1
|
Xiao W, Huang TE, Zhou J, Wang B, Wang X, Zeng W, Wang Q, Lan X, Xiang Y. Inhibition of MAT2A Impairs Skeletal Muscle Repair Function. Biomolecules 2024; 14:1098. [PMID: 39334864 PMCID: PMC11430595 DOI: 10.3390/biom14091098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/30/2024] Open
Abstract
The regenerative capacity of muscle, which primarily relies on anabolic processes, diminishes with age, thereby reducing the effectiveness of therapeutic interventions aimed at treating age-related muscle atrophy. In this study, we observed a decline in the expression of methionine adenosine transferase 2A (MAT2A), which synthesizes S-adenosylmethionine (SAM), in the muscle tissues of both aged humans and mice. Considering MAT2A's critical role in anabolism, we hypothesized that its reduced expression contributes to the impaired regenerative capacity of aging skeletal muscle. Mimicking this age-related reduction in the MAT2A level, either by reducing gene expression or inhibiting enzymatic activity, led to inhibiting their differentiation into myotubes. In vivo, inhibiting MAT2A activity aggravated BaCl2-induced skeletal muscle damage and decreased the number of satellite cells, whereas supplementation with SAM improved these effects. RNA-sequencing analysis further revealed that the Fas cell surface death receptor (Fas) gene was upregulated in Mat2a-knockdown C2C12 cells. Suppressing MAT2A expression or activity elevated Fas protein levels and increased the proportion of apoptotic cells. Additionally, inhibition of MAT2A expression or activity increased p53 expression. In conclusion, our findings demonstrated that impaired MAT2A expression or activity compromised the regeneration and repair capabilities of skeletal muscle, partially through p53-Fas-mediated apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yang Xiang
- Metabolic Control and Aging—Jiangxi Key Laboratory of Aging and Diseases, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang 330031, China; (W.X.); (T.-E.H.); (J.Z.); (B.W.); (X.W.); (W.Z.); (Q.W.); (X.L.)
| |
Collapse
|
2
|
Yin K, Hu Z, Yuan M, Chen W, Bi X, Cui G, Liang Z, Deng YZ. Polyamine oxidation enzymes regulate sexual mating/filamentation and pathogenicity in Sporisorium scitamineum. MOLECULAR PLANT PATHOLOGY 2024; 25:e70003. [PMID: 39235122 PMCID: PMC11375735 DOI: 10.1111/mpp.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Sugarcane smut fungus Sporisorium scitamineum produces polyamines putrescine (PUT), spermidine (SPD), and spermine (SPM) to regulate sexual mating/filamentous growth critical for pathogenicity. Besides de novo biosynthesis, intracellular levels of polyamines could also be modulated by oxidation. In this study, we identified two annotated polyamine oxidation enzymes (SsPAO and SsCuAO1) in S. scitamineum. Compared to the wild type (MAT-1), the ss1paoΔ and ss1cuao1Δ mutants were defective in sporidia growth, sexual mating/filamentation, and pathogenicity. The addition of a low concentration of cAMP (0.1 mM) could partially or fully restore filamentation of ss1paoΔ × ss2paoΔ or ss1cuao1Δ × ss2cuao1Δ. cAMP biosynthesis and hydrolysis genes were differentially expressed in the ss1paoΔ × ss2paoΔ or ss1cuao1Δ × ss2cuao1Δ cultures, further supporting that SsPAO- or SsCuAO1-based polyamine homeostasis regulates S. scitamineum filamentation by affecting the cAMP/PKA signalling pathway. During early infection, PUT promotes, while SPD inhibits, the accumulation of reactive oxygen species (ROS) in sugarcane, therefore modulating redox homeostasis at the smut fungus-sugarcane interface. Autophagy induction was found to be enhanced in the ss1paoΔ mutant and reduced in the ss1cuao1Δ mutant. Exogenous addition of cAMP, PUT, SPD, or SPM at low concentration promoted autophagy activity under a non-inductive condition (rich medium), suggesting a cross-talk between polyamines and cAMP signalling in regulating autophagy in S. scitamineum. Overall, our work proves that SsPAO- and SsCuAO1-mediated intracellular polyamines affect intracellular redox balance and thus play a role in growth, sexual mating/filamentation, and pathogenicity of S. scitamineum.
