1
|
Pethe A, Joshi S, Ali Dar T, Poddar NK. Revisiting the role of phospholipases in alzheimer's: crosstalk with processed food. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39002140 DOI: 10.1080/10408398.2024.2377290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Phospholipases such as phospholipase-A, phospholipase-B, phospholipase-C and phospholipase-D are important functional enzymes of the cell membrane responsible for a variety of functions such as signal transduction, production of lipid mediators, metabolite digestion and playing a pathological role in central nervous system diseases. Phospholipases have shown an association with Alzheimer's disease and these enzymes have found a correlation with several metabolic pathways that can lead to the activation of inflammatory signals via astrocytes and microglial cells. We also highlighted unhealthy practices like smoking and consuming processed foods, rich in nitroso compounds and phosphatidic acid, which contribute to neuronal damage in AD through phospholipases. A few therapeutic approaches such as the use of inhibitors of phospholipase-D,phospholipase A2 as well as autophagy-mediated inhibition have been discussed to control the onset of AD. This paper serves as a crosstalk between phospholipases and their role in neurodegenerative pathways as well as their influence on other biomolecules of lipid membranes, which are acquired through unhealthy diets and possible methods to treat these anomalies occurring due to their metabolic disorder involving phospholipases acting as major signaling molecules.
Collapse
Affiliation(s)
- Atharv Pethe
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Siddhi Joshi
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
2
|
Li X, Ye Z, Wang J, Lin P, Zhang X, Xie S, Chen C. Intake of tobacco nitrosamines of smokers in various provinces of China and their cancer risk: A meta-analysis. J Environ Sci (China) 2024; 141:249-260. [PMID: 38408825 DOI: 10.1016/j.jes.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 02/28/2024]
Abstract
Nitrosamines are a class of carcinogens which have been detected widely in food, water, some pharmaceuticals as well as tobacco. The objectives of this paper include reviewing the basic information on tobacco consumption and nitrosamine contents, and assessing the health risks of tobacco nitrosamines exposure to Chinese smokers. We searched the publications in English from "Web of Science" and those in Chinese from the "China National Knowledge Infrastructure" in 2022 and collected 151 literatures with valid information. The content of main nitrosamines in tobacco, including 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosonornicotine (NNN), N-nitrosoanatabine (NAT), N-nitrosoanabasine (NAB), total tobacco-specific nitrosamines (TSNA), and N-nitrosodimethylamine (NDMA) were summarized. The information of daily tobacco consumption of smokers in 30 provinces of China was also collected. Then, the intakes of NNN, NNK, NAT, NAB, TSNAs, and NDMA via tobacco smoke were estimated as 1534 ng/day, 591 ng/day, 685 ng/day, 81 ng/day, 2543 ng/day, and 484 ng/day by adult smokers in 30 provinces, respectively. The cancer risk (CR) values for NNN and NNK inhalation intake were further calculated as 1.44 × 10-5 and 1.95 × 10-4. The CR value for NDMA intake via tobacco smoke (inhalation: 1.66 × 10-4) indicates that NDMA is similarly dangerous in tobacco smoke when compared with the TSNAs. In China, the CR values caused by average nitrosamines intake via various exposures and their order can be estimated as the following: smoke (3.75 × 10-4) > food (1.74 × 10-4) > drinking water (1.38 × 10-5). Smokers in China averagely suffer 200% of extra cancer risk caused by nitrosamines in tobacco when compared with non-smokers.
