.2014.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/26/2014] [Accepted: 07/27/2014] [Indexed: 06/03/2023]
Abstract
Atrazine (ATR) and chlorpyrifos (CPF) are toxic and subject to long-term in vivo accumulation in different aquatic species throughout the world. The purpose of the present study was to examine the effect of ATR, CPF and combined ATR/CPF exposure on cytokines in the head kidney and spleen of common carp (Cyprinus carpio L.). The carp were sampled after a 40-d exposure to CPF and ATR, individually or in combination, followed by a 40-d recovery to measure the mRNA expression of IL-6fam (IL-6), IL-8, TNF-α, IL-10 and TGF-β1 (TGF-β) in the head kidney and spleen tissues. These results showed that the expression of cytokines IL-6, IL-8 and TNF-α in the head kidney and spleen was upregulated following ATR, CPF and mixed ATR/CPF exposure compared with the control group. The expression of IL-10 and TGF-β mRNA was significantly inhibited in both head kidney and spleen of carp exposed to ATR, CPF and the ATR/CPF mixture. The results suggested that long-term exposure of ATR, CPF and the ATR/CPF mixture in aquatic environments can induce the dysregulation of pro-/anti-inflammatory cytokine expression. The information regarding the effects of ATR and CPF on cytokine mRNA expression generated in this study will be important information for pesticides toxicology evaluation.
Collapse
Affiliation(s)
- Dechun Chen
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China; Department of Biological Engineering, Jilin Engineering Vocational College, 1299 Changfa Road, Siping 136001, China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China
| | - Haidong Yao
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China
| | - Ye Cao
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China
| | - Houjuan Xing
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China; Animal Health Supervision Institute of Heilongjiang Province, 243 Haping Road, Xiangfang District, Harbin 150069, China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China.
| |
Collapse
|
24
|
Chiapella G, Flores-Martín J, Ridano M, Reyna L, Magnarelli de Potas G, Panzetta-Dutari G, Genti-Raimondi S. The organophosphate chlorpyrifos disturbs redox balance and triggers antioxidant defense mechanisms in JEG-3 cells. Placenta 2013; 34:792-8. [DOI: 10.1016/j.placenta.2013.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/05/2013] [Accepted: 06/08/2013] [Indexed: 01/07/2023]
|
25
|
Bulgaroni V, Lombardo P, Rivero-Osimani V, Vera B, Dulgerian L, Cerbán F, Rivero V, Magnarelli G, Guiñazú N. Environmental pesticide exposure modulates cytokines, arginase and ornithine decarboxylase expression in human placenta. Reprod Toxicol 2013; 39:23-32. [DOI: 10.1016/j.reprotox.2013.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/04/2013] [Accepted: 03/21/2013] [Indexed: 11/24/2022]
|
26
|
Wang LL, Liu T, Wang C, Zhao FQ, Zhang ZW, Yao HD, Xing HJ, Xu SW. Effects of atrazine and chlorpyrifos on the production of nitric oxide and expression of inducible nitric oxide synthase in the brain of common carp (Cyprinus carpio L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 93:7-12. [PMID: 23602412 DOI: 10.1016/j.ecoenv.2013.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
The study aimed to investigate the effects of atrazine (ATR), chlorpyrifos (CPF), and the mixture of them on nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in the brain of common carp. The triazine herbicide ATR and the organophosphorus insecticide CPF are frequently and extensively applied in agriculture all over the world. 220 Carps were averagely divided into eleven groups according to the different treatments and concentration, including the exposure and recovery experiments. In the present study, we investigated production of NO, iNOS activity and iNOS mRNA and protein expression in the brain of the common carp after a 40d exposure to ATR, CPF, alone or in combination, and a 40d recovery treatment. The results showed that the activity of iNOS and production of NO were significantly higher in all groups of fish exposed to high doses ATR, CPF and their mixture compared to control fish. After a 40d recovery treatment, iNOS activity and production of NO were lower than in the corresponding exposure groups in all the recovery groups. The mRNA and protein levels of iNOS were significantly higher in the high-dose group of ATR and CPF compared to control group, but were significantly lower in the group of the mixture of ATR and CPF compared to control group. Results indicated that NO and iNOS were involved in oxidative stress and brain tissue damage induced by ATR, CPF, and their mixture. Thus, the information presented in this study is helpful to understand the mechanism of ATR-, CPF- and ATR/CPF-mixture-induced neurotoxicity in fish.
