1
|
Ayalew H, Wang J, Wu S, Qiu K, Tekeste A, Xu C, Lamesgen D, Cao S, Qi G, Zhang H. Biophysiology of in ovo administered bioactive substances to improve gastrointestinal tract development, mucosal immunity, and microbiota in broiler chicks. Poult Sci 2023; 102:103130. [PMID: 37926011 PMCID: PMC10633051 DOI: 10.1016/j.psj.2023.103130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Early embryonic exogenous feeding of bioactive substances is a topic of interest in poultry production, potentially improving gastrointestinal tract (GIT) development, stimulating immunization, and maximizing the protection capability of newly hatched chicks. However, the biophysiological actions and effects of in ovo administered bioactive substances are inconsistent or not fully understood. Thus, this paper summarizes the functional effects of bioactive substances and their interaction merits to augment GIT development, the immune system, and microbial homeostasis in newly hatched chicks. Prebiotics, probiotics, and synbiotics are potential bioactive substances that have been administered in embryonic eggs. Their biological effects are enhanced by a variety of mechanisms, including the production of antimicrobial peptides and antibiotic responses, regulation of T lymphocyte numbers and immune-related genes in either up- or downregulation fashion, and enhancement of macrophage phagocytic capacity. These actions occur directly through the interaction with immune cell receptors, stimulation of endocytosis, and phagocytosis. The underlying mechanisms of bioactive substance activity are multifaceted, enhancing GIT development, and improving both the innate and adaptive immune systems. Thus summarizing these modes of action of prebiotics, probiotics and synbiotics can result in more informed decisions and also provides baseline for further research.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ayalsew Tekeste
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Changchun Xu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dessalegn Lamesgen
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sumei Cao
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Wassie T, Cheng B, Zhou T, Gao L, Lu Z, Wang J, Mulu B, Taye M, Wu X. Enteromorpha polysaccharide and yeast glycoprotein mixture improves growth, antioxidant activity, serum lipid profile and regulates lipid metabolism in broiler chickens. Poult Sci 2022; 101:102064. [PMID: 36055019 PMCID: PMC9445391 DOI: 10.1016/j.psj.2022.102064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
This study aimed to analyze the growth performance, antioxidant activity, serum lipid profile, meat quality, and lipid metabolism of broiler chickens fed mixtures containing Enteromorpha polysaccharide (EP) and yeast glycoprotein (YG). A total of 400 one-day-old broiler chickens were randomly divided into 4 treatment groups of 10 replicates with 10 birds each replicate. The dietary treatments consisted of the control group (fed basal diet), and diets supplemented with Enteromorpha polysaccharide (EP; 400 mg/kg), yeast glycoprotein (YG;400 mg/kg), and EP+YG (200 mg/kg EP + 200 mg/kg YG). Compared with the control group, EP+YG supplementation enhanced growth performance and significantly reduced (P < 0.05) serum total triglyceride (TG), cholesterol (CHOL), and low-density lipoprotein LDL levels, and increased high-density lipoprotein (HDL) levels. Besides, birds fed EP+YG supplemented diet exhibited higher (P < 0.05) serum catalase (CAT), total antioxidant capacity, superoxide dismutase (SOD), and lower malonaldehyde (MDA) activities, and upregulated expressions of related genes, such as nuclear factor-erythroid factor 2-related factor 2 (NRF2), SOD1, and glutathione peroxidase 4 (GPX4) in the liver and intestinal tissues than the control group. Interestingly, higher (P < 0.05) serum SOD and lower MDA contents were observed in the EP+YG group than in either EP or YG group, suggesting a synergetic effect. Breast meat from EP+YG supplemented group had significantly higher redness value (a*), and lower pH24, total saturated fatty acid profiles, C14:0, C16:0, C18:0 fatty acid, atherogenic index, and thrombogenicity index than meat from the control group (P < 0.05). Furthermore, the mRNA expressions of fatty acid synthesis genes were downregulated (P < 0.05), whereas lipid β-oxidation-related genes were upregulated (P < 0.05) in the liver of the EP+YG supplemented group than in the control group. Overall, our data suggest that dietary EP+YG inclusion may have a synergistic effect, and therefore improve growth performance, regulate serum biochemical indexes, enhance antioxidant activity, and modulate lipid metabolism in broilers, indicating that it is a potential feed additive for chickens.
