1
|
Goulay R, Fémy F, Nervo A, Valentino S, Madi M, Joly AL, Servonnet A, Nachon F, Reymond C, Jaffré N. Baseline physiological data from anesthetized pigs in a VX intoxication model. Toxicol Lett 2024; 397:117-128. [PMID: 38768837 DOI: 10.1016/j.toxlet.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Over the past fifty years, swine models have been used for organophosphorus intoxication studies. Among these studies and others on the swine model in general, some physiological data, especially cholinesterase activity highly impacted by organophosphorus compounds like nerve agent VX, still need to be completed. To support and compare our model to others, we have published the experimental protocol, the physiological values of 31 juvenile anesthetized pigs, and the 6 h-follow-up of six supplementary anesthetized control animals and 7 VX-intoxicated pigs. We reported hemodynamics and respiratory parameters, blood levels in several biochemical parameters, blood gas, and complete blood count and compared them to the literature. We also focused on tissue and blood cholinesterase activities and detailed them for acetylcholinesterase and butyrylcholinesterase. After establishing a broad physiological data set consistent with the literature, we reported several cardio-respiratory parameters that seem more affected by an organophosphate intoxication, like heart rate, arterial blood pressure, cardiac output, and respiratory rate. Within the blood, oxygen saturation (SpO2), lactatemia, base excess, and glycemia can also be measured and associated with the other parameters to evaluate the life-threatening status. This swine model is currently used to develop and evaluate medical countermeasures against organophosphate nerve agent intoxications.
Collapse
Affiliation(s)
- R Goulay
- Department of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Brétigny Sur Orge, France
| | - F Fémy
- Department of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Brétigny Sur Orge, France; Departments of Emergency, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, France
| | - A Nervo
- Department of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Brétigny Sur Orge, France
| | - S Valentino
- Department of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Brétigny Sur Orge, France
| | - M Madi
- Department of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Brétigny Sur Orge, France
| | - A-L Joly
- Department of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Brétigny Sur Orge, France
| | - A Servonnet
- Department of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Brétigny Sur Orge, France
| | - F Nachon
- Department of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Brétigny Sur Orge, France
| | - C Reymond
- Department of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Brétigny Sur Orge, France
| | - N Jaffré
- Department of Toxicology and Chemical Risks, French Armed Forces Biomedical Research Institute, Brétigny Sur Orge, France.
| |
Collapse
|
2
|
Cornelissen AS, Garcia EE, Raulli RE, Laney J, Joosen MJA. A delayed treatment model for the evaluation of scopolamine for VX nerve agent intoxication. Toxicol Appl Pharmacol 2021; 427:115650. [PMID: 34273408 DOI: 10.1016/j.taap.2021.115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/24/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
Most research on medical countermeasures for nerve agent exposure assumes a military scenario, in which (autoinjector) treatment is envisaged to be available immediately. In a civilian setting however, treatment is delayed until arrival of first-aid responders. This may significantly affect treatment efficacy and the requirements for secondary intensive care. The aim of the current study was to develop a guinea pig model to evaluate the efficacy of delayed treatment following nerve agent exposure. We identified a trigger-to-treat based on a progressive stage of the toxidrome following VX exposure, which was associated with the subsiding of clonic movements. This paradigm resulted in treatment consistently being administered between 15 and 25 min post-exposure. Using the model, we investigated the potential for the anticholinergic scopolamine to act as a delayed treatment either as a standalone treatment, or as an adjunct to delayed treatment with Standard of Care (SOC), containing atropine, 2-PAM, and midazolam. The study provides a framework for a small animal model for evaluating the efficacy of treatment administered at a specific stage of the toxidrome, when immediate treatment is absent. As an adjunct, scopolamine treatment did not result in improved survival, but did show a beneficial effect on recovery, in terms of general posture. As a standalone treatment, scopolamine showed a significant, dose-responsive, beneficial effect on survival and recovery. These promising results warrant additional studies to investigate which observed physiological improvements are relevant for the recovery process and residual injury.
Collapse
Affiliation(s)
- Alex S Cornelissen
- TNO Defence, Safety and Security, CBRN Protection, Rijswijk, the Netherlands.
| | - Efrain E Garcia
- Biomedical Advanced Research and Development Authority (BARDA), Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), United States
| | - Robert E Raulli
- Biomedical Advanced Research and Development Authority (BARDA), Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), United States
| | - Judith Laney
- Biomedical Advanced Research and Development Authority (BARDA), Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), United States
| | - Marloes J A Joosen
- TNO Defence, Safety and Security, CBRN Protection, Rijswijk, the Netherlands
| |
Collapse
|
3
|
Poirier L, Jacquet P, Plener L, Masson P, Daudé D, Chabrière E. Organophosphorus poisoning in animals and enzymatic antidotes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25081-25106. [PMID: 29959732 DOI: 10.1007/s11356-018-2465-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Organophosphorus compounds (OPs) are neurotoxic molecules developed as pesticides and chemical warfare nerve agents (CWNAs). Most of them are covalent inhibitors of acetylcholinesterase (AChE), a key enzyme in nervous systems, and are therefore responsible for numerous poisonings around the world. Many animal models have been studied over the years in order to decipher the toxicity of OPs and to provide insights for therapeutic and decontamination purposes. Environmental impact on wild animal species has been analyzed to understand the consequences of OP uses in agriculture. In complement, various laboratory models, from invertebrates to aquatic organisms, rodents and primates, have been chosen to study chronic and acute toxicity as well as neurobehavioral impact, immune response, developmental disruption, and other pathological signs. Several decontamination approaches were developed to counteract the poisoning effects of OPs. Among these, enzyme-based strategies are particularly attractive as they allow efficient external decontamination without toxicity or environmental impact and may be of interest for treatment. Approaches using bioscavengers for prophylaxis, treatment, and external decontamination are emphasized and their potential is discussed in the light of toxicological observations from various animal models. The relevance of animal models, regarding their cholinergic system and the abundance of naturally protecting enzymes, is also discussed for better extrapolation of results to human.
