1
|
Sudakov NP, Chang HM, Renn TY, Klimenkov IV. Degenerative and Regenerative Actin Cytoskeleton Rearrangements, Cell Death, and Paradoxical Proliferation in the Gills of Pearl Gourami ( Trichogaster leerii) Exposed to Suspended Soot Microparticles. Int J Mol Sci 2023; 24:15146. [PMID: 37894826 PMCID: PMC10607021 DOI: 10.3390/ijms242015146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The effect is studied of water-suspended soot microparticles on the actin cytoskeleton, apoptosis, and proliferation in the gill epithelium of pearl gourami. To this end, the fish are kept in aquariums with 0.005 g/L of soot for 5 and 14 days. Laser confocal microscopy is used to find that at the analyzed times of exposure to the pollutant zones appear in the gill epithelium, where the actin framework of adhesion belts dissociates and F-actin either forms clumps or concentrates perinuclearly. It is shown that the exposure to soot microparticles enhances apoptosis. On day 5, suppression of the proliferation of cells occurs, but the proliferation increases to the control values on day 14. Such a paradoxical increase in proliferation may be a compensatory process, maintaining the necessary level of gill function under the exposure to toxic soot. This process may occur until the gills' recovery reserve is exhausted. In general, soot microparticles cause profound changes in the actin cytoskeleton in gill cells, greatly enhance cell death, and influence cell proliferation as described. Together, these processes may cause gill dysfunction and affect the viability of fish.
Collapse
Affiliation(s)
- Nikolay P. Sudakov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Ting-Yi Renn
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Igor V. Klimenkov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| |
Collapse
|
2
|
Reprogramming of glycolysis by chemical carcinogens during tumor development. Semin Cancer Biol 2022; 87:127-136. [PMID: 36265806 DOI: 10.1016/j.semcancer.2022.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Indiscriminate usage and mismanagement of chemicals in the agricultural and industrial sectors have contaminated different environmental compartments. Exposure to these persistent and hazardous pollutants like heavy metals, endocrine disruptors, aromatic hydrocarbons, and pesticides can result in various health adversities, including cancer. Chemical carcinogens follow a similar pattern of carcinogenesis, like oxidative stress, chromosomal aberration, DNA double-strand break, mismatch repair, and misregulation of oncogenic and/or tumor suppressors. Out of several cancer-associated endpoints, cellular metabolic homeostasis is the commonest to be deregulated upon chemical exposure. Chemical carcinogens hamper glycolytic reprogramming to fuel the malignant transformation of the cells and/or promote cancer progression. Several regulators like Akt, ERK, Ras, c-Myc, HIF-1α, and p53 regulate glycolysis in chemical-induced carcinogenesis. However, the deregulation of the anabolic biochemistry of glucose during chemical-induced carcinogenesis remains to be uncovered. This review comprehensively covers the environmental chemical-induced glycolytic shift during carcinogenesis and its mechanism. The focus is also to fill the major gaps associated with understanding the fairy tale between environmental carcinogens and metabolic reprogramming. Although evidence from studies regarding glycolytic reprogramming in chemical carcinogenesis provides valuable insights into cancer therapy, exposure to a mixture of toxicants and their mechanism of inducing carcinogenesis still needs to be studied.