Collapse
Affiliation(s)
- Teketay Wassie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China
| | - Bei Cheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China
| | - Tiantian Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China
| | - Lumin Gao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China
| | - Zhuang Lu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China
| | - Jianlin Wang
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, Yichang, 443003, China
| | - Bekalu Mulu
- Animal Production and Technology Department, College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Mengistie Taye
- Animal Production and Technology Department, College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, 410125, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
3
|
Vlassopoulou M, Paschalidis N, Savvides AL, Saxami G, Mitsou EK, Kerezoudi EN, Koutrotsios G, Zervakis GI, Georgiadis P, Kyriacou A, Pletsa V. Immunomodulating Activity of Pleurotus eryngii Mushrooms Following Their In Vitro Fermentation by Human Fecal Microbiota. J Fungi (Basel) 2022; 8:jof8040329. [PMID: 35448559 PMCID: PMC9028658 DOI: 10.3390/jof8040329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have revealed the crucial role of several edible mushrooms and fungal compounds, mainly polysaccharides, in human health and disease. The investigation of the immunomodulating effects of mushroom polysaccharides, especially β-glucans, and the link between their anticancer and immunomodulatory properties with their possible prebiotic activity on gut micro-organisms has been the subject of intense research over the last decade. We investigated the immunomodulating effects of Pleurotus eryngii mushrooms, selected due to their high β-glucan content, strong lactogenic effect, and potent geno-protective properties, following in vitro fermentation by fecal inocula from healthy elderly volunteers (>60 years old). The immunomodulating properties of the fermentation supernatants (FSs) were initially investigated in U937-derived human macrophages. Gene expression as well as pro- (TNF-α, IL-1β) and anti-inflammatory cytokines (IL-10, IL-1Rα) were assessed and correlated with the fermentation process. The presence of P. eryngii in the fermentation process led to modifications in immune response, as indicated by the altered gene expression and levels of the cytokines examined, a finding consistent for all volunteers. The FSs immunomodulating effect on the volunteers’ peripheral blood mononuclear cells (PBMCs) was verified through the use of cytometry by time of flight (CyTOF) analysis.
Collapse
Affiliation(s)
- Marigoula Vlassopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (M.V.); (P.G.)
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (G.S.); (E.K.M.); (E.N.K.); (A.K.)
| | - Nikolaos Paschalidis
- CyTOF Laboratory, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece;
| | - Alexandros L. Savvides
- Microbiology Group, Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15781 Athens, Greece;
| | - Georgia Saxami
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (G.S.); (E.K.M.); (E.N.K.); (A.K.)
| | - Evdokia K. Mitsou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (G.S.); (E.K.M.); (E.N.K.); (A.K.)
| | - Evangelia N. Kerezoudi
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (G.S.); (E.K.M.); (E.N.K.); (A.K.)
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Georgios Koutrotsios
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (G.K.); (G.I.Z.)
| | - Georgios I. Zervakis
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (G.K.); (G.I.Z.)
| | - Panagiotis Georgiadis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (M.V.); (P.G.)
| | - Adamantini Kyriacou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (G.S.); (E.K.M.); (E.N.K.); (A.K.)
| | - Vasiliki Pletsa
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (M.V.); (P.G.)