Collapse
Affiliation(s)
- Kai Yin
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zhijian Hu
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Meiting Yuan
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Weidong Chen
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xinping Bi
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guobing Cui
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zhibin Liang
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yi Zhen Deng
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Mitochondrial Oxidative Stress and Mitophagy Activation Contribute to TNF-Dependent Impairment of Myogenesis. Antioxidants (Basel) 2023; 12:antiox12030602. [PMID: 36978858 PMCID: PMC10044935 DOI: 10.3390/antiox12030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Many muscular pathologies are associated with oxidative stress and elevated levels of the tumor necrosis factor (TNF) that cause muscle protein catabolism and impair myogenesis. Myogenesis defects caused by TNF are mediated in part by reactive oxygen species (ROS), including those produced by mitochondria (mitoROS), but the mechanism of their pathological action is not fully understood. We hypothesized that mitoROS act by triggering and enhancing mitophagy, an important tool for remodelling the mitochondrial reticulum during myogenesis. We used three recently developed probes—MitoTracker Orange CM-H2TMRos, mito-QC, and MitoCLox—to study myogenesis in human myoblasts. Induction of myogenesis resulted in a significant increase in mitoROS generation and phospholipid peroxidation in the inner mitochondrial membrane, as well as mitophagy enhancement. Treatment of myoblasts with TNF 24 h before induction of myogenesis resulted in a significant decrease in the myoblast fusion index and myosin heavy chain (MYH2) synthesis. TNF increased the levels of mitoROS, phospholipid peroxidation in the inner mitochondrial membrane and mitophagy at an early stage of differentiation. Trolox and SkQ1 antioxidants partially restored TNF-impaired myogenesis. The general autophagy inducers rapamycin and AICAR, which also stimulate mitophagy, completely blocked myogenesis. The autophagy suppression by the ULK1 inhibitor SBI-0206965 partially restored myogenesis impaired by TNF. Thus, suppression of myogenesis by TNF is associated with a mitoROS-dependent increase in general autophagy and mitophagy.
Collapse
|
4
|
Dai W, Liu K, Li R, Cao Y, Shen M, Tao J, Liu H. Trillin inhibits myoblast differentiation via increasing autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153962. [PMID: 35172256 DOI: 10.1016/j.phymed.2022.153962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Trillin, an active ingredient in traditional Chinese medicine Trillium tschonoskii, is a potential small molecule compound candidate that affecting myoblast differentiation, which predicting by AI technology in our previous study. Autophagy modulating myoblast differentiation has also been studied. In addition, Trillin was shown to regulate mTOR signaling pathway, a highly conserved kinase important for autophagy regulation. PURPOSE In this research, we aim to clarify the effect and underlying mechanism of Trillin on myoblast differentiation. STUDY DESIGN AND METHODS Using mice C2C12 cell line to establish a myoblast differentiation model in vitro, treated with different concentration and time of Trillin, to explore the effect and latent mechanism of Trillin on myoblast differentiation by qRT-PCR, Western Blot and other molecular biological technique. RESULTS Results showed that C2C12 differentiation was significantly inhibited by Trillin in a dose-dependent manner. The expression of MyHC, MyOG and MyoD was decreased extremely significant after 10 μM Trillin treatment. Meanwhile, autophagy level was significantly elevated with the supplement of Trillin. And C2C12 differentiation was recovered after ATG7 knockdown. Mechanically, we found that the activity of AKT/mTOR declined during the inhibition of differentiation by Trillin. CONCLUSION Our findings suggested that Trillin attenuated C2C12 differentiation via increasing autophagy through AKT/mTOR signaling pathway. Taken together, we introduce a novel physiological function of Trillin in inhibiting skeletal muscle differentiation.
