1
|
De Rubis G, Paudel KR, Kokkinis S, El-Sherkawi T, Datsyuk JK, Salunke P, Gerlach J, Dua K. Potent phytoceuticals cocktail exhibits anti-inflammatory and antioxidant activity on LPS-triggered RAW264.7 macrophages in vitro. Pathol Res Pract 2024; 266:155770. [PMID: 39673889 DOI: 10.1016/j.prp.2024.155770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Chronic inflammatory conditions, which include respiratory diseases and other ailments, are characterized by persistent inflammation and oxidative stress, and represent a significant health burden, often inadequately managed by current therapies which include conventional inhaled bronchodilators and oral or inhaled corticosteroids in the case of respiratory disorders. The present study explores the potential of Vedicinals®9 Advanced, a polyherbal formulation, to mitigate LPS-induced inflammation and oxidative stress in RAW264.7 mouse macrophages. The cells were pre-treated with Vedicinals®9 Advanced, followed by exposure to LPS to induce an inflammatory response. Key experimental outcomes were assessed, including nitric oxide (NO) and reactive oxygen species (ROS) production, as well as the expression of inflammatory and oxidative stress-related genes and proteins. Vedicinals®9 Advanced significantly reduced LPS-induced NO and ROS production, indicating strong anti-inflammatory and antioxidant properties. Additionally, the formulation downregulated the LPS-upregulated mRNA expression of pro-inflammatory cytokines, such as TNF-α and CXCL1, and oxidative stress markers, including GSTP1 and NQO1. Furthermore, Vedicinals®9 Advanced downregulated the LPS-induced protein expression of the chemokines CCL2 and CCL6, the LPS co-receptor, CD14, and the pro-inflammatory cytokines G-CSF and IL-1β. These findings highlight the potential of Vedicinals®9 Advanced as a therapeutic option for managing CRDs and other inflammatory conditions. The formulation's ability to simultaneously target inflammation and oxidative stress suggests it may offer advantages over existing treatments, with potential for broader application in inflammatory diseases.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Tammam El-Sherkawi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Jessica Katrine Datsyuk
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | | | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
2
|
Zhao X, Chen X, Yue C. Rutin Ameliorates Inflammation and Oxidative Stress in Ulcerative Colitis by Inhibiting NLRP3 Inflammasome Signaling Pathway. Cell Biochem Biophys 2024; 82:3715-3726. [PMID: 39138797 PMCID: PMC11576901 DOI: 10.1007/s12013-024-01459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
Ulcerative colitis (UC) is an idiopathic inflammatory disease. We intend to explore the mechanism of Rutin in the therapy of UC. Disease activity index (DAI) and hematoxylin-eosin staining were employed to assess therapeutic effect of Rutin on dextran sulfate sodium-stimulated mice. The proliferation was detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. Oxidative stress (OS) was assessed by measuring reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Inflammatory factors were detected using enzyme-linked immunosorbent assay and immunofluorescence staining. mRNA and protein expressions were detected by real-time quantitative polymerase chain reaction and immunoblotting assay. Rutin decreased DAI scores and ameliorated pathological damage in UC mice with decreased levels of inflammatory factors. Rutin recovered the inhibited proliferation of fetal human colon cells caused by lipopolysaccharide. Rutin inhibited OS by reducing ROS and MDA, while enhancing SOD activity in LPS-induced fetal human colon cells. Rutin inhibited NLRP3 inflammasome in UC mice and cell model. Silencing NLRP3 enhanced the inhibitory effect of Rutin on OS in lipopolysaccharide-induced fetal human colon cells. Conversely, NLRP3 overexpression reversed the restraining role of Rutin in OS. Rutin ameliorates UC by inhibiting inflammation and OS through suppressing NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xiangdong Zhao
- Department of Anorectal, Shenzhen Traditional Chinese Medicine Hospital, No. 1, Fuhua Road, Nanyuan Street, Futian District, Shenzhen, 518003, Guangdong, China
| | - Xiaochao Chen
- Department of Anorectal, Chengdu Anorectal Hospital, No.152, Daqiang East Street, Qingyang District, Chengdu, 610015, Sichuan, China
| | - Chaochi Yue
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Ho JSS, Ping TL, Paudel KR, El Sherkawi T, De Rubis G, Yeung S, Hansbro PM, Oliver BGG, Chellappan DK, Sin KP, Dua K. Exploring Bioactive Phytomedicines for Advancing Pulmonary Infection Management: Insights and Future Prospects. Phytother Res 2024; 38:5840-5872. [PMID: 39385504 PMCID: PMC11634825 DOI: 10.1002/ptr.8334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 10/12/2024]
Abstract
Pulmonary infections have a profound influence on global mortality rates. Medicinal plants offer a promising approach to address this challenge, providing nontoxic alternatives with higher levels of public acceptance and compliance, particularly in regions where access to conventional medications or diagnostic resources may be limited. Understanding the pathophysiology of viruses and bacteria enables researchers to identify biomarkers essential for triggering diseases. This knowledge allows the discovery of biological molecules capable of either preventing or alleviating symptoms associated with these infections. In this review, medicinal plants that have an effect on COVID-19, influenza A, bacterial and viral pneumonia, and tuberculosis are discussed. Drug delivery has been briefly discussed as well. It examines the effect of bioactive constituents of these plants and synthesizes findings from in vitro, in vivo, and clinical studies conducted over the past decade. In conclusion, many medicinal plants can be used to treat pulmonary infections, but further in-depth studies are needed as most of the current studies are only at preliminary stages. Extensive investigation and clinical studies are warranted to fully elucidate their mechanisms of action and optimize their use in clinical practice.
Collapse
Affiliation(s)
- Joyce Siaw Syuen Ho
- Department of Pharmaceutical Chemistry, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Teh Li Ping
- Department of Pharmaceutical Chemistry, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, School of Life Sciences, Faculty of ScienceCentenary Institute and the University of Technology SydneySydneyAustralia
| | - Tammam El Sherkawi
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyAustralia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyAustralia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of HealthUniversity of Technology SydneyUltimoAustralia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyAustralia
| | - Philip M. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of ScienceCentenary Institute and the University of Technology SydneySydneyAustralia
| | - Brian Gregory George Oliver
- School of Life ScienceUniversity of Technology SydneyUltimoAustralia
- Woolcock Institute of Medical ResearchMacquarie UniversitySydneyAustralia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Keng Pei Sin
- Department of Pharmaceutical Chemistry, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyAustralia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of HealthUniversity of Technology SydneyUltimoAustralia
| |
Collapse
|
4
|
Haysom-McDowell A, Paudel KR, Yeung S, Kokkinis S, El Sherkawi T, Chellappan DK, Adams J, Dua K, De Rubis G. Recent trends and therapeutic potential of phytoceutical-based nanoparticle delivery systems in mitigating non-small cell lung cancer. Mol Oncol 2024. [PMID: 39592417 DOI: 10.1002/1878-0261.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer death globally, with non-small cell lung cancer accounting for the majority (85%) of cases. Standard treatments including chemotherapy and radiotherapy present multiple adverse effects. Medicinal plants, used for centuries, are traditionally processed by methods such as boiling and oral ingestion, However, water solubility, absorption, and hepatic metabolism reduce phytoceutical bioavailability. More recently, isolated molecular compounds from these plants can be extracted with these phytoceuticals administered either individually or as an adjunct with standard therapy. Phytoceuticals have been shown to alleviate symptoms, may reduce dosage of chemotherapy and, in some cases, enhance pharmaceutical mechanisms. Research has identified many phytoceuticals' actions on cancer-associated pathways, such as oncogenesis, the tumour microenvironment, tumour cell proliferation, metastasis, and apoptosis. The development of novel nanoparticle delivery systems such as solid lipid nanoparticles, liquid crystalline nanoparticles, and liposomes has enhanced the bioavailability and targeted delivery of pharmaceuticals and phytoceuticals. This review explores the biological pathways associated with non-small cell lung cancer, a diverse range of phytoceuticals, the cancer pathways they act upon, and the pros and cons of several nanoparticle delivery systems.
Collapse
Affiliation(s)
- Adam Haysom-McDowell
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public Health, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public Health, University of Technology Sydney, Ultimo, Australia
- Centre for Inflammation Centenary Institute, Faculty of Science, School of Life Sciences, University of Technology Sydney, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public Health, University of Technology Sydney, Ultimo, Australia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public Health, University of Technology Sydney, Ultimo, Australia
| | - Tammam El Sherkawi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public Health, University of Technology Sydney, Ultimo, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jon Adams
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public Health, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public Health, University of Technology Sydney, Ultimo, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public Health, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
5
|
Datsyuk JK, De Rubis G, Paudel KR, Kokkinis S, Oliver BGG, Dua K. Cellular probing using phytoceuticals encapsulated advanced delivery systems in ameliorating lung diseases: Current trends and future prospects. Int Immunopharmacol 2024; 141:112913. [PMID: 39137633 DOI: 10.1016/j.intimp.2024.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Chronic respiratory diseases such as Chronic Obstructive Pulmonary Disease (COPD) and asthma have posed a significant healthcare and economic cost over a prolonged duration worldwide. At present, available treatments are limited to a range of preventive medicines, such as mono- or multiple-drug therapy, which necessitates daily use and are not considered as viable treatments to reverse the inflammatory processes of airway remodelling which is inclusive of the alteration of intra and extracellular matrix of the airway tract, death of epithelial cells, the increase in smooth muscle cell and the activation of fibroblasts. Hence, with the problem in mind a considerable body of study has been dedicated to comprehending the underlying factors that contribute to inflammation within the framework of these disorders. Hence, adequate literature that has unveiled the necessary cellular probing to reduce inflammation in the respiratory tract by improving the selectivity and precision of a novel treatment. However, through cellular probing cellular mechanisms such as the downregulation of various markers, interleukin 8, (IL-8), Interleukin 6 (IL-6), interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α) have been uncovered. Hence, to target such cellular probes implementation of phytoceuticals encapsulated in an advanced drug delivery system has shown potential to be a solution with in vitro and in vivo studies highlighting their anti-inflammatory and antioxidant effects. However, the high costs associated with advanced drug delivery systems and the limited literature focused exclusively on nanoparticles pose significant challenges. Additionally, the biochemical characteristics of phytoceuticals due to poor solubility, limited bioavailability, and difficulties in mass production makes it difficult to implement this product as a treatment for COPD and asthma. This study aims to examine the integration of many critical features in the context of their application for the treatment of chronic inflammation in respiratory disorders.