- Correspondence: ; Tel.: +30-210-727-3754
| |
Collapse
|
4
|
Schwartz B, Vetvicka V. Review: β-glucans as Effective Antibiotic Alternatives in Poultry. Molecules 2021; 26:molecules26123560. [PMID: 34200882 PMCID: PMC8230556 DOI: 10.3390/molecules26123560] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The occurrence of microbial challenges in commercial poultry farming causes significant economic losses. Antibiotics have been used to control diseases involving bacterial infection in poultry. As the incidence of antibiotic resistance turns out to be a serious problem, there is increased pressure on producers to reduce antibiotic use. With the reduced availability of antibiotics, poultry producers are looking for feed additives to stimulate the immune system of the chicken to resist microbial infection. Some β-glucans have been shown to improve gut health, to increase the flow of new immunocytes, increase macrophage function, stimulate phagocytosis, affect intestinal morphology, enhance goblet cell number and mucin-2 production, induce the increased expression of intestinal tight-junctions, and function as effective anti-inflammatory immunomodulators in poultry. As a result, β-glucans may provide a new tool for producers trying to reduce or eliminate the use of antibiotics in fowl diets. The specific activity of each β-glucan subtype still needs to be investigated. Upon knowledge, optimal β-glucan mixtures may be implemented in order to obtain optimal growth performance, exert anti-inflammatory and immunomodulatory activity, and optimized intestinal morphology and histology responses in poultry. This review provides an extensive overview of the current use of β glucans as additives and putative use as antibiotic alternative in poultry.
Collapse
Affiliation(s)
- Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
- Correspondence:
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY 40202, USA;
| |
Collapse
|
5
|
Fan T, Xie Y, Ma W. Research progress on the protection and detoxification of phytochemicals against aflatoxin B 1-Induced liver toxicity. Toxicon 2021; 195:58-68. [PMID: 33716068 DOI: 10.1016/j.toxicon.2021.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Aflatoxin B1 (AFB1) is a potent hepatotoxic toxin, which can cause hepatitis, cirrhosis, and liver immunological damage. It has been involved in the etiology of human hepatocellular carcinoma. AFB1 can cause oxidative stress in the body's metabolism process, and then cause cytotoxicity, such as apoptosis and DNA damage. Scientific research has discovered that phytochemicals can induce the detoxification pathway of AFB1 through its biotransformation, thereby reducing the damage of AFB1 to the human body. In clinical treatment, certain phytochemicals have been effectively used in the treatment of liver injury due to the advantages of multiple targets, multiple pathways, low toxicity and side effects. Therefore, the article summarizes the toxic mechanism of AFB1-induced hepatoxicity, and the related research progress of phytochemicals for preventing and treating its cytotoxicity and genotoxicity. We also look forward to the existing problems and application prospects of phytochemicals in the pharmaceutical industry, in order to provide theoretical reference for the prevention and treatment of AFB1 poisoning in future research work.
Collapse
Affiliation(s)
- Tingting Fan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Weibin Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
6
|
Holanda DM, Kim SW. Mycotoxin Occurrence, Toxicity, and Detoxifying Agents in Pig Production with an Emphasis on Deoxynivalenol. Toxins (Basel) 2021; 13:toxins13020171. [PMID: 33672250 PMCID: PMC7927007 DOI: 10.3390/toxins13020171] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
This review aimed to investigate the occurrence of mycotoxins, their toxic effects, and the detoxifying agents discussed in scientific publications that are related to pig production. Mycotoxins that are of major interest are aflatoxins and Fusarium toxins, such as deoxynivalenol and fumonisins, because of their elevated frequency at a global scale and high occurrence in corn, which is the main feedstuff in pig diets. The toxic effects of aflatoxins, deoxynivalenol, and fumonisins include immune modulation, disruption of intestinal barrier function, and cytotoxicity leading to cell death, which all result in impaired pig performance. Feed additives, such as mycotoxin-detoxifying agents, that are currently available often combine organic and inorganic sources to enhance their adsorbability, immune stimulation, or ability to render mycotoxins less toxic. In summary, mycotoxins present challenges to pig production globally because of their increasing occurrences in recent years and their toxic effects impairing the health and growth of pigs. Effective mycotoxin-detoxifying agents must be used to boost pig health and performance and to improve the sustainable use of crops.