Collapse
Affiliation(s)
- Laetitia Poirier
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, Marseille, France
| | - Pauline Jacquet
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Laure Plener
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, Marseille, France.
| |
Collapse
|
4
|
McGarry KG, Lalisse RF, Moyer RA, Johnson KM, Tallan AM, Winters TP, Taris JE, McElroy CA, Lemmon EE, Shafaat HS, Fan Y, Deal A, Marguet SC, Harvilchuck JA, Hadad CM, Wood DW. A Novel, Modified Human Butyrylcholinesterase Catalytically Degrades the Chemical Warfare Nerve Agent, Sarin. Toxicol Sci 2019; 174:133-146. [DOI: 10.1093/toxsci/kfz251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Chemical warfare nerve agents (CWNAs) present a global threat to both military and civilian populations. The acute toxicity of CWNAs stems from their ability to effectively inhibit acetylcholinesterase (AChE). This inhibition can lead to uncontrolled cholinergic cellular signaling, resulting in cholinergic crisis and, ultimately, death. Although the current FDA-approved standard of care is moderately effective when administered early, development of novel treatment strategies is necessary. Butyrylcholinesterase (BChE) is an enzyme which displays a high degree of structural homology to AChE. Unlike AChE, the roles of BChE are uncertain and possibilities are still being explored. However, BChE appears to primarily serve as a bioscavenger of toxic esters due to its ability to accommodate a wide variety of substrates within its active site. Like AChE, BChE is also readily inhibited by CWNAs. Due to its high affinity for binding CWNAs, and that null-BChE yields no apparent health effects, exogenous BChE has been explored as a candidate therapeutic for CWNA intoxication. Despite years of research, minimal strides have been made to develop a catalytic bioscavenger. Furthermore, BChE is only in early clinical trials as a stoichiometric bioscavenger of CWNAs, and large quantities must be administered to treat CWNA toxicity. Here, we describe previously unidentified mutations to residues within and adjacent to the acyl binding pocket (positions 282–285 were mutagenized from YGTP to NHML) of BChE that confer catalytic degradation of the CWNA, sarin. These mutations, along with corresponding future efforts, may finally lead to a novel therapeutic to combat CWNA intoxication.
Collapse
Affiliation(s)
- Kevin G McGarry
- Battelle Memorial Institute, Columbus, Ohio
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Remy F Lalisse
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | | | | | - Alexi M Tallan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | | | - Joeseph E Taris
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Craig A McElroy
- College of Pharmacy, The Ohio State University, Columbus, Ohio
| | | | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Yamin Fan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Aniliese Deal
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Sean C Marguet
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | | | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - David W Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| |
Collapse
|
5
|
Thompson CM, Gerdes JM, VanBrocklin HF. Positron emission tomography studies of organophosphate chemical threats and oxime countermeasures. Neurobiol Dis 2019; 133:104455. [PMID: 31022458 DOI: 10.1016/j.nbd.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/28/2019] [Accepted: 04/19/2019] [Indexed: 01/31/2023] Open
Abstract
There is a unique in vivo interplay involving the mechanism of inactivation of acetylcholinesterase (AChE) by toxic organophosphorus (OP) compounds and the restoration of AChE activity by oxime antidotes. OP compounds form covalent adducts to this critical enzyme target and oximes are introduced to directly displace the OP from AChE. For the most part, the in vivo inactivation of AChE leading to neurotoxicity and antidote-based therapeutic reversal of this mechanism are well understood, however, these molecular-level events have not been evaluated by dynamic imaging in living systems at millimeter resolution. A deeper understanding of these critically, time-dependent mechanisms is needed to develop new countermeasures. To address this void and to help accelerate the development of new countermeasures, positron-emission tomography (PET) has been investigated as a unique opportunity to create platform technologies to directly examine the interdependent toxicokinetic/pharmacokinetic and toxicodynamic/pharmacodynamic features of OPs and oximes in real time within live animals. This review will cover two first-in-class PET tracers representing an OP and an oxime antidote, including their preparation, requisite pharmacologic investigations, mechanistic interpretations, biodistribution and imaging.
Collapse
Affiliation(s)
- Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA.
| | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco 185 Berry St. Suite 350, San Francisco, CA 94107, USA
| |
Collapse
|
6
|
Agrelo M, Rivadeneira PR, Cossi PF, Cacciatore LC, Kristoff G. Azinphos-methyl causes in Planorbarius corneus toxic effects on reproduction, offspring survival and B-esterases depending on the exposure time. Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:114-121. [PMID: 30528701 DOI: 10.1016/j.cbpc.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 12/30/2022]
Abstract
This work aimed to study in the freshwater gastropod Planorbarius corneus the effects of acute (2 days) and subchronic (14 days) exposures to an environmental concentration of the organophosphate azinphos-methyl on different reproductive parameters, offspring survival and B-esterase activities in gonads and in the whole organism soft tissue. The acute exposure inhibited only carboxylesterase activity in both tissues while the subchronic exposure also inhibited cholinesterase activity, decreased the number of hatched-eggs and increased offspring lethality (92%). On the other hand, B-esterases in gonads were more effective biomarkers than B-esterases in the whole organism due their inhibition appeared earlier in time (cholinesterase activity) and their activity remained inhibited for a longer time (carboxylesterase activity) when recovery studies were performed. We concluded that B-esterases and reproductive parameters can be used as effect biomarkers of aquatic contamination with azinphos-methyl. Our studies showed that a 14 days exposure to an environmental concentration of azinphos-methyl produced severe signs of toxicity in adult organisms, egg masses and juveniles that could cause negative effects at the population level in contaminated environments.