Collapse
Affiliation(s)
- Jessica Katrine Datsyuk
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Brian Gregory George Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
6
|
Li Q, Gao L. TRIM7 knockdown protects against LPS-induced autophagy, ferroptosis, and inflammatory responses in human bronchial epithelial cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03546-1. [PMID: 39446150 DOI: 10.1007/s00210-024-03546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Asthma is one of the most common respiratory diseases in pediatric department. Several asthma-associated events including inflammatory responses, autophagy, and ferroptosis have been identified as typical pathological processes. TRIM7 is a member of TRIM proteins family associated with several types of diseases. Nevertheless, its role in asthma is still elusive. The current research showed that TRIM7 was involved in the pathogenesis of asthma mainly by regulating the Akt signaling pathway. In detail, we found that TRIM7 was highly expressed in patients with asthma and in an in vitro model of asthma. The following analysis indicated that TRIM7 knockdown attenuated the expression and secretion of inflammatory cytokines including TNF-α, IL-1β and IL-6 in lipopolysaccharide (LPS)-exposed human bronchial epithelial cells (HBECs). Meanwhile, knockdown of TRIM7 exerted inhibitory effects on LPS-induced autophagy and ferroptosis. Further mechanistic studies showed that TRIM7 knockdown inhibited LPS-induced activation of Akt pathway, while overexpression of Akt attenuated the inhibitory effects of TRIM7 knockdown on LPS-exposed HBECs. Collectively, we reported here that TRIM7 knockdown inhibited LPS-induced autophagy, ferroptosis, and inflammatory cytokine secretion in HBECs via regulating the Akt pathway, providing a new insight into the strategies for improving asthma treatments.
Collapse
Affiliation(s)
- Qian Li
- Department of Pediatrics, Nanyang First People's Hospital, Nanyang, China
| | - Ling Gao
- Department of Pediatrics, Nanyang First People's Hospital, Nanyang, China.
| |
Collapse
|
7
|
Kokkinis S, De Rubis G, Paudel KR, Patel VK, Yeung S, Jessamine V, MacLoughlin R, Hansbro PM, Oliver B, Dua K. Liposomal curcumin inhibits cigarette smoke induced senescence and inflammation in human bronchial epithelial cells. Pathol Res Pract 2024; 260:155423. [PMID: 38909404 DOI: 10.1016/j.prp.2024.155423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Curcumin, the principal curcuminoid of turmeric (Curcuma longa extract), is very well known for its multiple biological therapeutic activities, particularly its anti-inflammatory and antioxidant potential. However, due to its low water solubility, it exhibits poor bioavailability. In order to overcome this problem, in the current study, we have employed liposomal technology to encapsulate curcumin with the aim of enhancing its therapeutic efficacy. The curcumin-loaded liposomes (PlexoZome®) were tested on a cigarette smoke extract-induced Chronic Obstructive Pulmonary Disease (COPD) in vitro model using minimally immortalized human bronchial epithelial cells (BCiNS1.1). The anti-senescence and anti-inflammatory properties of PlexoZome® were explored. 5 µM PlexoZome® curcumin demonstrated anti-senescent activity by decrease in X-gal positive cells, and reduction in the expression of p16 and p21 in immunofluorescence staining. Moreover, PlexoZome® curcumin also demonstrated a reduction in proteins related to senescence (osteopontin, FGF basic and uPAR) and inflammation (GM-CSF, EGF and ST2). Overall, the results clearly demonstrate the therapeutic potential of curcumin encapsulated liposomes in managing CSE induced COPD, providing a new direction to respiratory clinics.
Collapse
Affiliation(s)
- Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Pharmako Biotechnologies, Frenchs Forest, NSW 2086, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Vyoma K Patel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health and Medicine, School of Clinical Medicine, University of New South Wales, NSW 2031, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Victoria Jessamine
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway H91 HE94, Ireland; School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin D02YN77, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin D02PN40, Ireland
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Brian Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
8
|
Bani Saeid A, De Rubis G, Williams KA, Yeung S, Chellappan DK, Singh SK, Gupta G, Hansbro PM, Shahbazi MA, Gulati M, Kaur IP, Santos HA, Paudel KR, Dua K. Revolutionizing lung health: Exploring the latest breakthroughs and future prospects of synbiotic nanostructures in lung diseases. Chem Biol Interact 2024; 395:111009. [PMID: 38641145 DOI: 10.1016/j.cbi.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.
Collapse
Affiliation(s)
- Ayeh Bani Saeid
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands
| | - Monica Gulati
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh, India
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands; Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
9
|
Dai Y, Guo Y, Tang W, Chen D, Xue L, Chen Y, Guo Y, Wei S, Wu M, Dai J, Wang S. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases. J Nanobiotechnology 2024; 22:252. [PMID: 38750509 PMCID: PMC11097501 DOI: 10.1186/s12951-024-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
With increasing proportion of the elderly in the population, age-related diseases (ARD) lead to a considerable healthcare burden to society. Prevention and treatment of ARD can decrease the negative impact of aging and the burden of disease. The aging rate is closely associated with the production of high levels of reactive oxygen species (ROS). ROS-mediated oxidative stress in aging triggers aging-related changes through lipid peroxidation, protein oxidation, and DNA oxidation. Antioxidants can control autoxidation by scavenging free radicals or inhibiting their formation, thereby reducing oxidative stress. Benefiting from significant advances in nanotechnology, a large number of nanomaterials with ROS-scavenging capabilities have been developed. ROS-scavenging nanomaterials can be divided into two categories: nanomaterials as carriers for delivering ROS-scavenging drugs, and nanomaterials themselves with ROS-scavenging activity. This study summarizes the current advances in ROS-scavenging nanomaterials for prevention and treatment of ARD, highlights the potential mechanisms of the nanomaterials used and discusses the challenges and prospects for their applications.
