1
|
Thomson KB, Khalid SI, Sabherwal N, Heiferman MJ. Association Between Tobacco Smoking and the Development of Diabetic Macular Edema. JOURNAL OF VITREORETINAL DISEASES 2024:24741264241269479. [PMID: 39554620 PMCID: PMC11562456 DOI: 10.1177/24741264241269479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Introduction: To explore the effect of cigarette smoking on the risk for developing diabetic macular edema (DME) among patients with diabetes. Methods: This retrospective exactly-matched cohort study used claims data for patients from all 50 states in the United States from 2010 through 2020. Patients with an initial diagnosis of diabetes were stratified into 3 cohorts as follows: active smokers, never smokers, and former smokers. After exact matching based on demographics and comorbidities, Kaplan-Meier survival functions for the 3 cohorts were compared using pairwise log-rank tests. Results: After matching, there were 42 298 patients in each cohort. Over 6 years of follow-up, the cumulative risk for DME was significantly higher among never smokers (1.18%) than among active smokers (0.88%) and former smokers (0.90%) (both P < .001). Conclusions: Among patients with diabetes, smoking may decrease the risk for developing DME. Although the harms of smoking far outweigh any potential protective benefits, further investigation into the mechanisms behind these findings has potential to uncover new therapeutic targets.
Collapse
Affiliation(s)
- Kyle B Thomson
- Office of Medical Education, Chicago Medical School, North Chicago, IL, USA
| | - Syed I Khalid
- Department of Neurosurgery, University of Illinois Chicago, Chicago, IL, USA
| | - Naryan Sabherwal
- Department of Ophthalmology, Rush University Medical Center, Chicago, IL, USA
| | - Michael J Heiferman
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Mellor J, Jeyam A, Beulens JW, Bhandari S, Broadhead G, Chew E, Fickweiler W, van der Heijden A, Gordin D, Simó R, Snell-Bergeon J, Tynjälä A, Colhoun H. Role of Systemic Factors in Improving the Prognosis of Diabetic Retinal Disease and Predicting Response to Diabetic Retinopathy Treatment. OPHTHALMOLOGY SCIENCE 2024; 4:100494. [PMID: 38694495 PMCID: PMC11061755 DOI: 10.1016/j.xops.2024.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 05/04/2024]
Abstract
Topic To review clinical evidence on systemic factors that might be relevant to update diabetic retinal disease (DRD) staging systems, including prediction of DRD onset, progression, and response to treatment. Clinical relevance Systemic factors may improve new staging systems for DRD to better assess risk of disease worsening and predict response to therapy. Methods The Systemic Health Working Group of the Mary Tyler Moore Vision Initiative reviewed systemic factors individually and in multivariate models for prediction of DRD onset or progression (i.e., prognosis) or response to treatments (prediction). Results There was consistent evidence for associations of longer diabetes duration, higher glycosylated hemoglobin (HbA1c), and male sex with DRD onset and progression. There is strong trial evidence for the effect of reducing HbA1c and reducing DRD progression. There is strong evidence that higher blood pressure (BP) is a risk factor for DRD incidence and for progression. Pregnancy has been consistently reported to be associated with worsening of DRD but recent studies reflecting modern care standards are lacking. In studies examining multivariate prognostic models of DRD onset, HbA1c and diabetes duration were consistently retained as significant predictors of DRD onset. There was evidence of associations of BP and sex with DRD onset. In multivariate prognostic models examining DRD progression, retinal measures were consistently found to be a significant predictor of DRD with little evidence of any useful marginal increment in prognostic information with the inclusion of systemic risk factor data apart from retinal image data in multivariate models. For predicting the impact of treatment, although there are small studies that quantify prognostic information based on imaging data alone or systemic factors alone, there are currently no large studies that quantify marginal prognostic information within a multivariate model, including both imaging and systemic factors. Conclusion With standard imaging techniques and ways of processing images rapidly evolving, an international network of centers is needed to routinely capture systemic health factors simultaneously to retinal images so that gains in prediction increment may be precisely quantified to determine the usefulness of various health factors in the prognosis of DRD and prediction of response to treatment. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Joe Mellor
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Anita Jeyam
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Crewe Road, Edinburgh, Scotland
| | - Joline W.J. Beulens
- Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Sanjeeb Bhandari
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Geoffrey Broadhead
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Emily Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Ward Fickweiler
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Amber van der Heijden
- Department of General Practice, Amsterdam Public Health Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Daniel Gordin
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Department of Nephrology, Helsinki University Hospital, University of Helsinki, Finland
| | - Rafael Simó
- Endocrinology & Nutrition, Institut de Recerca Hospital Universitari Vall d’Hebron (VHIR), Barcelona, Spain
| | - Janet Snell-Bergeon
- Clinical Epidemiology Division, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Colorado
| | - Anniina Tynjälä
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Department of Nephrology, Helsinki University Hospital, University of Helsinki, Finland
| | - Helen Colhoun
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Crewe Road, Edinburgh, Scotland
| |
Collapse
|
3
|
Hu Y, Wei T, Gao S, Gao N, Chen L, Cheng Q. CD200R promotes high glucose-induced oxidative stress and damage in human retinal pigment epithelial cells by activating the mTOR signaling pathway. Tissue Cell 2024; 88:102381. [PMID: 38692160 DOI: 10.1016/j.tice.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
Diabetic retinopathy (DR) is established as the primary cause of visual impairment and preventable blindness, posing significant social and economic burdens on healthcare systems worldwide. Oxidative stress has been identified as a major contributor to DR, yet the precise role of the transmembrane glycoprotein CD200R in this context remains elusive. We studied human retinal pigment epithelia ARPE-19 cells to investigate the role of CD200R in high-glucose (HG) induced oxidative stress. Under HG conditions, we found a significant increase in CD200R expression in a time-dependent pattern. Conversely, knockdown of CD200R effectively alleviated oxidative stress and restored cell viability in HG-treated ARPE-19 cells, a phenomenon corroborated by the addition of a reactive oxygen species (ROS) scavenger. Exploration of the AKT/mTOR signaling pathway confirmed its mediating role regarding CD200R knockdown suppression of the expression of key proteins induced by HG conditions. Additionally, we found that the inhibition of mTOR signaling with Rapamycin effectively countered HG-induced oxidative stress in ARPE-19 cells, suggesting a promising therapeutic target against oxidative stress in the context of DR. This study establishes the crucial role of CD200R in HG-induced oxidative stress and identifies potential therapeutic avenues for the treatment of DR.