Collapse
Affiliation(s)
- Macarena Agrelo
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina; Laboratório de Mamíferos Aquáticos, Universidade Federal de Santa Catarina, SC, Brazil; Programa de Pós-graduação em Ecologia, Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, SC, Brazil
| | - Pamela R Rivadeneira
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina; Laboratorio de Ecosistemas Costeros, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (CONICET), Buenos Aires, Argentina
| | - Paula F Cossi
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina; Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Luis C Cacciatore
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina; Universidad de Morón, Buenos Aires, Argentina
| | - Gisela Kristoff
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428 Buenos Aires, Argentina; Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Characterization of butyrylcholinesterase from porcine milk. Arch Biochem Biophys 2018; 652:38-49. [PMID: 29908755 DOI: 10.1016/j.abb.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022]
Abstract
Human butyrylcholinesterase (HuBChE) is under development for use as a pretreatment antidote against nerve agent toxicity. Animals are used to evaluate the efficacy of HuBChE for protection against organophosphorus nerve agents. Pharmacokinetic studies of HuBChE in minipigs showed a mean residence time of 267 h, similar to the half-life of HuBChE in humans, suggesting a high degree of similarity between BChE from 2 sources. Our aim was to compare the biochemical properties of PoBChE purified from porcine milk to HuBChE purified from human plasma. PoBChE hydrolyzed acetylthiocholine slightly faster than butyrylthiocholine, but was sensitive to BChE-specific inhibitors. PoBChE was 50-fold less sensitive to inhibition by DFP than HuBChE and 5-fold slower to reactivate in the presence of 2-PAM. The amino acid sequence of PoBChE determined by liquid chromatography tandem mass spectrometry was 91% identical to HuBChE. Monoclonal antibodies 11D8, mAb2, and 3E8 (HAH 002) recognized both PoBChE and HuBChE. Assembly of 4 identical subunits into tetramers occurred by noncovalent interaction with polyproline-rich peptides in PoBChE as well as in HuBChE, though the set of polyproline-rich peptides in milk-derived PoBChE was different from the set in plasma-derived HuBChE tetramers. It was concluded that the esterase isolated from porcine milk is PoBChE.
Collapse
|
8
|
Lushchekina SV, Schopfer LM, Grigorenko BL, Nemukhin AV, Varfolomeev SD, Lockridge O, Masson P. Optimization of Cholinesterase-Based Catalytic Bioscavengers Against Organophosphorus Agents. Front Pharmacol 2018; 9:211. [PMID: 29593539 PMCID: PMC5859046 DOI: 10.3389/fphar.2018.00211] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
Organophosphorus agents (OPs) are irreversible inhibitors of acetylcholinesterase (AChE). OP poisoning causes major cholinergic syndrome. Current medical counter-measures mitigate the acute effects but have limited action against OP-induced brain damage. Bioscavengers are appealing alternative therapeutic approach because they neutralize OPs in bloodstream before they reach physiological targets. First generation bioscavengers are stoichiometric bioscavengers. However, stoichiometric neutralization requires administration of huge doses of enzyme. Second generation bioscavengers are catalytic bioscavengers capable of detoxifying OPs with a turnover. High bimolecular rate constants (kcat/Km > 106 M−1min−1) are required, so that low enzyme doses can be administered. Cholinesterases (ChE) are attractive candidates because OPs are hemi-substrates. Moderate OP hydrolase (OPase) activity has been observed for certain natural ChEs and for G117H-based human BChE mutants made by site-directed mutagenesis. However, before mutated ChEs can become operational catalytic bioscavengers their dephosphylation rate constant must be increased by several orders of magnitude. New strategies for converting ChEs into fast OPase are based either on combinational approaches or on computer redesign of enzyme. The keystone for rational conversion of ChEs into OPases is to understand the reaction mechanisms with OPs. In the present work we propose that efficient OP hydrolysis can be achieved by re-designing the configuration of enzyme active center residues and by creating specific routes for attack of water molecules and proton transfer. Four directions for nucleophilic attack of water on phosphorus atom were defined. Changes must lead to a novel enzyme, wherein OP hydrolysis wins over competing aging reactions. Kinetic, crystallographic, and computational data have been accumulated that describe mechanisms of reactions involving ChEs. From these studies, it appears that introducing new groups that create a stable H-bonded network susceptible to activate and orient water molecule, stabilize transition states (TS), and intermediates may determine whether dephosphylation is favored over aging. Mutations on key residues (L286, F329, F398) were considered. QM/MM calculations suggest that mutation L286H combined to other mutations favors water attack from apical position. However, the aging reaction is competing. Axial direction of water attack is not favorable to aging. QM/MM calculation shows that F329H+F398H-based multiple mutants display favorable energy barrier for fast reactivation without aging.