Collapse
Affiliation(s)
- Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yifan Guo
- Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
10
|
De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS, Manjappa AS, Disouza J, Patravale V, Gupta G, Manandhar B, Rajput R, Robinson AK, Reyes RJ, Chakraborty A, Chellappan DK, Singh SK, Oliver BGG, Hansbro PM, Dua K. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2793-2833. [PMID: 37991539 DOI: 10.1007/s00210-023-02830-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Vyoma K Patel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Arehalli Sidramappa Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
- Department of Pharmaceutics, Vasantidevi Patil Institute of Pharmacy, Kodoli, Kolkapur, Maharashtra, 416114, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Rashi Rajput
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Alexandra Kailie Robinson
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Ruby-Jean Reyes
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Amlan Chakraborty
- Division of Immunology, Immunity to Infection and Respiratory Medicine (DIIIRM), School of Biological Sciences I Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
11
|
Paudel KR, Clarence DD, Panth N, Manandhar B, De Rubis G, Devkota HP, Gupta G, Zacconi FC, Williams KA, Pont LG, Singh SK, Warkiani ME, Adams J, MacLoughlin R, Oliver BG, Chellappan DK, Hansbro PM, Dua K. Zerumbone liquid crystalline nanoparticles protect against oxidative stress, inflammation and senescence induced by cigarette smoke extract in vitro. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2465-2483. [PMID: 37851060 PMCID: PMC10933165 DOI: 10.1007/s00210-023-02760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
The purpose of this study was to evaluate the potential of zerumbone-loaded liquid crystalline nanoparticles (ZER-LCNs) in the protection of broncho-epithelial cells and alveolar macrophages against oxidative stress, inflammation and senescence induced by cigarette smoke extract in vitro. The effect of the treatment of ZER-LCNs on in vitro cell models of cigarette smoke extract (CSE)-treated mouse RAW264.7 and human BCi-NS1.1 basal epithelial cell lines was evaluated for their anti-inflammatory, antioxidant and anti-senescence activities using colorimetric and fluorescence-based assays, fluorescence imaging, RT-qPCR and proteome profiler kit. The ZER-LCNs successfully reduced the expression of pro-inflammatory markers including Il-6, Il-1β and Tnf-α, as well as the production of nitric oxide in RAW 264.7 cells. Additionally, ZER-LCNs successfully inhibited oxidative stress through reduction of reactive oxygen species (ROS) levels and regulation of genes, namely GPX2 and GCLC in BCi-NS1.1 cells. Anti-senescence activity of ZER-LCNs was also observed in BCi-NS1.1 cells, with significant reductions in the expression of SIRT1, CDKN1A and CDKN2A. This study demonstrates strong in vitro anti-inflammatory, antioxidative and anti-senescence activities of ZER-LCNs paving the path for this formulation to be translated into a promising therapeutic agent for chronic respiratory inflammatory conditions including COPD and asthma.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Dvya Delilaa Clarence
- School of Postgraduate Studies, International Medical University (IMU), 57000, Kuala Lumpur, Malaysia
| | - Nisha Panth
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Gaurav Gupta
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | - Flavia C Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436, Santiago, Macul, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lisa G Pont
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara, Punjab, 144411, India
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, H91 HE94, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, D02 PN40, Ireland
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
12
|
Zhan J, Gu Z, Wang H, Liu Y, Wu Y, Huo J. Rutin alleviated lipopolysaccharide-induced damage in goat rumen epithelial cells. Anim Biosci 2024; 37:303-314. [PMID: 37905323 PMCID: PMC10766485 DOI: 10.5713/ab.23.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/01/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE Rutin, also called vitamin P, is a flavonoids from plants. Previous studies have indicated that rutin can alleviate the injury of tissues and cells by inhibiting oxidative stress and ameliorating inflammation. There is no report on the protective effects of rutin on goat rumen epithelial cells (GRECs) at present. Hence, we investigated whether rutin can alleviate lipopolysaccharide (LPS)-induced damage in GRECs. METHODS GRECs were cultured in basal medium or basal medium containing 1 μg/mL LPS, or 1 μg/mL LPS and 20 μg/mL rutin. Six replicates were performed for each group. After 3-h culture, the GRECs were harvested to detect the relevant parameters. RESULTS Rutin significantly enhanced the cell activity (p<0.05) and transepithelial electrical resistance (TEER) (p<0.01) and significantly reduced the apoptosis rate (p<0.05) of LPSinduced GRECs. Rutin significantly increased superoxide dismutase, glutathione peroxidase, and catalase activity (p<0.01) and significantly decreased lactate dehydrogenase activity and reactive oxygen species and malondialdehyde (MDA) levels in LPS-induced GRECs (p<0.01). The mRNA and protein levels of interleukin 6 (IL-6), IL-1β, and C-X-C motif chemokine ligand 8 (CXCL8) and the mRNA level of tumor necrosis factor-α (TNF-α) and chemokine C-C motif ligand 5 (CCL5) were significantly increased in LPS-induced GRECs (p<0.05 or p<0.01), while rutin supplementation significantly decreased the mRNA and protein levels of IL-6, TNF-α, and CXCL8 in LPS-induced GRECs (p<0.05 or p<0.01). The mRNA level of toll-like receptor 2 (TLR2), and the mRNA and protein levels of TLR4 and nuclear factor κB (NF-κB) was significantly improved in LPS-induced GRECs (p<0.05 or p<0.01), whereas rutin supplementation could significantly reduce the mRNA and protein levels of TLR4 (p<0.05 or p<0.01). In addition, rutin had a tendency of decreasing the protein levels of CXCL6, NF-κB, and inhibitor of nuclear factor kappa-B alpha (0.05< p<0.10). Rutin could significantly decreased interferon regulatory factor 3 mRNA expression in LPS-induced GRECs (p<0.05), whereas interferon induced protein with tetratricopeptide repeats 3 (IFIT3) and toll-interacting protein (TOLLIP) mRNA expression was not significantly different between the groups. LPS reduced the tight junction protein zonula occludin 1 (ZO-1) level in GRECs whereas rutin enhanced it. Rutin significantly improved tight junction protein Claudin-1 mRNA expression in LPS-induced GRECs (p<0.01), but could not affect tight junction protein Occludin mRNA expression. CONCLUSION Rutin alleviated LPS-induced barrier damage in GRECs by improving oxidation resistance and anti-inflammatory activity, which may be related to TLR/NF-κB signaling pathway inhibition.
Collapse
Affiliation(s)
- Jinshun Zhan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200,
China
| | - Zhiyong Gu
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200,
China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384,
China
| | - Haibo Wang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200,
China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070,
China
| | - Yuhang Liu
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200,
China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070,
China
| | - Yanping Wu
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200,
China
| | - Junhong Huo
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200,
China
| |
Collapse
|
13
|
Manandhar B, Paudel KR, Clarence DD, De Rubis G, Madheswaran T, Panneerselvam J, Zacconi FC, Williams KA, Pont LG, Warkiani ME, MacLoughlin R, Oliver BG, Gupta G, Singh SK, Chellappan DK, Hansbro PM, Dua K. Zerumbone-incorporated liquid crystalline nanoparticles inhibit proliferation and migration of non-small-cell lung cancer in vitro. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:343-356. [PMID: 37439806 PMCID: PMC10771618 DOI: 10.1007/s00210-023-02603-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
Lung cancer is the second most prevalent type of cancer and is responsible for the highest number of cancer-related deaths worldwide. Non-small-cell lung cancer (NSCLC) makes up the majority of lung cancer cases. Zerumbone (ZER) is natural compound commonly found in the roots of Zingiber zerumbet which has recently demonstrated anti-cancer activity in both in vitro and in vivo studies. Despite their medical benefits, ZER has low aqueous solubility, poor GI absorption and oral bioavailability that hinders its effectiveness. Liquid crystalline nanoparticles (LCNs) are novel drug delivery carrier that have tuneable characteristics to enhance and ease the delivery of bioactive compounds. This study aimed to formulate ZER-loaded LCNs and investigate their effectiveness against NSCLC in vitro using A549 lung cancer cells. ZER-LCNs, prepared in the study, inhibited the proliferation and migration of A549 cells. These inhibitory effects were superior to the effects of ZER alone at a concentration 10 times lower than that of free ZER, demonstrating a potent anti-cancer activity of ZER-LCNs. The underlying mechanisms of the anti-cancer effects by ZER-LCNs were associated with the transcriptional regulation of tumor suppressor genes P53 and PTEN, and metastasis-associated gene KRT18. The protein array data showed downregulation of several proliferation associated proteins such as AXL, HER1, PGRN, and BIRC5 and metastasis-associated proteins such as DKK1, CAPG, CTSS, CTSB, CTSD, and PLAU. This study provides evidence of potential for increasing the potency and effectiveness of ZER with LCN formulation and developing ZER-LCNs as a treatment strategy for mitigation and treatment of NSCLC.
Collapse
Affiliation(s)
- Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2050, Australia
| | - Dvya Delilaa Clarence
- School of Postgraduate Studies, International Medical University (IMU), 57000, Kuala Lumpur, Malaysia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Flavia C Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436, Macul, Santiago, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436, Macul, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lisa G Pont
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Ronan MacLoughlin
- Research and Development, Aerogen Limited, IDA Business Park, Galway, Connacht, H91 HE94, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster, D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster, D02 PN40, Ireland
| | - Brian Gregory Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, 2137, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
- Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, 144411, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2050, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
14
|
Malik R, Paudel KR, Manandhar B, De Rubis G, Shen J, Mujwar S, Singh TG, Singh SK, Gupta G, Adams J, MacLoughlin R, Oliver BGG, Hansbro PM, Chellappan DK, Dua K. Agarwood oil nanoemulsion counteracts LPS-induced inflammation and oxidative stress in RAW264.7 mouse macrophages. Pathol Res Pract 2023; 251:154895. [PMID: 37879146 DOI: 10.1016/j.prp.2023.154895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE Oxidative stress and inflammation are key pathophysiological features of chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Agarwood oil obtained from Aquilaria trees has promising antioxidant and anti-inflammatory activities. However, its clinical application is hampered by poor solubility. A viable approach to overcome this involves formulation of oily constituents into emulsions. Here, we have investigated the antioxidant and anti-inflammatory potential of an agarwood oil-based nanoemulsion (DE'RAAQSIN) against lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages in vitro. METHODS The antioxidant and anti-inflammatory activity of DE'RAAQSIN was assessed by measuring the levels of ROS and nitric oxide (NO) produced, using the DCF-DA assay and the Griess reagent assay, respectively. The molecular pathways activated by DE'RAAQSIN were investigated via qPCR. RESULTS LPS stimulation of RAW264.7 cells increased the production of nitric oxide (NO) and ROS and resulted in the overexpression of the inducible nitric oxide synthase (iNOS) gene. Furthermore, LPS induced the upregulation of the expression of key proinflammatory genes (IL-6, TNF-α, IL-1β, and CXCL1) and of the antioxidant gene heme oxygenase-1 (HO-1). DE'RAAQSIN demonstrated potent antioxidant and anti-inflammatory activity by significantly reducing the levels of ROS and of secreted NO, simultaneously counteracting the LPS-induced overexpression of iNOS, IL-6, TNF-α, IL-1β, and HO-1. These findings were corroborated by in silico activity prediction and physicochemical analysis of the main agarwood oil components. CONCLUSIONS We propose DE'RAAQSIN as a promising alternative managing inflammatory disorders, opening the platform for further studies aimed at understanding the effectiveness of DE'RAAQSIN.