Collapse
|
3
|
Rahman ML, Bassig BA, Dai Y, Hu W, Wong JYY, Blechter B, Hosgood HD, Ren D, Duan H, Niu Y, Xu J, Fu W, Meliefste K, Zhou B, Yang J, Ye M, Jia X, Meng T, Bin P, Silverman DT, Vermeulen R, Rothman N, Zheng Y, Lan Q. Proteomic analysis of serum in workers exposed to diesel engine exhaust. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:18-28. [PMID: 34894159 PMCID: PMC11812432 DOI: 10.1002/em.22469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Diesel engine exhaust (DEE) is classified as a Group 1 human carcinogen. Using a targeted proteomics approach, we aimed to identify proteins associated with DEE and characterize these markers to understand the mechanisms of DEE-induced carcinogenicity. In this cross-sectional molecular epidemiology study, we measured elemental carbon (EC) using a personal air monitor and quantified 1317 targeted proteins in the serum using the SOMAScan assay (SOMALogic) among 19 diesel exposed factory workers and 19 unexposed controls. We used linear regressions to identify proteins associated with DEE and examined their exposure-response relationship across levels of EC using linear trend tests. We further examined pathway enrichment of DEE-related proteins using MetaCore. Occupational exposure to DEE was associated with altered levels of 22 serum proteins (permutation p < .01). Of these, 13 proteins (CXCL11, HAPLN1, FLT4, CD40LG, PES1, IGHE.IGK..IGL, TNFSF9, PGD, NAGK, CCL25, CCL4L1, PDXK, and PLA2G1B) showed an exposure-response relationship with EC (p trend < .01), with serum levels of all but PLA2G1B declining with increasing air levels of EC. For instance, C-X-C Motif Chemokine Ligand 11 (CXCL11) showed the most significant association with DEE (β = -0.25; permutation p = .00004), where mean serum levels were 4121.1, 2356.7, and 2298.8 relative fluorescent units among the unexposed, lower exposed (median, range : 56.9, 40.2-62.1 μg/m3 EC), and higher exposed (median, range of EC: 72.9, 66.9-107.7 μg/m3 EC) groups, respectively (p trend = .0005). Pathway analysis suggested that these proteins are enriched in pathways related to inflammation and immune regulation. Our study suggests that DEE exposure is associated with altered serum proteins, which play a role in inflammation and immune regulation.
Collapse
Affiliation(s)
- Mohammad L. Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Bryan A. Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yufei Dai
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jason YY. Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - H. Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Danzhi Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, People’s Republic of China
| | - Huawei Duan
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yong Niu
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jun Xu
- School of Public Health, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wei Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, People’s Republic of China
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People’s Republic of China
| | - Jufang Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, People’s Republic of China
| | - Meng Ye
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiaowei Jia
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Tao Meng
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ping Bin
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Debra T. Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, People’s Republic of China
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
4
|
Alam MN, Yu JQ, Beale P, Huq F. Dose and Sequence Dependent Synergism from the Combination of Oxaliplatin with Emetine and Patulin Against Colorectal Cancer. Anticancer Agents Med Chem 2021; 20:264-273. [PMID: 31736447 DOI: 10.2174/1871520619666191021112042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Colorectal cancer is the third most commonly diagnosed cancer in the world, causing many deaths every year. Combined chemotherapy has opened a new horizon in treating colorectal cancer. The objective of the present study is to investigate the activity of oxaliplatin in combination with emetine and patulin against colorectal cancer models. METHODS IC50 values of oxaliplatin, emetine and patulin were determined against human colorectal cancer cell lines (HT-29 and Caco-2) using MTT reduction assay. Synergistic, antagonistic and additive effects from the selected binary combinations were determined as a factor of sequence of administration and added concentrations. Proteomics was carried out to identify the proteins which were accountable for combined drug action applying to the selected drug combination. RESULTS Oxaliplatin in combination with patulin produced synergism against human colorectal cancer models depending on dose and sequence of drug administration. Bolus administration of oxaliplatin with patulin proved to be the best in terms of synergistic outcome. Altered expressions of nine proteins (ACTG, PROF1, PPIA, PDIA3, COF1, GSTP1, ALDOA, TBA1C and TBB5) were considered for combined drug actions of oxaliplatin with patulin. CONCLUSION Bolus administration of oxaliplatin with patulin has the potential to be used in the treatment of colorectal cancer, and would warrant further evaluation using suitable animal model.