Collapse
Affiliation(s)
- Sofya V Lushchekina
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia
| | - Lawrence M Schopfer
- Department of Biochemistry and Molecular Biology, Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bella L Grigorenko
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Alexander V Nemukhin
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Sergei D Varfolomeev
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Oksana Lockridge
- Department of Biochemistry and Molecular Biology, Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| |
Collapse
|
9
|
Lydon H, Hall C, Matar H, Dalton C, Chipman JK, Graham JS, Chilcott RP. The percutaneous toxicokinetics of VX in a damaged skin porcine model and the evaluation of WoundStat™ as a topical decontaminant. J Appl Toxicol 2017; 38:318-328. [PMID: 29023806 DOI: 10.1002/jat.3542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 11/06/2022]
Abstract
This study used a damaged skin, porcine model to evaluate the in vivo efficacy of WoundStat™ for the decontamination of superficial, nerve agent-contaminated wounds. Anaesthetized animals were randomly assigned to either control (n = 7), no decontamination (n = 12) or WoundStat™ (n = 12) treatment groups. Pigs were exposed to a 5× LD50 dose of neat, radiolabelled S-[2-(diisopropylamino)ethyl]-O-ethyl methyl-phosphonothioate (VX; or equivalent volume of sterile saline for the control group) via an area of superficially damaged skin on the ear. WoundStat™ was applied at 30 seconds post-exposure to assigned animals. The VX contaminant (or saline) and decontaminant remained in place for the duration of the study (up to 6 hours). Physiological parameters and signs of intoxication were recorded during the exposure period. Skin and organ samples were taken post mortem for 14 C-VX distribution analyses. Blood samples were taken periodically for toxicokinetic and whole-blood acetylcholinesterase (AChE) activity analyses. VX exposure was accompanied by a rapid decrease in AChE activity in all animals, regardless of decontamination. However, decontamination significantly improved survival rate and time and reduced the severity of signs of intoxication. In addition, the distribution of 14 C-VX in key internal organs and post mortem blood samples was significantly lower in the WoundStat™ treatment group. This study demonstrates that WoundStat™ may be a suitable medical countermeasure for increasing both survival rate and time following VX exposure. The results also suggest that AChE activity is not a useful prognostic indicator.
Collapse
Affiliation(s)
- Helen Lydon
- CBRN & Chemical Toxicological Research Group, Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency (now Public Health England), Chilton, UK.,School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Charlotte Hall
- CBRN & Chemical Toxicological Research Group, Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency (now Public Health England), Chilton, UK.,School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Hazem Matar
- CBRN & Chemical Toxicological Research Group, Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency (now Public Health England), Chilton, UK.,Research Centre for Topical Drug Delivery and Toxicology, University of Hertfordshire, Hatfield, UK
| | - Christopher Dalton
- School of Biosciences, University of Birmingham, Edgbaston, UK.,Defence Science & Technology Laboratory, Porton, UK
| | - J Kevin Chipman
- School of Biosciences, University of Birmingham, Edgbaston, UK
| | - John S Graham
- Medical Toxicology Branch Analytical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, 21010, USA
| | - Robert P Chilcott
- CBRN & Chemical Toxicological Research Group, Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency (now Public Health England), Chilton, UK.,Research Centre for Topical Drug Delivery and Toxicology, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
10
|
Chao CK, Ahmed SK, Gerdes JM, Thompson CM. Novel Organophosphate Ligand O-(2-Fluoroethyl)-O-(p-Nitrophenyl)Methylphosphonate: Synthesis, Hydrolytic Stability and Analysis of the Inhibition and Reactivation of Cholinesterases. Chem Res Toxicol 2016; 29:1810-1817. [PMID: 27551891 PMCID: PMC5575788 DOI: 10.1021/acs.chemrestox.6b00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The organophosphate O-(2-fluoroethyl)-O-(p-nitrophenyl) methyphosphonate 1 is the first-in-class, fluorine-18 radiolabeled organophosphate inhibitor ([18F]1) of acetylcholinesterase (AChE). In rats, [18F]1 localizes in AChE rich regions of the brain and other tissues where it likely exists as the (CH3)(18FCH2CH2O)P(O)-AChE adduct (ChE-1). Characterization of this adduct would define the inhibition mechanism and subsequent postinhibitory pathways and reactivation rates. To validate this adduct, the stability (hydrolysis) of 1 and ChE-1 reactivation rates were determined. Base hydrolysis of 1 yields p-nitrophenol and (CH3) (FCH2CH2O)P(O)OH with pseudo first order rate constants (kobsd) at pH 7.4 (PBS) of 3.25 × 10-4 min-1 (t1/2 = 35.5 h) at 25 °C and 8.70 × 10-4 min-1 (t1/2 = 13.3 h) at 37 °C. Compound 1 was a potent inhibitor of human acetylcholinesterase (HuAChE; ki = 7.5 × 105 M-1 min-1), electric eel acetylcholinesterase (EEAChE) (ki = 3.0 × 106 M-1 min-1), and human serum butyrylcholinesterase (HuBChE; 1.95 × 105 M-1 min-1). Spontaneous and oxime-mediated reactivation rates for the (CH3) (FCH2CH2O)P(O)-serine ChE adducts using 2-PAM (10 μM) were (a) HuAChE 8.8 × 10-5 min-1 (t1/2 = 131.2 h) and 2.41 × 10-2 min-1 (t1/2 = 0.48 h), (b) EEAChE 9.32 × 10-3 min-1 (t1/2 = 1.24 h) and 3.33 × 10-2 min-1 (t1/2 = 0.35 h), and (c) HuBChE 1.16 × 10-4 min-1 (t1/2 = 99.6 h) and 4.19 × 10-2 min-1 (t1/2 = 0.27 h). All ChE-1 adducts undergo rapid and near complete restoration of enzyme activity following addition of 2-PAM (30 min), and no aging was observed for either reactivation process. The fast reactivation rates and absence of aging of ChE-1 adducts are explained on the basis of the electron-withdrawing fluorine group that favors the nucleophilic reactivation processes but disfavors cation-based dealkylation aging mechanisms. Therefore, the likely fate of radiolabeled compound 1 in vivo is the formation of (CH3)(FCH2CH2O)P(O)-serine adducts and monoacid (CH3)(FCH2CH2O)P(O)OH from hydrolysis and reactivation.