Collapse
Affiliation(s)
- Raniya Malik
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jessie Shen
- De'Aurora Pty Ltd., Dean, VIC 3363, Australia
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Sachin Kumar Singh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai 602105, Tamil Nadu, India; School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, Rajasthan, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- IDA Business Park, H91 HE94 Galway, Connacht, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Leinster, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Leinster, Ireland
| | | | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
15
|
De Rubis G, Paudel KR, Liu G, Agarwal V, MacLoughlin R, de Jesus Andreoli Pinto T, Singh SK, Adams J, Nammi S, Chellappan DK, Oliver BGG, Hansbro PM, Dua K. Berberine-loaded engineered nanoparticles attenuate TGF-β-induced remodelling in human bronchial epithelial cells. Toxicol In Vitro 2023; 92:105660. [PMID: 37591407 DOI: 10.1016/j.tiv.2023.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Airway remodelling occurs in chronic respiratory diseases (CRDs) such as asthma and chronic obstructive pulmonary disease (COPD). It is characterized by aberrant activation of epithelial reparation, excessive extracellular matrix (ECM) deposition, epithelial-to-mesenchymal transition (EMT), and airway obstruction. The master regulator is Transforming Growth Factor-β (TGF-β), which activates tissue repair, release of growth factors, EMT, increased cell proliferation, and reduced nitric oxide (NO) secretion. Due to its fundamental role in remodelling, TGF-β is an emerging target in the treatment of CRDs. Berberine is a benzylisoquinoline alkaloid with antioxidant, anti-inflammatory, and anti-fibrotic activities whose clinical application is hampered by poor permeability. To overcome these limitations, in this study, berberine was encapsulated in monoolein-based liquid crystalline nanoparticles (BM-LCNs). The potential of BM-LCNs in inhibiting TGF-β-induced remodelling features in human bronchial epithelial cells (BEAS-2B) was tested. BM-LCNs significantly inhibited TGF-β-induced migration, reducing the levels of proteins upregulated by TGF-β including endoglin, thrombospondin-1, basic fibroblast growth factor, vascular-endothelial growth factor, and myeloperoxidase, and increasing the levels of cystatin C, a protein whose expression was downregulated by TGF-β. Furthermore, BM-LCNs restored baseline NO levels downregulated by TGF-β. The results prove the in vitro therapeutic efficacy of BM-LCNs in counteracting TGF-β-induced remodelling features. This study supports the suitability of berberine-loaded drug delivery systems to counteract airway remodelling, with potential application as a treatment strategy against CRDs.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, H91 HE94 Galway, Connacht, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Leinster, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Leinster, Ireland
| | | | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Srinivas Nammi
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Brian Gregory George Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
16
|
Wu F, Xia X, Lei T, Du H, Hua H, Liu W, Xu B, Yang T. Inhibition of SIRT1 promotes ultraviolet B induced cataract via downregulation of the KEAP1/NFE2L2 signaling pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112753. [PMID: 37437439 DOI: 10.1016/j.jphotobiol.2023.112753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
Due to continuous exposure to ultraviolet B(UVB) radiation, eye lenses are constantly subjected to oxidative stress that induces lens epithelial cell (LEC) apoptosis, which has been associated with the inactivation of Sirtuin1 (SIRT1). It is well-established that NFE2L2 has a major protective effect on UVB-induced oxidative stress and damage. However, whether UVB radiation affects oxidative/antioxidative imbalance and damages LECs by inactivating the protective NFE2L2-mediated antioxidative stress pathway through inhibition of SIRT1 is unknown. In our research, we established in vivo and in vitro UVB exposure models in Sprague Dawley rats and SRA01/04 cells, respectively, to investigate the effect of UVB radiation on the NFE2L2/ KEAP1 pathway and the role of SIRT1 in this process. The in vivo findings revealed that UVB radiation exposure decreased Sirt1 and Nfe2l2 levels, upregulated Keap1 expression, led to an oxidative/antioxidative imbalance and increased LEC apoptosis in the eye lens. Sirt1 downregulated Keap1 expression levels, but activated Nfe2l2 and its downstream target proteins. The in vitro findings showed that UVB inhibited the deacetylation of SIRT1 target proteins and increased the acetylation levels of KEAP1 and NFE2L2. We also found that UVB radiation exposure led to a significant decrease in both co-localization levels and protein interaction between SIRT1 and KEAP1. In addition, the inhibition of SIRT1 increased KEAP1 levels, inhibited the activity of NFE2L2 and decreased co- localization levels and protein interactions between NFE2L2 and KEAP1. These results suggested that UVB radiation decreased SIRT1 levels and inhibited the KEAP1/NFE2L2 pathway, thereby reducing its antioxidant effect, which might be an important mechanism of UVB-induced cataract.
Collapse
Affiliation(s)
- Feiying Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Xinyu Xia
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ting Lei
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Huiying Du
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Hui Hua
- The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Wei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Bin Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Tianyao Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
17
|
Sunoqrot S, Alkurdi M, Al Bawab AQ, Hammad AM, Tayyem R, Abu Obeed A, Abufara M. Encapsulation of morin in lipid core/PLGA shell nanoparticles significantly enhances its anti-inflammatory activity and oral bioavailability. Saudi Pharm J 2023; 31:845-853. [PMID: 37228320 PMCID: PMC10203777 DOI: 10.1016/j.jsps.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/07/2023] [Indexed: 05/27/2023] Open
Abstract
Morin (3,5,7,2',4'-pentahydroxyflavone; MR) is a bioactive plant polyphenol whose therapeutic efficacy is hindered by its poor biopharmaceutical properties. The purpose of this study was to develop a nanoparticle (NP) formulation to enhance the bioactivity and oral bioavailability of MR. The nanoprecipitation technique was employed to encapsulate MR in lipid-cored poly(lactide-co-glycolide) (PLGA) NPs. The optimal NPs were about 200 nm in size with an almost neutral surface charge and a loading efficiency of 82%. The NPs exhibited sustained release of MR within 24 h. In vitro antioxidant assays showed that MR encapsulation did not affect its antioxidant activity. On the other hand, anti-inflammatory assays in lipopolysaccharide-stimulated macrophages revealed a superior anti-inflammatory activity of MR NPs compared to free MR. Furthermore, oral administration of MR NPs to mice at a single dose of 20 mg/kg MR achieved a 5.6-fold enhancement in bioavailability and a prolongation of plasma half-life from 0.13 to 0.98 h. The results of this study present a promising NP formulation for MR which can enhance its oral bioavailability and bioactivity for the treatment of different diseases such as inflammation.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Malak Alkurdi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Abdel Qader Al Bawab
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Alaa M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | | | | | | |
Collapse
|
18
|
Fairley LH, Das S, Dharwal V, Amorim N, Hegarty KJ, Wadhwa R, Mounika G, Hansbro PM. Mitochondria-Targeted Antioxidants as a Therapeutic Strategy for Chronic Obstructive Pulmonary Disease. Antioxidants (Basel) 2023; 12:973. [PMID: 37107348 PMCID: PMC10135688 DOI: 10.3390/antiox12040973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress is a major hallmark of COPD, contributing to inflammatory signaling, corticosteroid resistance, DNA damage, and accelerated lung aging and cellular senescence. Evidence suggests that oxidative damage is not solely due to exogenous exposure to inhaled irritants, but also endogenous sources of oxidants in the form of reactive oxygen species (ROS). Mitochondria, the major producers of ROS, exhibit impaired structure and function in COPD, resulting in reduced oxidative capacity and excessive ROS production. Antioxidants have been shown to protect against ROS-induced oxidative damage in COPD, by reducing ROS levels, reducing inflammation, and protecting against the development of emphysema. However, currently available antioxidants are not routinely used in the management of COPD, suggesting the need for more effective antioxidant agents. In recent years, a number of mitochondria-targeted antioxidant (MTA) compounds have been developed that are capable of crossing the mitochondria lipid bilayer, offering a more targeted approach to reducing ROS at its source. In particular, MTAs have been shown to illicit greater protective effects compared to non-targeted, cellular antioxidants by further reducing apoptosis and offering greater protection against mtDNA damage, suggesting they are promising therapeutic agents for the treatment of COPD. Here, we review evidence for the therapeutic potential of MTAs as a treatment for chronic lung disease and discuss current challenges and future directions.
