1
|
Liu J, Wang F, Wang X, Fan S, Li Y, Xu M, Hu H, Liu K, Zheng B, Wang L, Zhang H, Li J, Li W, Zhang W, Hu Z, Cao R, Zhuang X, Wang M, Zhong W. Antiviral effects and tissue exposure of tetrandrine against SARS-CoV-2 infection and COVID-19. MedComm (Beijing) 2023; 4:e206. [PMID: 36699286 PMCID: PMC9851407 DOI: 10.1002/mco2.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023] Open
Abstract
Tetrandrine (TET) has been used to treat silicosis in China for decades. The aim of this study was to facilitate rational repurposing of TET against SARS-CoV-2 infection. In this study, we confirmed that TET exhibited antiviral potency against SARS-CoV-2 in the African green monkey kidney (Vero E6), human hepatocarcinoma (Huh7), and human lung adenocarcinoma epithelial (Calu-3) cell lines. TET functioned during the early-entry stage of SARS-CoV-2 and impeded intracellular trafficking of the virus from early endosomes to endolysosomes. An in vivo study that used adenovirus (AdV) 5-human angiotensin-converting enzyme 2 (hACE2)-transduced mice showed that although TET did not reduce pulmonary viral load, it significantly alleviated pathological damage in SARS-CoV-2-infected murine lungs. The systemic preclinical pharmacokinetics were investigated based on in vivo and in vitro models, and the route-dependent biodistribution of TET was explored. TET had a large volume of distribution, which contributed to its high tissue accumulation. Inhaled administration helped TET target the lung and reduced its exposure to other tissues, which mitigated its off-target toxicity. Based on the available human pharmacokinetic data, it appeared feasible to achieve an unbound TET 90% maximal effective concentration (EC90) in human lungs. This study provides insights into the route-dependent pulmonary biodistribution of TET associated with its efficacy.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Furun Wang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Xi Wang
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Shiyong Fan
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yufeng Li
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Mingyue Xu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Hengrui Hu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Ke Liu
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Bohong Zheng
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Lingchao Wang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Huanyu Zhang
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Jiang Li
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Wei Li
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Wenpeng Zhang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Zhihong Hu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Xiaomei Zhuang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Manli Wang
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
- Hubei Jiangxia LaboratoryWuhanChina
| | - Wu Zhong
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijingChina
| |
Collapse
|
2
|
Ibrahim OHM, Al-Qurashi AD, Asiry KA, Mousa MAA, Alhakamy NA, Abo-Elyousr KAM. Investigation of Potential In Vitro Anticancer and Antimicrobial Activities of Balanites aegyptiaca (L.) Delile Fruit Extract and Its Phytochemical Components. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192621. [PMID: 36235487 PMCID: PMC9573292 DOI: 10.3390/plants11192621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 05/27/2023]
Abstract
The therapeutic importance of Balanites aegyptiaca in folk medicine for the treatment of several common human diseases has led researchers to conduct phytochemical and pharmacological studies on extracts from various parts of the plant. In the current study, the phytochemical composition of the B. aegyptiaca methanolic fruit extract was characterized, and its antimicrobial activity was evaluated together with the cytotoxic activity against MCF-7, PC-3, and Caco-2, compared with normal Vero cells. Further, its effects on cell cycle arrest, apoptosis induction and expression of apoptosis-related genes were assessed. The phytochemical screening revealed the presence of fatty acids and their esters in addition to phytosterols, steroid derivatives, and bioflavonoid glycosides with oleic and palmitic acids being the prevalent components (24.12 and 21.56%, respectively). The results showed considerable cytotoxic activity of the extract against the three cancer cell lines (MCF-7, PC-3, and Caco-2) with a selectivity index ranging from 5.07 to 6.52. This effect was further confirmed with the accompanied increased total apoptosis of treated PC-3 cells (19.22% of the total number of cells) compared to the control cells (0.64% of the total number of cells) with cell cycle arrest at G1 phase and the increased transcription of pro-apoptotic genes including P53 (3.69) and BAX (3.33) expressed as fold change (2^ ΔΔCT). The calculated minimum inhibitory concentration (MIC) was similar (62.5 µg/mL) against the three tested bacterial strains (Acinetobacter johnsonii, Serratia marcescens and Agrobacterium tumefaciens), while it was higher than 1000 µg/mL for the fungal species (Rhizoctonia solani, Penicillium italicum, and Fusarium oxysporium). Our findings suggest a promising anticancer activity for B. aegyptiaca, which paves the way for more detailed future studies.
Collapse
Affiliation(s)
- Omer H. M. Ibrahim
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel D. Al-Qurashi
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid A. Asiry
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Magdi A. A. Mousa
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kamal A. M. Abo-Elyousr
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Mo L, Zhang F, Chen F, Xia L, Huang Y, Mo Y, Zhang L, Huang D, He S, Deng J, Hao E, Du Z. Progress on structural modification of Tetrandrine with wide range of pharmacological activities. Front Pharmacol 2022; 13:978600. [PMID: 36052124 PMCID: PMC9424556 DOI: 10.3389/fphar.2022.978600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Tetrandrine (Tet), derived from the traditional Chinese herb Fangji, is a class of natural alkaloids with the structure of bisbenzylisoquinoline, which has a wide range of physiological activities and significant pharmacfological effects. However, studies and clinical applications have revealed a series of drawbacks such as its poor water solubility, low bioavailability, and the fact that it can be toxic to humans. The results of many researchers have confirmed that chemical structural modifications and nanocarrier delivery can address the limited application of Tet and improve its efficacy. In this paper, we summarize the anti-tumor efficacy and mechanism of action, anti-inflammatory efficacy and mechanism of action, and clinical applications of Tet, and describe the progress of Tet based on chemical structure modification and nanocarrier delivery, aiming to explore more diverse structures to improve the pharmacological activity of Tet and provide ideas to meet clinical needs.
Collapse
Affiliation(s)
- Liuying Mo
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Fan Zhang
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Chen
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Lei Xia
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Yi Huang
- Office of the President, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuemi Mo
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Lingqiu Zhang
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Daquan Huang
- Guangxi Dahai Sunshine Pharmaceutical, Nanning, China
| | - Shunli He
- Guangxi Heli Pharmaceutical, Nanning, China
| | - Jiagang Deng
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- *Correspondence: Jiagang Deng, ; Erwei Hao, ; Zhengcai Du,
| | - Erwei Hao
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- *Correspondence: Jiagang Deng, ; Erwei Hao, ; Zhengcai Du,
| | - Zhengcai Du
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- *Correspondence: Jiagang Deng, ; Erwei Hao, ; Zhengcai Du,
| |
Collapse
|
4
|
Effect of Quercetin on Injury to Indomethacin-Treated Human Embryonic Kidney 293 Cells. Life (Basel) 2021; 11:life11111134. [PMID: 34833010 PMCID: PMC8623736 DOI: 10.3390/life11111134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to treat inflammation and pain and even to prevent the progression of cardiovascular disease. They have become widely used because of their effectiveness, especially among athletes performing high-intensity training. Indomethacin is used for pain management in sports medicine and is highly effective and versatile. However, several clinical studies have reported that indomethacin induces acute renal damage. In the present study, we determined that indomethacin reduced human embryonic kidney 293 (HEK293) cell viability in a concentration-dependent manner by triggering apoptosis. In addition, we demonstrated the effect of quercetin on indomethacin-treated HEK293 cells by inactivating the caspase-3 and caspase-9 signals. Furthermore, quercetin reduced ROS production and increased mitochondrial membrane potential (ΔΨm) in indomethacin-treated HEK293 cells. Our results indicate that quercetin can interrupt the activated caspase and mitochondrial pathway induced by indomethacin in HEK293 cells and affect apoptotic mRNA expression. Quercetin can protect against indomethacin-induced HEK293 cell apoptosis by regulating abnormal ΔΨm and apoptotic mRNA expression.