Collapse
Affiliation(s)
- Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
| | - S. Kaleem Ahmed
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
- Center for Neuromolecular Research, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - John M. Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
- Center for Neuromolecular Research, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - Charles M. Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
11
|
Otero S, Kristoff G. In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:186-195. [PMID: 27723570 DOI: 10.1016/j.aquatox.2016.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/12/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
Organophosphate insecticides (OPs) continue to be an important class of agrochemicals used in modern agriculture worldwide. Even though these pesticides persist in the environment for a relatively short time, they show a high acute toxicity that may represent a serious hazard for wildlife. Sub-lethal effects on non-target species are a focus in pest management programs and should be used as biomarkers. Cholinesterases (ChEs) are the most used biomarker of OP exposure in vertebrate and invertebrate species. However, the combined monitoring of ChE and carboxylesterase (CE) activities may provide a more useful indication of exposure and effect of the organisms. The objective of the present work was to find the most sensitive combination of enzyme, substrate, tissue and capacity to recovery of B-esterases in the freshwater gastropod Planorbarius corneus exposed to the OP azinphos-methyl. For this purpose, ChE and CE activities in different tissues of P. corneus (head-foot, pulmonary region, digestive gland, gonads and whole organism soft tissue) were studied. Measurements of ChE activity were performed using three substrates: acetylthiocholine, propionylthiocholine and butyrylthiocholine and CE activity using four different substrates: p-nitrophenyl acetate, p-nitrophenyl butyrate, 1-naphthyl acetate, and 2-naphthyl acetate in control and exposed organisms. Finally, the recovery rates of ChE and CE activities following 48h exposure to azinphos-methyl were analyzed. Our results show a preference for acetylthiocholine as substrate, a high inhibition with eserine (a selective ChE inhibitor) and inhibition with excess of substrate in all the analyzed tissues. The highest ChE and CE activity was found in the pulmonary region and in the digestive gland, respectively. The highest CE Vmax was obtained with 1 and 2-naphthyl acetate in all the tissues. CEs were more sensitive than ChE to azinphos-methyl exposure. The highest sensitivity was found using p-nitrophenyl acetate and butyrate as substrates. On the other hand, CEs of the digestive gland and the pulmonary region were more sensitive than CEs of the whole organism soft tissue. Regarding the recovery of enzyme activities after 48h exposure, ChE and CEs with p-nitrophenyl butyrate reached control values after 14days in the digestive gland and after 21days in the pulmonary region. Our results show marked differences in P. corneus basal ChE and CE activities depending on substrates and the tissue. Also, both tissue-dependent and substrate-dependent variations in sensitivity to azinphos-methyl exposure and recovery were obtained. CEs measured with p-nitrophenyl butyrate in the pulmonary region were the best combination to be used as biomarker of exposure to azinphos-methyl due to their sensitivity and low recovery capacity. Environmental concentrations of azinphos-methyl inhibited CE activity so they could be used as effective biomarkers of aquatic contamination.
Collapse
Affiliation(s)
- Sofía Otero
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428, Buenos Aires, Argentina
| | - Gisela Kristoff
- Laboratorio de Ecotoxicología Acuática: Invertebrados Nativos (EAIN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, 1428, Buenos Aires, Argentina; Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Masson P, Lushchekina SV. Emergence of catalytic bioscavengers against organophosphorus agents. Chem Biol Interact 2016; 259:319-326. [DOI: 10.1016/j.cbi.2016.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/16/2015] [Accepted: 02/10/2016] [Indexed: 02/05/2023]
|
13
|
Langston JL, Myers TM. VX toxicity in the Göttingen minipig. Toxicol Lett 2016; 264:12-19. [PMID: 27773723 DOI: 10.1016/j.toxlet.2016.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 11/18/2022]
Abstract
The present experiments determined the intramuscular LD50 of VX in male Göttingen minipigs at two stages of development. In pubertal animals (115 days old), the LD50 of VX was indeterminate, but approximated 33.3μg/kg. However, in sexually mature animals (152 days old), the LD50 was estimated to be only 17.4μg/kg. Signs of nerve agent toxicity in the Göttingen minipig were similar to those described for other species, with some notable exceptions (such as urticaria and ejaculation). Latencies to the onset of sustained convulsions were inversely related to the administered dose of VX in both ages of minipigs. Additionally, actigraphy was used to quantify the presence of tremor and convulsions and, in some cases, was useful for precisely estimating time of death. The main finding indicates that in minipigs, as in other species, even relatively small differences in age can substantially alter the toxicity of nerve agents. Additionally, actigraphy can serve as a non-invasive method of characterizing the tremors and convulsions that often accompany nerve agent intoxication.
Collapse
Affiliation(s)
- Jeffrey L Langston
- Analytical Toxicology Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Todd M Myers
- Analytical Toxicology Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA.