Collapse
Affiliation(s)
- Lauren H. Fairley
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Shatarupa Das
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Vivek Dharwal
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Nadia Amorim
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Karl J. Hegarty
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
- Discipline of Pharmacy, Graduate School of Health, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Guntipally Mounika
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
19
|
Agarwood Oil Nanoemulsion Attenuates Cigarette Smoke-Induced Inflammation and Oxidative Stress Markers in BCi-NS1.1 Airway Epithelial Cells. Nutrients 2023; 15:nu15041019. [PMID: 36839377 PMCID: PMC9959783 DOI: 10.3390/nu15041019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an irreversible inflammatory respiratory disease characterized by frequent exacerbations and symptoms such as cough and wheezing that lead to irreversible airway damage and hyperresponsiveness. The primary risk factor for COPD is chronic cigarette smoke exposure, which promotes oxidative stress and a general pro-inflammatory condition by stimulating pro-oxidant and pro-inflammatory pathways and, simultaneously, inactivating anti-inflammatory and antioxidant detoxification pathways. These events cause progressive damage resulting in impaired cell function and disease progression. Treatments available for COPD are generally aimed at reducing the symptoms of exacerbation. Failure to regulate oxidative stress and inflammation results in lung damage. In the quest for innovative treatment strategies, phytochemicals, and complex plant extracts such as agarwood essential oil are promising sources of molecules with antioxidant and anti-inflammatory activity. However, their clinical use is limited by issues such as low solubility and poor pharmacokinetic properties. These can be overcome by encapsulating the therapeutic molecules using advanced drug delivery systems such as polymeric nanosystems and nanoemulsions. In this study, agarwood oil nanoemulsion (agarwood-NE) was formulated and tested for its antioxidant and anti-inflammatory potential in cigarette smoke extract (CSE)-treated BCi-NS1.1 airway basal epithelial cells. The findings suggest successful counteractivity of agarwood-NE against CSE-mediated pro-inflammatory effects by reducing the expression of the pro-inflammatory cytokines IL-1α, IL-1β, IL-8, and GDF-15. In addition, agarwood-NE induced the expression of the anti-inflammatory mediators IL-10, IL-18BP, TFF3, GH, VDBP, relaxin-2, IFN-γ, and PDGF. Furthermore, agarwood-NE also induced the expression of antioxidant genes such as GCLC and GSTP1, simultaneously activating the PI3K pro-survival signalling pathway. This study provides proof of the dual anti-inflammatory and antioxidant activity of agarwood-NE, highlighting its enormous potential for COPD treatment.
Collapse
|
20
|
Alnuqaydan AM, Almutary AG, Azam M, Manandhar B, De Rubis G, Madheswaran T, Paudel KR, Hansbro PM, Chellappan DK, Dua K. Phytantriol-Based Berberine-Loaded Liquid Crystalline Nanoparticles Attenuate Inflammation and Oxidative Stress in Lipopolysaccharide-Induced RAW264.7 Macrophages. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4312. [PMID: 36500935 PMCID: PMC9737637 DOI: 10.3390/nano12234312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Inflammation and oxidative stress are interrelated processes that represent the underlying causes of several chronic inflammatory diseases that include asthma, cystic fibrosis, chronic obstructive pulmonary disease (COPD), allergies, diabetes, and cardiovascular diseases. Macrophages are key initiators of inflammatory processes in the body. When triggered by a stimulus such as bacterial lipopolysaccharides (LPS), these cells secrete inflammatory cytokines namely TNF-α that orchestrate the cellular inflammatory process. Simultaneously, pro-inflammatory stimuli induce the upregulation of inducible nitric oxide synthase (iNOS) which catalyzes the generation of high levels of nitric oxide (NO). This, together with high concentrations of reactive oxygen species (ROS) produced by macrophages, mediate oxidative stress which, in turn, exacerbates inflammation in a feedback loop, resulting in the pathogenesis of several chronic inflammatory diseases. Berberine is a phytochemical embedded with potent in vitro anti-inflammatory and antioxidant properties, whose therapeutic application is hindered by poor solubility and bioavailability. For this reason, large doses of berberine need to be administered to achieve the desired pharmacological effect, which may result in toxicity. Encapsulation of such a drug in liquid crystalline nanoparticles (LCNs) represents a viable strategy to overcome these limitations. We encapsulated berberine in phytantriol-based LCNs (BP-LCNs) and tested the antioxidant and anti-inflammatory activities of BP-LCNs in vitro on LPS-induced mouse RAW264.7 macrophages. BP-LCNs showed potent anti-inflammatory and antioxidant activities, with significant reduction in the gene expressions of TNF-α and iNOS, followed by concomitant reduction of ROS and NO production at a concentration of 2.5 µM, which is lower than the concentration of free berberine concentration required to achieve similar effects as reported elsewhere. Furthermore, we provide evidence for the suitability for BP-LCNs both as an antioxidant and as an anti-inflammatory agent with potential application in the therapy of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Abdulmajeed G. Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Mohd Azam
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
21
|
Silva TM, Fracasso DS, Vargas Visentin AP, Cassini C, Scariot FJ, Danetti S, Echeverrigaray S, Moura S, Touguinha LB, Branco CS, Salvador M. Dual effect of the herbal matcha green tea (Camellia sinensis L. kuntze) supplement in EA.hy926 endothelial cells and Artemia salina. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115564. [PMID: 35940467 DOI: 10.1016/j.jep.2022.115564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Matcha green tea (Camellia sinensis) based-supplements have been widely used since they present a greater content of phenolic compounds than traditional green tea, which is popularly used in the treatment of diabetes. However, there are few studies on the effectiveness and safety of matcha supplements. AIM OF THE STUDY This work aimed to evaluate the efficacy and safety of this supplement in endothelial cells (EA.hy926) in the hyperglycemic model and in vivo Artemia salina. MATERIALS AND METHODS To assess the effect of Matcha herbal supplement (MHS), EA. hy926 endothelial cells were treated with 20 μg/mL of MHS for 24 h, in a hyperglycemic medium with 35 mM glucose. After treatment, cells were trypsinized and centrifuged at 4 °C and 47×g for 5 min. The pellet was used to determine the reaction products to thiobarbituric acid and the levels of nitric oxide. Electron transport chain activity and ATP levels were also evaluated. Intracellular pH, apoptosis, and mitochondrial membrane depolarization were evaluated by flow cytometry. MHS chemical characterization was performed by HPLC-UV and total phenolic content analysis. The evaluation of the antioxidant capacity of MHS was performed by 2,2-diphenyl-1-picrylhydrazyl radical scavenger assay. To determine the in vivo acute toxicity of MHS, an A. salina assay was conducted, using 0,2 mL of different concentrations of MHS (10, 50, 100, 250, 500, 750 and 1000 μg/mL). The LD50 values were obtained by interpolation of 50% (y = 50) of the dead individuals in the trend curves. RESULTS Our data showed that MHS was able to avoid oxidative and nitrosative stress induced by hyperglycemia, demonstrating important antioxidant activity. However, it was observed that MHS reduced up to 90% the activity of the four-electron transport complexes, reducing the ATP production of the endothelial cells. In the toxicity assay performed in Artemia salina, MHS showed mild toxicity (LD50 = 0,4 mg/mL). The major compounds found in MHS were epigallocatechin gallate, epicatechin, rutin, kaempferol, and quercetin. CONCLUSIONS This data draws attention to the fact that supplements with high content of phenolic compounds, capable of avoiding oxidative and nitrosative stress can have a dual effect and, simultaneously to antioxidant activity, can induce toxicity in different cell types.
Collapse
Affiliation(s)
- Tuani Mendes Silva
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Débora Soligo Fracasso
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Ana Paula Vargas Visentin
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Carina Cassini
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Fernando Joel Scariot
- Laboratório de Enologia e Microbiologia Aplicada, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Sidineia Danetti
- Laboratório de Biotecnologia, Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Sergio Echeverrigaray
- Laboratório de Enologia e Microbiologia Aplicada, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Sidnei Moura
- Laboratório de Biotecnologia, Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Luciana Bavaresco Touguinha
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Catia Santos Branco
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| | - Mirian Salvador
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias Do Sul. Rua Francisco Getúlio Vargas, 1130, Caxias Do Sul, Rio Grande do Sul, CEP: 95070-560, Brazil.
| |
Collapse
|
22
|
Zothantluanga JH, Zonunmawii, Das P, Sarma H, Umar AK. Nanotherapeutics of Phytoantioxidants for Parasitic Diseases and Neglected Tropical Diseases. PHYTOANTIOXIDANTS AND NANOTHERAPEUTICS 2022:351-376. [DOI: 10.1002/9781119811794.ch16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Paudel KR, Chellappan DK, MacLoughlin R, Pinto TDJA, Dua K, Hansbro PM. Editorial: Advanced therapeutic delivery for the management of chronic respiratory diseases. Front Med (Lausanne) 2022; 9:983583. [PMID: 36017001 PMCID: PMC9396272 DOI: 10.3389/fmed.2022.983583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, SGR, Malaysia
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, Galway, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- *Correspondence: Kamal Dua
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
- Philip M. Hansbro
| |
Collapse
|
24
|
Chan Y, Singh SK, Gulati M, Wadhwa S, Prasher P, Kumar D, Kumar AP, Gupta G, Kuppusamy G, Haghi M, George Oliver BG, Adams J, Chellappan DK, Dua K. Advances and applications of monoolein as a novel nanomaterial in mitigating chronic lung diseases. J Drug Deliv Sci Technol 2022; 74:103541. [PMID: 35774068 PMCID: PMC9221924 DOI: 10.1016/j.jddst.2022.103541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 12/25/2022]
Abstract
Chronic lung diseases such as asthma, chronic obstructive pulmonary disease, lung cancer, and the recently emerged COVID-19, are a huge threat to human health, and among the leading causes of global morbidity and mortality every year. Despite availability of various conventional therapeutics, many patients remain poorly controlled and have a poor quality of life. Furthermore, the treatment and diagnosis of these diseases are becoming increasingly challenging. In the recent years, the application of nanomedicine has become increasingly popular as a novel strategy for diagnosis, treatment, prevention, as well as follow-up of chronic lung diseases. This is attributed to the ability of nanoscale drug carriers to achieve targeted delivery of therapeutic moieties with specificity to diseased site within the lung, thereby enhancing therapeutic outcomes of conventional therapies whilst minimizing the risks of adverse reactions. For this instance, monoolein is a polar lipid nanomaterial best known for its versatility, thermodynamic stability, biocompatibility, and biodegradability. As such, it is commonly employed in liquid crystalline systems for various drug delivery applications. In this review, we present the applications of monoolein as a novel nanomaterial-based strategy for targeted drug delivery with the potential to revolutionize therapeutic approaches in chronic lung diseases.