Collapse
|
5
|
Zhang H, Wang X, Guo Y, Liu X, Zhao X, Teka T, Lv C, Han L, Huang Y, Pan G. Thirteen bisbenzylisoquinoline alkaloids in five Chinese medicinal plants: Botany, traditional uses, phytochemistry, pharmacokinetic and toxicity studies. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113566. [PMID: 33166629 DOI: 10.1016/j.jep.2020.113566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
RELEVANCE Bisbenzylisoquinoline (BBIQ) alkaloids are generally present in plants of Berberidaceae, Monimiaceae and Ranunculaceae families in tropical and subtropical regions. Some species of these families are used in traditional Chinese medicine, with the effects of clearing away heat and detoxification, promoting dampness and defecation, and eliminating sores and swelling. This article offers essential data focusing on 13 representative BBIQ compounds, which are mainly extracted from five plants. The respective botany, traditional uses, phytochemistry, pharmacokinetics, and toxicity are summarized comprehensively. In addition, the ADME prediction of the 13 BBIQ alkaloids is compared and analyzed with the data obtained. MATERIALS AND METHODS We have conducted a systematic review of the botanical characteristics, traditional uses, phytochemistry, pharmacokinetics and toxicity of BBIQ alkaloids based on literatures collected from PubMed, Web of Science and Elsevier during 1999-2020. ACD/Percepta software was utilized to predict the pharmacokinetic parameters of BBIQ alkaloids and their affinity with enzymes and transporters. RESULTS Botany, traditional uses, phytochemistry, pharmacokinetic and toxicity of 13 alkaloids, namely, tetrandrine, dauricine, curine, trilobine, isotrilobine, cepharanthine, daurisoline, thalicarpine, thalidasine, isotetrandrine, liensinine, neferine and isoliensinine, have been summarized in this paper. It can't be denied that these alkaloids are important material basis of pharmacological effects of family Menispermaceae and others, and for traditional and local uses which has been basically reproduced in the current studies. The 13 BBIQ alkaloids in this paper showed strong affinity and inhibitory effect on P-glycoprotein (P-gp), with poor oral absorption and potent binding ability with plasma protein. BBIQ alkaloids represented by tetrandrine play a key role in regulating P-gp or reversing multidrug resistance (MDR) in a variety of tumors. The irrationality of their usage could pose a risk of poisoning in vivo, including renal and liver toxicity, which are related to the formation of quinone methide during metabolism. CONCLUSION Although there is no further clinical evaluation of BBIQ alkaloids as MDR reversal agents, their effects on P-gp should not be ignored. Considering their diverse distribution, pharmacokinetic characteristics and toxicity reported during clinical therapy, the quality standards in different plant species and the drug dosage remain unresolved problems.
Collapse
Affiliation(s)
- Han Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Yaqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Xiaomei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Xizi Zhao
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Tekleab Teka
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China
| | - Chunxiao Lv
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin-300250, China
| | - Lifeng Han
- Tianjin University of Traditional Chinese Medicine, Tianjin-301617, China.
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin-300250, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin-300250, China.
| |
Collapse
|
6
|
Müller M, Gerndt S, Chao YK, Zisis T, Nguyen ONP, Gerwien A, Urban N, Müller C, Gegenfurtner FA, Geisslinger F, Ortler C, Chen CC, Zahler S, Biel M, Schaefer M, Grimm C, Bracher F, Vollmar AM, Bartel K. Gene editing and synthetically accessible inhibitors reveal role for TPC2 in HCC cell proliferation and tumor growth. Cell Chem Biol 2021; 28:1119-1131.e27. [PMID: 33626324 DOI: 10.1016/j.chembiol.2021.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/08/2021] [Accepted: 01/28/2021] [Indexed: 01/02/2023]
Abstract
The role of two-pore channel 2 (TPC2), one of the few cation channels localized on endolysosomal membranes, in cancer remains poorly understood. Here, we report that TPC2 knockout reduces proliferation of cancer cells in vitro, affects their energy metabolism, and successfully abrogates tumor growth in vivo. Concurrently, we have developed simplified analogs of the alkaloid tetrandrine as potent TPC2 inhibitors by screening a library of synthesized benzyltetrahydroisoquinoline derivatives. Removal of dispensable substructures of the lead molecule tetrandrine increases antiproliferative properties against cancer cells and impairs proangiogenic signaling of endothelial cells to a greater extent than tetrandrine. Simultaneously, toxic effects on non-cancerous cells are reduced, allowing in vivo administration and revealing a TPC2 inhibitor with antitumor efficacy in mice. Hence, our study unveils TPC2 as valid target for cancer therapy and provides easily accessible tetrandrine analogs as a promising option for effective pharmacological interference.
Collapse
Affiliation(s)
- Martin Müller
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Susanne Gerndt
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Yu-Kai Chao
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Themistoklis Zisis
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Ong Nam Phuong Nguyen
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Aaron Gerwien
- Department of Chemistry and Munich Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Nicole Urban
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany
| | - Christoph Müller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Florian A Gegenfurtner
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Franz Geisslinger
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Carina Ortler
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Cheng-Chang Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, 100 Taipei, Taiwan
| | - Stefan Zahler
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Martin Biel
- Department of Pharmacy, Pharmacology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany
| | - Christian Grimm
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University Munich, 81377 Munich, Germany.
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany.
| | - Karin Bartel
- Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany.
| |
Collapse
|
7
|
Shine VJ, Anuja GI, Latha PG, Suja SR, Abraham S, G. Nair V, Rajasekharan S. Evaluation of CYP2D, CYP1A2 and distribution of tetrandrine, fangchinoline in the brain, liver, and kidney of wistar rats after short-term exposure to Cyclea peltata. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_166_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Schütz R, Müller M, Geisslinger F, Vollmar A, Bartel K, Bracher F. Synthesis, biological evaluation and toxicity of novel tetrandrine analogues. Eur J Med Chem 2020; 207:112810. [PMID: 32942071 PMCID: PMC7473156 DOI: 10.1016/j.ejmech.2020.112810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022]
Abstract
In this work, we present the design and synthesis of novel fully synthetic analogues of the bisbenzylisoquinoline tetrandrine, a molecule with numerous pharmacological properties and the potential to treat life-threatening diseases, such as viral infections and cancer. Its toxicity to liver and lungs and the underlying mechanisms, however, are controversially discussed. Along this line, novel tetrandrine analogues were synthesized and biologically evaluated for their hepatotoxicity, as well as their antiproliferative and chemoresistance reversing activity on cancer cells. Previous studies suggesting CYP-mediated toxification of tetrandrine prompted us to amend/replace the suspected metabolically instable 12-methoxy group. Of note, employing several in vitro models showed that the proposed CYP3A4-driven metabolism of tetrandrine and analogues is not the major cause of hepatotoxicity. Biological characterization revealed that some of the novel tetrandrine analogues sensitized drug-resistant leukemia cells by inhibition of the P-glycoprotein. Interestingly, direct anticancer effects improved in comparison to tetrandrine, as several compounds displayed a markedly enhanced ability to reduce proliferation of drug-resistant leukemia cells and to induce cell death of liver cancer cells. Those enhanced anticancer properties were linked to influences on activation of the kinase Akt and mitochondrial events. In sum, our study clarifies the role of CYP3A4-mediated toxicity of the bisbenzylisoquinoline alkaloid tetrandrine and provides the basis for the exploitation of novel synthetic analogues for their antitumoral potential.