| |
Collapse
|
14
|
Beneficial effects of a ketamine/atropine combination in soman-poisoned rats under a neutral thermal environment. Neurotoxicology 2015. [DOI: 10.1016/j.neuro.2015.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Reiter G, Müller S, Hill I, Weatherby K, Thiermann H, Worek F, Mikler J. In vitro and in vivo toxicological studies of V nerve agents: molecular and stereoselective aspects. Toxicol Lett 2014; 232:438-48. [PMID: 25448275 DOI: 10.1016/j.toxlet.2014.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/09/2014] [Accepted: 11/11/2014] [Indexed: 11/28/2022]
Abstract
In vitro inhibition data of cholinesterases (ChEs) and reactivation with HI 6 are presented for separated VX and VR enantiomers with high purity (enantiomer excess >99.999%). Inhibition rate constants for (-)-VR were fourfold higher than for (-)-VX. Marked higher stereoselectivity of ChEs inhibition was observed for VR compared with VX enantiomers. Low/no reactivation was determined for respective (+)-enantiomers. Results were related to orientation of (-)- and (+)-enantiomers in ChEs active sites. In vivo in swine, absorption rate constants were practically identical for VX and VR enantiomers after percutaneous application of 3xLD₅₀ underlining relevance of amine group and postulated equilibria shifts between charged, uncharged, open and cyclic form (skin depot). In vivo toxicokinetics of VX and VR enantiomers differed markedly after 4h. Elimination of VX was much slower compared with VR. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition in vivo differed for VX and VR. In vivo spontaneous reactivation was not observed for VX-inhibited AChE while VR-inhibited AChE was much faster spontaneously reactivated than expected and AChE inhibition by VR was slower than expected. Progredient BChE inhibition was detected after VX application while VR inhibited BChE weakly. Possible explanation may be impact of the agents on hemodynamics and different metabolisms. Thus, due to increase of the V agents' blood concentration after atropine administration (depot release) the present standard therapy should be thoroughly reconsidered.
Collapse
Affiliation(s)
- Georg Reiter
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | - Susanne Müller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Ira Hill
- Defence Research & Development Canada - Suffield, P.O. Box 4000 Stn MaIn, Medicine Hat, Alberta T1A 8K6 Canada
| | - Kendal Weatherby
- Defence Research & Development Canada - Suffield, P.O. Box 4000 Stn MaIn, Medicine Hat, Alberta T1A 8K6 Canada
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - John Mikler
- Defence Research & Development Canada - Suffield, P.O. Box 4000 Stn MaIn, Medicine Hat, Alberta T1A 8K6 Canada
| |
Collapse
|
16
|
Pohanka M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int J Mol Sci 2014; 15:9809-25. [PMID: 24893223 PMCID: PMC4100123 DOI: 10.3390/ijms15069809] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 12/22/2022] Open
Abstract
Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer’s disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a “cholinergic anti-inflammatory pathway” which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic.
| |
Collapse
|
17
|
Peng X, Perkins MW, Simons J, Witriol AM, Rodriguez AM, Benjamin BM, Devorak J, Sciuto AM. Acute pulmonary toxicity following inhalation exposure to aerosolized VX in anesthetized rats. Inhal Toxicol 2014; 26:371-9. [DOI: 10.3109/08958378.2014.899410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Protection against paraoxon toxicity by an intravenous pretreatment with polyethylene-glycol-conjugated recombinant butyrylcholinesterase in macaques. Chem Biol Interact 2013; 210:20-5. [PMID: 24384224 DOI: 10.1016/j.cbi.2013.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 11/27/2013] [Accepted: 12/20/2013] [Indexed: 11/23/2022]
Abstract
Recombinant (r) butyrylcholinesterase (rBChE) produced in CHO cells is being developed as a prophylactic countermeasure against neurotoxicity resulting from exposure to organophosphates (OPs) in the form of pesticides and nerve agents. To evaluate the efficacy of a parenteral pretreatment, a PEGylated macaque (Ma) form of rBChE was administered into homologous animals to ensure good plasma retention without immunogenicity. Thus, macaques were administered PEG-rMaBChE at either 5 or 7mg/kg intravenously (i.v.) and exposed subcutaneously to 12μg/kg of the potent pesticide paraoxon (Px) at 1h or at 1 and 72h, respectively. Protection was measured by the ability of rBChE prophylaxis to prevent the inhibition of circulating acetylcholinesterase on red blood cells (RBC-AChE). In rBChE-pretreated animals, no inhibition of RBC-AChE activity after the first Px exposure and only a 10-20% reduction after the second exposure were observed as compared to a 75% RBC-AChE inhibition usually obtained without pretreatment. In addition, these studies raised other interesting issues. The lipophilic nature of Px, appears to result in early and transient inhibition of RBC-AChE as a result of transfer of OP bound to RBC even in BChE-pretreated animals. The protection by a single injection of rBChE against two administrations of Px represents the first example of protection by an i.v. rBChE pretreatment against a pesticide such as Px and bodes well for a parenteral rHuBChE pretreatment as an OP countermeasure in humans.
Collapse
|
19
|
Hernández AF, Gil F, Lacasaña M, Rodríguez-Barranco M, Gómez-Martin A, Lozano D, Pla A. Modulation of the endogenous antioxidants paraoxonase-1 and urate by pesticide exposure and genetic variants of xenobiotic-metabolizing enzymes. Food Chem Toxicol 2013; 61:164-70. [DOI: 10.1016/j.fct.2013.05.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/06/2013] [Accepted: 05/26/2013] [Indexed: 10/26/2022]
|
20
|
Hernández AF, Gil F, Lacasaña M, Rodríguez-Barranco M, Tsatsakis AM, Requena M, Parrón T, Alarcón R. Pesticide exposure and genetic variation in xenobiotic-metabolizing enzymes interact to induce biochemical liver damage. Food Chem Toxicol 2013; 61:144-51. [PMID: 23688862 DOI: 10.1016/j.fct.2013.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 12/23/2022]
Abstract
Metabolic activation of pesticides in the liver may result in highly reactive intermediates capable of impairing various cellular functions. Nevertheless, the knowledge about the effect of pesticide exposure on liver function is still limited. This study assessed whether exposure to pesticides elicits early biochemical changes in biomarkers of liver function and looked for potential gene-environmental interactions between pesticide exposure and polymorphisms of pesticide-metabolizing genes. A longitudinal study was conducted in farm-workers from Andalusia (South Spain), during two periods of the same crop season with different degree of pesticide exposure. Blood samples were taken for the measurement of serum and erythrocyte cholinesterase activities as well as for determining clinical chemistry parameters as biomarkers of liver function. Serum lipid levels were also measured as they may help to monitor the progress of toxic liver damage. A reduction in serum cholinesterase was associated with decreased levels of all clinical chemistry parameters studied except HDL-cholesterol. Conversely, a decreased erythrocyte cholinesterase (indicating long-term pesticide exposure) was associated with increased levels of aspartate aminotransferase and alkaline phosphatase and increased levels of triglycerides, total cholesterol and LDL-cholesterol, but reduced levels of HDL-cholesterol. Changes in liver biomarkers were particularly associated with the PON155M/192R haplotype. The obtained results therefore support the hypothesis that pesticide exposure results in subtle biochemical liver toxicity and highlight the role of genetic polymorphisms in pesticide-metabolizing enzymes as biomarkers of susceptibility for developing adverse health effects.
