1
|
Gorecki L, Markova A, Hepnarova V, Zivna N, Junova L, Hrabinova M, Janousek J, Kobrlova T, Prchal L, Jun D, Soukup O, Horn G, Worek F, Marek J, Korabecny J. Uncharged mono- and bisoximes: In search of a zwitterion to countermeasure organophosphorus intoxication. Chem Biol Interact 2024; 394:110941. [PMID: 38493910 DOI: 10.1016/j.cbi.2024.110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
The current study imposes a new class of organophosphorus (OP)-inhibited cholinesterase reactivators by conceptualizing a family of asymmetric bisoximes with various reactivating scaffolds. Several novel nucleophilic warheads were investigated, putting forward 29 novel reactivating options, by evaluating their nucleophilicity and ability to directly decompose OP compounds. Adopting the so-called zwitterionic strategy, 17 mono-oxime and nine bisoxime reactivators were discovered with major emphasis on the bifunctional-moiety approach. Compounds were compared with clinically used standards and other known experimentally highlighted reactivators. Our results clearly favor the concept of asymmetric bisoximes as leading reactivators in terms of efficacy and versatility. These top-ranked compounds were characterized in detail by reactivation kinetics parameters and evaluated for potential CNS availability. The highlighted molecules 55, 57, and 58 with various reactivating warheads, surpassed the reactivating potency of pralidoxime and several notable uncharged reactivators. The versatility of lead drug candidate 55 was also inspected on OP-inhibited butyrylcholinesterase, revealing a much higher rate compared to existing clinical antidotes.
Collapse
Affiliation(s)
- Lukas Gorecki
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Aneta Markova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Hospital Pharmacy, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Natalie Zivna
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lucie Junova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jiri Janousek
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Daniel Jun
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Gabriele Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Jan Marek
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; University of Defence, Military Faculty of Medicine, Department of Epidemiology, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
2
|
Agarwal G, Tichenor H, Roo S, Lane TR, Ekins S, McElroy CA. Targeted Metabolomics of Organophosphate Pesticides and Chemical Warfare Nerve Agent Simulants Using High- and Low-Dose Exposure in Human Liver Microsomes. Metabolites 2023; 13:metabo13040495. [PMID: 37110155 PMCID: PMC10144572 DOI: 10.3390/metabo13040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Our current understanding of organophosphorus agent (pesticides and chemical warfare nerve agents) metabolism in humans is limited to the general transformation by cytochrome P450 enzymes and, to some extent, by esterases and paraoxonases. The role of compound concentrations on the rate of clearance is not well established and is further explored in the current study. We discuss the metabolism of 56 diverse organophosphorus compounds (both pesticides and chemical warfare nerve agent simulants), many of which were explored at two variable dose regimens (high and low), determining their clearance rates (Clint) in human liver microsomes. For compounds that were soluble at high concentrations, 1D-NMR, 31P, and MRM LC-MS/MS were used to calculate the Clint and the identity of certain metabolites. The determined Clint rates ranged from 0.001 to 2245.52 µL/min/mg of protein in the lower dose regimen and from 0.002 to 98.57 µL/min/mg of protein in the high dose regimen. Though direct equivalency between the two regimens was absent, we observed (1) both mono- and bi-phasic metabolism of the OPs and simulants in the microsomes. Compounds such as aspon and formothion exhibited biphasic decay at both high and low doses, suggesting either the involvement of multiple enzymes with different KM or substrate/metabolite effects on the metabolism. (2) A second observation was that while some compounds, such as dibrom and merphos, demonstrated a biphasic decay curve at the lower concentrations, they exhibited only monophasic metabolism at the higher concentration, likely indicative of saturation of some metabolic enzymes. (3) Isomeric differences in metabolism (between Z- and E- isomers) were also observed. (4) Lastly, structural comparisons using examples of the oxon group over the original phosphorothioate OP are also discussed, along with the identification of some metabolites. This study provides initial data for the development of in silico metabolism models for OPs with broad applications.
Collapse
Affiliation(s)
- Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Hunter Tichenor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Sarah Roo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas R. Lane
- Collaborations Pharmaceutical Inc., Raleigh, NC 27606, USA
| | - Sean Ekins
- Collaborations Pharmaceutical Inc., Raleigh, NC 27606, USA
| | - Craig A. McElroy
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
3
|
Ma Y, Wu Y, Wang X, Gao G, Zhou X. Research Progress of Near-Infrared Fluorescent Probes Based on 1,3-Dichloro-7-hydroxy-9,9-dimethyl-2(9 H)-acridone (DDAO). CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Non-quaternary oximes detoxify nerve agents and reactivate nerve agent-inhibited human butyrylcholinesterase. Commun Biol 2021; 4:573. [PMID: 33990679 PMCID: PMC8121814 DOI: 10.1038/s42003-021-02061-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/31/2021] [Indexed: 11/08/2022] Open
Abstract
Government-sanctioned use of nerve agents (NA) has escalated dramatically in recent years. Oxime reactivators of organophosphate (OP)-inhibited acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) serve as antidotes toward poisoning by OPNAs. The oximes used as therapeutics are quaternary compounds that cannot penetrate the blood-brain barrier (BBB). There remains an urgent need for the development of next generation OPNA therapeutics. We have developed two high-throughput screening (HTS) assays using a fluorogenic NA surrogate, O-ethyl methylphosphonyl O-4-methyl-3-cyano-coumarin (EMP-MeCyC). EMP-MeCyC detoxification and EMP-BChE reactivation screening campaigns of ~155,000 small molecules resulted in the identification of 33 nucleophile candidates, including non-quaternary oximes. Four of the oximes were reactivators of both Sarin- and VX-inhibited BChE and directly detoxified Sarin. One oxime also detoxified VX. The novel reactivators included a non-quaternary pyridine amidoxime, benzamidoxime, benzaldoxime and a piperidyl-ketoxime. The VX-inhibited BChE reactivation reaction rates by these novel molecules were similar to those observed with known bis-quaternary reactivators and faster than mono-quaternary pyridinium oximes. Notably, we discovered the first ketoxime reactivator of OP-ChEs and detoxifier of OPNAs. Preliminary toxicological studies demonstrated that the newly discovered non-quaternary oximes were relatively non-toxic in mice. The discovery of unique non-quaternary oximes opens the door to the design of novel therapeutics and decontamination agents following OPNA exposure.