Collapse
|
7
|
Holanda DM, Yiannikouris A, Kim SW. Investigation of the Efficacy of a Postbiotic Yeast Cell Wall-Based Blend on Newly-Weaned Pigs under a Dietary Challenge of Multiple Mycotoxins with Emphasis on Deoxynivalenol. Toxins (Basel) 2020; 12:toxins12080504. [PMID: 32781569 PMCID: PMC7472238 DOI: 10.3390/toxins12080504] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Pigs are highly susceptible to mycotoxins. This study investigated the effects of a postbiotic yeast cell wall-based blend (PYCW; Nicholasville, KY, USA) on growth and health of newly-weaned pigs under dietary challenge of multiple mycotoxins. Forty-eight newly-weaned pigs (21 d old) were individually allotted to four dietary treatments, based on a three phase-feeding, in a randomized complete block design (sex; initial BW) with two factors for 36 d. Two factors were dietary mycotoxins (deoxynivalenol: 2000 μg/kg supplemented in three phases; and aflatoxin: 200 μg/kg supplemented only in phase 3) and PYCW (0.2%). Growth performance (weekly), blood serum (d 34), and jejunal mucosa immune and oxidative stress markers (d 36) data were analyzed using MIXED procedure of SAS. Mycotoxins reduced (p < 0.05) average daily feed intake (ADFI) and average daily gain (ADG) during the entire period whereas PYCW did not affect growth performance. Mycotoxins reduced (p < 0.05) serum protein, albumin, creatinine, and alanine aminotransferase whereas PYCW decreased (p < 0.05) serum creatine phosphokinase. Neither mycotoxins nor PYCW affected pro-inflammatory cytokines and oxidative damage markers in the jejunal mucosa. No interaction was observed indicating that PYCW improved hepatic enzymes regardless of mycotoxin challenge. In conclusion, deoxynivalenol (2000 μg/kg, for 7 to 25 kg body weight) and aflatoxin B1 (200 μg/kg, for 16 to 25 kg body weight) impaired growth performance and nutrient digestibility of newly-weaned pigs, whereas PYCW could partially improve health of pigs regardless of mycotoxin challenge.
Collapse
Affiliation(s)
| | - Alexandros Yiannikouris
- Alltech Inc., Center for Animal Nutrigenomics and Applied Animal Nutrition, 3031 Catnip Hill Road, Nicholasville, KY 40356, USA;
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
- Correspondence:
| |
Collapse
|
8
|
Genoprotective Properties and Metabolites of β-Glucan-Rich Edible Mushrooms Following Their In Vitro Fermentation by Human Faecal Microbiota. Molecules 2020; 25:molecules25153554. [PMID: 32759726 PMCID: PMC7435999 DOI: 10.3390/molecules25153554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
A variety of bioactive compounds, constituents of edible mushrooms, in particular β-glucans, i.e., a group of β-d-glucose polysaccharides abundant in the fungal cell walls, have been linked to immunomodulating, anticancer and prebiotic activities. The aim of the study was the investigation of the genoprotective effects of edible mushrooms produced by Pleurotus eryngii, Pleurotus ostreatus and Cyclocybe cylindracea (Basidiomycota). Mushrooms from selected strains of the species mentioned above were fermented in vitro using faecal inocula from healthy volunteers. The cytotoxic and anti-genotoxic properties of the fermentation supernatants (FSs) were investigated in Caco-2 human colon adenocarcinoma cells. The FSs were cytotoxic in a dose-dependent manner. Non-cytotoxic concentrations were used for the genotoxicity studies, which revealed that mushrooms’ FSs have the ability to protect Caco-2 cells against tert-butyl hydroperoxide (t-BOOH), a known genotoxic agent. Their global metabolic profiling was assessed by 1H-NMR spectroscopy. A total of 37 metabolites were identified with the use of two-dimensional (2D) homo- and hetero-nuclear NMR experiments. Multivariate data analysis monitored the metabolic variability of gut microbiota and probed to biomarkers potentially associated with the health-promoting effects of edible mushrooms.