Collapse
Affiliation(s)
- Md Nur Alam
- Discipline of Pathology, Sydney Medical School, A26-RC Mills Room 105, University of Sydney, Sydney, NSW, Australia
| | - Jun Q Yu
- Discipline of Pathology, Sydney Medical School, A26-RC Mills Room 105, University of Sydney, Sydney, NSW, Australia
| | - Philip Beale
- Sydney Cancer Centre, Concord Hospital, Sydney, NSW 2139, Australia
| | - Fazlul Huq
- Discipline of Pathology, Sydney Medical School, A26-RC Mills Room 105, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Rigaud C, Eriksson A, Rokka A, Skaugen M, Lihavainen J, Keinänen M, Lehtivuori H, Vehniäinen ER. Retene, pyrene and phenanthrene cause distinct molecular-level changes in the cardiac tissue of rainbow trout (Oncorhynchus mykiss) larvae, part 2 - Proteomics and metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141161. [PMID: 32750582 DOI: 10.1016/j.scitotenv.2020.141161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are global contaminants of concern. Despite several decades of research, their mechanisms of toxicity are not very well understood. Early life stages of fish are particularly sensitive with the developing cardiac tissue being a main target of PAHs toxicity. The mechanisms of cardiotoxicity of the three widespread model polycyclic aromatic hydrocarbons (PAHs) retene, pyrene and phenanthrene were explored in rainbow trout (Oncorhynchus mykiss) early life stages. Newly hatched larvae were exposed to sublethal doses of each individual PAH causing no detectable morphometric alterations. Changes in the cardiac proteome and metabolome were assessed after 7 or 14 days of exposure to each PAH. Phase I and II enzymes regulated by the aryl hydrocarbon receptor were significantly induced by all PAHs, with retene being the most potent compound. Retene significantly altered the level of several proteins involved in key cardiac functions such as muscle contraction, cellular tight junctions or calcium homeostasis. Those findings were quite consistent with previous reports regarding the effects of retene on the cardiac transcriptome. Significant changes in proteins linked to iron and heme metabolism were observed following exposure to pyrene. While phenanthrene also altered the levels of several proteins in the cardiac tissue, no clear mechanisms or pathways could be highlighted. Due to high variability between samples, very few significant changes were detected in the cardiac metabolome overall. Slight but significant changes were still observed for pyrene and phenanthrene, suggesting possible effects on several energetic or signaling pathways. This study shows that early exposure to different PAHs can alter the expression of key proteins involved in the cardiac function, which could potentially affect negatively the fitness of the larvae and later of the juvenile fish.
Collapse
Affiliation(s)
- Cyril Rigaud
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Andreas Eriksson
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Morten Skaugen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Jenna Lihavainen
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Heli Lehtivuori
- Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
6
|
Cayir A, Byun HM, Barrow TM. Environmental epitranscriptomics. ENVIRONMENTAL RESEARCH 2020; 189:109885. [PMID: 32979994 DOI: 10.1016/j.envres.2020.109885] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 05/15/2023]
Abstract
Chemical modifications of RNA molecules have gained increasing attention since evidence emerged for their substantive roles in a range of biological processes, such as the stability and translation of mRNA transcripts. More than 150 modifications have been identified in different organisms to date, collectively known as the 'epitranscriptome', with 6-methyladenosine (m6A), 5-methylcytidine (m5C), pseudouridine and N1-methyladenosine (m1A) the most extensively investigated. Although we are just beginning to elucidate the roles of these modifications in cellular functions, there is already evidence for their dysregulation in diseases such as cancer and neurodevelopmental disorders. There is currently more limited knowledge regarding how environmental exposures affect the epitranscriptome and how this may mediate disease risk, but evidence is beginning to emerge. Here, we review the current evidence for the impact of environmental exposures such as benzo[a]pyrene, bisphenol A, pesticides, metals and nanoparticles upon RNA modifications and the expression of their 'writers' (methyl transferases), 'erasers' (demethylases) and 'readers'. We discuss future directions of the field and identify areas of particular promise and consider the technical challenges that are faced.
Collapse
Affiliation(s)
- Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey.
| | - Hyang-Min Byun
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Timothy M Barrow
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
| |
Collapse
|
7
|
Martins C, Dreij K, Costa PM. The State-of-the Art of Environmental Toxicogenomics: Challenges and Perspectives of "Omics" Approaches Directed to Toxicant Mixtures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234718. [PMID: 31779274 PMCID: PMC6926496 DOI: 10.3390/ijerph16234718] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
The last decade witnessed extraordinary advances in “omics” methods, particularly transcriptomics, proteomics and metabolomics, enabling toxicologists to integrate toxicokinetics and toxicodynamics with mechanistic insights on the mode-of-action of noxious chemicals, single or combined. The toxicology of mixtures is, nonetheless, a most challenging enterprise, especially for environmental toxicologists and ecotoxicologists, who invariably deal with chemical mixtures, many of which contain unknowns. Despite costs and demanding computations, the systems toxicology framework, of which “omics” is a major component, endeavors extracting adverse outcome pathways for complex mixtures. Still, the interplay between the multiple components of gene expression and cell metabolism tends to be overlooked. As an example, the proteome allocates DNA methyltransferases whose altered transcription or loss of function by action of chemicals can have a global impact on gene expression in the cell. On the other hand, chemical insult can produce reactive metabolites and radicals that can intercalate or bind to DNA as well as to enzymes and structural proteins, compromising their activity. These examples illustrate the importance of exploring multiple “omes” and the purpose of “omics” and multi-“omics” for building truly predictive models of hazard and risk. Here we will review the state-of-the-art of toxicogenomics highlighting successes, shortcomings and perspectives for next-generation environmental toxicologists.