Collapse
|
5
|
Organophosphate detoxification by membrane-engineered red blood cells. Acta Biomater 2021; 124:270-281. [PMID: 33529769 DOI: 10.1016/j.actbio.2021.01.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022]
Abstract
Biotherapeutics have achieved global economic success due to their high specificity towards their drug targets, providing exceptional safety and efficiency. The ongoing shift away from small molecule drugs towards biotherapeutics heightens the need to further improve the pharmacokinetics of these biological drugs. Three pervasive obstacles that limit the therapeutic capacity of biotherapeutics are proteolytic degradation, circulating half-life, and the development of anti-drug antibodies. These challenges can culminate in limited efficiency and consequently warrant the need for higher drug doses and more frequent administration. We have explored the coupling of biotherapeutics to long-lived and biocompatible red blood cells (RBCs) to address limited pharmacokinetics. Butyrylcholinesterase (BChE), for example, provides prophylactic protection against organophosphate nerve agents (OPNAs), yet the short circulation life of the drug requires extraordinary doses. Herein, we report the rapid and tunable chemical engineering of BChE to RBC membranes to create a cell-based delivery system that retains the enzyme activity and enhances stability. In a three-step process that first pre-modifies BChE with a cell-reactive polymer chain, primes the cells for engineering, and then grafts the conjugates to the cells, we attached over 2 million BChE molecules to the surface of each RBC without diminishing the bioscavenging capacity of the enzyme. Critically, this membrane-engineering approach was cell-tolerated with minimal hemolysis observed. These results provide strong evidence for the ability of engineered RBCs to serve as an enhanced biotherapeutic delivery vehicle. STATEMENT OF SIGNIFICANCE: Organophosphate nerve agents (OPNAs) are one of the most lethal forms of chemical warfare. After exposure to OPNAs, a patient is given life-saving therapeutics, such as atropine and oxime. However, these drugs are limited, and the patient can still suffer from irreparable injuries. Given the toxicity of OPNAs, access to a prophylactic is vital. We have created an enhanced delivery system for prophylactic butyrylcholinesterase (BChE) by engineering this biotherapeutic to the red blood cell (RBC) surface. In three simple steps that first pre-modifies BChE with a cell-reactive polymer, primes the cells for engineering, and then grafts the conjugates to the cells, we attached over 2 million BChE molecules to a single RBC while retaining the enzyme's activity and enhancing its stability.
Collapse
|
6
|
Organophosphorus Nerve Agents: Types, Toxicity, and Treatments. J Toxicol 2020; 2020:3007984. [PMID: 33029136 PMCID: PMC7527902 DOI: 10.1155/2020/3007984] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
Organophosphorus compounds are extensively used worldwide as pesticides which cause great hazards to human health. Nerve agents, a subcategory of the organophosphorus compounds, have been produced and used during wars, and they have also been used in terrorist activities. These compounds possess physiological threats by interacting and inhibiting acetylcholinesterase enzyme which leads to the cholinergic crisis. After a general introduction, this review elucidates the mechanisms underlying cholinergic and noncholinergic effects of organophosphorus compounds. The conceivable treatment strategies for organophosphate poisoning are different types of bioscavengers which include stoichiometric, catalytic, and pseudocatalytic. The current research on the promising treatments specifically the catalytic bioscavengers including several wild-type organophosphate hydrolases such as paraoxonase and phosphotriesterase, phosphotriesterase-like lactonase, methyl parathion hydrolase, organophosphate acid anhydrolase, diisopropyl fluorophosphatase, human triphosphate nucleotidohydrolase, and senescence marker protein has been widely discussed. Organophosphorus compounds are reported to be the nonphysiological substrate for many mammalian organophosphate hydrolysing enzymes; therefore, the efficiency of these enzymes toward these compounds is inadequate. Hence, studies have been conducted to create mutants with an enhanced rate of hydrolysis and high specificity. Several mutants have been created by applying directed molecular evolution and/or targeted mutagenesis, and catalytic efficiency has been characterized. Generally, organophosphorus compounds are chiral in nature. The development of mutant enzymes for providing superior stereoselective degradation of toxic organophosphorus compounds has also been widely accounted for in this review. Existing enzymes have shown limited efficiency; hence, more effective treatment strategies have also been critically analyzed.
Collapse
|
7
|
Zhang L, Murata H, Amitai G, Smith PN, Matyjaszewski K, Russell AJ. Catalytic Detoxification of Organophosphorus Nerve Agents by Butyrylcholinesterase-Polymer-Oxime Bioscavengers. Biomacromolecules 2020; 21:3867-3877. [DOI: 10.1021/acs.biomac.0c00959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Libin Zhang
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gabriel Amitai
- Wohl Drug Discovery Institute, Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot 760001, Israel
| | - Paige N. Smith
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J. Russell
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
de A. Cavalcante SF, Simas ABC, Kuča K. Nerve Agents’ Surrogates: Invaluable Tools for Development of Acetylcholinesterase Reactivators. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190806114017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of nerve agents as warfare and in terrorist acts has drawn much attention from the governments and societies. Such toxic organophosphorus compounds are listed in Chemical Weapons Convention as Schedule 1 chemicals. The discussion about the chemical identity of the elusive Novichok agents, more potent compounds than best known G- and V-Agents, which have been implicated in recent rumorous assassination plots, clearly demonstrating the importance of the matter. Furthermore, accidents with pesticides or misuse thereof have been a pressing issue in many countries. In this context, the continued development of novel cholinesterase reactivators, antidotes for organophosphorus poisoning, a rather restricted class of pharmaceutical substances, is warranted. Testing of novel candidates may require use of actual nerve agents. Nonetheless, only a few laboratories comply with the requirements for storing, possession and manipulation of such toxic chemicals. To overcome such limitations, nerve agents’ surrogates may be a useful alternative, as they undergo the same reaction with cholinesterases, yielding similar adducts, allowing assays with novel antidote candidates, among other applications.
Collapse
Affiliation(s)
- Samir F. de A. Cavalcante
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alessandro B. C. Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Gerlits O, Kong X, Cheng X, Wymore T, Blumenthal DK, Taylor P, Radić Z, Kovalevsky A. Productive reorientation of a bound oxime reactivator revealed in room temperature X-ray structures of native and VX-inhibited human acetylcholinesterase. J Biol Chem 2019; 294:10607-10618. [PMID: 31138650 DOI: 10.1074/jbc.ra119.008725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/21/2019] [Indexed: 11/06/2022] Open
Abstract
Exposure to organophosphorus compounds (OPs) may be fatal if untreated, and a clear and present danger posed by nerve agent OPs has become palpable in recent years. OPs inactivate acetylcholinesterase (AChE) by covalently modifying its catalytic serine. Inhibited AChE cannot hydrolyze the neurotransmitter acetylcholine leading to its build-up at the cholinergic synapses and creating an acute cholinergic crisis. Current antidotes, including oxime reactivators that attack the OP-AChE conjugate to free the active enzyme, are inefficient. Better reactivators are sought, but their design is hampered by a conformationally rigid portrait of AChE extracted exclusively from 100K X-ray crystallography and scarcity of structural knowledge on human AChE (hAChE). Here, we present room temperature X-ray structures of native and VX-phosphonylated hAChE with an imidazole-based oxime reactivator, RS-170B. We discovered that inhibition with VX triggers substantial conformational changes in bound RS-170B from a "nonproductive" pose (the reactive aldoxime group points away from the VX-bound serine) in the reactivator-only complex to a "semi-productive" orientation in the VX-modified complex. This observation, supported by concurrent molecular simulations, suggested that the narrow active-site gorge of hAChE may be significantly more dynamic than previously thought, allowing RS-170B to reorient inside the gorge. Furthermore, we found that small molecules can bind in the choline-binding site hindering approach to the phosphorous of VX-bound serine. Our results provide structural and mechanistic perspectives on the reactivation of OP-inhibited hAChE and demonstrate that structural studies at physiologically relevant temperatures can deliver previously overlooked insights applicable for designing next-generation antidotes.