Collapse
Affiliation(s)
- Yaguang Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi Province 710061, PR China
| | - Ting Wei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi Province 710061, PR China
| | - Shan Gao
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi Province 710061, PR China
| | - Ning Gao
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi Province 710061, PR China
| | - Li Chen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi Province 710061, PR China
| | - Qiaochu Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi Province 710061, PR China.
| |
Collapse
|
4
|
Maugeri G, D’Amico AG, Federico C, Saccone S, D’Agata V, Musumeci G. Moderate Physical Activity Increases the Expression of ADNP in Rat Brain. Int J Mol Sci 2024; 25:4382. [PMID: 38673966 PMCID: PMC11050439 DOI: 10.3390/ijms25084382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) is a neuroprotective protein essential for embryonic development, proper brain development, and neuronal plasticity. Its mutation causes the autism-like ADNP syndrome (also called the Helsmoortel-Van der Aa syndrome), characterized by neural developmental disorders and motor dysfunctions. Similar to the ADNP syndrome, the ADNP haploinsufficient mouse shows low synapse density, leading to motor and cognitive ability delays. Moderate physical activity (PA) has several neuroprotective and cognitive benefits, promoting neuronal survival, differentiation, neurogenesis, and plasticity. Until now, no study has investigated the effect of moderate exercise on ADNP expression and distribution in the rat brain. The aim of the current investigation was to study the effects of moderate exercise on the ADNP expression and neuronal activation measured by the microtubule protein β-Tubulin III. In pursuit of this objective, twenty-four rats were selected and evenly distributed into two categories: sedentary control rats and rats exposed to moderate physical activity on a treadmill over a span of 12 weeks. Our results showed that moderate PA increases the expression of ADNP and β-Tubulin III in the dentate gyrus (DG) hippocampal region and cerebellum. Moreover, we found a co-localization of ADNP and β-Tubulin III in both DG and cerebellum, suggesting a direct association of ADNP with adult neuronal activation induced by moderate PA.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (G.M.)
| | | | - Concetta Federico
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, 95123 Catania, Italy; (C.F.); (S.S.)
| | - Salvatore Saccone
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, 95123 Catania, Italy; (C.F.); (S.S.)
| | - Velia D’Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (G.M.)
| | - Giuseppe Musumeci
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (G.M.)
| |
Collapse
|
5
|
Dujardin C, Habeler W, Monville C, Letourneur D, Simon-Yarza T. Advances in the engineering of the outer blood-retina barrier: From in-vitro modelling to cellular therapy. Bioact Mater 2024; 31:151-177. [PMID: 37637086 PMCID: PMC10448242 DOI: 10.1016/j.bioactmat.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
The outer blood-retina barrier (oBRB), crucial for the survival and the proper functioning of the overlying retinal layers, is disrupted in numerous diseases affecting the retina, leading to the loss of the photoreceptors and ultimately of vision. To study the oBRB and/or its degeneration, many in vitro oBRB models have been developed, notably to investigate potential therapeutic strategies against retinal diseases. Indeed, to this day, most of these pathologies are untreatable, especially once the first signs of degeneration are observed. To cure those patients, a current strategy is to cultivate in vitro a mature oBRB epithelium on a custom membrane that is further implanted to replace the damaged native tissue. After a description of the oBRB and the related diseases, this review presents an overview of the oBRB models, from the simplest to the most complex. Then, we propose a discussion over the used cell types, for their relevance to study or treat the oBRB. Models designed for in vitro applications are then examined, by paying particular attention to the design evolution in the last years, the development of pathological models and the benefits of co-culture models, including both the retinal pigment epithelium and the choroid. Lastly, this review focuses on the models developed for in vivo implantation, with special emphasis on the choice of the material, its processing and its characterization, before discussing the reported pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Walter Habeler
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
- CECS, Centre D’étude des Cellules Souches, 91100, Corbeil-Essonnes, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
| | - Didier Letourneur
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| |
Collapse
|
6
|
Maugeri G, D'Amico AG, Magrì B, Giunta S, Saccone S, Federico C, Bucolo C, Musumeci G, D'Agata V. Protective effect of pituitary adenylate cyclase activating polypeptide in diabetic keratopathy. Peptides 2023; 170:171107. [PMID: 37775045 DOI: 10.1016/j.peptides.2023.171107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Diabetic keratopathy (DK) is the major complication of the cornea characterizing diabetes-affected patients. This ocular pathology is correlated with the hyperglycemic state leading to delayed corneal wound healing and recurrent corneal ulcers. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread distribution throughout the body, and exerting cytoprotective effects in the neural and non-neuronal parts of the eye, including the cornea. The purpose of the present study was to investigate whether changes in PACAP expression can concur for delayed epithelial wound healing in diabetic cornea and whether the protective effect of the peptide could be mediated through the activation of the EGFR signaling pathway, which has been reported to be impaired in DK. Expression and distribution of PACAP, PAC1R, and EGFR were investigated through immunohistochemistry analysis in the cornea of normal and diabetic rats. The role of the peptide on wound healing during DK was evaluated in an in vitro model represented by rabbit corneal epithelial cells grown in high glucose conditions. Western blotting and immunofluorescence analysis were used to examine the ability of PACAP to induce the activation of the EGFR/ERK1/2 signaling pathway. Our results showed that in diabetic cornea the expression of PACAP, PAC1R, and EGFR is drastically reduced. The treatment with PACAP via PAC1R activation enhanced cell viability and corneal epithelium wound healing in cells grown under high glucose conditions. Furthermore, both EGFR and ERK1/2 signaling was induced upon the peptide treatment. Overall, our results showed the trophic efficiency of PACAP for enhancing the corneal epithelium re-epithelialization suggesting that the peptide could be beneficially valuable as a treatment for DK.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Agata Grazia D'Amico