Collapse
|
9
|
Bai J, Ren Y, Li Y, Fan M, Qian H, Wang L, Wu G, Zhang H, Qi X, Xu M, Rao Z. Physiological functionalities and mechanisms of β-glucans. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Gajski G, Žegura B, Ladeira C, Novak M, Sramkova M, Pourrut B, Del Bo' C, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales - (Part 2 Vertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:130-164. [PMID: 31416573 DOI: 10.1016/j.mrrev.2019.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Abstract
The comet assay has become one of the methods of choice for the evaluation and measurement of DNA damage. It is sensitive, quick to perform and relatively affordable for the evaluation of DNA damage and repair at the level of individual cells. The comet assay can be applied to virtually any cell type derived from different organs and tissues. Even though the comet assay is predominantly used on human cells, the application of the assay for the evaluation of DNA damage in yeast, plant and animal cells is also quite high, especially in terms of biomonitoring. The present extensive overview on the usage of the comet assay in animal models will cover both terrestrial and water environments. The first part of the review was focused on studies describing the comet assay applied in invertebrates. The second part of the review, (Part 2) will discuss the application of the comet assay in vertebrates covering cyclostomata, fishes, amphibians, reptiles, birds and mammals, in addition to chordates that are regarded as a transitional form towards vertebrates. Besides numerous vertebrate species, the assay is also performed on a range of cells, which includes blood, liver, kidney, brain, gill, bone marrow and sperm cells. These cells are readily used for the evaluation of a wide spectrum of genotoxic agents both in vitro and in vivo. Moreover, the use of vertebrate models and their role in environmental biomonitoring will also be discussed as well as the comparison of the use of the comet assay in vertebrate and human models in line with ethical principles. Although the comet assay in vertebrates is most commonly used in laboratory animals such as mice, rats and lately zebrafish, this paper will only briefly review its use regarding laboratory animal models and rather give special emphasis to the increasing usage of the assay in domestic and wildlife animals as well as in various ecotoxicological studies.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Carina Ladeira
- H&TRC - Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal; Centro de Investigação e Estudos em Saúde de Publica, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Monika Sramkova
- Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bertrand Pourrut
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Cristian Del Bo'
- DeFENS-Division of Human Nutrition, University of Milan, Milan, Italy
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Solange Costa
- Environmental Health Department, National Health Institute Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry-MILK, NILU - Norwegian Institute for Air Research, Kjeller, Norway
| | - Gunnar Brunborg
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway
| | - Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Limaye A, Yu RC, Chou CC, Liu JR, Cheng KC. Protective and Detoxifying Effects Conferred by Dietary Selenium and Curcumin against AFB1-Mediated Toxicity in Livestock: A Review. Toxins (Basel) 2018; 10:E25. [PMID: 29301315 PMCID: PMC5793112 DOI: 10.3390/toxins10010025] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/28/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin B1 (AFB1), among other aflatoxins of the aflatoxin family, is the most carcinogenic and hazardous mycotoxin to animals and human beings with very high potency leading to aflatoxicosis. Selenium is an essential trace mineral possessing powerful antioxidant functions. Selenium is widely reported as an effective antioxidant against aflatoxicosis. By preventing oxidative liver damage, suppressing pro-apoptotic proteins and improving immune status in AFB1 affected animals; selenium confers specific protection against AFB1 toxicity. Meticulous supplementation of animal feed by elemental selenium in the organic and inorganic forms has proven to be effective to ameliorate AFB1 toxicity. Curcumin is another dietary agent of importance in tackling aflatoxicosis. Curcumin is one of the major active ingredients in the tubers of a spice Curcuma longa L., a widely reported antioxidant, anticarcinogenic agent with reported protective potential against aflatoxin-mediated liver damage. Curcumin restricts the aflatoxigenic potential of Aspergillusflavus. Curcumin inhibits cytochrome P450 isoenzymes, particularly CYP2A6 isoform; thereby reducing the formation of AFB1-8, 9-epoxide and other toxic metabolites causing aflatoxicosis. In this review, we have briefly reviewed important aflatoxicosis symptoms among animals. With the main focus on curcumin and selenium, we have reviewed their underlying protective mechanisms in different animals along with their extraction and production methods for feed applications.