Collapse
Affiliation(s)
- Xiao Li
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, Jiangsu 215163, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhiwei Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Wang
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, Jiangsu 215163, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Pengfei Lin
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, Jiangsu 215163, China
| | - Xiaojin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Chao Chen
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, Jiangsu 215163, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Liu Y, Kan G, Wang Y, Chen Y, Niu Y, He J, Ju Y, Jiang Y, Jiang J, Zhang H. Nicotiana alkaloids-intervened phospholipid ozonolysis at the air-water interface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170456. [PMID: 38296096 DOI: 10.1016/j.scitotenv.2024.170456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Cigarette nicotiana alkaloids associated with lung and cardiovascular diseases attack enormous attention. However, the mechanism at the molecular level between nicotiana alkaloids and phospholipid ozonolysis remains elusive. Herein, we investigated the interfacial ozonolysis of a hung droplet containing 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) intervened by nicotiana alkaloids (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK; rac-N'-nitrosonornicotine, NNN; nicotine; and (R,S)-N-nitrosoanasabine, NAT) and followed by on-line mass spectrometry analysis. NNK and NNN showed an acceleration on the interfacial ozonolysis, while nicotine and NAT inhibited this chemistry. Such acceleration/inhibition on POPG ozonolysis was positively correlated with nicotiana alkaloid concentrations. The reaction rate constants suggested that the ozonolysis of lung phospholipids exposed to cigarette smoke at the air-water interface occurred rapidly. A possible mechanism of the hydrophilic/oleophilic nature of nicotiana alkaloids mediating the packing density of POPG was proposed. NNK and NNN with a hydrophilic nature inserted into the POPG monolayer loosed the packing, but nicotine and NAT with an oleophilic nature let the POPG closely pack and shield the CC double bonds exposed to ozone (O3). These results gain the knowledge of nicotiana alkaloids mediated phospholipid ozonolysis at the molecule level and provide a method for online interfacial reaction studies associated with elevated indoor pollutants on public health.
Collapse
Affiliation(s)
- Yaqi Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Yanjie Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Yijing Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China
| | - Yuqing Niu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China.
| |
Collapse
|
4
|
Fan LC, McConn K, Plataki M, Kenny S, Williams NC, Kim K, Quirke JA, Chen Y, Sauler M, Möbius ME, Chung KP, Area Gomez E, Choi AM, Xu JF, Cloonan SM. Alveolar type II epithelial cell FASN maintains lipid homeostasis in experimental COPD. JCI Insight 2023; 8:e163403. [PMID: 37606038 PMCID: PMC10543729 DOI: 10.1172/jci.insight.163403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/10/2023] [Indexed: 08/23/2023] Open
Abstract
Alveolar epithelial type II (AEC2) cells strictly regulate lipid metabolism to maintain surfactant synthesis. Loss of AEC2 cell function and surfactant production are implicated in the pathogenesis of the smoking-related lung disease chronic obstructive pulmonary disease (COPD). Whether smoking alters lipid synthesis in AEC2 cells and whether altering lipid metabolism in AEC2 cells contributes to COPD development are unclear. In this study, high-throughput lipidomic analysis revealed increased lipid biosynthesis in AEC2 cells isolated from mice chronically exposed to cigarette smoke (CS). Mice with a targeted deletion of the de novo lipogenesis enzyme, fatty acid synthase (FASN), in AEC2 cells (FasniΔAEC2) exposed to CS exhibited higher bronchoalveolar lavage fluid (BALF) neutrophils, higher BALF protein, and more severe airspace enlargement. FasniΔAEC2 mice exposed to CS had lower levels of key surfactant phospholipids but higher levels of BALF ether phospholipids, sphingomyelins, and polyunsaturated fatty acid-containing phospholipids, as well as increased BALF surface tension. FasniΔAEC2 mice exposed to CS also had higher levels of protective ferroptosis markers in the lung. These data suggest that AEC2 cell FASN modulates the response of the lung to smoke by regulating the composition of the surfactant phospholipidome.
Collapse
Affiliation(s)
- Li-Chao Fan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keith McConn
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Sarah Kenny
- School of Medicine, Trinity Biomedical Sciences Institute, and
| | | | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Yan Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Kuei-Pin Chung
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Laboratory Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Estela Area Gomez
- Division of Neuromuscular Medicine, Department of Neurology, Columbia University Irving Medical Center, Neurological Institute, New York, New York, USA
- Center for Biological Research “Margarita Salas”, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Augustine M.K. Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Suzanne M. Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- School of Medicine, Trinity Biomedical Sciences Institute, and
| |
Collapse
|
5
|
Garavaglia ML, Bodega F, Porta C, Milzani A, Sironi C, Dalle-Donne I. Molecular Impact of Conventional and Electronic Cigarettes on Pulmonary Surfactant. Int J Mol Sci 2023; 24:11702. [PMID: 37511463 PMCID: PMC10380520 DOI: 10.3390/ijms241411702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.