Collapse
Affiliation(s)
- Ramona Schütz
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Martin Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Franz Geisslinger
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Angelika Vollmar
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Karin Bartel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
9
|
Schütz R, Müller M, Gerndt S, Bartel K, Bracher F. Racemic total synthesis and evaluation of the biological activities of the isoquinoline–benzylisoquinoline alkaloid muraricine. Arch Pharm (Weinheim) 2020; 353:e2000106. [DOI: 10.1002/ardp.202000106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/25/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Ramona Schütz
- Department of Pharmacy, Center for Drug ResearchLudwig‐Maximilians‐University of Munich Munich Germany
| | - Martin Müller
- Department of Pharmacy, Center for Drug ResearchLudwig‐Maximilians‐University of Munich Munich Germany
| | - Susanne Gerndt
- Department of Pharmacy, Center for Drug ResearchLudwig‐Maximilians‐University of Munich Munich Germany
| | - Karin Bartel
- Department of Pharmacy, Center for Drug ResearchLudwig‐Maximilians‐University of Munich Munich Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug ResearchLudwig‐Maximilians‐University of Munich Munich Germany
| |
Collapse
|
10
|
Jiang Y, Liu M, Liu H, Liu S. A critical review: traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji). PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2020; 19:449-489. [PMID: 32336965 PMCID: PMC7180683 DOI: 10.1007/s11101-020-09673-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/15/2020] [Indexed: 05/05/2023]
Abstract
ABSTRACT Stephania tetrandra S. Moore (S. tetrandra) is distributed widely in tropical and subtropical regions of Asia and Africa. The root of this plant is known in Chinese as "Fen Fang Ji". It is commonly used in traditional Chinese medicine to treat arthralgia caused by rheumatism, wet beriberi, dysuria, eczema and inflamed sores. Although promising reports have been published on the various chemical constituents and activities of S. tetrandra, no review comprehensively summarizes its traditional uses, phytochemistry, pharmacology and toxicology. Therefore, the review aims to provide a critical and comprehensive evaluation of the traditional use, phytochemistry, pharmacological properties, pharmacokinetics and toxicology of S. tetrandra in China, and meaningful guidelines for future investigations.
Collapse
Affiliation(s)
- Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Haitao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008 China
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008 China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 China
| |
Collapse
|
11
|
Chow LWC, Cheng KS, Leong F, Cheung CW, Shiao LR, Leung YM, Wong KL. Enhancing tetrandrine cytotoxicity in human lung carcinoma A549 cells by suppressing mitochondrial ATP production. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:427-436. [PMID: 30547225 DOI: 10.1007/s00210-018-01601-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
ATP depletion induced by inhibiting glycolysis or mitochondrial ATP production has been demonstrated to cause cancer cell death. Whether ATP depletion can enhance the efficacy and potency of anti-cancer effects of herbal compounds is so far unknown. We examined the enhancing effect of ATP depletion on anti-cancer actions of tetrandrine (TET) in human lung carcinoma A549 cells. A 24-h incubation of A549 cells with tetrandrine caused a concentration-dependent cytotoxic effect (LC50 = 66.1 μM). Co-incubation with 20 mM 2-deoxyglucose (2-DG, glycolysis inhibitor) caused only a very slight enhancement of tetrandrine cytotoxicity. By contrast, inhibiting mitochondrial ATP production with oligomycin (10 μM, ATP synthase inhibitor) and FCCP (30 μM, uncoupling agent) (thus, oligo-FCCP) on its own caused only slight cell cytotoxicity but strongly potentiated tetrandrine cytotoxicity (tetrandrine LC50 = 15.6 μM). The stronger enhancing effect of oligo-FCCP than 2-DG on TET toxicity did not result from more severe overall ATP depletion, since both treatments caused a similar ATP level suppression. Neither oligo-FCCP nor 2-DG synergized with tetrandrine in decreasing mitochondrial membrane potential. TET on its own triggered reactive oxygen species (ROS) production, and oligo-FCCP, but not 2-DG, potentiated TET in causing ROS production. Taken together, our results suggest that inhibiting ATP production from mitochondria, but not from glycolysis, appears to be a very effective means in augmenting TET-triggered ROS production and hence toxicity in A549 cells.
Collapse
Affiliation(s)
- Louis W C Chow
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- UNIMED Medical Institute and Organisation for Oncology and Translational Research, Hong Kong, China
- Organisation for Oncology and Translational Research, Hong Kong, China
| | - Ka-Shun Cheng
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Fai Leong
- Department of Anaesthesiology of Centro Hospitalar conde de Sao Januario, Macao Health Bureau, Macau, SAR, China
| | - Chi-Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lian-Ru Shiao
- Department of Physiology, China Medical University, No.91, Hsueh-Shih Road, Taichung, 40402, Taiwan, Republic of China
| | - Yuk-Man Leung
- Department of Physiology, China Medical University, No.91, Hsueh-Shih Road, Taichung, 40402, Taiwan, Republic of China.
| | - Kar-Lok Wong
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan.
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Liu T, Liu X, Li W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget 2018; 7:40800-40815. [PMID: 27027348 PMCID: PMC5130046 DOI: 10.18632/oncotarget.8315] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/10/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer is a disease caused by the abnormal proliferation and differentiation of cells governed by tumorigenic factors. Chemotherapy is one of the major cancer treatment strategies, and it functions by targeting the physiological capabilities of cancer cells, including sustained proliferation and angiogenesis, the evasion of programmed cell death, tissue invasion and metastasis. Remarkably, natural products have garnered increased attention in the chemotherapy drug discovery field because they are biologically friendly and have high therapeutic effects. Tetrandrine, isolated from the root of Stephania tetrandra S Moore, is a traditional Chinese clinical agent for silicosis, autoimmune disorders, inflammatory pulmonary diseases, cardiovascular diseases and hypertension. Recently, the novel anti-tumor effects of tetrandrine have been widely investigated. More impressive is that tetrandrine affects multiple biological activities of cancer cells, including the inhibition of proliferation, angiogenesis, migration, and invasion; the induction of apoptosis and autophagy; the reversal of multidrug resistance (MDR); and the enhancement of radiation sensitization. This review focuses on introducing the latest information about the anti-tumor effects of tetrandrine on various cancers and its underlying mechanism. Moreover, we discuss the nanoparticle delivery system being developed for tetrandrine and the anti-tumor effects of other bisbenzylisoquinoline alkaloid derivatives on cancer cells. All current evidence demonstrates that tetrandrine is a promising candidate as a cancer chemotherapeutic.
Collapse
Affiliation(s)
- Ting Liu
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Xin Liu
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, P. R. China
| | - Wenhua Li
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
13
|
Yassin AM, El-Deeb NM, Metwaly AM, El Fawal GF, Radwan MM, Hafez EE. Induction of Apoptosis in Human Cancer Cells Through Extrinsic and Intrinsic Pathways by Balanites aegyptiaca Furostanol Saponins and Saponin-Coated SilverNanoparticles. Appl Biochem Biotechnol 2017; 182:1675-1693. [PMID: 28236195 DOI: 10.1007/s12010-017-2426-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
Abstract
The aim of this investigation is to examine the anticancer activities of Balanites aegyptiaca fruit extract with its biogenic silver nanoparticles (AgNPs) against colon and liver cancer cells. B. aegyptiaca aqueous extract was fractionated according to polarity and by biosynthesized AgNP. The cytotoxicity of the extract, semi-purified fractions, and the AgNPs was examined on noncancerous cell lines. The safer fraction was subjected to ultra-performance liquid chromatography-MS to identify the major active constituents. The anticancer activities of the nontoxic doses of all the used treatments were tested against HepG2 and CaCo2 cells. The nontoxic dose of the B. aegyptiaca (0.63 mg/ml) extract showed high anti-proliferative activities against HepG2 and CaCo2 with a percentage of 81 and 77%, respectively. The butanol fraction was safer than the other two fractions with 46.3 and 90.35% anti-proliferative activity against Caco2 and HepG2 cells, respectively. The nontoxic dose of AgNPs (0.63 mg/ml) inhibits both HepG2 and Caco2 cells with a percentage of 84.5 and 83.4%, respectively. In addition, AgNPs regulate the expression of certain genes with folding higher than that of crude extract. Saponin-coated AgNPs showed great abilities to select the most anticancer ingredient(s) from the B. aegyptiaca extract with a more safety pattern than the polarity gradient fractionation.