- Section of System Biology, Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
| | - Benedetta Magrì
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Salvatore Giunta
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Salvatore Saccone
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, 95123 Catania, Italy
| | - Concetta Federico
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, 95123 Catania, Italy
| | - Claudio Bucolo
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Musumeci
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Velia D'Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
7
|
Maugeri G, D'Amico AG, Magrì B, Giunta S, Musumeci G, Saccone S, Federico C, Scollo D, Longo A, Avitabile T, D'Agata V. Regulation of UV-B-Induced Inflammatory Mediators by Activity-Dependent Neuroprotective Protein (ADNP)-Derived Peptide (NAP) in Corneal Epithelium. Int J Mol Sci 2023; 24:ijms24086895. [PMID: 37108060 PMCID: PMC10139171 DOI: 10.3390/ijms24086895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The corneal epithelium, representing the outermost layer of the cornea, acts as a barrier to protect the eye against external insults such as ultraviolet B (UV-B) radiations. The inflammatory response induced by these adverse events can alter the corneal structure, leading to visual impairment. In a previous study, we demonstrated the positive effects of NAP, the active fragment of activity-dependent protein (ADNP), against oxidative stress induced by UV-B radiations. Here, we investigated its role to counteract the inflammatory event triggered by this insult contributing to the disruption of the corneal epithelial barrier. The results indicated that NAP treatment prevents UV-B-induced inflammatory processes by affecting IL-1β cytokine expression and NF-κB activation, as well as maintaining corneal epithelial barrier integrity. These findings may be useful for the future development of an NAP-based therapy for corneal disease.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Agata Grazia D'Amico
- Section of System Biology, Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
| | - Benedetta Magrì
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Salvatore Giunta
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Musumeci
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Salvatore Saccone
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, 95123 Catania, Italy
| | - Concetta Federico
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, 95123 Catania, Italy
| | - Davide Scollo
- Department of Ophthalmology, Eye Clinic, University of Catania, 95123 Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, Eye Clinic, University of Catania, 95123 Catania, Italy
| | - Teresio Avitabile
- Department of Ophthalmology, Eye Clinic, University of Catania, 95123 Catania, Italy
| | - Velia D'Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
8
|
Yang DL, Zhang ZN, Liu H, Yang ZY, Liu MM, Zheng QX, Chen W, Xiang P. Indoor air pollution and human ocular diseases: Associated contaminants and underlying pathological mechanisms. CHEMOSPHERE 2023; 311:137037. [PMID: 36349586 DOI: 10.1016/j.chemosphere.2022.137037] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/01/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
People spend a long time indoors, especially young children. The risk of indoor pollution on human health is one of the current hotspots in environmental and public health. The human ocular surface is highly susceptible to indoor environment quality. Epidemiological data have linked human ophthalmological disorders with exposure to indoor pollution. In this review, we summarized the adverse impacts of indoor pollution on the human ocular surface. Several studies demonstrated that indoor contaminants including particulate matter, volatile/semi-volatile organic compounds, heavy metals, and fuel combustion and cigarette smoke exposure were associated with the incidence of human dry eye, conjunctivitis, glaucoma, cataracts, age-related macular degeneration, and keratitis. In addition, toxicological investigations revealed that indoor pollution-induced induced chronic inflammation, oxidative damage, and disruption of tight junctions are the main underlying pathological mechanisms for ocular surface diseases. Taken together, this review may expand the understanding of pollution-induced eye disorder and highlight the importance of reducing associated contaminants to decrease their detrimental effects on human eyes.
Collapse
Affiliation(s)
- Dan-Lei Yang
- Yunnan Province Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Zhen-Ning Zhang
- Yunnan Province Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Hai Liu
- The Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming, 650224, China
| | - Zi-Yue Yang
- Yunnan Province Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Mi-Mi Liu
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, 315040, China
| | - Qin-Xiang Zheng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, 315040, China
| | - Wei Chen
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, 315040, China.
| | - Ping Xiang
- Yunnan Province Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
9
|
Activity-Dependent Neuroprotective Protein (ADNP): An Overview of Its Role in the Eye. Int J Mol Sci 2022; 23:ijms232113654. [PMID: 36362439 PMCID: PMC9658893 DOI: 10.3390/ijms232113654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Vision is one of the dominant senses in humans and eye health is essential to ensure a good quality of life. Therefore, there is an urgent necessity to identify effective therapeutic candidates to reverse the progression of different ocular pathologies. Activity-dependent neuroprotective protein (ADNP) is a protein involved in the physio-pathological processes of the eye. Noteworthy, is the small peptide derived from ADNP, known as NAP, which shows protective, antioxidant, and anti-apoptotic properties. Herein, we review the current state of knowledge concerning the role of ADNP in ocular pathologies, while providing an overview of eye anatomy.