Collapse
Affiliation(s)
| | - Francesca Bodega
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Sironi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
6
|
Ben Anes A, Ben Nasr H, Tabka Z, Tabka O, Zaouali M, Chahed K. Plasma Lipid Profiling Identifies Phosphatidylcholine 34:3 and Triglyceride 52:3 as Potential Markers Associated with Disease Severity and Oxidative Status in Chronic Obstructive Pulmonary Disease. Lung 2022; 200:495-503. [PMID: 35816208 DOI: 10.1007/s00408-022-00552-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To identify plasma alterations in lipid species in patients with chronic obstructive pulmonary disease (COPD), as well as, relationships with smoking status, oxidative and inflammatory markers. METHODS Plasma was obtained from 100 patients with COPD and 120 healthy controls. Pulmonary function was assessed by plethysmography. Serum levels of IL-6 and TNF-α were determined by ELISA. Oxidative stress parameters were measured using standard methods. Lipids were extracted then analyzed by Matrix-Assisted Laser Desorption and Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-TOF-MS). RESULTS More than 40 lipid compounds were identified within plasma samples. Among these 19 lipid species including plasmalogens (PC O-), phosphatidylcholines (PC), and triglycerides (TG) were significantly altered in COPD. A decreased expression of PC O- (36:1, 36:2, 36:3, 36:4, 38:4, 38:5) species was found in patients with different severities compared to healthy controls. There was also a decrease in PC (34:3, 36:0, 36:4, 36:5, 40:6, 40:7) species in COPD patients. PC (34:3) levels were positively correlated with disease progression and pulmonary function decline (forced expiratory volume in 1 s (FEV1)) (r = 0.84, p < 0.001) and inversely correlated with thiobarbituric acid-reactive substances (TBARS) (r = - 0.77, p < 0.001). TG (50:0, 50:1, 52:1, 52:2, 52:3, 52:4, 54:4) species were altered in COPD patients and in those with advanced disease stages. Significant correlations between FEV1, TBARS, peroxynitrite, and TG (52:3) were found among COPD patients (r = - 0.69; r = 0.86; r = 0.77, p < 0.001, respectively). CONCLUSION PC (34:3) and TG (52:3) could be potential lipid signatures of COPD that correlate with altered pulmonary function and oxidative status.
Collapse
Affiliation(s)
- Amel Ben Anes
- Research Laboratory (LR19ES09): Exercise Physiology and Pathophysiology - From the Integrated to the Molecular Biology, Medicine and Health, Faculty of Medicine of Sousse, University of Sousse, 4002, Sousse, Tunisia.
| | - Hela Ben Nasr
- Research Laboratory (LR19ES09): Exercise Physiology and Pathophysiology - From the Integrated to the Molecular Biology, Medicine and Health, Faculty of Medicine of Sousse, University of Sousse, 4002, Sousse, Tunisia
- Higher Institute of Nursing Sciences, Sousse, Tunisia
| | - Zouhair Tabka
- Research Laboratory (LR19ES09): Exercise Physiology and Pathophysiology - From the Integrated to the Molecular Biology, Medicine and Health, Faculty of Medicine of Sousse, University of Sousse, 4002, Sousse, Tunisia
| | - Oussama Tabka
- Research Laboratory (LR19ES09): Exercise Physiology and Pathophysiology - From the Integrated to the Molecular Biology, Medicine and Health, Faculty of Medicine of Sousse, University of Sousse, 4002, Sousse, Tunisia
| | - Monia Zaouali
- Research Laboratory (LR19ES09): Exercise Physiology and Pathophysiology - From the Integrated to the Molecular Biology, Medicine and Health, Faculty of Medicine of Sousse, University of Sousse, 4002, Sousse, Tunisia
| | - Karim Chahed
- Research Laboratory (LR19ES09): Exercise Physiology and Pathophysiology - From the Integrated to the Molecular Biology, Medicine and Health, Faculty of Medicine of Sousse, University of Sousse, 4002, Sousse, Tunisia
- Faculty of Sciences of Sfax, Sfax, Tunisia
| |
Collapse
|
7
|