Collapse
Affiliation(s)
- Carla Martins
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden;
- Correspondence: (C.M.); (P.M.C.); Tel.: +351-212-948-300 (ext. 11103) (P.M.C.)
| | - Kristian Dreij
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden;
| | - Pedro M. Costa
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Correspondence: (C.M.); (P.M.C.); Tel.: +351-212-948-300 (ext. 11103) (P.M.C.)
| |
Collapse
|
8
|
Hart JE, Bertrand KA, DuPre N, James P, Vieira VM, VoPham T, Mittleman MR, Tamimi RM, Laden F. Exposure to hazardous air pollutants and risk of incident breast cancer in the nurses' health study II. Environ Health 2018; 17:28. [PMID: 29587753 PMCID: PMC5870204 DOI: 10.1186/s12940-018-0372-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/13/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Findings from a recent prospective cohort study in California suggested increased risk of breast cancer associated with higher exposure to certain carcinogenic and estrogen-disrupting hazardous air pollutants (HAPs). However, to date, no nationwide studies have evaluated these possible associations. Our objective was to examine the impacts of mammary carcinogen and estrogen disrupting HAPs on risk of invasive breast cancer in a nationwide cohort. METHODS We assigned HAPs from the US Environmental Protection Agency's 2002 National Air Toxics Assessment to 109,239 members of the nationwide, prospective Nurses' Health Study II (NHSII). Risk of overall invasive, estrogen receptor (ER)-positive (ER+), and ER-negative (ER-) breast cancer with increasing quartiles of exposure were assessed in time-varying multivariable proportional hazards models, adjusted for traditional breast cancer risk factors. RESULTS A total of 3321 invasive cases occurred (2160 ER+, 558 ER-) during follow-up 1989-2011. Overall, there was no consistent pattern of elevated risk of the HAPs with risk of breast cancer. Suggestive elevations were only seen with increasing 1,2-dibromo-3-chloropropane exposures (multivariable adjusted HR of overall breast cancer = 1.12, 95% CI: 0.98-1.29; ER+ breast cancer HR = 1.09; 95% CI: 0.92, 1.30; ER- breast cancer HR = 1.14; 95% CI: 0.81, 1.61; each in the top exposure quartile compared to the lowest). CONCLUSIONS Exposures to HAPs during adulthood were not consistently associated with an increased risk of overall or estrogen-receptor subtypes of invasive breast cancer in this nationwide cohort of women.
Collapse
Affiliation(s)
- Jaime E. Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA 02215 USA
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | | | - Natalie DuPre
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Peter James
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
| | | | - Trang VoPham
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA 02215 USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Maggie R. Mittleman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA 02215 USA
| | - Rulla M. Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA 02215 USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA 02215 USA
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
9
|
Hart JE, Bertrand KA, DuPre N, James P, Vieira VM, VoPham T, Mittleman MR, Tamimi RM, Laden F. Exposure to hazardous air pollutants and risk of incident breast cancer in the nurses' health study II. Environ Health 2018. [PMID: 29587753 DOI: 10.1186/sl2940-018-0372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Findings from a recent prospective cohort study in California suggested increased risk of breast cancer associated with higher exposure to certain carcinogenic and estrogen-disrupting hazardous air pollutants (HAPs). However, to date, no nationwide studies have evaluated these possible associations. Our objective was to examine the impacts of mammary carcinogen and estrogen disrupting HAPs on risk of invasive breast cancer in a nationwide cohort. METHODS We assigned HAPs from the US Environmental Protection Agency's 2002 National Air Toxics Assessment to 109,239 members of the nationwide, prospective Nurses' Health Study II (NHSII). Risk of overall invasive, estrogen receptor (ER)-positive (ER+), and ER-negative (ER-) breast cancer with increasing quartiles of exposure were assessed in time-varying multivariable proportional hazards models, adjusted for traditional breast cancer risk factors. RESULTS A total of 3321 invasive cases occurred (2160 ER+, 558 ER-) during follow-up 1989-2011. Overall, there was no consistent pattern of elevated risk of the HAPs with risk of breast cancer. Suggestive elevations were only seen with increasing 1,2-dibromo-3-chloropropane exposures (multivariable adjusted HR of overall breast cancer = 1.12, 95% CI: 0.98-1.29; ER+ breast cancer HR = 1.09; 95% CI: 0.92, 1.30; ER- breast cancer HR = 1.14; 95% CI: 0.81, 1.61; each in the top exposure quartile compared to the lowest). CONCLUSIONS Exposures to HAPs during adulthood were not consistently associated with an increased risk of overall or estrogen-receptor subtypes of invasive breast cancer in this nationwide cohort of women.