Collapse
Affiliation(s)
- Oksana Gerlits
- From the Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996
| | - Xiaotian Kong
- the Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Xiaolin Cheng
- the Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Troy Wymore
- the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Donald K Blumenthal
- the Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112
| | - Palmer Taylor
- the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0751, and
| | - Zoran Radić
- the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0751, and
| | - Andrey Kovalevsky
- the Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|
10
|
Zhuang Q, Franjesevic AJ, Corrigan TS, Coldren WH, Dicken R, Sillart S, DeYong A, Yoshino N, Smith J, Fabry S, Fitzpatrick K, Blanton TG, Joseph J, Yoder RJ, McElroy CA, Ekici ÖD, Callam CS, Hadad CM. Demonstration of In Vitro Resurrection of Aged Acetylcholinesterase after Exposure to Organophosphorus Chemical Nerve Agents. J Med Chem 2018; 61:7034-7042. [PMID: 29870665 DOI: 10.1021/acs.jmedchem.7b01620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
After the inhibition of acetylcholinesterase (AChE) by organophosphorus (OP) nerve agents, a dealkylation reaction of the phosphylated serine, referred to as aging, can occur. When aged, known reactivators of OP-inhibited AChE are no longer effective. Realkylation of aged AChE may provide a route to reversing aging. We designed and synthesized a library of quinone methide precursors (QMPs) as proposed realkylators of aged AChE. Our lead compound (C8) from an in vitro screen successfully resurrected 32.7 and 20.4% of the activity of methylphosphonate-aged and isopropyl phosphate-aged electric-eel AChE, respectively, after 4 days. C8 displays properties of both resurrection (recovery from the aged to the native state) and reactivation (recovery from the inhibited to the native state). Resurrection of methylphosphonate-aged AChE by C8 was significantly pH-dependent, recovering 21% of activity at 4 mM and pH 9 after only 1 day. C8 is also effective against isopropyl phosphate-aged human AChE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Travis G Blanton
- Department of Chemistry and Biochemistry , The Ohio State University-Marion , Marion , Ohio 43302 , United States
| | | | - Ryan J Yoder
- Department of Chemistry and Biochemistry , The Ohio State University-Marion , Marion , Ohio 43302 , United States
| | | | - Özlem Doğan Ekici
- Department of Chemistry and Biochemistry , The Ohio State University-Newark , Newark , Ohio 43055 , United States
| | | | | |
Collapse
|
11
|
Yoder RJ, Zhuang Q, Beck JM, Franjesevic A, Blanton TG, Sillart S, Secor T, Guerra L, Brown JD, Reid C, McElroy CA, Doğan Ekici Ö, Callam CS, Hadad CM. Study of para-Quinone Methide Precursors toward the Realkylation of Aged Acetylcholinesterase. ACS Med Chem Lett 2017. [PMID: 28626522 DOI: 10.1021/acsmedchemlett.7b00037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acetylcholinesterase (AChE) is an essential enzyme that can be targeted by organophosphorus (OP) compounds, including nerve agents. Following exposure to OPs, AChE becomes phosphylated (inhibited) and undergoes a subsequent aging process where the OP-AChE adduct is dealkylated. The aged AChE is unable to hydrolyze acetylcholine, resulting in accumulation of the neurotransmitter in the central nervous system (CNS) and elsewhere. Current therapeutics are only capable of reactivating inhibited AChE. There are no known therapeutic agents to reverse the aging process or treat aged AChE. Quinone methides (QMs) have been shown to alkylate phosphates under physiological conditions. In this study, a small library of novel quinone methide precursors (QMPs) has been synthesized and examined as potential alkylating agents against model nucleophiles, including a model phosphonate. Computational studies have been performed to evaluate the affinity of QMPs for the aged AChE active site, and preliminary testing with electric eel AChE has been performed.
Collapse
Affiliation(s)
- Ryan J. Yoder
- Department
of Chemistry and Biochemistry, The Ohio State University, Marion
Campus, 1465 Mt. Vernon Avenue, Marion, Ohio 43302, United States
| | - Qinggeng Zhuang
- Department
of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jeremy M. Beck
- Department
of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Andrew Franjesevic
- Department
of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Travis G. Blanton
- Department
of Chemistry and Biochemistry, The Ohio State University, Marion
Campus, 1465 Mt. Vernon Avenue, Marion, Ohio 43302, United States
| | - Sydney Sillart
- Department
of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Tyler Secor
- Department
of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Leah Guerra
- Department
of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jason D. Brown
- Department
of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Carolyn Reid
- Department
of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Craig A. McElroy
- College
of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Özlem Doğan Ekici
- Department
of Chemistry and Biochemistry, The Ohio State University, Newark
Campus, 1179 University Drive, Newark, Ohio 43055, United States
| | - Christopher S. Callam
- Department
of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christopher M. Hadad
- Department
of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Kovarik Z, Hrvat NM, Katalinić M, Sit RK, Paradyse A, Žunec S, Musilek K, Fokin VV, Taylor P, Radić Z. Catalytic Soman Scavenging by the Y337A/F338A Acetylcholinesterase Mutant Assisted with Novel Site-Directed Aldoximes. Chem Res Toxicol 2015; 28:1036-44. [PMID: 25835984 PMCID: PMC4791098 DOI: 10.1021/acs.chemrestox.5b00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure to the nerve agent soman is difficult to treat due to the rapid dealkylation of the soman-acetylcholinesterase (AChE) conjugate known as aging. Oxime antidotes commonly used to reactivate organophosphate inhibited AChE are ineffective against soman, while the efficacy of the recommended nerve agent bioscavenger butyrylcholinesterase is limited by strictly stoichiometric scavenging. To overcome this limitation, we tested ex vivo, in human blood, and in vivo, in soman exposed mice, the capacity of aging-resistant human AChE mutant Y337A/F338A in combination with oxime HI-6 to act as a catalytic bioscavenger of soman. HI-6 was previously shown in vitro to efficiently reactivate this mutant upon soman, as well as VX, cyclosarin, sarin, and paraoxon, inhibition. We here demonstrate that ex vivo, in whole human blood, 1 μM soman was detoxified within 30 min when supplemented with 0.5 μM Y337A/F338A AChE and 100 μM HI-6. This combination was further tested in vivo. Catalytic scavenging of soman in mice improved the therapeutic outcome and resulted in the delayed onset of toxicity symptoms. Furthermore, in a preliminary in vitro screen we identified an even more efficacious oxime than HI-6, in a series of 42 pyridinium aldoximes, and 5 imidazole 2-aldoxime N-propylpyridinium derivatives. One of the later imidazole aldoximes, RS-170B, was a 2-3-fold more effective reactivator of Y337A/F338A AChE than HI-6 due to the smaller imidazole ring, as indicated by computational molecular models, that affords a more productive angle of nucleophilic attack.