Collapse
Affiliation(s)
- Weilong Dai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongyang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Bhat N, Narayanan A, Fathzadeh M, Shah K, Dianatpour M, Abou Ziki MD, Mani A. Dyrk1b promotes autophagy during skeletal muscle differentiation by upregulating 4e-bp1. Cell Signal 2022; 90:110186. [PMID: 34752933 PMCID: PMC8712395 DOI: 10.1016/j.cellsig.2021.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/03/2023]
Abstract
Rare gain of function mutations in the gene encoding Dyrk1b, a key regulator of skeletal muscle differentiation, have been associated with sarcopenic obesity (SO) and metabolic syndrome (MetS) in humans. So far, the global gene networks regulated by Dyrk1b during myofiber differentiation have remained elusive. Here, we have performed untargeted proteomics to determine Dyrk1b-dependent gene-network in differentiated C2C12 myofibers. This analysis led to identification of translational inhibitor, 4e-bp1 as a post-transcriptional target of Dyrk1b in C2C12 cells. Accordingly, CRISPR/Cas9 mediated knockout of Dyrk1b in zebrafish identified 4e-bp1 as a downstream target of Dyrk1b in-vivo. The Dyrk1b knockout zebrafish embryos exhibited markedly reduced myosin heavy chain 1 expression in poorly developed myotomes and were embryonic lethal. Using knockdown and overexpression approaches in C2C12 cells, we found that 4e-bp1 enhances autophagy and mediates the effects of Dyrk1b on skeletal muscle differentiation. Dyrk1bR102C, the human sarcopenic obesity-associated mutation impaired muscle differentiation via excessive activation of 4e-bp1/autophagy axis in C2C12 cells. Strikingly, the defective muscle differentiation in Dyrk1bR102C cells was rescued by reduction of autophagic flux. The identification of Dyrk1b-4e-bp1-autophagy axis provides significant insight into pathways that are relevant to human skeletal muscle development and disorders.
Collapse
Affiliation(s)
- Neha Bhat
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anand Narayanan
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mohsen Fathzadeh
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kanan Shah
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mehdi Dianatpour
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maen D Abou Ziki
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
6
|
Li L, Zuo X, Liu D, Luo H, Zhang H, Peng Q, Wang G, Zhu H. Plasma exosomal RNAs has potential as both clinical biomarkers and therapeutic targets of dermatomyositis. Rheumatology (Oxford) 2021; 61:2672-2681. [PMID: 34698812 DOI: 10.1093/rheumatology/keab753] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/23/2021] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Dermatomyositis (DM) is characterized by skeletal muscle weakness and cutaneous manifestations. Plasma exosomes (EXOs) contain proteins, RNAs, DNA, and lipid cargoes and are transferred among cells. Deeply investigated plasma EXO RNAs potentially improve our understanding of DM pathogenesis. We aimed to identify new potential biomarkers and therapeutic targets of DM. METHODS The RNAs (mRNA, miRNA and lncRNA) profiles of plasma EXOs were evaluated by sequencing on the Illumina HiSeq 3000 platform. Differentially expressed (DE) RNAs and bioinformatic analyses were performed. Human skeletal muscle myoblasts (HSkMCs) were stimulated with plasma EXOs, rapamycin or IFN-β. Real-time PCR and western blot were used to detect related genes and proteins. RESULTS A total of 689 DE mRNAs, 53 DE miRNAs and 452 DE lncRNAs were identified in DM plasma EXOs. Bioinformatic analysis inferred that plasma EXOs were secreted mainly by CD8+ T cells, regulatory T cells and natural killer cells. The DE miRNAs participated in the autophagy, TGF-β and Wnt signalling pathways. Three DE miRNAs (hsa-miR-125a-3p, hsa-miR-1246 and hsa-miR-3614-5p) were correlated with serological indices, organs involvement and myositis-specific autoantibodies. The DE lncRNAs participated in autophagy, interferon-β production and mTOR signalling. DM plasma EXOs can induce autophagy in HSkMCs by regulating 3 miRNAs (hsa-miR-125a-3p, hsa-miR-1246 and hsa-miR-3614-5p) and 3 lncRNAs (ENST00000584157.1, ENST00000523380.1, and ENST00000560054.1), which formed an autophagy network, playing the muscle damage roles. CONCLUSIONS Our study provides an overview of distinct RNAs profiles in DM plasma EXOs, and verified some miRNAs as potential biomarkers and therapeutic targets. The findings provide important clues for more in-depth explorations of plasma EXOs in DM.