Bordoloi D, Harsha C, Padmavathi G, Banik K, Sailo BL, Roy NK, Girisa S, Thakur KK, Devi AK, Chinnathambi A, Alahmadi TA, Alharbi SA, Shakibaei M, Kunnumakkara AB. Loss of TIPE3 reduced the proliferation, survival and migration of lung cancer cells through inactivation of Akt/mTOR, NF-κB, STAT-3 signaling cascade. Life Sci 2022; 293:120332. [PMID: 35041835 DOI: 10.1016/j.lfs.2022.120332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Lung cancer is the foremost cause of cancer related mortality among men and one of the most fatal cancers among women. Notably, the 5-year survival rate of lung cancer is very less; 5% in developing countries. This low survival rate can be attributed to factors like late stage diagnosis, rapid postoperative recurrences in the patients undergoing treatment and development of chemoresistance against different agents used for treating lung cancer. Therefore, in this study we evaluated the potential of a recently identified protein namely TIPE3 which is known as a transfer protein of lipid second messengers as a lung cancer biomarker. TIPE3 was found to be significantly upregulated in lung cancer tissues indicating its role in the positive regulation of lung cancer. Supporting this finding, knockout of TIPE3 was also found to reduce the proliferation, survival and migration of lung cancer cells and arrested the G2 phase of cell cycle through inactivation of Akt/mTOR, NF-κB, STAT-3 signaling. It is well evinced that tobacco is the major risk factor of lung cancer which affects both males and females. Therefore, this study also evaluated the involvement of TIPE3 in tobacco mediated lung carcinogenesis. Notably, this study shows for the first time that TIPE3 positively regulates tobacco induced proliferation, survival and migration of lung cancer through modulation of Akt/mTOR signaling. Thus, TIPE3 plays critical role in the pathogenesis of lung cancer and hence it can be specifically targeted to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Amrita Khwairakpam Devi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Saud University, [Medical City], King Khalid University Hospital, PO Box-2925, Riyadh 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
8
|
Adeleke GE, Adaramoye OA. Betulinic acid abates N-nitrosodimethylamine-induced changes in lipid metabolism, oxidative stress, and inflammation in the liver and kidney of Wistar rats. J Biochem Mol Toxicol 2021; 35:e22901. [PMID: 34472159 DOI: 10.1002/jbt.22901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 08/03/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
N-nitrosamines have been linked with cancer in humans due to their presence in drinking water and diets. This study evaluated the role of betulinic acid (BA) in abating oxidative stress, inflammation, and hyperlipidemia in rats treated with N-nitrosodimethylamine (NDMA). Twenty-four male rats were assigned into four equal groups. Group I served as the control, Group II received BA (25 mg/kg), Group III received NDMA (5 mg/kg) and, Group IV received BA (25 mg/kg) and NDMA (5 mg/kg). Results showed that the administration of NDMA significantly (p < 0.05) elevated malondialdehyde in the liver and kidney relative to controls. Activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase, and the level of glutathione were significantly (p < 0.05) decreased by NDMA, while treatment with BA elevated the activities of these enzymes in the liver and kidney. The BA lowered serum interleukin-6 and tumor necrosis factor-alpha levels against the NDMA effect. Furthermore, NDMA increased hepatic and renal triglyceride while phospholipids levels were decreased. NDMA significantly modulated the activities of drug-metabolizing enzymes (aniline hydroxylase, aminopyrine-N-demethylase, and uridyldiphosphoglucuronyltransferase), while BA was able to restore these enzymes to values close to controls. Histology revealed the presence of infiltration and fibroplasia in the liver, while cortical degeneration was noticed in the kidney in NDMA-administered rats. These lesions were reduced in the NDMA rats treated with BA. The findings suggest that BA improves NDMA-induced damage in the liver and kidney of rats through reactions that can be linked with antioxidant, anti-inflammatory, and lipid-lowering pathways.