Collapse
Affiliation(s)
- Aniket Limaye
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| | - Roch-Chui Yu
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Cheng-Chun Chou
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| | - Je-Ruei Liu
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
12
|
Izquierdo-Vega JA, Morales-González JA, SánchezGutiérrez M, Betanzos-Cabrera G, Sosa-Delgado SM, Sumaya-Martínez MT, Morales-González Á, Paniagua-Pérez R, Madrigal-Bujaidar E, Madrigal-Santillán E. Evidence of Some Natural Products with Antigenotoxic Effects. Part 1: Fruits and Polysaccharides. Nutrients 2017; 9:nu9020102. [PMID: 28157162 PMCID: PMC5331533 DOI: 10.3390/nu9020102] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of deaths worldwide. The agents capable of causing damage to genetic material are known as genotoxins and, according to their mode of action, are classified into mutagens, carcinogens or teratogens. Genotoxins are involved in the pathogenesis of several chronic degenerative diseases including hepatic, neurodegenerative and cardiovascular disorders, diabetes, arthritis, cancer, chronic inflammation and ageing. In recent decades, researchers have found novel bioactive phytocompounds able to counteract the effects of physical and chemical mutagens. Several studies have shown potential antigenotoxicity in a variety of fruits. In this review (Part 1), we present an overview of research conducted on some fruits (grapefruit, cranberries, pomegranate, guava, pineapple, and mango) which are frequentl consumed by humans, as well as the analysis of some phytochemicals extracted from fruits and yeasts which have demonstrated antigenotoxic capacity in various tests, including the Ames assay, sister chromatid exchange, chromosomal aberrations, micronucleus and comet assay.
Collapse
Affiliation(s)
- Jeannett Alejandra Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hidalgo, México.
| | - José Antonio Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Plan de San Luis y Díaz Mirón s/n, México D.F. 11340, México.
| | - Manuel SánchezGutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hidalgo, México.
| | - Gabriel Betanzos-Cabrera
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hidalgo, México.
| | - Sara M Sosa-Delgado
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Plan de San Luis y Díaz Mirón s/n, México D.F. 11340, México.
| | - María Teresa Sumaya-Martínez
- Secretaría de Investigación y Estudios de Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo. Boulevard Tepic-Xalisco s/n, Tepic 28000, Nayarit, México.
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad A. López Mateos, Av. Juan de Dios Bátiz. Col., Lindavista, México D.F. 07738, Mexico.
| | - Rogelio Paniagua-Pérez
- Laboratorio de Bioquímica Muscular, Instituto Nacional de Rehabilitación, Av. México-Xochimilco. Col., Arenal de Guadalupe, México D.F. 14389, México.
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Unidad A. López-Mateos, Av. Wilfrido Massieu s/n, Lindavista, México D.F. 07738, México.
| | - Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Plan de San Luis y Díaz Mirón s/n, México D.F. 11340, México.
| |
Collapse
|
13
|
In vitro protective effects of botryosphaeran, a (1→3;1→6)-β-d-glucan, against mutagens in normal and tumor rodent cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 814:29-36. [PMID: 28137365 DOI: 10.1016/j.mrgentox.2016.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/16/2022]
Abstract
Botryosphaeran (BOT) is an exocellular β-d-glucan (carbohydrate biopolymer) of the (1→3;1→6)-linked type produced by Botryosphaeria rhodina MAMB-05. The cytotoxic, mutagenic, genotoxic, and protective effects of this substance were evaluated in Chinese hamster lung fibroblasts (V79) and rat hepatocarcinoma cells (HTC) by the micronucleus test (MN) and the comet assay. BOT was not genotoxic in either cell line; it decreased the clastogenic effects of doxorubicin, H2O2, and benzo[a]pyrene. These results indicate that BOT may have potential as a therapeutic agent.