Collapse
|
10
|
Correlation between the Outcome of Vitrectomy for Proliferative Diabetic Retinopathy and Erythrocyte Hematocrit Level and Platelet Function. J Clin Med 2022; 11:jcm11175055. [PMID: 36078984 PMCID: PMC9457308 DOI: 10.3390/jcm11175055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
We investigate-d whether biomarkers such as red blood cell hematocrit (Hct), platelet count (PLT), mean platelet volume (MPV), and platelet distribution width (PDW) are useful prognostic indicators of postoperative macular edema (ME) after vitrectomy for proliferative diabetic retinopathy (PDR). A total of 42 eyes of 42 patients with PDR who underwent vitrectomy between January 2018 and May 2020 were analyzed retrospectively. We divided them into two groups according to whether treatment was required for postoperative ME and compared the relationship between Hct, PLT, MPV, and PDW and the onset of postoperative ME. The group that received postoperative treatment (group T) comprised 11 eyes of 11 patients, and the group that did not (group N) comprised 31 eyes of 31 patients. The age (years) was 52.0 ± 3.1 in group T and 60.0 ± 11.6 in group N. When appropriate statistical analysis was performed for comparison between groups, significant differences were found in age (p = 0.05), insulin use (p = 0.03), preoperative intraocular pressure (p = 0.05), diastolic blood pressure (p = 0.03), and Hct (p = 0.04). Multivariate logistic regression analysis was performed, and a significant difference was found in Hct (p = 0.02). These results suggest that Hct might be useful as a predictor of ME after PDR surgery.
Collapse
|
11
|
Bandela M, Suryadevara V, Fu P, Reddy SP, Bikkavilli K, Huang LS, Dhavamani S, Subbaiah PV, Singla S, Dudek SM, Ware LB, Ramchandran R, Natarajan V. Role of Lysocardiolipin Acyltransferase in Cigarette Smoke-Induced Lung Epithelial Cell Mitochondrial ROS, Mitochondrial Dynamics, and Apoptosis. Cell Biochem Biophys 2022; 80:203-216. [PMID: 34724158 PMCID: PMC11650883 DOI: 10.1007/s12013-021-01043-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Cigarette smoke is the primary cause of Chronic Obstructive Pulmonary Disorder (COPD). Cigarette smoke extract (CSE)-induced oxidative damage of the lungs results in mitochondrial dysfunction and apoptosis of epithelium. Mitochondrial cardiolipin (CL) present in the inner mitochondrial membrane plays an important role in mitochondrial function, wherein its fatty acid composition is regulated by lysocardiolipin acyltransferase (LYCAT). In this study, we investigated the role of LYCAT expression and activity in mitochondrial oxidative stress, mitochondrial dynamics, and lung epithelial cell apoptosis. LYCAT expression was increased in human lung specimens from smokers, and cigarette smoke-exposed-mouse lung tissues. Cigarette smoke extract (CSE) increased LYCAT mRNA levels and protein expression, modulated cardiolipin fatty acid composition, and enhanced mitochondrial fission in the bronchial epithelial cell line, BEAS-2B in vitro. Inhibition of LYCAT activity with a peptide mimetic, attenuated CSE-mediated mitochondrial (mt) reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis, while MitoTEMPO attenuated CSE-induced MitoROS, mitochondrial fission and apoptosis of BEAS-2B cells. Collectively, these findings suggest that increased LYCAT expression promotes MitoROS, mitochondrial dynamics and apoptosis of lung epithelial cells. Given the key role of LYCAT in mitochondrial cardiolipin remodeling and function, strategies aimed at inhibiting LYCAT activity and ROS may offer an innovative approach to minimize lung inflammation caused by cigarette smoke.
Collapse
Affiliation(s)
- Mounica Bandela
- Departments of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Vidyani Suryadevara
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Panfeng Fu
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
- The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Sekhar P Reddy
- Departments of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Kamesh Bikkavilli
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Long Shuang Huang
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sugasini Dhavamani
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Papasani V Subbaiah
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sunit Singla
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven M Dudek
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ramaswamy Ramchandran
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Viswanathan Natarajan
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Activity-Dependent Neuroprotective Protein (ADNP)-Derived Peptide (NAP) Counteracts UV-B Radiation-Induced ROS Formation in Corneal Epithelium. Antioxidants (Basel) 2022; 11:antiox11010128. [PMID: 35052632 PMCID: PMC8773440 DOI: 10.3390/antiox11010128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The corneal epithelium, the outermost layer of the cornea, acts as a dynamic barrier preventing access to harmful agents into the intraocular space. It is subjected daily to different insults, and ultraviolet B (UV-B) irradiation represents one of the main causes of injury. In our previous study, we demonstrated the beneficial effects of pituitary adenylate cyclase-activating polypeptide (PACAP) against UV-B radiation damage in the human corneal endothelium. Some of its effects are mediated through the activation of the intracellular factor, known as the activity-dependent protein (ADNP). In the present paper, we have investigated the role of ADNP and the small peptide derived from ADNP, known as NAP, in the corneal epithelium. Here, we have demonstrated, for the first time, ADNP expression in human and rabbit corneal epithelium as well as its protective effect by treating the corneal epithelial cells exposed to UV-B radiations with NAP. Our results showed that NAP treatment prevents ROS formation by reducing UV-B-irradiation-induced apoptotic cell death and JNK signalling pathway activation. Further investigations are needed to deeply investigate the possible therapeutic use of NAP to counteract corneal UV-B damage.
Collapse
|
13
|
Maugeri G, D’Amico AG, Saccone S, Federico C, Rasà DM, Caltabiano R, Broggi G, Giunta S, Musumeci G, D’Agata V. Effect of PACAP on Hypoxia-Induced Angiogenesis and Epithelial-Mesenchymal Transition in Glioblastoma. Biomedicines 2021; 9:biomedicines9080965. [PMID: 34440169 PMCID: PMC8392618 DOI: 10.3390/biomedicines9080965] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts different effects in various human cancer. In glioblastoma (GBM), PACAP has been shown to interfere with the hypoxic micro-environment through the modulation of hypoxia-inducible factors via PI3K/AKT and MAPK/ERK pathways inhibition. Considering that hypoxic tumor micro-environment is strictly linked to angiogenesis and Epithelial–Mesenchymal transition (EMT), in the present study, we have investigated the ability of PACAP to regulate these events. Results have demonstrated that PACAP and its related receptor, PAC1R, are expressed in hypoxic area of human GBM colocalizing either in epithelial or mesenchymal cells. By using an in vitro model of GBM cells, we have observed that PACAP interferes with hypoxic/angiogenic pathway by reducing vascular-endothelial growth factor (VEGF) release and inhibiting formation of vessel-like structures in H5V endothelial cells cultured with GBM-conditioned medium. Moreover, PACAP treatment decreased the expression of mesenchymal markers such as vimentin, matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) as well as CD44 in GBM cells by affecting their invasiveness. In conclusion, our study provides new insights regarding the multimodal role of PACAP in GBM malignancy.