Collapse
Affiliation(s)
- Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada, School of Medicine, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pohanka M, Drtinova L. Spectrophotometric methods based on 2,6-dichloroindophenol acetate and indoxylacetate for butyrylcholinesterase activity assay in plasma. Talanta 2013; 106:281-5. [DOI: 10.1016/j.talanta.2012.10.085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/22/2012] [Accepted: 10/29/2012] [Indexed: 11/26/2022]
|
22
|
Pulmonary delivery of an aerosolized recombinant human butyrylcholinesterase pretreatment protects against aerosolized paraoxon in macaques. Chem Biol Interact 2012. [PMID: 23178380 DOI: 10.1016/j.cbi.2012.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Butyrylcholinesterase (BChE) is the leading pretreatment candidate against exposure to organophosphates (OPs), which pose an ever increasing public and military health. Since respiratory failure is the primary cause of death following acute OP poisoning, an inhaled BChE therapeutic could prove highly efficacious in preventing acute toxicity as well as the associated delayed neuropathy. To address this, studies have been performed in mice and macaques using Chinese Hamster Ovary cells (CHO)-derived recombinant (r) BChE delivered by the pulmonary route, to examine whether the deposition of both macaque (Ma) and human (Hu) rBChE administered as aerosols (aer) favored the creation and retention of an efficient protective "pulmonary bioshield" that could scavenge incoming (inhaled) OPs in situ thereby preventing entry into the circulation and inhibition of plasma BChE and AChE on red blood cells (RBC-AChE) and in cholinergic synapses. In contrast to parenteral delivery of rBChE, which currently requires posttranslational modification for good plasma stability, an unmodified aer-rBChE pretreatment given 1-40 h prior to >1 LD50 of aer-paraoxon (Px) was able to prevent inhibition of circulating cholinesterase in a dose-dependent manner. These studies are the first to show protection by rBChE against a pesticide such as paraoxon when delivered directly into the lung and bode well for the use of a non-invasive and consumer friendly method of rHuBChE delivery as a human treatment to counteract OP toxicity.
Collapse
|
23
|
Misik J, Pavlik M, Novotny L, Pavlikova R, Chilcott RP, Cabal J, Kuca K. In vivodecontamination of the nerve agent VX using the domestic swine model. Clin Toxicol (Phila) 2012; 50:807-11. [DOI: 10.3109/15563650.2012.720986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Che MM, Song J, Oguntayo S, Doctor BP, Rezk P, Perkins MW, Sciuto AM, Nambiar MP. Treatment with endotracheal therapeutics after sarin microinstillation inhalation exposure increases blood cholinesterase levels in guinea pigs. Toxicol Mech Methods 2011; 22:250-9. [PMID: 22145985 DOI: 10.3109/15376516.2011.639817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in the blood and tissues of animals that are treated with a number of endotracheally aerosolized therapeutics for protection against inhalation toxicity to sarin. Therapeutics included, aerosolized atropine methyl bromide (AMB), scopolamine or combination of AMB with salbutamol, sphingosine 1-phosphate, keratinocyte growth factor, adenosine A1 receptor antisense oligonucleotide (EPI2010), 2,3-diacetyloxybenzoic acid (2,3 DABA), oxycyte, and survanta. Guinea pigs exposed to 677.4 mg/m(3) or 846.5 mg/m(3) (1.2 LCt(50)) sarin for 4 min using a microinstillation inhalation exposure technique and treated 1 min later with the aerosolized therapeutics. Treatment with all therapeutics significantly increased the survival rate with no convulsions throughout the 24 h study period. Blood AChE activity determined using acetylthiocholine as substrate showed 20% activity remaining in sarin-exposed animals compare to controls. In aerosolized AMB and scopolamine-treated animals the remaining AChE activity was significantly higher (45-60%) compared to sarin-exposed animals (p < 0.05). Similarly, treatment with all the combination therapeutics resulted in significant increase in blood AChE activity in comparison to sarin-exposed animals although the increases varied between treatments (p < 0.05). BChE activity was increased after treatment with aerosolized therapeutics but was lesser in magnitude compared to AChE activity changes. Various tissues showed elevated AChE activity after therapeutic treatment of sarin-exposed animals. Increased AChE and BChE activities in animals treated with nasal therapeutics suggest that enhanced breathing and reduced respiratory toxicity/lung injury possibly contribute to rapid normalization of chemical warfare nerve agent inhibited cholinesterases.