Collapse
Affiliation(s)
- Liya Li
- The Department of Rheumatology and immunology, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China.,The Department of Rheumatology and Immunology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoxia Zuo
- The Department of Rheumatology and immunology, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China.,Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Di Liu
- The Department of Rheumatology and immunology, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Hui Luo
- The Department of Rheumatology and immunology, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China.,Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Huali Zhang
- The Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Qinglin Peng
- The Department of Rheumatology, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Guochun Wang
- The Department of Rheumatology, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Honglin Zhu
- The Department of Rheumatology and immunology, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China.,Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| |
Collapse
|
7
|
Zhang C, Wang X, Sun J, Guo M, Zhang X, Wu Y. Autophagy Induced by the N-Terminus of the Classic Swine Fever Virus Nonstructural Protein 5A Protein Promotes Viral Replication. Front Microbiol 2021; 12:733385. [PMID: 34512612 PMCID: PMC8424089 DOI: 10.3389/fmicb.2021.733385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022] Open
Abstract
Although classic swine fever virus (CSFV) infection has been reported to induce autophagy, the specific induced mechanism remains unrevealed. Nonstructural protein 5A (NS5A) of CSFV is a multiphosphorylated protein with multiple functions to regulate viral replication and the host cell immune responses. Herein, we demonstrated that CSFV NS5A could induce cellular autophagy and promote viral replication. In the current study, we showed that NS5A expression significantly increased the levels of autophagy-related genes (ATGs), including light chain 3 (LC3), ATG5, and Beclin 1; conversely, degradation of P62/sequestosome 1 (SQSTM1) was observed by Western blotting. The number of autophagy-like vesicles was also obviously increased in NS5A-expressing cells, as analyzed by transmission electron microscopy (TEM). Furthermore, we observed the co-localization of the NS5A and LC3 proteins by confocal immunofluorescence analysis. Direct binding of NS5A to the autophagy-related LC3 protein was confirmed by coimmunoprecipitation in vivo and by a GST pulldown assay in vitro. Through segmentation and point mutation research on the NS5A protein, we found that the N-terminal region and the phosphorylation of amino acids 81 and 92 of the NS5A protein were essential for inducing autophagy. Finally, we demonstrated that the LC3 protein had a positive effect on CSFV replication. These findings emphasize a previously unascertained interaction relationship between NS5A and LC3 in the autophagy process. Furthermore, our research revealed a new role of CSFV NS5A, particularly its N-terminal amino acids serine 81 and serine 92, as a critical regulator of CSFV-induced autophagy and have significance for extending our understanding of the CSFV-autophagy interplay.
Collapse
Affiliation(s)
- Chengcheng Zhang
- College of Veterinary Medicine, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiuling Wang
- College of Veterinary Medicine, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiahao Sun
- College of Veterinary Medicine, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Mengjiao Guo
- College of Veterinary Medicine, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaorong Zhang
- College of Veterinary Medicine, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yantao Wu
- College of Veterinary Medicine, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Galectin-1 Inhibited LPS-Induced Autophagy and Apoptosis of Human Periodontal Ligament Stem Cells. Inflammation 2021; 44:1302-1314. [PMID: 33566256 DOI: 10.1007/s10753-021-01417-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Periodontitis is a widespread human chronic inflammatory disease of the tooth-surrounding tissues, which induces the destruction of periodontium and pathologic loss of teeth among adults. It has been reported that interleukin (IL)-17 was significantly increased in periodontitis patients compared to controls, while galectin-1 (Gal-1) was lower. Interestingly, it is found that Gal-1 treatment reduced systemic IL-17 levels. Hence, the aim of the present study was to explore the effect of Gal-1 on periodontitis development and investigate its underlying mechanism. In this study, Gal-1 was poorly expressed in lipopolysaccharide (LPS)-induced human periodontal ligament stem cells (hPDLSCs), and Gal-1 overexpression attenuated the production of inflammatory cytokines induced by LPS. Moreover, Gal-1 overexpression alleviated LPS-induced cell autophagy and apoptosis and reduced the expressions of IL-17A and IL-17R. Interestingly, IL-17A reversed the effect of Gal-1 on cell autophagy, inflammation, and cell apoptosis induced by the LPS challenge. In conclusion, Gal-1 inhibited LPS-induced autophagy and apoptosis of hPDLSC via regulation of IL-17A expression. Therefore, Gal-1 may have promising potential in regenerating periodontium.