Collapse
Affiliation(s)
- Gbadebo E Adeleke
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Oluwatosin A Adaramoye
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
9
|
Bordoloi D, Banik K, Vikkurthi R, Thakur KK, Padmavathi G, Sailo BL, Girisa S, Chinnathambi A, Alahmadi TA, Alharbi SA, Buhrmann C, Shakibaei M, Kunnumakkara AB. Inflection of Akt/mTOR/STAT-3 cascade in TNF-α induced protein 8 mediated human lung carcinogenesis. Life Sci 2020; 262:118475. [PMID: 32976884 DOI: 10.1016/j.lfs.2020.118475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer is the leading cause of cancer-related death across the globe. Despite the marked advances in detection and therapeutic approaches, management of lung cancer patients remains a major challenge to oncologists which can be mainly attributed to late stage diagnosis, tumor recurrence and chemoresistance. Therefore, to overthrow these limitations, there arises a vital need to develop effective biomarkers for the successful management of this aggressive cancer type. Notably, TNF-alpha induced protein 8 (TIPE), a nuclear factor-kappa B (NF-κB)-inducible, oncogenic molecule and cytoplasmic protein which is involved in the regulation of T lymphocyte-mediated immunity and different processes in tumor cells such as proliferation, cell death and evasion of growth suppressors, might serve as one such biomarker which would facilitate effective management of lung cancer. Expression studies revealed this protein to be significantly upregulated in different lung cancer types, pathological conditions, stages and grades of lung tumor compared to normal human lung tissues. In addition, knockout of TIPE led to the reduced proliferation, survival, invasion and migration of lung cancer cells. Furthermore, TIPE was found to function through modulation of Akt/mTOR/STAT-3 signaling cascade. This is the first report which shows the involvement of TIPE in tobacco induced lung carcinogenesis. It positively regulated nicotine, NNK, NNN, and BaP induced proliferation, survival and migration of lung cancer cells possibly via Akt/STAT-3 signaling. Thus, this protein possesses important role in the pathogenesis of lung tumor and hence it can be targeted for developing newer therapeutic interventions for the clinico-management of lung cancer.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Kishore Banik
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Saud University [Medical City], King Khalid University Hospital, PO Box-2925, Riyadh 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Constanze Buhrmann
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mehdi Shakibaei
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
10
|
Davies MJ, Birkett JW, Kotwa M, Tomlinson L, Woldetinsae R. The impact of cigarette/e-cigarette vapour on simulated pulmonary surfactant monolayers under physiologically relevant conditions. SURF INTERFACE ANAL 2017. [DOI: 10.1002/sia.6205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michael J. Davies
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Jason W. Birkett
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Mateusz Kotwa
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Lauren Tomlinson
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| | - Rezene Woldetinsae
- The School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| |
Collapse
|
11
|
Sivaprakasam C, Vijayakumar R, Arul M, Nachiappan V. Alteration of mitochondrial phospholipid due to the PLA 2 activation in rat brains under cadmium toxicity. Toxicol Res (Camb) 2016; 5:1680-1687. [PMID: 30090467 PMCID: PMC6062122 DOI: 10.1039/c6tx00201c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/12/2016] [Indexed: 12/21/2022] Open
Abstract
Cadmium (Cd) is a heavy metal that has received considerable environmental and occupational concern. Cd causes toxic effects due to its accumulation in a variety of tissues, including the kidney, liver and the nervous system (CNS); however, the exact mechanism is poorly understood. In the present study, we tried to explore the impact of acute cadmium exposure on rat brain phospholipids (PLs). Cd exposure significantly reduced PLs in a time dependent manner and the reduction was due to the activation of the Phospholipase A2 enzymes (sPLA2, cPLA2). The release of arachidonic acid from PLs increased during inflammatory conditions by PLA2s. The mRNA expression of cyclooxygenase2 (COX2) and subsequently the pro-inflammatory cytokines, namely, Interleukin 1 (IL-1) and IL-6, were up regulated; however, the expression of anti-inflammatory cytokine IL-10 was reduced in a time dependent manner. The expression of the Tumor necrosis factor alpha (TNF-α), Inducible nitric oxide synthase (iNOS) and Interferon gamma (INF-γ) also experienced increases in the expression. Likewise the mRNA expression of the pro-apoptotic factor, Bcl-2-associated X protein (Bax), was elevated, whereas anti-apoptosis B-cell lymphoma 2 (Bcl2) was down regulated. This present study might help to decipher the effects of cadmium toxicity on rat brain.