Collapse
Affiliation(s)
- Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA, 02215, USA.
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | | | - Natalie DuPre
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peter James
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | | | - Trang VoPham
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA, 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Maggie R Mittleman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA, 02215, USA
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA, 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 401 Park Dr, Landmark Center, 3rd Floor West (BWH/HSPH), Boston, MA, 02215, USA
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
10
|
Mookherjee N, Piyadasa H, Ryu MH, Rider C, Ezzati P, Spicer V, Carlsten C. Inhaled diesel exhaust alters the allergen-induced bronchial secretome in humans. Eur Respir J 2018; 51:51/1/1701385. [DOI: 10.1183/13993003.01385-2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022]
Abstract
Diesel exhaust (DE) is a paradigm for traffic-related air pollution. Human adaptation to DE is poorly understood and currently based on oversimplified models. DE promotes allergic responses, but protein expression changes mediated by this interaction have not been systematically investigated. The aim of this study was to define the effect of inhaled DE on allergen-induced proteins in the lung.We performed a randomised and blinded controlled human crossover exposure study. Participants inhaled filtered air or DE; thereafter, contralateral lung segments were challenged with allergen or saline. Using label-free quantitative proteomics, we comprehensively defined DE-mediated alteration of allergen-driven secreted proteins (secretome) in bronchoalveolar lavage. We further examined expression of proteins selected from the secretome data in independent validation experiments using Western blots, ELISA and immunohistochemistry.We identified protein changes unique to co-exposure (DE+allergen), undetected with mono-exposures (DE or allergen alone). Validation studies confirmed that specific proteins (e.g.the antimicrobial peptide cystatin-SA) were significantly enhanced with DE+allergen compared to either mono-exposure.This study demonstrates that common environmental co-exposures can uniquely alter protein responses in the lungs, illuminating biology that mono-exposures cannot. This study highlights the value of complex humanin vivomodels in detailing airway responses to inhaled pollution.