Collapse
Affiliation(s)
- Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Nikolina Maček Hrvat
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Rakesh K. Sit
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexander Paradyse
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Valery V. Fokin
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| | - Zoran Radić
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| |
Collapse
|
13
|
Mangas I, Taylor P, Vilanova E, Estévez J, França TCC, Komives E, Radić Z. Resolving pathways of interaction of mipafox and a sarin analog with human acetylcholinesterase by kinetics, mass spectrometry and molecular modeling approaches. Arch Toxicol 2015; 90:603-16. [PMID: 25743373 DOI: 10.1007/s00204-015-1481-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/12/2015] [Indexed: 01/07/2023]
Abstract
The hydroxyl oxygen of the catalytic triad serine in the active center of serine hydrolase acetylcholinesterase (AChE) attacks organophosphorus compounds (OPs) at the phosphorus atom to displace the primary leaving group and to form a covalent bond. Inhibited AChE can be reactivated by cleavage of the Ser-phosphorus bond either spontaneously or through a reaction with nucleophilic agents, such as oximes. At the same time, the inhibited AChE adduct can lose part of the molecule by progressive dealkylation over time in a process called aging. Reactivation of the aged enzyme has not yet been demonstrated. Here, our goal was to study oxime reactivation and aging reactions of human AChE inhibited by mipafox or a sarin analog (Flu-MPs, fluorescent methylphosphonate). Progressive reactivation was observed after Flu-MPs inhibition using oxime 2-PAM. However, no reactivation was observed after mipafox inhibition with 2-PAM or the more potent oximes used. A peptide fingerprinted mass spectrometry (MS) method, which clearly distinguished the peptide with the active serine (active center peptide, ACP) of the human AChE adducted with OPs, was developed by MALDI-TOF and MALDI-TOF/TOF. The ACP was detected with a diethyl-phosphorylated adduct after paraoxon inhibition, and with an isopropylmethyl-phosphonylated and a methyl-phosphonylated adduct after Flu-MPs inhibition and subsequent aging. Nevertheless, nonaged nonreactivated complexes were seen after mipafox inhibition and incubation with oximes, where MS data showed an ACP with an NN diisopropyl phosphoryl adduct. The kinetic experiments showed no reactivation of activity. The computational molecular model analysis of the mipafox-inhibited hAChE plots of energy versus distance between the atoms separated by dealkylation showed a high energy demand, thus little aging probability. However, with Flu-MPs and DFP, where aging was observed in our MS data and in previously published crystal structures, the energy demand calculated in modeling was lower and, consequently, aging appeared as a more likely reaction. We document here direct evidence for a phosphorylated hAChE refractory to oxime reactivation, although we observed no aging.
Collapse
Affiliation(s)
- I Mangas
- Unit of Toxicology and Chemical Safety, Institute of Bioengineering, University Miguel Hernandez of Elche, Alicante, Spain.
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil.
| | - P Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - E Vilanova
- Unit of Toxicology and Chemical Safety, Institute of Bioengineering, University Miguel Hernandez of Elche, Alicante, Spain
| | - J Estévez
- Unit of Toxicology and Chemical Safety, Institute of Bioengineering, University Miguel Hernandez of Elche, Alicante, Spain
| | - T C C França
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Králové, Hradec Králové, Czech Republic
| | - E Komives
- Department of Chemistry-Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Z Radić
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
14
|
Sit RK, Fokin VV, Amitai G, Sharpless KB, Taylor P, Radić Z. Imidazole aldoximes effective in assisting butyrylcholinesterase catalysis of organophosphate detoxification. J Med Chem 2014; 57:1378-89. [PMID: 24571195 PMCID: PMC4167068 DOI: 10.1021/jm401650z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Intoxication
by organophosphate (OP) nerve agents and pesticides
should be addressed by efficient, quickly deployable countermeasures
such as antidotes reactivating acetylcholinesterase or scavenging
the parent OP. We present here synthesis and initial in vitro characterization of 14 imidazole aldoximes and their structural
refinement into three efficient reactivators of human butyrylcholinesterase
(hBChE) inhibited covalently by nerve agent OPs, sarin, cyclosarin,
VX, and the OP pesticide metabolite, paraoxon. Rapid reactivation
of OP–hBChE conjugates by uncharged and nonprotonated tertiary
imidazole aldoximes allows the design of a new OP countermeasure by
conversion of hBChE from a stoichiometric to catalytic OP bioscavenger
with the prospect of oral bioavailability and central nervous system
penetration. The enhanced in vitro reactivation efficacy
determined for tertiary imidazole aldoximes compared to that of their
quaternary N-methyl imidazolium analogues is attributed
to ion pairing of the cationic imidazolium with Asp 70, altering a
reactive alignment of the aldoxime with the phosphorus in the OP–hBChE
conjugate.
Collapse
Affiliation(s)
- Rakesh K Sit
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
15
|
Catalytic detoxification of nerve agent and pesticide organophosphates by butyrylcholinesterase assisted with non-pyridinium oximes. Biochem J 2013; 450:231-42. [PMID: 23216060 DOI: 10.1042/bj20121612] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present paper we show a comprehensive in vitro, ex vivo and in vivo study on hydrolytic detoxification of nerve agent and pesticide OPs (organophosphates) catalysed by purified hBChE (human butyrylcholinesterase) in combination with novel non-pyridinium oxime reactivators. We identified TAB2OH (2-trimethylammonio-6-hydroxybenzaldehyde oxime) as an efficient reactivator of OP-hBChE conjugates formed by the nerve agents VX and cyclosarin, and the pesticide paraoxon. It was also functional in reactivation of sarin- and tabun-inhibited hBChE. A 3-5-fold enhancement of in vitro reactivation of VX-, cyclosarin- and paraoxon-inhibited hBChE was observed when compared with the commonly used N-methylpyridinium aldoxime reactivator, 2PAM (2-pyridinealdoxime methiodide). Kinetic analysis showed that the enhancement resulted from improved molecular recognition of corresponding OP-hBChE conjugates by TAB2OH. The unique features of TAB2OH stem from an exocyclic quaternary nitrogen and a hydroxy group, both ortho to an oxime group on a benzene ring. pH-dependences reveal participation of the hydroxy group (pKa=7.6) forming an additional ionizing nucleophile to potentiate the oxime (pKa=10) at physiological pH. The TAB2OH protective indices in therapy of sarin- and paraoxon-exposed mice were enhanced by 30-60% when they were treated with a combination of TAB2OH and sub-stoichiometric hBChE. The results of the present study establish that oxime-assisted catalysis is feasible for OP bioscavenging.