Collapse
Affiliation(s)
- Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (D.M.R.); (S.G.); (G.M.)
| | | | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, 95123 Catania, Italy; (S.S.); (C.F.)
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, 95123 Catania, Italy; (S.S.); (C.F.)
| | - Daniela Maria Rasà
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (D.M.R.); (S.G.); (G.M.)
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10124 Turin, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (R.C.); (G.B.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (R.C.); (G.B.)
| | - Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (D.M.R.); (S.G.); (G.M.)
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (D.M.R.); (S.G.); (G.M.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (D.M.R.); (S.G.); (G.M.)
- Correspondence: ; Tel.: +39-095-3782147; Fax: +39-095-3782046
| |
Collapse
|
14
|
Maugeri G, Bucolo C, Drago F, Rossi S, Di Rosa M, Imbesi R, D'Agata V, Giunta S. Attenuation of High Glucose-Induced Damage in RPE Cells through p38 MAPK Signaling Pathway Inhibition. Front Pharmacol 2021; 12:684680. [PMID: 34025440 PMCID: PMC8138305 DOI: 10.3389/fphar.2021.684680] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate the high glucose damage on human retinal pigment epithelial (RPE) cells, the role of p38 MAPK signaling pathway and how dimethyl fumarate can regulate that. We carried out in vitro studies on ARPE-19 cells exposed to physiological and high glucose (HG) conditions, to evaluate the effects of DMF on cell viability, apoptosis, and expression of inflammatory and angiogenic biomarkers such as COX-2, iNOS, IL-1β, and VEGF. Our data have demonstrated that DMF treatment attenuated HG-induced apoptosis, as confirmed by reduction of BAX/Bcl-2 ratio. Furthermore, in RPE cells exposed to HG we observed a significant increase of iNOS, COX-2, and IL-1β expression, that was reverted by DMF treatment. Moreover, DMF reduced the VEGF levels elicited by HG, inhibiting p38 MAPK signaling pathway. The present study demonstrated that DMF provides a remarkable protection against high glucose-induced damage in RPE cells through p38 MAPK inhibition and the subsequent down-regulation of VEGF levels, suggesting that DMF is a small molecule that represents a good candidate for diabetic retinopathy treatment and warrants further in vivo and clinical evaluation.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology (CERFO), University of Catania, Catania, Italy
| | - Filippo Drago
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology (CERFO), University of Catania, Catania, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Michelino Di Rosa
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Giunta
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Chen HY, Ho YJ, Chou HC, Liao EC, Tsai YT, Wei YS, Lin LH, Lin MW, Wang YS, Ko ML, Chan HL. The Role of Transforming Growth Factor-Beta in Retinal Ganglion Cells with Hyperglycemia and Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186482. [PMID: 32899874 PMCID: PMC7554964 DOI: 10.3390/ijms21186482] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
A characteristic of diabetes mellitus is hyperglycemia, which is considered with an emphasis on the diabetic retinopathy of progressive neurodegenerative disease. Retinal ganglion cells (RGCs) are believed to be important cells affected in the pathogenesis of diabetic retinopathy. Transforming growth factor-beta (TGF-β) is a neuroprotective protein that helps to withstand various neuronal injuries. To investigate the potential roles and regulatory mechanisms of TGF-β in hyperglycemia-triggered damage of RGCs in vitro, we established RGCs in 5.5, 25, 50, and 100 mM D-glucose supplemented media and focused on the TGF-β-related oxidative stress pathway in combination with hydrogen peroxide (H2O2). Functional experiments showed that TGF-β1/2 protein expression was upregulated in RGCs with hyperglycemia. The knockdown of TGF-β enhanced the accumulation of reactive oxygen species (ROS), inhibited the cell proliferation rate, and reduced glutathione content in hyperglycemia. Furthermore, the results showed that the TGF-β-mediated enhancement of antioxidant signaling was correlated with the activation of stress response proteins and the antioxidant pathway, such as aldehyde dehydrogenase 3A1 (ALDH3A1), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor (Nrf2), and hypoxia-inducible factor (HIF-1α). Summarizing, our results demonstrated that TGF-β keeps RGCs from hyperglycemia-triggered harm by promoting the activation of the antioxidant pathway, suggesting a potential anti-diabetic therapy for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Hsin-Yi Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Yi-Jung Ho
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan;
| | - Hsiu-Chuan Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Yi-Ting Tsai
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Yu-Shan Wei
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Li-Hsun Lin
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Meng-Wei Lin
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Yi-Shiuan Wang
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Mei-Lan Ko
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan;
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan;
- Correspondence: (M.-L.K.); (H.-L.C.); Tel.: +88-63-5326-151 (M.-L.K.); +88-63-5742-476 (H.-L.C.); Fax: +88-63-5324-584 (M.-L.K.); +88-63-5715-934 (H.-L.C.)