Collapse
|
9
|
Lyu M, Shalitana A, Luo J, He H, Sun S, Wang P. Overexpression of the Tuberous sclerosis complex 2 (TSC2) gene inhibits goat myoblasts proliferation and differentiation in understanding the underlying mechanism of muscle development. Gene 2020; 757:144943. [PMID: 32652105 DOI: 10.1016/j.gene.2020.144943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
The growth of animal skeletal muscle is mainly determined by the synthesis processes of total proteins in skeletal muscle cells, which has a significant impact on the postnatal growth of young animals. An increasing number of studies are focusing on the functions of Tuberous sclerosis complex 2 (TSC2) during the process of cell protein synthesis and growth. However, it is still unclear the effect of whether and how TSC2 on goat myoblasts proliferation and differentiation. Here, we found that TSC2 gene has opposite expression patterns in proliferation and differentiation of myoblasts. An expression vector containing goat TSC2 cDNA sequences linked with pcDNA3.1 plasmid was constructed. Myoblasts proliferation activity was significantly inhibited and cell cycle transition slowed down after the transfection of pcDNA3.1-TSC2 plasmid into goat primary myoblasts by EdU staining, CCK-8 and flow cytometry. Mechanically, we further confirmed that the overexpression TSC2 was able to down-regulate the mRNA and protein expression of mechanistic target of rapamycin (mTOR), p70 ribosomal S6 kinase 1 (p70S6K) and some cell cycle related genes. In addition, the expression of myogenic genes and myotube formation were attenuated. Collectively, all our results of the experiment demonstrate that TSC2 could regulate myoblasts cells proliferation and differentiation via the activation of the mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Ming Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Alai Shalitana
- Department of Xinjiang Institute for Cancer Research, Xinjiang Cancer Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Jun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huanshan He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuang Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ping Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Qi R, Zhang X, Xie Y, Jiang S, Liu Y, Liu X, Xie W, Jia X, Bade R, Shi R, Li S, Ren C, Gong K, Zhang C, Shao G. 5-Aza-2'-deoxycytidine increases hypoxia tolerance-dependent autophagy in mouse neuronal cells by initiating the TSC1/mTOR pathway. Biomed Pharmacother 2019; 118:109219. [PMID: 31325707 DOI: 10.1016/j.biopha.2019.109219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Our previous study found that 5-Aza-2'-deoxycytidine (5-Aza-CdR) can repress the expression and activity of protein serine/threonine phosphatase-1γ (PP1γ) in mouse hippocampus. It is well known that PP1γ regulates cell metabolism, which is related to hypoxia/ischaemia tolerance. It has been reported that it can also induce autophagy in cancer cells. Autophagy is important for maintaining cellular homeostasis associated with metabolism. In this study, we examined whether 5-Aza-CdR increases hypoxia tolerance-dependent autophagy by initiating the TSC1/mTOR/autophagy signalling pathway in neuronal cells. METHODS 5-Aza-CdR was either administered to mice via intracerebroventricular injection (i.c.v) or added to cultured hippocampal-derived neuronal cell line (HT22 cell) in the medium for cell culture. The hypoxia tolerance of mice was measured by hypoxia tolerance time and Perl's iron stain. The mRNA and protein expression levels of tuberous sclerosis complex 1 (TSC1), mammalian target of rapamycin (mTOR) and autophagy marker light chain 3 (LC3) were measured by real-time PCR and western blot. The p-mTOR and p-p70S6k proteins were used as markers for mTOR activity. In addition, the role of autophagy was determined by correlating its intensity with hypoxia tolerance in a time-dependent manner. At the same time, the involvement of the TSC1/mTOR pathway in autophagy was also examined through transfection with TSC1 (hamartin) plasmid. RESULTS 5-Aza-CdR was revealed to increase hypoxia tolerance and induce autophagy, accompanied by an increase in mRNA and protein expression levels of TSC1, reduction in p-mTOR (Ser2448) and p-p70S6k (Thr389) protein levels, and an increase in the ratio of LC3-II/LC3-I in both mouse hippocampus and hippocampal-derived neuronal cell line (HT22). The fluorescence intensity of hamartin was enhanced in the hippocampus of mice exposed to 5-Aza-CdR. Moreover, HT22 cells that over-expressed TSC1 showed more autophagy. CONCLUSIONS 5-Aza-CdR can increase hypoxia tolerance by inducing autophagy by initiating the TSC1/mTOR pathway.
Collapse
Affiliation(s)
- Ruifang Qi
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China; Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolu Zhang
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yabin Xie
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuyuan Jiang
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - You Liu
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolei Liu
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Xie
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoe Jia
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rengui Bade
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ruili Shi
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, USA
| | - Chunyang Zhang
- Department of neurosurgery, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia, China
| | - Guo Shao
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China; Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|