Collapse
|
14
|
Wang ZJ, Xie JH, Nie SP, Xie MY. Review on cell models to evaluate the potential antioxidant activity of polysaccharides. Food Funct 2017; 8:915-926. [DOI: 10.1039/c6fo01315e] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Owing to various health functions, natural polysaccharides are becoming a kind of popular dietary nutritional supplement.
Collapse
Affiliation(s)
- Zhi-Jun Wang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Jian-Hua Xie
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
15
|
Liu T, Ma Q, Zhao L, Jia R, Zhang J, Ji C, Wang X. Protective Effects of Sporoderm-Broken Spores of Ganderma lucidum on Growth Performance, Antioxidant Capacity and Immune Function of Broiler Chickens Exposed to Low Level of Aflatoxin B₁. Toxins (Basel) 2016; 8:toxins8100278. [PMID: 27669305 PMCID: PMC5086638 DOI: 10.3390/toxins8100278] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/14/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022] Open
Abstract
This study was conducted to investigate the toxic effects of aflatoxin B₁ (AFB₁) and evaluate the effects of sporoderm-broken spores of Ganoderma lucidum (SSGL) in relieving aflatoxicosis in broilers. A total of 300 one-day-old male Arbor Acre broiler chickens were randomly divided into four dietary treatments; the treatment diets were: Control (a basal diet containing normal peanut meal); AFB₁ (the basal diet containing AFB₁-contaminated peanut meal); SSGL (basal diet with 200 mg/kg of SSGL); AFB₁+SSGL (supplementation of 200 mg/kg of SSGL in AFB₁ diet). The contents of AFB₁ in AFB₁ and AFB₁+SSGL diets were 25.0 μg/kg in the starter period and 22.5 μg/kg in the finisher period. The results showed that diet contaminated with a low level of AFB₁ significantly decreased (p < 0.05) the average daily feed intake and average daily gain during the entire experiment and reduced (p < 0.05) serum contents of total protein IgA and IgG. Furthermore, a dietary low level of AFB₁ not only increased (p < 0.05) levels of hydrogen peroxide and lipid peroxidation, but also decreased (p < 0.05) total antioxidant capability, catalase, glutathione peroxidase, and hydroxyl radical scavenger activity in the liver and spleen of broilers. Moreover, the addition of SSGL to AFB₁-contaminated diet counteracted these negative effects, indicating that SSGL has a protective effect against aflatoxicosis.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ru Jia
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xinyue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Bakheet SA, Attia SM, Alwetaid MY, Ansari MA, Zoheir KM, Nadeem A, Al-Shabanah OA, Al-Harbi MM, Ahmad SF. β-1,3-Glucan reverses aflatoxin B1-mediated suppression of immune responses in mice. Life Sci 2016; 152:1-13. [DOI: 10.1016/j.lfs.2016.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/05/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
|
17
|
Lin HC, Lin JY. Immune Cell-Conditioned Media Suppress Prostate Cancer PC-3 Cell Growth Correlating With Decreased Proinflammatory/Anti-inflammatory Cytokine Ratios in the Media Using 5 Selected Crude Polysaccharides. Integr Cancer Ther 2016; 15:NP13-NP25. [PMID: 27130724 PMCID: PMC5739154 DOI: 10.1177/1534735415627923] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/16/2015] [Accepted: 12/12/2015] [Indexed: 12/12/2022] Open
Abstract
Five different crude polysaccharides from guava seed (GSPS), bitter buckwheat (BBPS), common buckwheat (CBPS), red Formosa lambsquarters (RFLPS), and yellow Formosa lambsquarters (YFLPS) were isolated to treat human prostate cancer PC-3 cells via direct action or tumor immunotherapy. The splenocyte- and macrophage-conditioned media (SCM and MCM) were prepared using individual selected polysaccharides, and then SCM or MCM was further collected to treat PC-3 cells. The relationship between PC-3 cell growth and Th1/Th2 cytokines in SCM as well as proinflammatory/anti-inflammatory cytokine secretion profiles in MCM were delineated. The results showed that all 5 selected polysaccharides did not significantly inhibit PC-3 cell growth via direct action. However, SCM or MCM cultured in the absence or presence of 5 selected polysaccharides significantly (P < .05) inhibited PC-3 cell growth. MCM cultured with 5 polysaccharides dose dependently enhanced their inhibitory effects on the viabilities of PC-3 cells than those cultured without polysaccharides. There was a significant (P < .05) negative correlation between PC-3 cell viabilities and (interleukin [IL]-6 + tumor necrosis factor [TNF]-α)/IL-10 level ratios in the corresponding MCM, implying that macrophages suppress PC-3 cell growth through decreasing secretion ratios of proinflammatory/anti-inflammatory cytokines in a tumor microenvironment.