Collapse
Affiliation(s)
- Yinghan Chan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, 248007, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Avvaru Praveen Kumar
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Po Box 1888, Adama, Ethiopia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Mehra Haghi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
25
|
Advances in research with rutin-loaded nanoformulations in mitigating lung diseases. Future Med Chem 2022; 14:1293-1295. [PMID: 35876083 DOI: 10.4155/fmc-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Paudel KR, Mehta M, Yin GHS, Yen LL, Malyla V, Patel VK, Panneerselvam J, Madheswaran T, MacLoughlin R, Jha NK, Gupta PK, Singh SK, Gupta G, Kumar P, Oliver BG, Hansbro PM, Chellappan DK, Dua K. Berberine-loaded liquid crystalline nanoparticles inhibit non-small cell lung cancer proliferation and migration in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46830-46847. [PMID: 35171422 PMCID: PMC9232428 DOI: 10.1007/s11356-022-19158-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/06/2022] [Indexed: 05/02/2023]
Abstract
Non-small cell lung cancer (NSCLC) is reported to have a high incidence rate and is one of the most prevalent types of cancer contributing towards 85% of all incidences of lung cancer. Berberine is an isoquinoline alkaloid which offers a broad range of therapeutical and pharmacological actions against cancer. However, extremely low water solubility and poor oral bioavailability have largely restricted its therapeutic applications. To overcome these limitations, we formulated berberine-loaded liquid crystalline nanoparticles (LCNs) and investigated their in vitro antiproliferative and antimigratory activity in human lung epithelial cancer cell line (A549). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), trypan blue staining, and colony forming assays were used to evaluate the anti-proliferative activity, while scratch wound healing assay and a modified Boyden chamber assay were carried out to determine the anti-migratory activity. We also investigated major proteins associated with lung cancer progression. The developed nanoparticles were found to have an average particle size of 181.3 nm with spherical shape, high entrapment efficiency (75.35%) and have shown sustained release behaviour. The most remarkable findings reported with berberine-loaded LCNs were significant suppression of proliferation, inhibition of colony formation, inhibition of invasion or migration via epithelial mesenchymal transition, and proliferation related proteins associated with cancer progression. Our findings suggest that anti-cancer compounds with the problem of poor solubility and bioavailability can be overcome by formulating them into nanotechnology-based delivery systems for better efficacy. Further in-depth investigations into anti-cancer mechanistic research will expand and strengthen the current findings of berberine-LCNs as a potential NSCLC treatment option.
Collapse
Affiliation(s)
- Keshav R Paudel
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Meenu Mehta
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Geena Hew Suet Yin
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Lee Li Yen
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Vamshikrishna Malyla
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Vyoma K Patel
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ronan MacLoughlin
- IDA Business Park, Dangan, H91 HE94, Galway, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, D02 PN40, Ireland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida-201310, Uttar Pradesh, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, 2006, Australia
| | - Philip M Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, 2006, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
27
|
Attenuation of Cigarette-Smoke-Induced Oxidative Stress, Senescence, and Inflammation by Berberine-Loaded Liquid Crystalline Nanoparticles: In Vitro Study in 16HBE and RAW264.7 Cells. Antioxidants (Basel) 2022; 11:antiox11050873. [PMID: 35624737 PMCID: PMC9137697 DOI: 10.3390/antiox11050873] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Cigarette smoke is considered a primary risk factor for chronic obstructive pulmonary disease. Numerous toxicants present in cigarette smoke are known to induce oxidative stress and airway inflammation that further exacerbate disease progression. Generally, the broncho-epithelial cells and alveolar macrophages exposed to cigarette smoke release massive amounts of oxidative stress and inflammation mediators. Chronic exposure of cigarette smoke leads to premature senescence of airway epithelial cells. This impairs cellular function and ultimately leads to the progression of chronic lung diseases. Therefore, an ideal therapeutic candidate should prevent disease progression by controlling oxidative stress, inflammation, and senescence during the initial stage of damage. In our study, we explored if berberine (an alkaloid)-loaded liquid crystalline nanoparticles (berberine-LCNs)-based treatment to human broncho-epithelial cells and macrophage inhibits oxidative stress, inflammation, and senescence induced by cigarette-smoke extract. The developed berberine-LCNs were found to have favourable physiochemical parameters, such as high entrapment efficiency and sustained in vitro release. The cellular-assay observations revealed that berberine-LCNs showed potent antioxidant activity by suppressing the generation of reactive oxygen species in both broncho-epithelial cells (16HBE) and macrophages (RAW264.7), and modulating the genes involved in inflammation and oxidative stress. Similarly, in 16HBE cells, berberine-LCNs inhibited the cigarette smoke-induced senescence as revealed by X-gal staining, gene expression of CDKN1A (p21), and immunofluorescent staining of p21. Further in-depth mechanistic investigations into antioxidative, anti-inflammatory, and antisenescence research will diversify the current findings of berberine as a promising therapeutic approach for inflammatory lung diseases caused by cigarette smoking.
Collapse
|
28
|
Khakinahad Y, Sohrabi S, Razi S, Narmani A, Khaleghi S, Asadiyun M, Jafari H, Mohammadnejad J. Margetuximab conjugated-PEG-PAMAM G4 nano-complex: a smart nano-device for suppression of breast cancer. Biomed Eng Lett 2022; 12:317-329. [PMID: 35892030 PMCID: PMC9308845 DOI: 10.1007/s13534-022-00225-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/06/2022] [Accepted: 03/06/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract Breast cancer due to its high incidence and mortality is the second leading cause of death among females. On the other hand, nanoparticle-based drug delivery is one of the most promising approaches in cancer therapy, nowadays. Hence, margetuximab- and polyethylene glycol-conjugated PAMAM G4 dendrimers were efficiently synthesized for targeted delivery of quercetin (therapeutic agent) to MDA-MB-231 breast cancer cells. Synthesized nano-complexes were characterized using analytical devices such as FT-IR, TGA, DLS, Zeta potential analyzer, and TEM. The size less than 40 nm, - 18.8 mV surface charge, efficient drug loading capacity (21.48%), and controlled drug release (about 45% of drug release normal pH after 8 h) were determined for the nano-complex. In the biomedical test, the cell viability was obtained 14.67% at 24 h of post-treatment for 800 nM concentration, and IC50 was ascertained at 100 nM for the nano-complex. The expression of apoptotic Bax and Caspase9 genes was increased by more than eightfolds and more than fivefolds after treatment with an optimal concentration of nanocarrier. Also, more than threefolds of cell cycle arrest was observed at the optimal concentration synthetics, and 27.5% breast cancer cell apoptosis was detected after treatment with 100 nM nano-complex. These outputs have been indicating the potential capacity of synthesized nano-complex in inhibiting the growth of breast cancer cells. Graphic abstract
Collapse
Affiliation(s)
- Yasaman Khakinahad
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Biological and Biomedical Sciences, Cancer Biomedical Center, Tehran, Iran
| | - Saeedeh Sohrabi
- Department of Biological and Biomedical Sciences, Cancer Biomedical Center, Tehran, Iran
- Department of Biology, Faculty of Advanced Sciences and Technology, Payam Noor University, Tehran, Iran
| | - Shokufeh Razi
- Department of Biological and Biomedical Sciences, Cancer Biomedical Center, Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Medical Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahboubeh Asadiyun
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Biological and Biomedical Sciences, Cancer Biomedical Center, Tehran, Iran
| | - Hanieh Jafari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
29
|
Khursheed R, Paudel KR, Gulati M, Vishwas S, Jha NK, Hansbro PM, Oliver BG, Dua K, Singh SK. Expanding the arsenal against pulmonary diseases using surface-functionalized polymeric micelles: breakthroughs and bottlenecks. Nanomedicine (Lond) 2022; 17:881-911. [PMID: 35332783 DOI: 10.2217/nnm-2021-0451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pulmonary diseases such as lung cancer, asthma and tuberculosis have remained one of the common challenges globally. Polymeric micelles (PMs) have emerged as an effective technique for achieving targeted drug delivery for a local as well as a systemic effect. These PMs encapsulate and protect hydrophobic drugs, increase pulmonary targeting, decrease side effects and enhance drug efficacy through the inhalation route. In the current review, emphasis has been placed on the different barriers encountered by the drugs given via the pulmonary route and the mechanism of PMs in achieving drug targeting. The applications of PMs in different pulmonary diseases have also been discussed in detail.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Keshav R Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, 2007, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
30
|
Uwagboe I, Adcock IM, Lo Bello F, Caramori G, Mumby S. New drugs under development for COPD. Minerva Med 2022; 113:471-496. [PMID: 35142480 DOI: 10.23736/s0026-4806.22.08024-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The characteristic features of chronic obstructive pulmonary disease (COPD) include inflammation and remodelling of the lower airways and lung parenchyma together with activation of inflammatory and immune processes. Due to the increasing habit of cigarette smoking worldwide COPD prevalence is increasing globally. Current therapies are unable to prevent COPD progression in many patients or target many of its hallmark characteristics which may reflect the lack of adequate biomarkers to detect the heterogeneous clinical and molecular nature of COPD. In this chapter we review recent molecular data that may indicate novel pathways that underpin COPD subphenotypes and indicate potential improvements in the classes of drugs currently used to treat COPD. We also highlight the evidence for new drugs or approaches to treat COPD identified using molecular and other approaches including kinase inhibitors, cytokine- and chemokine-directed biologicals and small molecules, antioxidants and redox signalling pathway inhibitors, inhaled anti-infectious agents and senolytics. It is important to consider the phenotypes/molecular endotypes of COPD patients together with specific outcome measures to target new therapies to particular COPD subtypes. This will require greater understanding of COPD molecular pathologies and a focus on biomarkers of predicting disease subsets and responder/non-responder populations.