Collapse
Affiliation(s)
- Abdelrahman M Yassin
- Biopharmaceutical Product Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Nehal M El-Deeb
- Biopharmaceutical Product Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Ahmed M Metwaly
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
| | - Gomaa F El Fawal
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Mohamed M Radwan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA.,Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Elsayed E Hafez
- Department of Plant Protection and Biomolecular Diagnosis, ALCRI, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
14
|
Liu M, Zhao G, Cao S, Zhang Y, Li X, Lin X. Development of Certain Protein Kinase Inhibitors with the Components from Traditional Chinese Medicine. Front Pharmacol 2017; 7:523. [PMID: 28119606 PMCID: PMC5220067 DOI: 10.3389/fphar.2016.00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have been used in China for more than two thousand years, and some of them have been confirmed to be effective in cancer treatment. Protein kinases play critical roles in control of cell growth, proliferation, migration, survival, and angiogenesis and mediate their biological effects through their catalytic activity. In recent years, numerous protein kinase inhibitors have been developed and are being used clinically. Anticancer TCMs represent a large class of bioactive substances, and some of them display anticancer activity via inhibiting protein kinases to affect the phosphoinositide 3-kinase, serine/threonine-specific protein kinases, pechanistic target of rapamycin (PI3K/AKT/mTOR), P38, mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) pathways. In the present article, we comprehensively reviewed several components isolated from anticancer TCMs that exhibited significantly inhibitory activity toward a range of protein kinases. These components, which belong to diverse structural classes, are reviewed herein, based upon the kinases that they inhibit. The prospects and problems in development of the anticancer TCMs are also discussed.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Ge Zhao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Xiaofang Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| |
Collapse
|
15
|
Lien JC, Lin MW, Chang SJ, Lai KC, Huang AC, Yu FS, Chung JG. Tetrandrine induces programmed cell death in human oral cancer CAL 27 cells through the reactive oxygen species production and caspase-dependent pathways and associated with beclin-1-induced cell autophagy. ENVIRONMENTAL TOXICOLOGY 2017; 32:329-343. [PMID: 26822499 DOI: 10.1002/tox.22238] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Tetrandrine, a bisbenzylisoquinoline alkaloid, is extracted from the root of the Chinese herb Radix Stephania tetrandra S Moore. This compound has antitumor activity in different cancer cell types. In this study, the effects of tetrandrine on human oral cancer CAL 27 cells were examined. Results indicated that tetrandrine induced cytotoxic activity in CAL 27 cells. Effects were due to cell death by the induction of apoptosis and accompany with autophagy and these effects were concentration- and time-dependent manners. Tetrandrine induced apoptosis was accompanied by alterations in cell morphology, chromatin fragmentation, and caspase activation in CAL 27 cells. Tetrandrine treatment also induced intracellular accumulation of reactive oxygen species (ROS). The generation of ROS may play an important role in tetrandrine-induced apoptosis. Tetrandrine triggered LC3B expression and induced autophagy in CAL 27 cells. Tetrandrine induced apoptosis and autophagy were significantly attenuated by N-acetylcysteine pretreatment that supports the involvement of ROS production. Tetrandrine induced cell death may act through caspase-dependent apoptosis with Beclin-1-induced autophagy in human oral cancer cells. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 329-343, 2017.
Collapse
Affiliation(s)
- Jin-Cherng Lien
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, 404, Taiwan
| | - Meng-Wei Lin
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei, 231, Taiwan
| | - Shu-Jen Chang
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Kuang-Chi Lai
- Department of Surgery, China Medical University Beigang Hospital, Yunlin, 651, Taiwan
- School of Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - An-Cheng Huang
- Department of Nursing, St. Mary's Medicine Nursing and Management College, Yilan, 266, Taiwan
| | - Fu-Shun Yu
- Department of Dentist, China Medical University, Taichung, 404, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
16
|
Shi JP, Li SX, Ma ZL, Gao AL, Song YJ, Zhang H. Acute and sub-chronic toxicity of tetrandrine in intravenously exposed female BALB/c mice. Chin J Integr Med 2015; 22:925-931. [DOI: 10.1007/s11655-015-2303-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 01/13/2023]
|
17
|
Feng C, Xie X, Wu M, Li C, Gao M, Liu M, Qi X, Ren J. Tanshinone I protects mice from aristolochic acid I-induced kidney injury by induction of CYP1A. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:850-857. [PMID: 23981375 DOI: 10.1016/j.etap.2013.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/19/2013] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
Hepatic CYP1A especially CYP1A2 plays an important role in the reduction of aristolochic acid I (AAI) nephrotoxicity. In this study, we investigated the effects of tanshinone I, a strong inducer of Cyp1a, on the nephrotoxicity induced by AAI. Histopathology and blood biochemistry assays showed that tanshinone I could reduce AAI-induced acute kidney injury. Pharmacokinetics analysis revealed that tanshinone I markedly decreased AUC of AAI in plasma and the content of AAI in both liver and kidney, indicating the enhancement of AAI metabolism. Real-time PCR and Western blot analysis confirmed that tanshinone I effectively increased the mRNA and protein levels of hepatic CYP1A1 and CYP1A2 in vivo. Luciferase assay showed that tanshinone I strongly increased the transcriptional activity of CYP1A1 and CYP1A2 in the similar extent. In summary, our data suggested that tanshinone I facilitated the metabolism of AAI and prevented AAI-induced kidney injury by induction of hepatic CYP1A 1/2 in vivo.
Collapse
Affiliation(s)
- Chenchen Feng
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences; Graduate School of the Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
ROS generated by CYP450, especially CYP2E1, mediate mitochondrial dysfunction induced by tetrandrine in rat hepatocytes. Acta Pharmacol Sin 2013; 34:1229-36. [PMID: 23892269 DOI: 10.1038/aps.2013.62] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/22/2013] [Indexed: 11/08/2022] Open
Abstract
AIM Tetrandrine, an alkaloid with a remarkable pharmacological profile, induces oxidative stress and mitochondrial dysfunction in hepatocytes; however, mitochondria are not the direct target of tetrandrine, which prompts us to elucidate the role of oxidative stress in tetrandrine-induced mitochondrial dysfunction and the sources of oxidative stress. METHODS Rat primary hepatocytes were isolated by two-step collagenase perfusion. Mitochondrial function was evaluated by analyzing ATP content, mitochondrial membrane potential (MMP) and the mitochondrial permeability transition. The oxidative stress was evaluated by examining changes in the levels of reactive oxygen species (ROS) and glutathione (GSH). RESULTS ROS scavengers largely attenuated the cytotoxicity induced by tetrandrine in rat hepatocytes, indicating the important role of ROS in the hepatotoxicity of tetrandrine. Of the multiple ROS inhibitors that were tested, only inhibitors of CYP450 (SKF-525A and others) reduced the ROS levels and ameliorated the depletion of GSH. Mitochondrial function assays showed that the mitochondrial permeability transition (MPT) induced by tetrandrine was inhibited by SKF-525A and vitamin C (VC), both of which also rescued the depletion of ATP levels and the mitochondrial membrane potential. Upon inhibiting specific CYP450 isoforms, we observed that the inhibitors of CYP2D, CYP2C, and CYP2E1 attenuated the ATP depletion that occurred following tetrandrine exposure, whereas the inhibitors of CYP2D and CYP2E1 reduced the ROS induced by tetrandrine. Overexpression of CYP2E1 enhanced the tetrandrine-induced cytotoxicity. CONCLUSION We demonstrated that CYP450 plays an important role in the mitochondrial dysfunction induced by the administration of tetrandrine. ROS generated by CYP450, especially CYP2E1, may contribute to the mitochondrial dysfunction induced by tetrandrine.