Collapse
Affiliation(s)
- Liang-Liang Wang
- Department of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
A comparison of sex-specific immune signatures in Gulf War illness and chronic fatigue syndrome. BMC Immunol 2013; 14:29. [PMID: 23800166 PMCID: PMC3698072 DOI: 10.1186/1471-2172-14-29] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 06/11/2013] [Indexed: 11/19/2022] Open
Abstract
Background Though potentially linked to the basic physiology of stress response we still have no clear understanding of Gulf War Illness (GWI), a debilitating condition presenting complex immune, endocrine and neurological symptoms. Here we compared male (n = 20) and female (n = 10) veterans with GWI separately against their healthy counterparts (n = 21 male, n = 9 female) as well as subjects with chronic fatigue syndrome/ myalgic encephalomyelitis (CFS/ME) (n = 12 male, n = 10 female). Methods Subjects were assessed using a Graded eXercise Test (GXT) with blood drawn prior to exercise, at peak effort (VO2 max) and 4-hours post exercise. Using chemiluminescent imaging we measured the concentrations of IL-1a, 1b, 2, 4, 5, 6, 8, 10, 12 (p70), 13, 15, 17 and 23, IFNγ, TNFα and TNFβ in plasma samples from each phase of exercise. Linear classification models were constructed using stepwise variable selection to identify cytokine co-expression patterns characteristic of each subject group. Results Classification accuracies in excess of 80% were obtained using between 2 and 5 cytokine markers. Common to both GWI and CFS, IL-10 and IL-23 expression contributed in an illness and time-dependent manner, accompanied in male subjects by NK and Th1 markers IL-12, IL-15, IL-2 and IFNγ. In female GWI and CFS subjects IL-10 was again identified as a delineator but this time in the context of IL-17 and Th2 markers IL-4 and IL-5. Exercise response also differed between sexes: male GWI subjects presented characteristic cytokine signatures at rest but not at peak effort whereas the opposite was true for female subjects. Conclusions Though individual markers varied, results collectively supported involvement of the IL-23/Th17/IL-17 axis in the delineation of GWI and CFS in a sex-specific way.
Collapse
|
28
|
Göhner C, Svensson-Arvelund J, Pfarrer C, Häger JD, Faas M, Ernerudh J, Cline JM, Dixon D, Buse E, Markert UR. The placenta in toxicology. Part IV: Battery of toxicological test systems based on human placenta. Toxicol Pathol 2013; 42:345-51. [PMID: 23548605 DOI: 10.1177/0192623313482206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This review summarizes the potential and also some limitations of using human placentas, or placental cells and structures for toxicology testing. The placenta contains a wide spectrum of cell types and tissues, such as trophoblast cells, immune cells, fibroblasts, stem cells, endothelial cells, vessels, glands, membranes, and many others. It may be expected that in many cases the relevance of results obtained from human placenta will be higher than those from animal models due to species specificity of metabolism and placental structure. For practical and economical reasons, we propose to apply a battery of sequential experiments for analysis of potential toxicants. This should start with using cell lines, followed by testing placenta tissue explants and isolated placenta cells, and finally by application of single and dual side ex vivo placenta perfusion. With each of these steps, the relative workload increases while the number of feasible repeats decreases. Simultaneously, the predictive power enhances by increasing similarity with in vivo human conditions. Toxic effects may be detected by performing proliferation, vitality and cell death assays, analysis of protein and hormone expression, immunohistochemistry or testing functionality of signaling pathways, gene expression, transport mechanisms, and so on. When toxic effects appear at any step, the subsequent assays may be cancelled. Such a system may be useful to reduce costs and increase specificity in testing questionable toxicants. Nonetheless, it requires further standardization and end point definitions for better comparability of results from different toxicants and to estimate the respective in vivo translatability and predictive value.
Collapse
Affiliation(s)
- Claudia Göhner
- 1Placenta-Labor, Department of Obstetrics, University Hospital, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Vera B, Santa Cruz S, Magnarelli G. Plasma cholinesterase and carboxylesterase activities and nuclear and mitochondrial lipid composition of human placenta associated with maternal exposure to pesticides. Reprod Toxicol 2012; 34:402-7. [DOI: 10.1016/j.reprotox.2012.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/02/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
|