Collapse
Affiliation(s)
- Isabel Uwagboe
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK -
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
31
|
Unravelling the molecular mechanisms underlying chronic respiratory diseases for the development of novel therapeutics via in vitro experimental models. Eur J Pharmacol 2022; 919:174821. [DOI: 10.1016/j.ejphar.2022.174821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
|
32
|
Allam VSRR, Paudel KR, Gupta G, Singh SK, Vishwas S, Gulati M, Gupta S, Chaitanya MVNL, Jha NK, Gupta PK, Patel VK, Liu G, Kamal MA, Hansbro PM, Oliver BGG, Chellappan DK, Dua K. Nutraceuticals and mitochondrial oxidative stress: bridging the gap in the management of bronchial asthma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62733-62754. [PMID: 35796922 PMCID: PMC9477936 DOI: 10.1007/s11356-022-21454-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023]
Abstract
Asthma is a chronic inflammatory disease primarily characterized by inflammation and reversible bronchoconstriction. It is currently one of the leading causes of morbidity and mortality in the world. Oxidative stress further complicates the pathology of the disease. The current treatment strategies for asthma mainly involve the use of anti-inflammatory agents and bronchodilators. However, long-term usage of such medications is associated with severe adverse effects and complications. Hence, there is an urgent need to develop newer, novel, and safe treatment modalities for the management of asthma. This has therefore prompted further investigations and detailed research to identify and develop novel therapeutic interventions from potent untapped resources. This review focuses on the significance of oxidative stressors that are primarily derived from both mitochondrial and non-mitochondrial sources in initiating the clinical features of asthma. The review also discusses the biological scavenging system of the body and factors that may lead to its malfunction which could result in altered states. Furthermore, the review provides a detailed insight into the therapeutic role of nutraceuticals as an effective strategy to attenuate the deleterious effects of oxidative stress and may be used in the mitigation of the cardinal features of bronchial asthma.
Collapse
Affiliation(s)
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, Australia
| | - Vyoma K Patel
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah, 21589, Saudi Arabia
- Institutes for Systems Genetics, Frontiers Science Center for Disease related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
33
|
Chan Y, Raju Allam VSR, Paudel KR, Singh SK, Gulati M, Dhanasekaran M, Gupta PK, Jha NK, Devkota HP, Gupta G, Hansbro PM, Oliver BGG, Chellappan DK, Dua K. Nutraceuticals: unlocking newer paradigms in the mitigation of inflammatory lung diseases. Crit Rev Food Sci Nutr 2021:1-31. [PMID: 34613853 DOI: 10.1080/10408398.2021.1986467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Persistent respiratory tract inflammation contributes to the pathogenesis of various chronic respiratory diseases, such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. These inflammatory respiratory diseases have been a major public health concern as they are the leading causes of worldwide mortality and morbidity, resulting in heavy burden on socioeconomic growth throughout these years. Although various therapeutic agents are currently available, the clinical applications of these agents are found to be futile due to their adverse effects, and most patients remained poorly controlled with a low quality of life. These drawbacks have necessitated the development of novel, alternative therapeutic agents that can effectively improve therapeutic outcomes. Recently, nutraceuticals such as probiotics, vitamins, and phytochemicals have gained increasing attention due to their nutritional properties and therapeutic potential in modulating the pathological mechanisms underlying inflammatory respiratory diseases, which could ultimately result in improved disease control and overall health outcomes. As such, nutraceuticals have been held in high regard as the possible alternatives to address the limitations of conventional therapeutics, where intensive research are being performed to identify novel nutraceuticals that can positively impact various inflammatory respiratory diseases. This review provides an insight into the utilization of nutraceuticals with respect to their molecular mechanisms targeting multiple signaling pathways involved in the pathogenesis of inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Yinghan Chan
- School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
34
|
Recent trends of NFκB decoy oligodeoxynucleotide-based nanotherapeutics in lung diseases. J Control Release 2021; 337:629-644. [PMID: 34375688 DOI: 10.1016/j.jconrel.2021.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Nuclear factor κB (NFκB) is a unique protein complex that plays a major role in lung inflammation and respiratory dysfunction. The NFκB signaling pathway, therefore becomes an avenue for the development of potential pharmacological interventions, especially in situations where chronic inflammation is often constitutively active and plays a key role in the pathogenesis and progression of the disease. NFκB decoy oligodeoxynucleotides (ODNs) are double-stranded and carry NFκB binding sequences. They prevent the formation of NFκB-mediated inflammatory cytokines and thus have been employed in the treatment of a variety of chronic inflammatory diseases. However, the systemic administration of naked decoy ODNs restricts their therapeutic effectiveness because of their poor pharmacokinetic profile, instability, degradation by cellular enzymes and their low cellular uptake. Both structural modification and nanotechnology have shown promising results in enhancing the pharmacokinetic profiles of potent therapeutic substances and have also shown great potential in the treatment of respiratory diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. In this review, we examine the contribution of NFκB activation in respiratory diseases and recent advancements in the therapeutic use of decoy ODNs. In addition, we also highlight the limitations and challenges in use of decoy ODNs as therapeutic molecules, cellular uptake of decoy ODNs, and the current need for novel delivery systems to provide efficient delivery of decoy ODNs. Furthermore, this review provides a common platform for discussion on the existence of decoy ODNs, as well as outlining perspectives on the latest generation of delivery systems that encapsulate decoy ODNs and target NFκB in respiratory diseases.
Collapse
|
35
|
Rohilla D, Kaur N, Shanavas A, Chaudhary S. Microwave mediated synthesis of dopamine functionalized copper sulphide nanoparticles: An effective catalyst for visible light driven degradation of methlyene blue dye. CHEMOSPHERE 2021; 277:130202. [PMID: 33774243 DOI: 10.1016/j.chemosphere.2021.130202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The current work highlights the potential aptitude of copper sulphide (CuS) nanoparticles as cost and energy-effective photo-catalyst for degrading methlyene blue dye under visible light. The surface modified CuS nanoparticles with dopamine (DOP) were prepared by using fast and cost effective microwave assisted methodology. Here, DOP act as biological ligand for the reduction and capping of CuS nanoparticles. The structural and morphological analyses revealed the size controlled synthesis of CuS in presence of DOP with higher thermal stability. The bio-compatibility and non-toxic behaviour of CuS@DOP nanoparticles was evaluated against L929 cell lines and on E. coli and S. aureus strains. The visible light driven photocatalytic activity of the synthesized CuS@DOP was scrutinized for the degradation of methylene blue (MB) dyes, as a model of water contaminants. The photocatalytic degradation of MB by CuS@DOP attained 97% after 10 min of visible light irradiation. The effect of catalyst dose, pH, initial concentration of MB dye, electrolytes, contact time, synergic effect of photolysis and catalysis were studied in detail for optimizing the degradation efficiency of CuS@DOP. The mechanism of CuS@DOP photocatalysis and the formed degraded products were analyzed by using LC/MS technique. The reusability and stability of photocatalyst was confirmed by reusing the catalyst for six successive runs with catalytic performance as high as 80%. Thus, CuS@DOP NPs acted as cost effective, non-toxic visible light driven photo-catalyst for the degradation of organic dye from waste water.
Collapse
Affiliation(s)
- Deepak Rohilla
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Navneet Kaur
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
36
|
Chan Y, Mehta M, Paudel KR, Madheswaran T, Panneerselvam J, Gupta G, Su QP, Hansbro PM, MacLoughlin R, Dua K, Chellappan DK. Versatility of liquid crystalline nanoparticles in inflammatory lung diseases. Nanomedicine (Lond) 2021; 16:1545-1548. [PMID: 34184917 DOI: 10.2217/nnm-2021-0114] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Yinghan Chan
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, 302017, India
| | - Qian Peter Su
- School of Biomedical Engineering, Faculty of Engineering & Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, H91 HE94, Ireland.,School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland.,School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, D02 PN40, Ireland
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
37
|
Allam VSRR, Chellappan DK, Jha NK, Shastri MD, Gupta G, Shukla SD, Singh SK, Sunkara K, Chitranshi N, Gupta V, Wich PR, MacLoughlin R, Oliver BGG, Wernersson S, Pejler G, Dua K. Treatment of chronic airway diseases using nutraceuticals: Mechanistic insight. Crit Rev Food Sci Nutr 2021; 62:7576-7590. [PMID: 33977840 DOI: 10.1080/10408398.2021.1915744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Respiratory diseases, both acute and chronic, are reported to be the leading cause of morbidity and mortality, affecting millions of people globally, leading to high socio-economic burden for the society in the recent decades. Chronic inflammation and decline in lung function are the common symptoms of respiratory diseases. The current treatment strategies revolve around using appropriate anti-inflammatory agents and bronchodilators. A range of anti-inflammatory agents and bronchodilators are currently available in the market; however, the usage of such medications is limited due to the potential for various adverse effects. To cope with this issue, researchers have been exploring various novel, alternative therapeutic strategies that are safe and effective to treat respiratory diseases. Several studies have been reported on the possible links between food and food-derived products in combating various chronic inflammatory diseases. Nutraceuticals are examples of such food-derived products which are gaining much interest in terms of its usage for the well-being and better human health. As a consequence, intensive research is currently aimed at identifying novel nutraceuticals, and there is an emerging notion that nutraceuticals can have a positive impact in various respiratory diseases. In this review, we discuss the efficacy of nutraceuticals in altering the various cellular and molecular mechanisms involved in mitigating the symptoms of respiratory diseases.