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
- Correspondence: (M.-L.K.); (H.-L.C.); Tel.: +88-63-5326-151 (M.-L.K.); +88-63-5742-476 (H.-L.C.); Fax: +88-63-5324-584 (M.-L.K.); +88-63-5715-934 (H.-L.C.)
| |
Collapse
|
16
|
Zhou AL, Wang X, Yu W, Yang L, Wei F, Sun Q, Wang Y, Kou F, Dong R, Ren X, Zhang X. Expression level of PD-L1 is involved in ALDH1A1-mediated poor prognosis in patients with head and neck squamous cell carcinoma. Pathol Res Pract 2020; 216:153093. [PMID: 32825960 DOI: 10.1016/j.prp.2020.153093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To evaluate the expression levels of ALDH1A1, PDL1, and PDL2 in head and neck squamous cell carcinoma (HNSCC) patients, and explore their clinical relevance in prognosis of patients with HNSCC. METHODS Immunohistochemistry of ALDH1A1 and PD-L1/PD-L2 in 85 primary HNSCC patients was carried out. The expression level of PD-L2 was assessed with the modified Moratin's immune response scoring (IRS) system. tumor proportion score (TPS) was defined as the percentage of viable tumor cells showing partial or complete membrane staining at any intensity. The chi-square test and Fisher's exact test were used to analyze the associations between ALDH1A1 expression and clinicopathological features. The Spearman's correlation was applied to analyze the correlation of ALDH1A1 expression with PD-L1/PD-L2 expression. RESULTS kaplan-Meier analysis showed that the expression levels of ALDH1A1 and PD-L1/PD-L2 were inversely associated with recurrence-free survival (RFS; P = 0.001, 0.014, and 0.023, respectively). Moreover, expression levels of ALDH1A1 and PD-L1 were correlated with poor overall survival (OS; P = 0.002 and 0.039, respectively). Furthermore, multivariate logistics regression analyses demonstrated that expression level of ALDH1A1 was independently associated with shorter RFS (P = 0.013) and poorer OS (P = 0.014) in HNSCC patients, and the expression level of PD-L2 was only negatively associated with RFS (P = 0.041), rather than PD-L1. Spearman's correlation analysis unveiled that expression levels of PD-L1 and PD-L2 were positively correlated with ALDH1A1 expression in HNSCC patients (P = 0.000 and 0.015, respectively). Especially, the patients with expression levels of ALDH1A1 and PD-L1 had the worst prognosis. CONCLUSIONS Our results indicated that ALDH1A1 is an independent prognostic factor in patients with HNSCC, and the expression level of PDL-1 may be involved in ALDH1A1-mediated poor prognosis in patients with HNSCC.
Collapse
Affiliation(s)
- Authors Li Zhou
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China
| | - Xuezhou Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Affiliated Hospital of Anhui West Health Vocational College, Mozitan Road, Yuan, Luan, Anhui, 237000, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China
| | - Yang Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China
| | - Fan Kou
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China
| | - Ruifeng Dong
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China.
| | - Xinwei Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Huanhuxi Road, Tiyuanbei, Hexi, Tianjin, 300060, China.
| |
Collapse
|
17
|
HIF-1α induces hypoxic apoptosis of MLO-Y4 osteocytes via JNK/caspase-3 pathway and the apoptotic-osteocyte-mediated osteoclastogenesis in vitro. Tissue Cell 2020; 67:101402. [PMID: 32835935 DOI: 10.1016/j.tice.2020.101402] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Apoptotic osteocytes were found in the hypoxic bone microenvironment in osteoporosis, osteotomy, orthodontic tooth movement and periodontitis, and played a key role in bone remolding and the differentiation of osteoclasts. Hypoxia inducible factor-1α(HIF-1α), as a transcription factor under hypoxic conditions, has been confirmed to participate in cell apoptosis. However, the effect of HIF-1α on osteocytes apoptosis and the osteocyte-mediated osteoclast formation remains elusive. Here, we hypothesized that HIF-1α was involved in osteocytes apoptosis. Our results showed that CoCl2 increased the MLO-Y4 cells apoptosis by upregulating the proapoptotic gene expression of caspase-3. Moreover, siRNA-mediated knockdown of HIF-1α decreased the phosphorylation by JNK and the activation of caspase-3 to inhibit the cell apoptosis in MLO-Y4. Furthermore, SP600125, an inhibitor of JNK, reversed CoCl2-induced the increased apoptosis of MLO-Y4 cells in term of reducing the expression of caspase-3. These findings revealed that HIF-1α served as a pro-apoptotic factor in the apoptosis of MLO-Y4 cells cultured with CoCl2, by activating the JNK/caspase-3 signaling pathway. Besides, the osteocyte-mediated osteoclastogenesis was reduced with the decline of the expression of HIF-1α and caspase-3 in MLO-Y4 cells. Our study provided an idea for a more comprehensive understanding of HIF-1α and the process of bone remodeling.
Collapse
|
18
|
Mirzania D, Thomas AS, Rothman AL, Berry D, Stinnett S, Fekrat S. Sex Differences in Presentation, Treatment Patterns, and Clinical Outcomes in Central Retinal Vein Occlusion. Ophthalmic Surg Lasers Imaging Retina 2020; 51:279-285. [PMID: 32511731 DOI: 10.3928/23258160-20200501-05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/03/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE To evaluate the impact of sex differences on the presenting features, treatment patterns, and clinical outcomes in patients with central retinal vein occlusions (CRVO). PATIENTS AND METHODS This retrospective, longitudinal cohort study included 476 patients diagnosed with CRVO over a 7-year period. Charts were reviewed and clinical data were abstracted. RESULTS The average age at CRVO onset was lower in males (63.8 years vs. 66.1 years; P = .048). More males (104/224, 54%) had an ischemic CRVO compared to females (113/252, 45%) at 12 months (P = .05). Males with CRVO had a greater central subfield thickness at the baseline (546.7 ± 306.8 μm vs. 438.4 ± 252.9 μm; P = .003) and final visits (343 ± 179.5 μm vs. 304.6 ± 176.2 μm; P = .005). Foveal avascular zone enlargement was more likely in males (39/102, 38% vs. 29/116, 25%; P = .04). CONCLUSIONS Sex differences exist in presenting features of patients with CRVO. Further inquiry may help provide individualized recommendations for management of CRVO. [Ophthalmic Surg Lasers Imaging Retina. 2020;51:279-285.].