Collapse
|
11
|
Das DN, Panda PK, Naik PP, Mukhopadhyay S, Sinha N, Bhutia SK. Phytotherapeutic approach: a new hope for polycyclic aromatic hydrocarbons induced cellular disorders, autophagic and apoptotic cell death. Toxicol Mech Methods 2017; 27:1-17. [PMID: 27919191 DOI: 10.1080/15376516.2016.1268228] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) comprise the major class of cancer-causing chemicals and are ranked ninth among the chemical compounds threatening to humans. Moreover, interest in PAHs has been mainly due to their genotoxic, teratogenic, mutagenic and carcinogenic property. Polymorphism in cytochrome P450 (CYP450) and aryl hydrocarbon receptor (AhR) has the capacity to convert procarcinogens into carcinogens, which is an imperative factor contributing to individual susceptibility to cancer development. The carcinogenicity potential of PAHs is related to their ability to bind to DNA, thereby enhances DNA cross-linking, causing a series of disruptive effects which can result in tumor initiation. They induce cellular toxicity by regulating the generation of reactive oxygen species (ROS), which arbitrate apoptosis. Additionally, cellular toxicity-mediated apoptotic and autophagic cell death and immune suppression by industrial pollutants PAH, provide fertile ground for the proliferation of mutated cells, which results in cancer growth and progression. PAHs play a foremost role in angiogenesis necessary for tumor metastasization by promoting the upregulation of metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) and hypoxia inducible factor (HIF) in human cancer cells. This review sheds light on the molecular mechanisms of PAHs induced cancer development as well as autophagic and apoptotic cell death. Besides that authors have unraveled how phytotherapeutics is an alternate potential therapeutics acting as a savior from the toxic effects of PAHs for safer and cost effective perspectives.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| | | | - Prajna Paramita Naik
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| | | | - Niharika Sinha
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| | - Sujit K Bhutia
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| |
Collapse
|
12
|
Suman S, Mishra S, Shukla Y. Toxicoproteomics in human health and disease: an update. Expert Rev Proteomics 2016; 13:1073-1089. [DOI: 10.1080/14789450.2016.1252676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shankar Suman
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| | - Sanjay Mishra
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| | - Yogeshwer Shukla
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| |
Collapse
|
13
|
The environmental carcinogen benzo[a]pyrene induces a Warburg-like metabolic reprogramming dependent on NHE1 and associated with cell survival. Sci Rep 2016; 6:30776. [PMID: 27488617 PMCID: PMC4973274 DOI: 10.1038/srep30776] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/10/2016] [Indexed: 12/30/2022] Open
Abstract
Cancer cells display alterations in many cellular processes. One core hallmark of cancer is the Warburg effect which is a glycolytic reprogramming that allows cells to survive and proliferate. Although the contributions of environmental contaminants to cancer development are widely accepted, the underlying mechanisms have to be clarified. Benzo[a]pyrene (B[a]P), the prototype of polycyclic aromatic hydrocarbons, exhibits genotoxic and carcinogenic effects, and it is a human carcinogen according to the International Agency for Research on Cancer. In addition to triggering apoptotic signals, B[a]P may induce survival signals, both of which are likely to be involved in cancer promotion. We previously suggested that B[a]P-induced mitochondrial dysfunctions, especially membrane hyperpolarization, might trigger cell survival signaling in rat hepatic epithelial F258 cells. Here, we further characterized these dysfunctions by focusing on energy metabolism. We found that B[a]P promoted a metabolic reprogramming. Cell respiration decreased and lactate production increased. These changes were associated with alterations in the tricarboxylic acid cycle which likely involve a dysfunction of the mitochondrial complex II. The glycolytic shift relied on activation of the Na+/H+ exchanger 1 (NHE1) and appeared to be a key feature in B[a]P-induced cell survival related to changes in cell phenotype (epithelial-to-mesenchymal transition and cell migration).
Collapse
|
14
|
Lee SH, Jaganath IB, Atiya N, Manikam R, Sekaran SD. Suppression of ERK1/2 and hypoxia pathways by four Phyllanthus species inhibits metastasis of human breast cancer cells. J Food Drug Anal 2016; 24:855-865. [PMID: 28911625 PMCID: PMC9337293 DOI: 10.1016/j.jfda.2016.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 12/20/2022] Open
Abstract
Chemotherapies remain far from ideal due to drug resistance; therefore, novel chemotherapeutic agents with higher effectiveness are crucial. The extracts of four Phyllanthus species, namely Phyllanthus niruri, Phyllanthus urinaria, Phyllanthus watsonii, and Phyllanthus amarus, were shown to induce apoptosis and inhibit metastasis of breast carcinoma cells (MCF-7). The main objective of this study was to determine the pathways utilized by these four Phyllanthus species to exert anti-metastatic activities. A cancer 10-pathway reporter was used to investigate the pathways affected by the four Phyllanthus species. Results indicated that these Phyllanthus species suppressed breast carcinoma metastasis and proliferation by suppressing matrix metalloprotein 2 and 9 expression via inhibition of the extracellular signal-related kinase (ERK) pathway. Additionally, inhibition of hypoxia-inducible factor 1-α in the hypoxia pathway caused reduced vascular endothelial growth factor and inducible nitric oxide synthase expression, resulting in anti-angiogenic effects and eventually anti-metastasis. Two-dimensional gel electrophoresis identified numerous proteins suppressed by these Phyllanthus species, including invasion proteins, anti-apoptotic protein, protein-synthesis proteins, angiogenic and mobility proteins, and various glycolytic enzymes. Our results indicated that ERK and hypoxia pathways are the most likely targets of the four Phyllanthus species for the inhibition of MCF-7 metastasis.