Collapse
|
19
|
Huang FJ, Chin TY, Chan WH. Resveratrol protects against methylglyoxal-induced apoptosis and disruption of embryonic development in mouse blastocysts. ENVIRONMENTAL TOXICOLOGY 2013; 28:431-441. [PMID: 21793156 DOI: 10.1002/tox.20734] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/28/2011] [Accepted: 04/30/2011] [Indexed: 05/31/2023]
Abstract
Methylglyoxal (MG) is a glucose metabolite. Diabetic patients have increased serum levels of MG, and MG is also implicated in tissue injury during embryonic development. In the present work, we show that MG induces apoptosis in the inner cell mass of mouse blastocysts and inhibits cell proliferation. Both effects are suppressed by resveratrol, a grape-derived phytoalexin with known antioxidant and anti-inflammatory properties. MG-treated blastocysts displayed lower levels of implantation (compared to controls) when plated on culture dishes in vitro and a reduced ability to proceed to later stages of embryonic development. Pretreatment with resveratrol prevented MG-induced disruption of embryonic development, both in vitro and in vivo. Further investigation of these processes revealed that MG directly promotes reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential (MMP), and activation of caspase-3, whereas resveratrol effectively blocks MG-induced ROS production and the accompanying apoptotic biochemical changes. Our results collectively imply that MG triggers the mitochondrion-dependent apoptotic pathway via ROS generation, and the antioxidant activity of resveratrol prevents MG-induced toxicity.
Collapse
Affiliation(s)
- Fu-Jen Huang
- Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | |
Collapse
|
20
|
Qian X, Yan B, Zhou X, Xie L, Wei J, Li R, Yu L, Liu B. Synergistic Antiangiogenic Activity of Tetrandrine Combined with Endostar on the Human Umbilical Vein Endothelial Cell Model. Cancer Biother Radiopharm 2013; 28:385-90. [PMID: 23682584 DOI: 10.1089/cbr.2012.1331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Xiaoping Qian
- Department of Oncology, Drum Tower Hospital Affiliated to Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing, China
| | - Bo Yan
- Department of Oncology, Drum Tower Hospital Affiliated to Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xuefei Zhou
- Department of Oncology, Drum Tower Hospital Affiliated to Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Li Xie
- Department of Oncology, Drum Tower Hospital Affiliated to Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing, China
| | - Jia Wei
- Department of Oncology, Drum Tower Hospital Affiliated to Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing, China
| | - Rutian Li
- Department of Oncology, Drum Tower Hospital Affiliated to Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing, China
| | - Lixia Yu
- Department of Oncology, Drum Tower Hospital Affiliated to Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing, China
| | - Baorui Liu
- Department of Oncology, Drum Tower Hospital Affiliated to Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing, China
| |
Collapse
|
21
|
Park SH, Kim JH, Chi GY, Kim GY, Chang YC, Moon SK, Nam SW, Kim WJ, Yoo YH, Choi YH. Induction of apoptosis and autophagy by sodium selenite in A549 human lung carcinoma cells through generation of reactive oxygen species. Toxicol Lett 2012; 212:252-61. [DOI: 10.1016/j.toxlet.2012.06.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 06/06/2012] [Accepted: 06/11/2012] [Indexed: 01/21/2023]
|
22
|
Ohyama T, Sato K, Kishimoto K, Yamazaki Y, Horiguchi N, Ichikawa T, Kakizaki S, Takagi H, Izumi T, Mori M. Azelnidipine is a calcium blocker that attenuates liver fibrosis and may increase antioxidant defence. Br J Pharmacol 2012; 165:1173-87. [PMID: 21790536 DOI: 10.1111/j.1476-5381.2011.01599.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxidative stress plays a critical role in liver fibrogenesis. Reactive oxygen species (ROS) stimulate hepatic stellate cells (HSCs), and ROS-mediated increases in calcium influx further increase ROS production. Azelnidipine is a calcium blocker that has been shown to have antioxidant effects in endothelial cells and cardiomyocytes. Therefore, we evaluated the anti-fibrotic and antioxidative effects of azelnidipine on liver fibrosis. EXPERIMENTAL APPROACH We used TGF-β1-activated LX-2 cells (a human HSC line) and mouse models of fibrosis induced by treatment with either carbon tetrachloride (CCl(4) ) or thioacetamide (TAA). KEY RESULTS Azelnidipine inhibited TGF-β1 and angiotensin II (Ang II)-activated α1(I) collagen mRNA expression in HSCs. Furthermore, TGF-β1- and Ang II-induced oxidative stress and TGF-β1-induced p38 and JNK phosphorylation were reduced in HSCs treated with azelnidipine. Azelnidipine significantly decreased inflammatory cell infiltration, pro-fibrotic gene expressions, HSC activation, lipid peroxidation, oxidative DNA damage and fibrosis in the livers of CCl(4) - or TAA-treated mice. Finally, azelnidipine prevented a decrease in the expression of some antioxidant enzymes and accelerated regression of liver fibrosis in CCl(4) -treated mice. CONCLUSIONS AND IMPLICATIONS Azelnidipine inhibited TGF-β1- and Ang II-induced HSC activation in vitro and attenuated CCl(4) - and TAA-induced liver fibrosis, and it accelerated regression of CCl(4) -induced liver fibrosis in mice. The anti-fibrotic mechanism of azelnidipine against CCl(4) -induced liver fibrosis in mice may have been due an increased level of antioxidant defence. As azelnidipine is widely used in clinical practice without serious adverse effects, it may provide an effective new strategy for anti-fibrotic therapy.
Collapse
Affiliation(s)
- T Ohyama
- Departments of Medicine and Molecular Science Biochemistry, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jin H, Li L, Zhong D, Liu J, Chen X, Zheng J. Pulmonary Toxicity and Metabolic Activation of Tetrandrine in CD-1 Mice. Chem Res Toxicol 2011; 24:2142-52. [DOI: 10.1021/tx200290s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hua Jin
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Division of Gastroenterology and Hepatology, Department of Pediatrics, University of Washington, Seattle, Washington 98101, United States
| | - Liang Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dafang Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiang Zheng
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Division of Gastroenterology and Hepatology, Department of Pediatrics, University of Washington, Seattle, Washington 98101, United States
| |
Collapse
|
24
|
Pessayre D, Fromenty B, Berson A, Robin MA, Lettéron P, Moreau R, Mansouri A. Central role of mitochondria in drug-induced liver injury. Drug Metab Rev 2011; 44:34-87. [PMID: 21892896 DOI: 10.3109/03602532.2011.604086] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A frequent mechanism for drug-induced liver injury (DILI) is the formation of reactive metabolites that trigger hepatitis through direct toxicity or immune reactions. Both events cause mitochondrial membrane disruption. Genetic or acquired factors predispose to metabolite-mediated hepatitis by increasing the formation of the reactive metabolite, decreasing its detoxification, or by the presence of critical human leukocyte antigen molecule(s). In other instances, the parent drug itself triggers mitochondrial membrane disruption or inhibits mitochondrial function through different mechanisms. Drugs can sequester coenzyme A or can inhibit mitochondrial β-oxidation enzymes, the transfer of electrons along the respiratory chain, or adenosine triphosphate (ATP) synthase. Drugs can also destroy mitochondrial DNA, inhibit its replication, decrease mitochondrial transcripts, or hamper mitochondrial protein synthesis. Quite often, a single drug has many different effects on mitochondrial function. A severe impairment of oxidative phosphorylation decreases hepatic ATP, leading to cell dysfunction or necrosis; it can also secondarily inhibit ß-oxidation, thus causing steatosis, and can also inhibit pyruvate catabolism, leading to lactic acidosis. A severe impairment of β-oxidation can cause a fatty liver; further, decreased gluconeogenesis and increased utilization of glucose to compensate for the inability to oxidize fatty acids, together with the mitochondrial toxicity of accumulated free fatty acids and lipid peroxidation products, may impair energy production, possibly leading to coma and death. Susceptibility to parent drug-mediated mitochondrial dysfunction can be increased by factors impairing the removal of the toxic parent compound or by the presence of other medical condition(s) impairing mitochondrial function. New drug molecules should be screened for possible mitochondrial effects.