Collapse
|
19
|
Zhang Y, Yu Y, Li G, Meng H, Zhang X, Dong L, Wu Z, Lin L. A Bioadhesive Nanoplatform Enhances the Permeation of Drugs Used to Treat Diabetic Macular Edema. ACS APPLIED BIO MATERIALS 2020; 3:2314-2324. [DOI: 10.1021/acsabm.0c00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yanlong Zhang
- State Key Laboratory of Precision Measurement Technology and Instrument, School of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Biomedical Detection Techniques & Instruments Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300070, China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instrument, School of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Biomedical Detection Techniques & Instruments Tianjin University, Tianjin 300072, China
| | - Huipeng Meng
- State Key Laboratory of Precision Measurement Technology and Instrument, School of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300070, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Ling Lin
- State Key Laboratory of Precision Measurement Technology and Instrument, School of Precision Instruments & Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Biomedical Detection Techniques & Instruments Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Yan D, Lou Y, Yang Y, Chen Z, Cai Y, Guo Z, Zhan H, Chen B. Dye-Modified Metal-Organic Framework as a Recyclable Luminescent Sensor for Nicotine Determination in Urine Solution and Living Cell. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47253-47258. [PMID: 31763819 DOI: 10.1021/acsami.9b17310] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A water-stable and pH-independent sensor for qualitative and quantitative detection of nicotine in urine solution and living cell was successfully developed. This material, named MB@UiO-66-NH2, can be synthesized by encapsulating methylene blue (MB) with a well-known metal-organic framework (MOF) UiO-66-NH2 through a simple impregnation method. The fluorescence intensity of the system was significantly enhanced when a certain amount of nicotine was added. In the meanwhile, MB is reduced by reductive nicotine to form leucomethylene blue (LB). The proposed sensor displayed excellent selectivity and sensitivity toward nicotine with limit of detection (LOD) of 0.98 μM, which is comparable or even better than that of the electrochemistry detecting methods for nicotine. The obvious enhancement and blue shift of the emission arise from the photoinduced electron transfer (PET) from LB to the UiO-66-NH2. The photophysical properties and the sensing applications of MB@UiO-66-NH2 suggest that this composite can be acted as a sensitive, selective, recyclable, and fluorogenic sensor for nicotine determination in urine solution and living cell.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Banglin Chen
- Department of Chemistry , University of Texas at San Antonio , One UTSA Circle , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
21
|
Ates M, Hosgorler F, Yuksel O, Unsal SK, Guvendi G, Karakilic A, Koc B, Kandis S, Kanit L, Uysal N. Nicotine increased VEGF and MMP2 levels in the rat eye and kidney. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33517-33523. [PMID: 31578682 DOI: 10.1007/s11356-019-06460-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Chronic cigarette smoking affects many tissues negatively. Nicotine in tobacco has negative effects on tissues, kidneys, and eyes especially, where microcirculation is vitally important for the survival and functioning. It is known that appropriate vascular endothelial growth factor (VEGF) and (matrix metalloproteinase 2) MMP2 levels are required for suitable vascularity and enough microcirculation. The aim of this study was to investigate the effect of nicotine on VEGF and MMP2 levels in kidney and eyes, where microcirculation is very important for their function. The nicotine was given into drinking water, to male and female rats for 6 weeks. During the first 2 weeks, the nicotine concentration was 10 mg/L, then was given at a fixed dose of 20 mg/L until the end of the experiment. The VEGF and MMP2 levels were increased in kidney tissue of both genders as a result of given nicotine. MMP2 levels were also increased in the eye tissue for both genders similarly. However, VEGF levels increased in the eye tissue with nicotine in males, whereas it did not change in females. The use of nicotine made VEGF and MMP2 levels increase in kidney tissue in both genders of rats. This increase in VEGF was observed only in male eye tissue, not in females. According to our findings, it can be suggested that nicotine has negative effects on microvascular circulation by increasing VEGF and MMP2 levels. In addition, it should be pointed out that estrogen might have protective effects on female eye tissue. Further studies are necessary to understand the complex relationship between the role of nicotine and estrogen on eye and kidney tissues.
Collapse
Affiliation(s)
- Mehmet Ates
- College of Vocational School of Health Services, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ferda Hosgorler
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Oguz Yuksel
- Department of Sports Medicine, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | | | - Guven Guvendi
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Asli Karakilic
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Basar Koc
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sevim Kandis
- Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Lutfiye Kanit
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey
| | - Nazan Uysal
- College of Vocational School of Health Services, School of Medicine, Dokuz Eylul University, Izmir, Turkey.
- Medical Faculty, Physiology Department, Dokuz Eylul University, Balcova, Izmir, Turkey.