Collapse
Affiliation(s)
| | - Jin-Yuarn Lin
- National Chung Hsing University, Taiwan, Republic of China
| |
Collapse
|
18
|
Turunen KT, Pletsa V, Georgiadis P, Triantafillidis JK, Karamanolis D, Kyriacou A. Impact of β-glucan on the Fecal Water Genotoxicity of Polypectomized Patients. Nutr Cancer 2016; 68:560-7. [DOI: 10.1080/01635581.2016.1156713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Hao S, Hu J, Song S, Huang D, Xu H, Qian G, Gan F, Huang K. Selenium Alleviates Aflatoxin B₁-Induced Immune Toxicity through Improving Glutathione Peroxidase 1 and Selenoprotein S Expression in Primary Porcine Splenocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1385-1393. [PMID: 26806088 DOI: 10.1021/acs.jafc.5b05621] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Selenium (Se) is generally known as an essential micronutrient and antioxidant for humans and animals. Aflatoxin B1 (AFB1) is a frequent contaminant of food and feed, causing immune toxicity and hepatotoxicity. Little has been done about the mechanisms of how Se protects against AFB1-induced immune toxicity. The aim of this present study is to investigate the protective effects of Se against AFB1 and the underlying mechanisms. The primary splenocytes isolated from healthy pigs were stimulated by anti-pig-CD3 monoclonal antibodies and treated by various concentrations of different Se forms and AFB1. The results showed that Se supplementation alleviated the immune toxicity of AFB1 in a dose-dependent manner, as demonstrated by increasing T-cell proliferation and interleukin-2 production. Addition of buthionine sulfoximine abrogated the protective effects of SeMet against AFB1. SeMet enhanced mRNA and protein expression of glutathione peroxidase 1 (GPx1), selenoprotein S (SelS), and thioredoxin reductase 1 without and with AFB1 treatments. Furthermore, knockdown of GPx1 and SelS by GPx1-specific siRNA and SelS-specific siRNA diminished the protective effects of SeMet against AFB1-induced immune toxicity. It is concluded that SeMet diminishes AFB1-induced immune toxicity through increasing antioxidant ability and improving GPx1 and SelS expression in splenocytes. This study suggests that organic selenium may become a promising supplementation to protect humans and animals against the decline in immunity caused by AFB1.
Collapse
Affiliation(s)
- Shu Hao
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, Jiangsu Province, China
| | - Junfa Hu
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, Jiangsu Province, China
| | - Suquan Song
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, Jiangsu Province, China
| | - Da Huang
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, Jiangsu Province, China
| | - Haibing Xu
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, Jiangsu Province, China
| | - Gang Qian
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, Jiangsu Province, China
| | - Fang Gan
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, Jiangsu Province, China
| |
Collapse
|