Collapse
|
16
|
|
17
|
Radić Z, Sit RK, Garcia E, Zhang L, Berend S, Kovarik Z, Amitai G, Fokin VV, Barry Sharpless K, Taylor P. Mechanism of interaction of novel uncharged, centrally active reactivators with OP-hAChE conjugates. Chem Biol Interact 2012; 203:67-71. [PMID: 22975155 DOI: 10.1016/j.cbi.2012.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 10/27/2022]
Abstract
A library of more than 200 novel uncharged oxime reactivators was used to select and refine lead reactivators of human acetylcholinesterase (hAChE) covalently conjugated with sarin, cyclosarin, VX, paraoxon and tabun. N-substituted 2-hydroxyiminoacetamido alkylamines were identified as best reactivators and reactivation kinetics of the lead oximes, RS41A and RS194B, were analyzed in detail. Compared to reference pyridinium reactivators, 2PAM and MMB4, molecular recognition of RS41A reflected in its Kox constant was compromised by an order of magnitude on average for different OP-hAChE conjugates, without significant differences in the first order maximal phosphorylation rate constant k(2). Systematic structural modifications of the RS41A lead resulted in several-fold improvement with reactivator, RS194B. Kinetic analysis indicated K(ox) reduction for RS194B as the main kinetic constant leading to efficient reactivation. Subtle structural modifications of RS194B were used to identify essential determinants for efficient reactivation. Computational molecular modeling of RS41A and RS194B interactions with VX inhibited hAChE, bound reversibly in Michaelis type complex and covalently in the pentacoordinate reaction intermediate suggests that the faster reactivation reaction is a consequence of a tighter RS194B interactions with hAChE peripheral site (PAS) residues, in particular with D74, resulting in lower interaction energies for formation of both the binding and reactivation states. Desirable in vitro reactivation properties of RS194B, when coupled with its in vivo pharmacokinetics and disposition in the body, reveal the potential of this oxime design as promising centrally and peripherally active antidotes for OP toxicity.
Collapse
Affiliation(s)
- Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Radić Z, Sit RK, Kovarik Z, Berend S, Garcia E, Zhang L, Amitai G, Green C, Radić B, Fokin VV, Sharpless KB, Taylor P. Refinement of structural leads for centrally acting oxime reactivators of phosphylated cholinesterases. J Biol Chem 2012; 287:11798-809. [PMID: 22343626 DOI: 10.1074/jbc.m111.333732] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present a systematic structural optimization of uncharged but ionizable N-substituted 2-hydroxyiminoacetamido alkylamine reactivators of phosphylated human acetylcholinesterase (hAChE) intended to catalyze the hydrolysis of organophosphate (OP)-inhibited hAChE in the CNS. Starting with the initial lead oxime RS41A identified in our earlier study and extending to the azepine analog RS194B, reactivation rates for OP-hAChE conjugates formed by sarin, cyclosarin, VX, paraoxon, and tabun are enhanced severalfold in vitro. To analyze the mechanism of intrinsic reactivation of the OP-AChE conjugate and penetration of the blood-brain barrier, the pH dependence of the oxime and amine ionizing groups of the compounds and their nucleophilic potential were examined by UV-visible spectroscopy, (1)H NMR, and oximolysis rates for acetylthiocholine and phosphoester hydrolysis. Oximolysis rates were compared in solution and on AChE conjugates and analyzed in terms of the ionization states for reactivation of the OP-conjugated AChE. In addition, toxicity and pharmacokinetic studies in mice show significantly improved CNS penetration and retention for RS194B when compared with RS41A. The enhanced intrinsic reactivity against the OP-AChE target combined with favorable pharmacokinetic properties resulted in great improvement of antidotal properties of RS194B compared with RS41A and the standard peripherally active oxime, 2-pyridinealdoxime methiodide. Improvement was particularly noticeable when pretreatment of mice with RS194B before OP exposure was combined with RS194B reactivation therapy after the OP insult.
Collapse
Affiliation(s)
- Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wille T, Scott C, Thiermann H, Worek F. Detoxification of G- and V-series nerve agents by the phosphotriesterase OpdA. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.661724] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Surface-enhanced Raman scattering detection of cholinesterase inhibitors. Anal Chim Acta 2011; 703:234-8. [DOI: 10.1016/j.aca.2011.07.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 07/07/2011] [Accepted: 07/20/2011] [Indexed: 11/22/2022]
|
21
|
Abstract
The early detection of many human diseases is crucial if they are to be treated successfully. Therefore, the development of imaging techniques that can facilitate early detection of disease is of high importance. Changes in the levels of enzyme expression are known to occur in many diseases, making their accurate detection at low concentrations an area of considerable active research. Activatable fluorescent probes show immense promise in this area. If properly designed they should exhibit no signal until they interact with their target enzyme, reducing the level of background fluorescence and potentially endowing them with greater sensitivity. The mechanisms of fluorescence changes in activatable probes vary. This review aims to survey the field of activatable probes, focusing on their mechanisms of action as well as illustrating some of the in vitro and in vivo settings in which they have been employed.
Collapse
Affiliation(s)
- Christopher R Drake
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, Box 0946, San Francisco, CA, 94107, USA
| | | | | |
Collapse
|
22
|
Cochran R, Kalisiak J, Küçükkilinç T, Radic Z, Garcia E, Zhang L, Ho KY, Amitai G, Kovarik Z, Fokin VV, Sharpless KB, Taylor P. Oxime-assisted acetylcholinesterase catalytic scavengers of organophosphates that resist aging. J Biol Chem 2011; 286:29718-24. [PMID: 21730071 DOI: 10.1074/jbc.m111.264739] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase, are primary targets of organophosphates (OPs). Exposure to OPs can lead to serious cardiovascular complications, respiratory compromise, and death. Current therapy to combat OP poisoning involves an oxime reactivator (2-PAM, obidoxime, TMB4, or HI-6) combined with atropine and on occasion an anticonvulsant. Butyrylcholinesterase, administered in the plasma compartment as a bio-scavenger, has also shown efficacy but is limited by its strict stoichiometric scavenging, slow reactivation, and a propensity for aging. Here, we characterize 10 human (h) AChE mutants that, when coupled with an oxime, give rise to catalytic reactivation and aging resistance of the soman conjugate. With the most efficient human AChE mutant Y337A/F338A, we show enhanced reactivation rates for several OP-hAChE conjugates compared with wild-type hAChE when reactivated with HI-6 (1-(2'-hydroxyiminomethyl-1'-pyridinium)-3-(4'-carbamoyl-1-pyridinium)). In addition, we interrogated an 840-member novel oxime library for reactivation of Y337A/F338A hAChE-OP conjugates to delineate the most efficient oxime-mutant enzyme pairs for catalytic bio-scavenging. Combining the increased accessibility of the Y337A mutation to oximes within the space-impacted active center gorge with the aging resistance of the F338A mutation provides increased substrate diversity in scavenging potential for aging-prone alkyl phosphate inhibitors.