| |
Collapse
|
22
|
Maugeri G, D'Amico AG, Bucolo C, D'Agata V. Protective effect of PACAP-38 on retinal pigmented epithelium in an in vitro and in vivo model of diabetic retinopathy through EGFR-dependent mechanism. Peptides 2019; 119:170108. [PMID: 31247223 DOI: 10.1016/j.peptides.2019.170108] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/22/2022]
Abstract
Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes. In the last years, several in vivo studies have demonstrated the protective role of pituitary adenylate cyclase-activating peptide (PACAP-38) to counteract several alterations occurring during DR. Recently, different studies have demonstrated that some PACAP-38 effects are mediated by EGFR trans-activation, although no data exist regarding the link between this peptide and EGFR in DR. The aim of the present study has been to investigate whether retinal effect of PACAP-38 against high glucose damage is mediated by EGFR phosphorylation. Diabetes was induced by a single injection of streptozotocin (STZ) in rats. After 1 week, a group of animals was treated with a single intravitreal injection of 100 μM PACAP-38 or saline solution. Immunohistochemistry and western blot analysis have demonstrated that intravitreal injection of PACAP-38 induced p-EGFR over-expression in retina of diabetic rats. Several pathogenic mechanisms may contribute to diabetic retinopathy including BRB alteration. To better clarify the relationship between PACAP-38 and EGFR, we have also carried out a study on ARPE-19 cells, representing a model in vitro of outer BRB. Our results have shown that PACAP-38 treatment improved cell viability in ARPE-19 cells exposed to hyperglycemic/hypoxic insult mimicking tissue microenvironment occurring in DR. Binding to PAC1R, peptide induces EGFR phosphorylation via PKA-signaling cascade stimulation. EGFR trans-activation triggers MAPK/ERK signaling pathway involved in cell survival and proliferation. In conclusion, data have suggested that PACAP-38 acts through EGFR phosphorylation in DR and this effect particularly occurs on RPE layer.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Agata Grazia D'Amico
- San Raffaele Open University of Rome, Department of Human Science and Promotion of quality of Life, Italy
| | - Claudio Bucolo
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Velia D'Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Italy.
| |
Collapse
|
23
|
Compromised Barrier Function in Human Induced Pluripotent Stem-Cell-Derived Retinal Pigment Epithelial Cells from Type 2 Diabetic Patients. Int J Mol Sci 2019; 20:ijms20153773. [PMID: 31375001 PMCID: PMC6696227 DOI: 10.3390/ijms20153773] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
In diabetic patients, high blood glucose induces alterations in retinal function and can lead to visual impairment due to diabetic retinopathy. In immortalized retinal pigment epithelial (RPE) cultures, high glucose concentrations are shown to lead to impairment in epithelial barrier properties. For the first time, the induced pluripotent stem-cell-derived retinal pigment epithelium (hiPSC-RPE) cell lines derived from type 2 diabetics and healthy control patients were utilized to assess the effects of glucose concentration on the cellular functionality. We show that both type 2 diabetic and healthy control hiPSC-RPE lines differentiate and mature well, both in high and normal glucose concentrations, express RPE specific genes, secrete pigment epithelium derived factor, and form a polarized cell layer. Here, type 2 diabetic hiPSC-RPE cells had a decreased barrier function compared to controls. Added insulin increased the epithelial cell layer tightness in normal glucose concentrations, and the effect was more evident in type 2 diabetics than in healthy control hiPSC-RPE cells. In addition, the preliminary functionality assessments showed that type 2 diabetic hiPSC-RPE cells had attenuated autophagy detected via ubiquitin-binding protein p62/Sequestosome-1 (p62/SQSTM1) accumulation, and lowered pro- matrix metalloproteinase 2 (proMMP2) as well as increased pro-MMP9 secretion. These results suggest that the cellular ability to tolerate stress is possibly decreased in type 2 diabetic RPE cells.
Collapse
|
24
|
Gong Q, Xie J, Li Y, Liu Y, Su G. Enhanced ROBO4 is mediated by up-regulation of HIF-1α/SP1 or reduction in miR-125b-5p/miR-146a-5p in diabetic retinopathy. J Cell Mol Med 2019; 23:4723-4737. [PMID: 31094072 PMCID: PMC6584523 DOI: 10.1111/jcmm.14369] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Retinal cell damage caused by diabetes leads to retinal microvascular injury. Roundabout 4 (ROBO4) is involved in angiogenesis, which varies with the development of diabetic retinopathy (DR). Here, we explored the transcriptional regulation and microRNA‐mediated modulation of ROBO4 expression and related retinal cell function in DR. A streptozotocin‐induced type I diabetic animal model was established to detect the expression of hypoxia inducible factor‐1α (HIF‐1α), specificity protein 1 (SP1) and ROBO4. Retinal pigment epithelium (RPE) cells were cultured under hyperglycaemia or hypoxia and used for mechanistic analysis. Furthermore, roles of miR‐125b‐5p and miR‐146a‐5p were evaluated, and their targets were identified using luciferase assays. The cell functions were evaluated by MTS assays, permeability analysis and migration assays. The development of DR increased the levels of HIF‐1α, SP1 and ROBO4 both in the DR model and in hyperglycaemic/hypoxic RPE cells. They were co‐expressed and up‐regulated in diabetic retinas and in RPE cells under hyperglycaemia/hypoxia. Knockdown of HIF‐1α significantly inhibited SP1 and ROBO4, whereas SP1 down‐regulation abolished ROBO4 expression in RPE cells under hyperglycaemia/hypoxia. miR‐125b‐5p and miR‐146a‐5p were down‐regulated by hyperglycaemia and/or hypoxia. Up‐regulation of miRNAs reversed these changes and resulted in recovery of target gene expression. Moreover, luciferase assays confirmed miR‐125b‐5p targeted SP1 and ROBO4, and miR‐146a‐5p targeted HIF‐1α and ROBO4 directly. The decreased cell viability, enhanced permeability, and increased cell migration under DR conditions were mitigated by knockdown of HIF‐1α/SP1/ROBO4 or up‐regulation of miR‐125b‐5p/miR‐146a‐5p. In general, our results identified a novel mechanism that miR‐125b‐5p/miR‐146a‐5p targeting HIF‐1α/SP1‐dependent ROBO4 expression could retard DR progression.
Collapse
Affiliation(s)
- Qiaoyun Gong
- Eye Center, The Second Hospital of Jilin University, Changchun, Jilin, China.,Department of Ophthalmology, Shanghai General Hospital (Shanghai first people hospital), Shanghai Jiaotong University Medical School, Shanghai, China
| | - Jia'nan Xie
- Eye Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Li
- Eye Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guanfang Su
- Eye Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|