Collapse
Affiliation(s)
- Chinnarasu Sivaprakasam
- Biomembrane Lab , Department of Biochemistry , School of Life sciences , Bharathidasan University , Tiruchirappalli , Tamilnadu 24 , India . ; ; Tel: +91-431-2904866
| | - Rajendran Vijayakumar
- Biomembrane Lab , Department of Biochemistry , School of Life sciences , Bharathidasan University , Tiruchirappalli , Tamilnadu 24 , India . ; ; Tel: +91-431-2904866
| | - Mathivanan Arul
- Biomembrane Lab , Department of Biochemistry , School of Life sciences , Bharathidasan University , Tiruchirappalli , Tamilnadu 24 , India . ; ; Tel: +91-431-2904866
| | - Vasanthi Nachiappan
- Biomembrane Lab , Department of Biochemistry , School of Life sciences , Bharathidasan University , Tiruchirappalli , Tamilnadu 24 , India . ; ; Tel: +91-431-2904866
| |
Collapse
|
12
|
Sivaprakasam C, Nachiappan V. Modulatory effect of cadmium on the expression of phospholipase A2 and proinflammatory genes in rat testis. ENVIRONMENTAL TOXICOLOGY 2016; 31:1176-1184. [PMID: 25808797 DOI: 10.1002/tox.22124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/21/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
Cadmium (Cd) is a toxic metal that is hazardous to health, and its exposure showed a significant reduction in mitochondrial phospholipid function in the rat testes. Cd induction enhanced phospholipases (PLA2 s) activities, specifically the secretory PLA2 and cytosolic PLA2 . There was a reduction in mitochondrial membrane potential and significant decline in the respiratory complexes, which was confirmed by 2D blue native gel. The mRNA expression of cyclooxygenase and proinflammatory cytokine genes interleukin (IL)-1, IL-6, tumor necrosis factor-α, inducible nitric oxide synthase, and interferon-γ increased and that of anti-inflammatory cytokine IL-10 reduced with Cd exposure in a time-dependent manner. The gene expression of the proapoptotic factor Bax was elevated, and in parallel, the antiapoptotic factor Bcl2 was down-regulated. Hence, this study explored the testes under Cd toxicity and observed alterations in PLA2 s and mitochondrial membrane composition/function and further explored the impact of these alterations on proinflammation and apoptosis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1176-1184, 2016.
Collapse
Affiliation(s)
- Chinnarasu Sivaprakasam
- Biomembrane Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India
| | - Vasanthi Nachiappan
- Biomembrane Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India
| |
Collapse
|
13
|
Nunez K, Kay J, Krotow A, Tong M, Agarwal AR, Cadenas E, de la Monte SM. Cigarette Smoke-Induced Alterations in Frontal White Matter Lipid Profiles Demonstrated by MALDI-Imaging Mass Spectrometry: Relevance to Alzheimer's Disease. J Alzheimers Dis 2016; 51:151-63. [PMID: 26836183 PMCID: PMC5575809 DOI: 10.3233/jad-150916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Meta-analysis has shown that smokers have significantly increased risks for Alzheimer's disease (AD), and neuroimaging studies showed that smoking alters white matter (WM) structural integrity. OBJECTIVE Herein, we characterize the effects of cigarette smoke (CS) exposures and withdrawal on WM myelin lipid composition using matrix assisted laser desorption and ionization-imaging mass spectrometry (MALDI-IMS). METHODS Young adult male A/J mice were exposed to air (8 weeks; A8), CS (4 or 8 weeks; CS4, CS8), or CS8 followed by 2 weeks recovery (CS8 + R). Frontal lobe WM was examined for indices of lipid and protein oxidation and lipid profile alterations by MALDI-IMS. Lipid ions were identified by MS/MS with the LIPID MAPS prediction tools database. Inter-group comparisons were made using principal component analysis and R-generated heatmap. RESULTS CS increased lipid and protein adducts such that higher levels were present in CS8 compared with CS4 samples. CS8 + R reversed CS8 effects and normalized the levels of oxidative stress. MALDI-IMS demonstrated striking CS-associated alterations in WM lipid profiles characterized by either reductions or increases in phospholipids (phosphatidylinositol, phosphatidylserine, phosphatidylcholine, or phosphatidylethanolamine) and sphingolipids (sulfatides), and partial reversal of CS's inhibitory effects with recovery. The heatmap hierarchical dendrogram and PCA distinguished CS exposure, duration, and withdrawal effects on WM lipid profiles. CONCLUSION CS-mediated WM degeneration is associated with lipid peroxidation, protein oxidative injury, and alterations in myelin lipid composition, including shifts in phospholipids and sphingolipids needed for membrane integrity, plasticity, and intracellular signaling. Future goals are to delineate WM abnormalities in AD using MALDI-IMS, and couple the findings with MRI-mass spectroscopy to improve in vivo diagnostics and early detection of brain biochemical responses to treatment.
Collapse
Affiliation(s)
- Kavin Nunez
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Molecular Pharmacology, Physiology, and Biotechnology, Providence, RI, USA
| | - Jared Kay
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alexander Krotow
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Pathobiology Graduate Programs at Brown University, Providence, RI, USA
| | - Ming Tong
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Amit R. Agarwal
- The Department of Pharmacology Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Enrique Cadenas
- The Department of Pharmacology Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Suzanne M. de la Monte
- Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Divisions of Gastroenterology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Divisions of Neuropathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|