Collapse
Affiliation(s)
- Rory Cochran
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sit RK, Radić Z, Gerardi V, Zhang L, Garcia E, Katalinić M, Amitai G, Kovarik Z, Fokin VV, Sharpless KB, Taylor P. New structural scaffolds for centrally acting oxime reactivators of phosphylated cholinesterases. J Biol Chem 2011; 286:19422-30. [PMID: 21464125 DOI: 10.1074/jbc.m111.230656] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe here the synthesis and activity of a new series of oxime reactivators of cholinesterases (ChEs) that contain tertiary amine or imidazole protonatable functional groups. Equilibration between the neutral and protonated species at physiological pH enables the reactivators to cross the blood-brain barrier and distribute in the CNS aqueous space as dictated by interstitial and cellular pH values. Our structure-activity analysis of 134 novel compounds considers primarily imidazole aldoximes and N-substituted 2-hydroxyiminoacetamides. Reactivation capacities of novel oximes are rank ordered by their relative reactivation rate constants at 0.67 mm compared with 2-pyridinealdoxime methiodide for reactivation of four organophosphate (sarin, cyclosarin, VX, and paraoxon) conjugates of human acetylcholinesterase (hAChE). Rank order of the rates differs for reactivation of human butyrylcholinesterase (hBChE) conjugates. The 10 best reactivating oximes, predominantly hydroxyimino acetamide derivatives (for hAChE) and imidazole-containing aldoximes (for hBChE) also exhibited reasonable activity in the reactivation of tabun conjugates. Reactivation kinetics of the lead hydroxyimino acetamide reactivator of hAChE, when analyzed in terms of apparent affinity (1/K(ox)) and maximum reactivation rate (k(2)), is superior to the reference uncharged reactivators monoisonitrosoacetone and 2,3-butanedione monoxime and shows potential for further refinement. The disparate pH dependences for reactivation of ChE and the general base-catalyzed oximolysis of acetylthiocholine reveal that distinct reactivator ionization states are involved in the reactivation of ChE conjugates and in conferring nucleophilic reactivity of the oxime group.
Collapse
Affiliation(s)
- Rakesh K Sit
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gupta RD, Goldsmith M, Ashani Y, Simo Y, Mullokandov G, Bar H, Ben-David M, Leader H, Margalit R, Silman I, Sussman JL, Tawfik DS. Directed evolution of hydrolases for prevention of G-type nerve agent intoxication. Nat Chem Biol 2011; 7:120-5. [DOI: 10.1038/nchembio.510] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 11/22/2010] [Indexed: 11/09/2022]
|
25
|
Radić Z, Kalisiak J, Fokin VV, Sharpless KB, Taylor P. Interaction kinetics of oximes with native, phosphylated and aged human acetylcholinesterase. Chem Biol Interact 2010; 187:163-6. [PMID: 20412789 DOI: 10.1016/j.cbi.2010.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 04/02/2010] [Accepted: 04/14/2010] [Indexed: 11/25/2022]
Abstract
Oximes are commonly used nucleophilic reactivators of alkyl phosphorylated and alkyl methylphosphonylated acetylcholinesterase (AChE) and butyrylcholinesterase. Covalent inhibition of these enzymes by organophosphate (OP) pesticides results typically in phosphorylated enzymes, while covalent inhibition by nerve agent OPs results in methyl phosphonylated cholinesterases. In this study we determined kinetic constants for interaction of three triazole containing oximes with native human AChE, enzyme diethylphosphorylated by paraoxon, enzyme phosphonylated by VX and cyclosarin as well as enzyme aged upon phosphonylation by soman. Stopped-flow kinetics of oxime interaction was monitored using quenching of intrinsic tryptophan fluorescence of AChE as an indicator of oxime binding. Triazole oximes were efficiently synthesized using copper catalyzed cycloaddition between azide and alkyne building blocks ("Click chemistry"). Equilibrium dissociation constants determined for both native enzymes were in low micromolar range for all three oximes, while dissociation constants for phosphylated (phosphorylated and phosphonylated) enzymes were typically one to two orders of magnitude larger. Dissociation constants for interaction with aged enzymes were similar or smaller than those determined for native enzymes. Similar results were obtained with reference oximes, 2PAM and HI6. Association rate constants for formation of oxime complexes were similar for both native, phosphylated and aged enzymes. In summary our data suggest that modification of active site gorge in AChEs by phosphylation of the active serine compromises oxime binding. Dealkylation of phosphonylated enzyme, however opens space in the gorge allowing oximes to bind tighter.
Collapse
Affiliation(s)
- Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, United States.
| | | | | | | | | |
Collapse
|
26
|
Küçükkilinç T, Cochran R, Kalisiak J, Garcia E, Valle A, Amitai G, Radić Z, Taylor P. Investigating the structural influence of surface mutations on acetylcholinesterase inhibition by organophosphorus compounds and oxime reactivation. Chem Biol Interact 2010; 187:238-40. [PMID: 20382137 DOI: 10.1016/j.cbi.2010.03.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Organophosphates (OPs) exert their toxicity by inhibiting primarily acetylcholinesterase (AChE) and to a lesser extent butyrylcholinesterase (BChE). Binary mixtures of mammalian AChE and oximes of varying structure have been recently considered for treatment of OP poisoning as catalytic bioscavengers. In this study wild type human AChE and human AChE with residue mutations D134H, D134H_E202Q and D134H_F338A were characterized and investigated for inhibition by OPs and consequent oxime reactivation of phosphylated enzymes. The rationale for selecting these substitution positions was based on D134H being a naturally occurring single nucleotide polymorphism (SNP) in humans and that E202Q and F338A mutations slow aging of OP inhibited AChEs. Inhibition of D134H by paraoxon and analogues of cyclosarin was 2-8 times slower than inhibition of wild type (wt), while reactivation of the paraoxon inhibited enzyme by 2PAM was 6 times faster. Both inhibition and reactivation of D134H_E202Q and D134H_F338A double mutants were up to two orders of magnitude slower than the wt indicating that introduction of the active center substitutions abolished fully the effect of the peripherally located D134H. These results indicate that selected residues outside the active center influence inhibition, reactivation and catalysis rates through longer range interactions.