Collapse
Affiliation(s)
- Dominique Pessayre
- INSERM, U, Centre de Recherche Bichat Beaujon CRB, Faculté de Médecine Xavier-Bichat, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Liu C, Gong K, Mao X, Li W. Tetrandrine induces apoptosis by activating reactive oxygen species and repressing Akt activity in human hepatocellular carcinoma. Int J Cancer 2011; 129:1519-31. [PMID: 21128229 DOI: 10.1002/ijc.25817] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/16/2010] [Indexed: 12/12/2022]
Abstract
Tetrandrine, a bisbenzylisoquinoline alkaloid component of broadly used traditional Chinese medicine, has antitumor effects against some cancers. In our study, we investigated the effects of tetrandrine on the human hepatocellular carcinoma (HCC) in vitro and in vivo. The results showed that tetrandrine effectively induced apoptosis of liver cancer cell in a dose- and time-dependent manner accompanied by alteration of cell morphology, chromatin fragmentation and caspase activation. Tetrandrine treatment also induced intracellular accumulation of reactive oxygen species (ROS), and ROS scavengers (LNAC and GSH) completely blocked the effects of tetrandrine-induced apoptosis, suggesting that the generation of ROS plays an important role in tetrandrine-induced apoptosis. Although the activities of JNK and ERK were inhibited significantly by tetrandrine treatment, JNK and ERK are not involved in the tetrandrine-induced apoptosis. In contrast, Akt activity was found to be closely related to tetrandrine-induced apoptosis. The data demonstrated that Akt activity inhibitor LY294002 synergistically promoted tetrandrine-induced apoptosis of HCC, whereas ectopic expression of Akt contrastly abrogated partial of the tetrandrine-induced apoptosis. These data suggest that Akt signal is the downstream event of ROS generation in the tetrandrine-induced HCC cell apoptosis. Moreover, the results of xenograft in nude mice were consistent with that of the in vitro studies. Therefore, our data suggest that tetrandrine may be a promising agent for the treatment of HCC as a regulator of ROS/Akt pathway.
Collapse
Affiliation(s)
- Chaoyang Liu
- College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | | | | | | |
Collapse
|
26
|
Li PW, Kuo TH, Chang JH, Yeh JM, Chan WH. Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicol Lett 2010; 197:82-7. [DOI: 10.1016/j.toxlet.2010.05.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/07/2010] [Accepted: 05/04/2010] [Indexed: 11/29/2022]
|
27
|
Chang YJ, Chan WH. Methylglyoxal has injurious effects on maturation of mouse oocytes, fertilization, and fetal development, via apoptosis. Toxicol Lett 2010; 193:217-23. [DOI: 10.1016/j.toxlet.2010.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/11/2010] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
|
28
|
Tetrandrine attenuates lipopolysaccharide-induced fulminant hepatic failure in D-galactosamine-sensitized mice. Int Immunopharmacol 2009; 10:357-63. [PMID: 20036342 DOI: 10.1016/j.intimp.2009.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/11/2009] [Accepted: 12/15/2009] [Indexed: 12/11/2022]
Abstract
Fulminant hepatic failure (FHF) remains an extremely poor prognosis and high mortality; better treatments are urgently needed. Tetrandrine (TET), a traditional anti-inflammatory drug, has been reported to exhibit hepatoprotective activities in several liver injury models. We now investigated the effects and underlying mechanisms of TET on lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced FHF in mice. TET (50, 100, and 200 mg/kg) was given intraperitoneally 1h before LPS/D-GalN injection in mice. The mortality and liver injury was evaluated subsequently. The results showed that administering TET to mice reduced mortality and improved liver injury induced by LPS/D-GalN in a dose-dependent manner. In addition, TET dose-dependently inhibited LPS/D-GalN-induced NF-kappaB activation, serum and hepatic tissues tumor necrosis factor-alpha (TNF-alpha) production, caspase-3 activation and hepatocellular apoptosis, myeloperoxidase (MPO) activity, intercellular adhesion molecule-1 (ICAM-1) and endothelial cell adhesion molecule-1 (ECAM-1) expression. Our experimental data indicated that TET might alleviate the FHF induced by LPS/D-GalN through inhibiting NF-kappaB activation to reduce TNF-alpha production.
Collapse
|
29
|
Xiao Y, Xue X, Wu YF, Xin GZ, Qian Y, Xie TP, Gong LK, Ren J. beta-Naphthoflavone protects mice from aristolochic acid-I-induced acute kidney injury in a CYP1A dependent mechanism. Acta Pharmacol Sin 2009; 30:1559-65. [PMID: 19890363 DOI: 10.1038/aps.2009.156] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM The role of CYP1A in the protection of aristolochic acid (AA)I-induced nephrotoxicity has been suggested. In the present study we investigated the effects of beta-naphthoflavone (BNF), a non-carcinogen CYP1A inducer, on AAI-induced kidney injury. METHODS Mice were pretreated with 80 mg/kg BNF by daily intraperitoneal injection (ip) for 3 days followed by a single ip of 10 mg/kg AAI. AAI and its major metabolites in blood, liver and kidney, the expression of CYP1A1 and CYP1A2 in microsomes of liver and kidney, as well as the nephrotoxicity were evaluated. RESULTS BNF pretreatment prevented AAI-induced renal damage by facilitating the disposal of AAI in liver. BNF pretreatment induced the expression of CYP1A1 in both liver and kidney; but the induction of CYP1A2 was only observed in liver. CONCLUSION BNF prevents AAI-induced kidney toxicity primarily through CYP1A induction.