Collapse
Affiliation(s)
- Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Madhur D Shastri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, New South Wales, Australia
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Krishna Sunkara
- Emergency Clinical Management, Intensive Care Unit, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, Ireland.,School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Brian Gregory George Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia.,Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
38
|
Kaur J, Famta P, Famta M, Mehta M, Satija S, Sharma N, Vyas M, Khatik GL, Chellappan DK, Dua K, Khurana N. Potential anti-epileptic phytoconstituents: An updated review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113565. [PMID: 33166627 DOI: 10.1016/j.jep.2020.113565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/12/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy is one of the most commonly occurring non-communicable neurological disorder that affects people of all age groups. Around 50 million people globally are epileptic, with 80% cases in developing countries due to lack of access to treatments determined by high cost and poor availability or it can be defined by the fraction of active epileptic patients who are not appropriately being treated. The availability of antiepileptic drugs and their adjuvant therapy in such countries is less than 50% and these are highly susceptible to drug interactions and severe adverse effects. As a result, the use of herbal medicine is increasingly becoming popular. AIM OF THE STUDY To provide pharmacological information on the active constituents evaluated in the preclinical study to treat epilepsy with potential to be used as an alternative therapeutic option in future. It also provides affirmation for the development of novel antiepileptic drugs derived from medicinal plants. MATERIALS AND METHODS Relevant information on the antiepileptic potential of phytoconstituents in the preclinical study (in-vitro, in-vivo) is provided based on their effect on screening parameters. Besides, relevant information on pharmacology of phytoconstituents, the traditional use of their medicinal plants related to epilepsy and status of phytoconstituents in the clinical study were derived from online databases, including PubMed, Clinicaltrial. gov, The Plant List (TPL, www.theplantlist.org), Science Direct. Articles identified using preset searching syntax and inclusion criteria are presented. RESULTS More than 70% of the phytoconstituents reviewed in this paper justified the traditional use of their medicinal plant related to epilepsy by primarily acting on the GABAergic system. Amongst the phytoconstituents, only cannabidiol and tetrahydrocannabinol have been explored for clinical application in epilepsy. CONCLUSION The preclinical and clinical data of the phytoconstituents to treat epilepsy and its associated comorbidities provides evidence for the discovery and development of novel antiepileptic drugs from medicinal plants. In terms of efficacy and safety, further randomized and controlled clinical studies are required to understand the complete pharmacodynamic and pharmacokinetic picture of phytoconstituents. Also, specific botanical source evaluation is needed.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Paras Famta
- Institute of Nano Science and Technology, Phase-10, Sector-64, Mohali, Punjab, 160062, India
| | - Mani Famta
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Vidya Vihar Campus, Street Number 41, Pilani, Rajasthan, 333031, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Gopal Lal Khatik
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
39
|
Rutin-loaded liquid crystalline nanoparticles attenuate oxidative stress in bronchial epithelial cells: a PCR validation. Future Med Chem 2021; 13:543-549. [PMID: 33538615 DOI: 10.4155/fmc-2020-0297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: In the present study, the inhibitory potential of rutin-loaded liquid crystalline nanoparticles (LCNs) on oxidative stress was determined in human bronchial epithelial cells (BEAS-2B) by analysing the expression levels of different antioxidant (NADPH quinine oxidoreductase-1 (NQO1); γ-glutamyl cysteine synthetase catalytic subunit (GCLC)) and pro-oxidant (NADPH oxidase (Nox)-4; Nox2B) genes. Results: Our findings revealed that the rutin-loaded LCNs inhibited the genes, namely Nox2B and Nox4, which caused oxidative stress. In addition, these nanoparticles demonstrated an upregulation in the expression of the antioxidant genes Gclc and Nqo-1 in a dose-dependent manner. Conclusion: The study indicates the promising potential of rutin-loaded LCNs as an effective treatment strategy in patients with high oxidant loads in various respiratory diseases.
Collapse
|
40
|
Jin-Ying Wong, Yin Ng Z, Mehta M, Shukla SD, Panneerselvam J, Madheswaran T, Gupta G, Negi P, Kumar P, Pillay V, Hsu A, Hansbro NG, Wark P, Bebawy M, Hansbro PM, Dua K, Chellappan DK. Curcumin-loaded niosomes downregulate mRNA expression of pro-inflammatory markers involved in asthma: an in vitro study. Nanomedicine (Lond) 2020; 15:2955-2970. [PMID: 33252322 DOI: 10.2217/nnm-2020-0260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: In this study, curcumin was encapsulated in niosomes (Nio-Curc) to increase its effectiveness for the treatment of asthma. Materials & methods: The formulation underwent various physicochemical characterization experiments, an in vitro release study, molecular simulations and was evaluated for in vitro anti-inflammatory activity. Results: Results showed that Nio-Curc had a mean particle size of 284.93 ± 14.27 nm, zeta potential of -46.93 and encapsulation efficacy of 99.62%, which demonstrates optimized physicochemical characteristics. Curcumin release in vitro could be sustained for up to 24 h. Additionally, Nio-Curc effectively reduced mRNA transcript expression of pro-inflammatory markers; IL-6, IL-8, IL-1β and TNF-α in immortalized human airway basal cell line (BCi-NS1.1). Conclusion: In this study, we have demonstrated that Nio-Curc mitigated the mRNA expression of pro-inflammatory markers in an in vitro study, which could be applied to treatment of asthma with further studies.
Collapse
Affiliation(s)
- Jin-Ying Wong
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Zhao Yin Ng
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, University of Newcastle & Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Alan Hsu
- Priority Research Centre for Healthy Lungs, University of Newcastle & Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle & Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Peter Wark
- Priority Research Centre for Healthy Lungs, University of Newcastle & Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle & Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle & Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia.,School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
41
|
Mehta M, Satija S, Paudel KR, Malyla V, Kannaujiya VK, Chellappan DK, Bebawy M, Hansbro PM, Wich PR, Dua K. Targeting respiratory diseases using miRNA inhibitor based nanotherapeutics: Current status and future perspectives. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102303. [PMID: 32980549 DOI: 10.1016/j.nano.2020.102303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) play a fundamental role in the developmental and physiological processes that occur in both animals and plants. AntagomiRs are synthetic antagonists of miRNA, which prevent the target mRNA from suppression. Therapeutic approaches that modulate miRNAs have immense potential in the treatment of chronic respiratory disorders. However, the successful delivery of miRNAs/antagomiRs to the lungs remains a major challenge in clinical applications. A range of materials, namely, polymer nanoparticles, lipid nanocapsules and inorganic nanoparticles, has shown promising results for intracellular delivery of miRNA in chronic respiratory disorders. This review discusses the current understanding of miRNA biology, the biological roles of antagomiRs in chronic respiratory disease and the recent advances in the therapeutic utilization of antagomiRs as disease biomarkers. Furthermore our review provides a common platform to debate on the nature of antagomiRs and also addresses the viewpoint on the new generation of delivery systems that target antagomiRs in respiratory diseases.
Collapse
Affiliation(s)
- Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
| | | | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia; Centre for Nanomedicine, University of New South Wales, Sydney, NSW, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia; Priority Research Centre for Healthy Lungs, University of Newcastle & Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India.
| |
Collapse
|
42
|
Chan Y, Ng SW, Mehta M, Anand K, Kumar Singh S, Gupta G, Chellappan DK, Dua K. Advanced drug delivery systems can assist in managing influenza virus infection: A hypothesis. Med Hypotheses 2020; 144:110298. [PMID: 33254489 PMCID: PMC7515600 DOI: 10.1016/j.mehy.2020.110298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
Abstract
Outbreaks of influenza infections in the past have severely impacted global health and socioeconomic growth. Antivirals and vaccines are remarkable medical innovations that have been successful in reducing the rates of morbidity and mortality from this disease. However, the relentless emergence of drug resistance has led to a worrisome increase in the trend of influenza outbreaks, characterized by worsened clinical outcomes as well as increased economic burden. This has prompted the need for breakthrough innovations that can effectively manage influenza outbreaks. This article provides an insight into a novel hypothesis that describes how the integration of nanomedicine, with the development of drugs and vaccines can potentially enhance body immune response and the efficacies of anti-viral therapeutics to combat influenza infections.
Collapse
Affiliation(s)
- Yinghan Chan
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia; Nanotherapeutics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Sin Wi Ng
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia; Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya Medical Centre, Subang Jaya, 47500 Selangor, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, 302017 Jaipur, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India.
| |
Collapse
|