Collapse
Affiliation(s)
- Tuba Küçükkilinç
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ashani Y, Gupta RD, Goldsmith M, Silman I, Sussman JL, Tawfik DS, Leader H. Stereo-specific synthesis of analogs of nerve agents and their utilization for selection and characterization of paraoxonase (PON1) catalytic scavengers. Chem Biol Interact 2010; 187:362-9. [PMID: 20303930 DOI: 10.1016/j.cbi.2010.02.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/11/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
Fluorogenic organophosphate inhibitors of acetylcholinesterase (AChE) homologous in structure to nerve agents provide useful probes for high throughput screening of mammalian paraoxonase (PON1) libraries generated by directed evolution of an engineered PON1 variant with wild-type like specificity (rePON1). Wt PON1 and rePON1 hydrolyze preferentially the less-toxic R(P) enantiomers of nerve agents and of their fluorogenic surrogates containing the fluorescent leaving group, 3-cyano-7-hydroxy-4-methylcoumarin (CHMC). To increase the sensitivity and reliability of the screening protocol so as to directly select rePON1 clones displaying stereo-preference towards the toxic S(P) enantiomer, and to determine accurately K(m) and k(cat) values for the individual isomers, two approaches were used to obtain the corresponding S(P) and R(P) isomers: (a) stereo-specific synthesis of the O-ethyl, O-n-propyl, and O-i-propyl analogs and (b) enzymic resolution of a racemic mixture of O-cyclohexyl methylphosphonylated CHMC. The configurational assignments of the S(P) and R(P) isomers, as well as their optical purity, were established by X-ray diffraction, reaction with sodium fluoride, hydrolysis by selected rePON1 variants, and inhibition of AChE. The S(P) configuration of the tested surrogates was established for the enantiomer with the more potent anti-AChE activity, with S(P)/R(P) inhibition ratios of 10-100, whereas the R(P) isomers of the O-ethyl and O-n-propyl were hydrolyzed by wt rePON1 about 600- and 70-fold faster, respectively, than the S(P) counterpart. Wt rePON1-induced R(P)/S(P) hydrolysis ratios for the O-cyclohexyl and O-i-propyl analogs are estimated to be >>1000. The various S(P) enantiomers of O-alkyl-methylphosphonyl esters of CHMC provide suitable ligands for screening rePON1 libraries, and can expedite identification of variants with enhanced catalytic proficiency towards the toxic nerve agents.
Collapse
Affiliation(s)
- Y Ashani
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
28
|
Gilley C, MacDonald M, Nachon F, Schopfer LM, Zhang J, Cashman JR, Lockridge O. Nerve agent analogues that produce authentic soman, sarin, tabun, and cyclohexyl methylphosphonate-modified human butyrylcholinesterase. Chem Res Toxicol 2010; 22:1680-8. [PMID: 19715348 DOI: 10.1021/tx900090m] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The goal was to test 14 nerve agent model compounds of soman, sarin, tabun, and cyclohexyl methylphosphonofluoridate (GF) for their suitability as substitutes for true nerve agents. We wanted to know whether the model compounds would form the identical covalent adduct with human butyrylcholinesterase that is produced by reaction with true nerve agents. Nerve agent model compounds containing thiocholine or thiomethyl in place of fluorine or cyanide were synthesized as Sp and Rp stereoisomers. Purified human butyrylcholinesterase was treated with a 45-fold molar excess of nerve agent analogue at pH 7.4 for 17 h at 21 degrees C. The protein was denatured by boiling and was digested with trypsin. Aged and nonaged active site peptide adducts were quantified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry of the tryptic digest mixture. The active site peptides were isolated by HPLC and analyzed by MALDI-TOF-TOF mass spectrometry. Serine 198 of butyrylcholinesterase was covalently modified by all 14 compounds. Thiocholine was the leaving group in all compounds that had thiocholine in place of fluorine or cyanide. Thiomethyl was the leaving group in the GF thiomethyl compounds. However, sarin thiomethyl compounds released either thiomethyl or isopropyl, while soman thiomethyl compounds released either thiomethyl or pinacolyl. Thiocholine compounds reacted more rapidly with butyrylcholinesterase than thiomethyl compounds. Labeling with the model compounds resulted in aged adducts that had lost the O-alkyl group (O-ethyl for tabun, O-cyclohexyl for GF, isopropyl for sarin, and pinacolyl for soman) in addition to the thiocholine or thiomethyl group. The nerve agent model compounds containing thiocholine and the GF thiomethyl analogue were found to be suitable substitutes for true soman, sarin, tabun, and GF in terms of the adduct that they produced with human butyrylcholinesterase. However, the soman and sarin thiomethyl compounds yielded two types of adducts, one of which was thiomethyl phosphonate, a modification not found after treatment with authentic soman and sarin.
Collapse
Affiliation(s)
- Cynthia Gilley
- Human BioMolecular Research Institute, San Diego, California 92121, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Barakat NH, Zheng X, Gilley CB, MacDonald M, Okolotowicz K, Cashman JR, Vyas S, Beck JM, Hadad CM, Zhang J. Chemical synthesis of two series of nerve agent model compounds and their stereoselective interaction with human acetylcholinesterase and human butyrylcholinesterase. Chem Res Toxicol 2010; 22:1669-79. [PMID: 19715346 DOI: 10.1021/tx900096j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both G and V type nerve agents possess a center of chirality about phosphorus. The S(p) enantiomers are generally more potent inhibitors than their R(p) counterparts toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). To develop model compounds with defined centers of chirality that mimic the target nerve agent structures, we synthesized both the S(p) and the R(p) stereoisomers of two series of G type nerve agent model compounds in enantiomerically enriched form. The two series of model compounds contained identical substituents on the phosphorus as the G type agents, except that thiomethyl (CH(3)-S-) and thiocholine [(CH(3))(3)NCH(2)CH(2)-S-] groups were used to replace the traditional nerve agent leaving groups (i.e., fluoro for GB, GF, and GD and cyano for GA). Inhibition kinetic studies of the thiomethyl- and thiocholine-substituted series of nerve agent model compounds revealed that the S(p) enantiomers of both series of compounds showed greater inhibition potency toward AChE and BChE. The level of stereoselectivity, as indicated by the ratio of the bimolecular inhibition rate constants between S(p) and R(p) enantiomers, was greatest for the GF model compounds in both series. The thiocholine analogues were much more potent than the corresponding thiomethyl analogues. With the exception of the GA model compounds, both series showed greater potency against AChE than BChE. The stereoselectivity (i.e., S(p) > R(p)), enzyme selectivity, and dynamic range of inhibition potency contributed from these two series of compounds suggest that the combined application of these model compounds will provide useful research tools for understanding interactions of nerve agents with cholinesterase and other enzymes involved in nerve agent and organophosphate pharmacology. The potential of and limitations for using these model compounds in the development of biological therapeutics against nerve agent toxicity are also discussed.