Collapse
Affiliation(s)
- Magnus M Che
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mumford H, Troyer JK. Post-exposure therapy with recombinant human BuChE following percutaneous VX challenge in guinea-pigs. Toxicol Lett 2011; 206:29-34. [PMID: 21620937 DOI: 10.1016/j.toxlet.2011.05.1016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 11/30/2022]
Abstract
Poisoning by nerve agents via the percutaneous (p.c.) route is an issue because the slow absorption of agent could result in poisoning which outlasts the protection provided by conventional pharmacological therapy. The bioscavenger approach is based on the concept of binding nerve agent in the bloodstream, thus preventing nerve agent from reaching the target tissues and inhibiting acetylcholinesterase activity. One bioscavenger that has been extensively studied is human butyrylcholinesterase (huBuChE). Protexia® is a pegylated form of recombinant huBuChE. We used a guinea-pig model of p.c. nerve agent poisoning, using an implanted telemetry system to collect physiological data. Guinea-pigs were poisoned with the nerve agent VX (0.74 mg/kg) (∼2.5 × LD₅₀). Two hours following VX exposure, Protexia (72 mg/kg) or saline control was administered intramuscularly. All guinea-pigs treated with Protexia (n=8) survived, compared to no survivors in a saline-treated control group (n=8). Survival following VX and Protexia treatment was associated with minimal incapacitation and observable signs of poisoning, and the mitigation or prevention of the detrimental physiological changes (e.g. seizure, bradycardia and hypothermia) observed in control animals. The opportunity for post-exposure treatment may have utility in both civilian and military scenarios, and this is a promising indication for the use of a bioscavenger.
Collapse
Affiliation(s)
- Helen Mumford
- Physiology, Pharmacology and Behaviour Team, Biomedical Sciences Department, Building 4, Dstl Porton Down, Salisbury SP40JQ, UK.
| | | |
Collapse
|
26
|
Mumford H, E. Price M, Lenz DE, Cerasoli DM. Post-exposure therapy with human butyrylcholinesterase following percutaneous VX challenge in guinea pigs. Clin Toxicol (Phila) 2011; 49:287-97. [DOI: 10.3109/15563650.2011.568944] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Kristoff G, Guerrero NRV, Cochón AC. Inhibition of cholinesterases and carboxylesterases of two invertebrate species, Biomphalaria glabrata and Lumbriculus variegatus, by the carbamate pesticide carbaryl. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 96:115-123. [PMID: 19879661 DOI: 10.1016/j.aquatox.2009.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 08/18/2009] [Accepted: 10/05/2009] [Indexed: 05/28/2023]
Abstract
In this study, the effects of sublethal concentrations of the carbamate carbaryl on the cholinesterase (ChE) and carboxylesterase (CES) activities present in the oligochaete Lumbriculus variegatus and in the pigmented Biomphalaria glabrata gastropod were investigated. The results showed that ChE activity from both species was inhibited by in vivo and in vitro exposure to carbaryl, with EC(50) and IC(50) values approximately 20 times lower for the oligochaete than for the gastropod. On the other hand, the recovery process in uncontaminated media was more efficient in oligochaetes than in snails. Thus, in only 2h the oligochaetes showed no inhibition with respect to control values whereas the snails did not reach control values even after 48h of being in pesticide-free water. CES activity was investigated in whole body soft tissue homogenates using three different substrates: p-nitrophenyl butyrate, 1-naphthyl acetate (NA) and 2-NA. In addition, the presence of multiple CES isozymes in L. variegatus and B. glabrata extracts, with activity towards 1- and 2-NA, was confirmed by native polyacrylamide electrophoresis. In both species, the activities measured using the naphthyl substrates were higher than the activity towards p-nitrophenyl butyrate. In addition, B. glabrata showed a higher CES activity than L. variegatus independently of the substrate used. In L. variegatus, in vivo CES activity towards the different substrates was less sensitive to carbaryl inhibition than ChE activity. In contrast, in B. glabrata, CES activity towards p-nitrophenyl butyrate was inhibited at lower insecticide concentrations than ChE. The results of this study contribute to the knowledge of the sensitivity of non-target freshwater invertebrate Type B-esterases towards pesticides.
Collapse
Affiliation(s)
- Gisela Kristoff
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II. 4to piso, Nuñez, 1428, Buenos Aires, Argentina
| | | | | |
Collapse
|
28
|
Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Arch Biochem Biophys 2009; 494:107-20. [PMID: 20004171 DOI: 10.1016/j.abb.2009.12.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/24/2009] [Accepted: 12/01/2009] [Indexed: 12/13/2022]
Abstract
Butyrylcholinesterase is a promiscuous enzyme that displays complex kinetic behavior. It is toxicologically important because it detoxifies organophosphorus poisons (OP) by making a covalent bond with the OP. The OP and the butyrylcholinesterase are both inactivated in the process. Inactivation of butyrylcholinesterase has no adverse effects. However, inactivation of acetylcholinesterase in nerve synapses can be lethal. OP-inhibited butyrylcholinesterase and acetylcholinesterase can be reactivated with oximes provided the OP has not aged. Strategies for preventing the toxicity of OP include (a) treatment with an OP scavenger, (b) reaction of non-aged enzyme with oximes, (c) reactivation of aged enzyme, (d) slowing down aging with peripheral site ligands, and (e) design of mutants that rapidly hydrolyze OP. Option (a) has progressed through phase I clinical trials with human butyrylcholinesterase. Option (b) is in routine clinical use. The others are at the basic research level. Butyrylcholinesterase displays complex kinetic behavior including activation by positively charged esters, ability to hydrolyze amides, and a lag time (hysteresis) preceding hydrolysis of benzoylcholine and N-methylindoxyl acetate. Mass spectrometry has identified new OP binding motifs on tyrosine and lysine in proteins that have no active site serine. It is proposed, but not yet proven, that low dose exposure involves OP modification of proteins that have no active site serine.
Collapse
|