Collapse
|
30
|
Huang YT, Lai CY, Lou SL, Yeh JM, Chan WH. Activation of JNK and PAK2 is essential for citrinin-induced apoptosis in a human osteoblast cell line. ENVIRONMENTAL TOXICOLOGY 2009; 24:343-356. [PMID: 18767140 DOI: 10.1002/tox.20434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The mycotoxin citrinin (CTN), a natural contaminant in foodstuffs and animal feeds, exerts cytotoxic and genotoxic effects on various mammalian cells. CTN causes cell injury, including apoptosis. Previous studies by our group showed that CTN triggers apoptosis in mouse embryonic stem cells, as well as embryonic developmental injury. Here, we investigated the precise mechanisms governing this apoptotic effect in osteoblasts. CTN induced apoptotic biochemical changes in a human osteoblast cell line, including activation of c-Jun N-terminal kinase (JNK), loss of mitochondrial membrane potential, and caspase-3 and p21-activated protein kinase 2 (PAK2) activation. Experiments using a JNK-specific inhibitor, SP600125, and antisense oligonucleotides against JNK reduced CTN-induced activation of both JNK and caspase-3 in osteoblasts, indicating that JNK is required for caspase activation in this apoptotic pathway. Experiments using caspase-3 inhibitors and antisense oligonucleotides against PAK2 revealed that active caspase-3 is essential for PAK2 activation. Moreover, both caspase-3 and PAK2 require activation for CTN-induced apoptosis of osteoblasts. Interestingly, CTN stimulates two-stage activation of JNK in human osteoblasts. Early-stage JNK activation is solely ROS-dependent, whereas late-stage activation is dependent on ROS-mediated caspase activity, and regulated by caspase-induced activation of PAK2. On the basis of these results, we propose a signaling cascade model for CTN-induced apoptosis in human osteoblasts involving ROS, JNK, caspases, and PAK2.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Department of Bioscience Technology, Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Ryder SJ, Dexter GE, Heasman L, Warner R, Moore SJ. Accumulation and dissemination of prion protein in experimental sheep scrapie in the natural host. BMC Vet Res 2009; 5:9. [PMID: 19243608 PMCID: PMC2649917 DOI: 10.1186/1746-6148-5-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 02/25/2009] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In order to study the sites of uptake and mechanisms of dissemination of scrapie prions in the natural host under controlled conditions, lambs aged 14 days and homozygous for the VRQ allele of the PrP gene were infected by the oral route. Infection occurred in all lambs with a remarkably short and highly consistent incubation period of approximately 6 months. Challenge of lambs at approximately eight months of age resulted in disease in all animals, but with more variable incubation periods averaging significantly longer than those challenged at 14 days. This model provides an excellent system in which to study the disease in the natural host by virtue of the relatively short incubation period and close resemblance to natural infection. RESULTS Multiple sites of prion uptake were identified, of which the most important was the Peyer's patch of the distal ileum. Neuroinvasion was detected initially in the enteric nervous system prior to infection of the central nervous system. At end stage disease prion accumulation was widespread throughout the entire neuraxis, but vacuolar pathology was absent in most animals that developed disease at 6-7 months of age. CONCLUSION Initial spread of detectable PrP was consistent with drainage in afferent lymph to dependent lymph nodes. Subsequent accumulation of prions in lymphoid tissue not associated with the gut is consistent with haematogenous spread. In addition to macrophages and follicular dendritic cells, prion containing cells consistent with afferent lymph dendritic cells were identified and are suggested as a likely vehicle for carriage of prions from initial site of uptake to the lymphoreticular system, and as potential carriers of prion protein in blood. It is apparent that spongiform change, the characteristic lesion of scrapie and other prion diseases, is not responsible for the clinical signs in sheep, but may develop in an age dependent manner.
Collapse
Affiliation(s)
- Stephen J Ryder
- Department of Pathology, Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT153NB, UK.
| | | | | | | | | |
Collapse
|
32
|
Inhibitory effects of tetrandrine on the Na(+) channel of human atrial fibrillation myocardium. Acta Pharmacol Sin 2009; 30:166-74. [PMID: 19151745 DOI: 10.1038/aps.2008.23] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM Tetrandrine (Tet) is a Ca(2+) channel blocker and has antiarrhythmic effects. Less information exists with regard to the mechanisms underlying its antiarrhythmic action other than blocking Ca(2+) channels. In this study, the effects of Tet on the Na(+) current (I(Na)) in the atrial myocardium of patients in atrial fibrillation (AF) and sinus rhythm (SR) were investigated, and the characteristics of the Na(+) current were synchronously compared between the AF and SR patients. METHODS Na(+) currents were recorded using the whole-cell patch clamp technique in single atrial myocyte of the AF and the normal SR groups. The effects of Tet (40-120 micromol/L) on the Na(+) current in the two groups were then observed. RESULTS Tet (60-120 micromol/L) decreased I(Na) density in a concentration-dependent manner and made the voltage-dependent activation curve shift to more positive voltages in the SR and AF groups. After exposure to Tet, the voltage-dependent inactivation curve of I(Na) was shifted to more negative voltages in the two groups. Tet delayed the time-dependent recovery of I(Na) in a concentration dependent manner in both AF and SR cells; however, there were no differences in the effects of Tet on I(Na) density and properties in the two groups. The I(Na) density of AF patients did not differ from that of the SR patients. CONCLUSION Tet can block sodium channels with slow recovery kinetics, which may explain the mechanisms underlying the antiarrhythmic action of Tet. The decreased conduction velocity (CV) in AF patients is not caused by the Na(+) current.
Collapse
|
33
|
Lead-induced alteration of apoptotic proteins in different regions of adult rat brain. Toxicol Lett 2008; 184:56-60. [PMID: 19026729 DOI: 10.1016/j.toxlet.2008.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 10/22/2008] [Accepted: 10/26/2008] [Indexed: 01/25/2023]
Abstract
In our earlier investigations, we have demonstrated the alteration of antioxidant enzymes in adult rat brain exposed to lead. This study was carried out to investigate the effect of lead on inducing apoptosis by choosing poly (ADP-ribose) polymerase (PARP), bcl-2 and caspase-3 expression as marker proteins in the cerebellum, the hippocampus, the brain stem and the frontal cortex. Adult male rats were treated with lead acetate (500ppm) through drinking water for a period of 8 weeks and parallel controls were maintained on sodium acetate. Both control and exposed rats were sacrificed at intervals of 4 and 8 weeks, brains were isolated and different regions namely the cerebellum, the hippocampus, the frontal cortex and the brain stem were separated and processed to investigate PARP, bcl-2 and caspase-3 expression using western blotting. The results suggest that lead induces region-specific response of expression in apoptotic proteins of rat brain showing more effect in hippocampus and cerebellum and less effect in frontal cortex and brain stem and it is tissue specific. However, results appear to conclude that PARP induced expression in hippocampus and cerebellum was more followed by mitochondrial and cytosolic damage.
Collapse
|
34
|
Song N, Zhang S, Li Q, Liu C. Establishment of a liquid chromatographic/mass spectrometry method for quantification of tetrandrine in rat plasma and its application to pharmacokinetic study. J Pharm Biomed Anal 2008; 48:974-9. [PMID: 18650047 DOI: 10.1016/j.jpba.2008.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 10/22/2022]
Abstract
A rapid and sensitive liquid chromatography-tandem mass spectrometric method (LC/MS/MS) for the determination of tetrandrine in rat plasma has been developed, fully validated and successfully applied to pharmacokinetic study in Sprague-Dawley (SD) rats after a single oral administration. Sample preparation involves a liquid-liquid extraction with n-hexane-dichlormethane (65:35, containing 1% 2-propanol isopropyl alcohol, v/v). Tetrandrine and brodimoprim (internal standard) were well separated by LC with a Dikma C(18) column using acetonitrile-methanol-ammonium formate aqueous solution (20mM) containing 0.3% formic acid (20:30:50, v/v/v) as mobile phase. Detection was performed on a triple quadrupole mass spectrometer in multiple reaction monitoring mode. The ionization was optimized using ESI(+) and selectivity was achieved using MS/MS analysis, m/z 623.0-->381.0 and m/z 339.0-->281.0 for tetrandrine and I.S., respectively. The present method exhibited good linearity over the concentration range of 5-2,000 ng/mL for tetrandrine in rat plasma with a lower limit of quantification of 5 ng/mL. The intra- and inter-day precision were 2.0-9.2% and 4.5-9.4%, and the intra- and inter-day accuracy ranged from -7.6 to 10.3% and -6.0 to 5.3%, respectively. No endogenous compounds were found to interfere with the analysis, and tetrandrine was stable during the whole assay period. The method was successfully applied to a pharmacokinetic study after an intragastric administration (i.g.) of tetrandrine to SD rats with a single dose of 50mg/kg. The results confirm that the assay is suitable for the pharmacokinetic study of tetrandrine.