Collapse
Affiliation(s)
- Nora H Barakat
- Human BioMolecular Research Institute, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zheng X, Okolotowicz K, Wang B, Macdonald M, Cashman JR, Zhang J. Direct detection of the hydrolysis of nerve agent model compounds using a fluorescent probe. Chem Biol Interact 2010; 187:330-4. [PMID: 20097185 DOI: 10.1016/j.cbi.2010.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/30/2009] [Accepted: 01/18/2010] [Indexed: 11/30/2022]
Abstract
Nerve agents are highly toxic organophosphorus compounds (OPs) that are used as chemical warfare agents. Developing a catalytic bioscavenger to efficiently detoxify nerve agents in the bloodstream of affected individuals has been recognized as an attractive approach to prevent nerve agent toxicity. However, the search for nerve agent catalysts has been hindered by the lack of efficient direct assays for nerve agent hydrolysis. In addition, authentic nerve agents are restricted and access to use for experiments by the general research community is prohibited. Herein we report development of a method that combines use of novel nerve agent model compounds possessing a thiocholine leaving group that reacts with the fluorescent thio-detection probe, BES-Thio, to afford detection of sub-micromolar amounts of nerve agent model compounds hydrolysis products. The detection sensitivity of BES-Thio assay was approximately 10 times better than the Ellman assay. This developed method is useful as a direct, sensitive screening method for evaluating OP hydrolysis efficiency from catalytic cholinesterases. When the assay was assembled in the presence of oxime, OP-inhibited cholinesterases that were able to be reactivated by specific oxime showed oxime-assisted enzyme-mediated OP hydrolysis. Therefore, this method is also useful to screen oxime analogs to identify novel agents that can reactivate OP-inhibited cholinesterases or to screen various enzymes to identify pseudo-catalytic bioscavengers that can be readily reactivated by clinically approved oximes.
Collapse
Affiliation(s)
- Xueying Zheng
- Human BioMolecular Research Institute, San Diego, CA 92121, United States
| | | | | | | | | | | |
Collapse
|
31
|
Melzer M, Chen JCH, Heidenreich A, Gäb J, Koller M, Kehe K, Blum MM. Reversed enantioselectivity of diisopropyl fluorophosphatase against organophosphorus nerve agents by rational design. J Am Chem Soc 2010; 131:17226-32. [PMID: 19894712 DOI: 10.1021/ja905444g] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris is an efficient and robust biocatalyst for the hydrolysis of a range of highly toxic organophosphorus compounds including the nerve agents sarin, soman, and cyclosarin. In contrast to the substrate diisopropyl fluorophosphate (DFP) the nerve agents possess an asymmetric phosphorus atom, which leads to pairs of enantiomers that display markedly different toxicities. Wild-type DFPase prefers the less toxic stereoisomers of the substrates which leads to slower detoxification despite rapid hydrolysis. Enzyme engineering efforts based on rational design yielded two quadruple enzyme mutants with reversed enantioselectivity and overall enhanced activity against tested nerve agents. The reversed stereochemical preference is explained through modeling studies and the crystal structures of the two mutants. Using the engineered mutants in combination with wild-type DFPase leads to significantly enhanced activity and detoxification, which is especially important for personal decontamination. Our findings may also be of relevance for the structurally related enzyme human paraoxonase (PON), which is of considerable interest as a potential catalytic in vivo scavenger in case of organophosphorus poisoning.
Collapse
Affiliation(s)
- Marco Melzer
- Blum-Scientific Services, Ledererstrasse 23, 80331 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Amitai G, Adani R, Limanovich O, Teitlboim S, Yishay S, Tveria L, Yacov G, Meshulam H, Raveh L. Characterization of asymmetric fluorogenic phosphonates as probes for developing organophosphorus hydrolases with broader stereoselectivity. Chem Biol Interact 2008; 175:249-54. [PMID: 18588863 DOI: 10.1016/j.cbi.2008.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 11/18/2022]
Abstract
Organophosphorus hydrolases (OPH) such as mammalian plama paraoxonase (PON1) detoxify asymmetric toxic organophosphorus (OP) nerve agents by preferentially hydrolyzing the less toxic P(+) optical isomer. In order to develop new OPHs with broader stereoselectivity we have prepared a series of asymmetric fluorogenic organophosphonates (Flu-OPs). Such Flu-OPs may serve as molecular probes for screening large libraries of OP hydrolases during directed evolution. Flu-OPs were prepared as methylphosphonates (MPs) diesters containing either ethyl (E), isopropyl (I), cyclohexyl (C) or pinacolyl (P) groups that are structural congeners of the nerve agents VX, sarin, cyclosarin and soman, respectively. The second ester bond was formed with fluorescent moieties that are either 3-cyano-4-methyl-7-hydroxy coumarin (MeCyC) or 1,3-dichloro-7-hydroxy 9,9-dimethyl-9H-acridin-2-one (DDAO). To further characterize the Flu-OPs as surrogates of their respective nerve agents, we have studied the reactivation of Flu-OP-inhibited AChE using 2-PAM and toxogonin (TOX). AChE was 90-95% inhibited by all Flu-OPs (0.36-0.9(M) and then was reactivated by either 2-PAM or TOX. TOX caused a more rapid reactivation than 2-PAM with the following rank order; EMP>IMP>CMP. TOX was also shown to be a better reactivator than 2-PAM for AChE inhibited by the nerve agents VX and cyclosarin. PMP-AChE could not be reactivated by either TOX or 2-PAM, similarly to aging of PMP-AChE formed by inhibition with soman. Racemic CMP-MeCyC was used for screening two new PON1 variants from a neutral library of PON1. These multiple mutation variants include replacement of active site amino acid residues. Neither mutation in these new variants appeared in PON1 variants previously discovered by directed evolution using symmetric Flu-OP. Detoxification rate of cylcosarin by these new PON1 variants was rather slow indicating the need to further screen PON1 clones using optically active Flu-OPs. Therefore, we have separated enzymatically the P(-) enantiomer of CMP-MeCyC and determined its 98% purity using chiral HPLC.
Collapse
Affiliation(s)
- G Amitai
- Department of Medicinal Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Blum MM, Timperley CM, Williams GR, Thiermann H, Worek F. Inhibitory Potency against Human Acetylcholinesterase and Enzymatic Hydrolysis of Fluorogenic Nerve Agent Mimics by Human Paraoxonase 1 and Squid Diisopropyl Fluorophosphatase. Biochemistry 2008; 47:5216-24. [DOI: 10.1021/bi702222x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marc-Michael Blum
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, D-80937 Munich, Germany, Institute of Biophysical Chemistry, J. W. Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany, and Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K
| | - Christopher M. Timperley
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, D-80937 Munich, Germany, Institute of Biophysical Chemistry, J. W. Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany, and Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K
| | - Gareth R. Williams
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, D-80937 Munich, Germany, Institute of Biophysical Chemistry, J. W. Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany, and Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, D-80937 Munich, Germany, Institute of Biophysical Chemistry, J. W. Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany, and Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, D-80937 Munich, Germany, Institute of Biophysical Chemistry, J. W. Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt, Germany, and Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K
| |
Collapse
|