Collapse
Affiliation(s)
- Naining Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | |
Collapse
|
35
|
Abstract
The mycotoxin citrinin (CTN) is a natural contaminant in foodstuffs and animal feeds, and exerts cytotoxic and genotoxic effects on various mammalian cells. CTN causes cell injury, including apoptosis. However, its precise regulatory mechanisms of action, particularly in stem cells and embryos, are currently unclear. Recent studies show that CTN has cytotoxic effects on mouse embryonic stem cells and blastocysts, and is associated with defects in their subsequent development, both in vitro and in vivo. Experiments with the embryonic stem cell line, ESC-B5, disclose that CTN induces apoptosis via several mechanisms, including ROS generation, increased cytoplasmic free calcium levels, intracellular nitric oxide production, enhanced Bax/Bcl-2 ratio, loss of mitochondrial membrane potential, cytochrome c release, activation of caspase-9 and caspase-3, and p21-activated protein kinase 2 and c-Jun N-terminal protein kinase activation. Additional studies show that CTN promotes cell death via inactivation of the HSP90/multi-chaperone complex and subsequent degradation of Ras and Raf-1, further inhibiting anti-apoptotic processes such as the Ras-->ERK signal transduction pathway. On the basis of these findings, we propose a model for CTN-induced cell injury signalling cascades in embryonic stem cells and blastocysts.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan.
| |
Collapse
|
36
|
Chan WH. Citrinin induces apoptosis via a mitochondria-dependent pathway and inhibition of survival signals in embryonic stem cells, and causes developmental injury in blastocysts. Biochem J 2007; 404:317-26. [PMID: 17331071 PMCID: PMC1868791 DOI: 10.1042/bj20061875] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mycotoxin CTN (citrinin), a natural contaminant in foodstuffs and animal feeds, has cytotoxic and genotoxic effects on various mammalian cells. CTN is known to cause cell injury, including apoptosis, but the precise regulatory mechanisms of CTN action, particularly in stem cells and embryos, are currently unclear. In the present paper, I report that CTN has cytotoxic effects on mouse embryonic stem cells and blastocysts, and is associated with defects in their subsequent development, both in vitro and in vivo. Experiments in embryonic stem cells (ESC-B5) showed that CTN induces apoptosis via ROS (reactive oxygen species) generation, increased Bax/Bcl-2 ratio, loss of MMP (mitochondrial membrane potential), induction of cytochrome c release, and activation of caspase 3. In this model, CTN triggers cell death via inactivation of the HSP90 [a 90 kDa isoform of the HSP (heat-shock protein) family proteins]/multichaperone complex and subsequent degradation of Ras and Raf-1, further inhibiting anti-apoptotic processes, such as the Ras-->ERK (extracellular-signal-regulated kinase) signal transduction pathway. In addition, CTN causes early developmental injury in mouse ESCs and blastocysts in vitro. Lastly, using an in vivo mouse model, I show that consumption of drinking water containing 10 muM CTN results in blastocyst apoptosis and early embryonic developmental injury. Collectively, these findings show for the first time that CTN induces ROS and mitochondria-dependent apoptotic processes, inhibits Ras-->ERK survival signalling via inactivation of the HSP90/multichaperone complex, and causes developmental injury in vivo.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan.
| |
Collapse
|
37
|
Mijatovic T, Lefranc F, Van Quaquebeke E, Van Vynckt F, Darro F, Kiss R. UNBS1450: A new hemi-synthetic cardenolide with promising anti-cancer activity. Drug Dev Res 2007. [DOI: 10.1002/ddr.20178] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Wink M. Molecular modes of action of cytotoxic alkaloids: from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2007; 64:1-47. [PMID: 18085328 DOI: 10.1016/s1099-4831(07)64001-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
39
|
Chan WH. Ginkgolide B induces apoptosis and developmental injury in mouse embryonic stem cells and blastocysts. Hum Reprod 2006; 21:2985-95. [PMID: 16877372 DOI: 10.1093/humrep/del255] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Ginkgolide B, the major active component of Ginkgo biloba extracts, can both stimulate and inhibit apoptotic signalling. We previously showed that ginkgolide treatment of mouse blastocysts induces apoptosis, decreases cell numbers, retards early post-implantation blastocyst development and increases early-stage blastocyst death. Here, we report more detailed examinations of the cytotoxic effects of ginkgolide B on mouse embryonic stem cells (ESCs) and blastocysts and their subsequent development in vitro and in vivo. METHODS AND RESULTS Using cell culture assay model, we revealed in our results that ginkgolide B treatment of ESCs (ESC-B5) induced apoptosis via reactive oxygen species (ROS) generation, c-Jun N-terminal kinase (JNK) activation, loss of mitochondrial membrane potential (MMP) and the activation of caspase-3. Furthermore, an in vitro assay model showed that ginkgolide B treatment inhibited cell proliferation and growth in mouse blastocysts. Finally, an in vivo model showed that treatment with 10 microM ginkgolide B caused resorption of post-implantation blastocysts and fetal weight loss. CONCLUSIONS Our results reveal for the first time that ginkgolide B retards the proliferation and development of mouse ESCs and blastocysts in vitro and causes developmental injury in vivo.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan.
| |
Collapse
|
40
|
Fernandes MAS, Custódio JBA, Santos MS, Moreno AJM, Vicente JAF. Tetrandrine concentrations not affecting oxidative phosphorylation protect rat liver mitochondria from oxidative stress. Mitochondrion 2006; 6:176-85. [PMID: 16890028 DOI: 10.1016/j.mito.2006.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 06/13/2006] [Accepted: 06/23/2006] [Indexed: 11/18/2022]
Abstract
The effects of tetrandrine (6,6', 7,12-tetramethoxy-2, 2'-dimethyl-berbaman) on the mitochondrial function were assessed on oxidative stress, mitochondrial permeability transition (MPT), and bioenergetics of rat liver mitochondria. At concentrations lower than 100 nmol/mg protein, tetrandrine decreased the hydrogen peroxide formation, the extent of lipid peroxidation, the susceptibility to Ca(2+)-induced opening of MPT pore, and inhibited the inner membrane anion channel activity, not significantly affecting the mitochondrial bioenergetics. High tetrandrine concentrations (100-300 nmol/mg protein) stimulated succinate-dependent state 4 respiration, while some inhibition was observed for state 3 and p-trifluoromethoxyphenylhydrazone-uncoupled respirations. The respiratory control ratio and the transmembrane potential were depressed but the adenosine diphosphate to oxygen (ADP/O) ratio was less affected. A slight increase of the inner mitochondrial membrane permeability to H(+) and K(+) by tetrandrine was also observed. It was concluded that low concentrations of tetrandrine afford protection against liver mitochondria injury promoted by oxidative-stress events, such as hydrogen peroxide production, lipid peroxidation, and induction of MPT. Conversely, high tetrandrine concentrations revealed toxicological effects expressed by interference with mitochondrial bioenergetics, as a consequence of some inner membrane permeability to H(+) and K(+) and inhibition of the electron flux in the respiratory chain. The direct immediate protective role of tetrandrine against mitochondrial oxidative stress may be relevant to clarify the mechanisms responsible for its multiple pharmacological actions.
Collapse
Affiliation(s)
- Maria A S Fernandes
- Departamento de Zoologia, Faculdade de Farmácia, Universidade de Coimbra, Couraça dos Apóstolos, 51, R/C, 3000-517 Coimbra, Portugal.
| | | | | | | | | |
Collapse
|