Collapse
Affiliation(s)
- Sau H. Lee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur,
Malaysia
| | - Indu B. Jaganath
- Biotechnology Centre, Malaysia Agricultural Research and Development Institute (MARDI), 43400, Serdang,
Malaysia
| | - Nadia Atiya
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, 50603, Kuala Lumpur,
Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, 50603, Kuala Lumpur,
Malaysia
| | - Shamala D. Sekaran
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur,
Malaysia
- Corresponding author. Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. E-mail address: (S.D. Sekaran)
| |
Collapse
|
15
|
Zhang Y, Dong S, Wang H, Tao S, Kiyama R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:809-824. [PMID: 27038213 DOI: 10.1016/j.envpol.2016.03.050] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/03/2016] [Accepted: 03/20/2016] [Indexed: 05/20/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are often detected in the environment and are regarded as endocrine disruptors. We here designated mixtures of PAHs in the environment as environmental PAHs (ePAHs) to discuss their effects collectively, which could be different from the sum of the constituent PAHs. We first summarized the biological impact of environmental PAHs (ePAHs) found in the atmosphere, sediments, soils, and water as a result of human activities, accidents, or natural phenomena. ePAHs are characterized by their sources and forms, followed by their biological effects and social impact, and bioassays that are used to investigate their biological effects. The findings of the bioassays have demonstrated that ePAHs have the ability to affect the endocrine systems of humans and animals. The pathways that mediate cell signaling for the endocrine disruptions induced by ePAHs and PAHs have also been summarized in order to obtain a clearer understanding of the mechanisms responsible for these effects without animal tests; they include specific signaling pathways (MAPK and other signaling pathways), regulatory mechanisms (chromatin/epigenetic regulation, cell cycle/DNA damage control, and cytoskeletal/adhesion regulation), and cell functions (apoptosis, autophagy, immune responses/inflammation, neurological responses, and development/differentiation) induced by specific PAHs, such as benz[a]anthracene, benzo[a]pyrene, benz[l]aceanthrylene, cyclopenta[c,d]pyrene, 7,12-dimethylbenz[a]anthracene, fluoranthene, fluorene, 3-methylcholanthrene, perylene, phenanthrene, and pyrene as well as their derivatives. Estrogen signaling is one of the most studied pathways associated with the endocrine-disrupting activities of PAHs, and involves estrogen receptors and aryl hydrocarbon receptors. However, some of the actions of PAHs are contradictory, complex, and unexplainable. Although several possibilities have been suggested, such as direct interactions between PAHs and receptors and the suppression of their activities through other pathways, the mechanisms underlying the activities of PAHs remain unclear. Thus, standardized assay protocols for pathway-based assessments are considered to be important to overcome these issues.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Sijun Dong
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Hongou Wang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Shu Tao
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
16
|
Ochieng J, Nangami GN, Ogunkua O, Miousse IR, Koturbash I, Odero-Marah V, McCawley LJ, Nangia-Makker P, Ahmed N, Luqmani Y, Chen Z, Papagerakis S, Wolf GT, Dong C, Zhou BP, Brown DG, Colacci AM, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Al-Temaimi R, Al-Mulla F, Bisson WH, Eltom SE. The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis. Carcinogenesis 2015; 36 Suppl 1:S128-59. [PMID: 26106135 DOI: 10.1093/carcin/bgv034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial-mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis.
Collapse
Affiliation(s)
- Josiah Ochieng
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA, Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA, Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA, Department of Pathology, Wayne State University, Detroit, MI 48201, USA, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia, Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA, Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA, Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, Viagrande 95029, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and
| | - Gladys N Nangami
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA, Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA, Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA, Department of Pathology, Wayne State University, Detroit, MI 48201, USA, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia, Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA, Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA, Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, Viagrande 95029, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and
| | - Olugbemiga Ogunkua
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA, Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA, Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA, Department of Pathology, Wayne State University, Detroit, MI 48201, USA, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia, Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA, Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA, Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, Viagrande 95029, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Valerie Odero-Marah
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Lisa J McCawley
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Nuzhat Ahmed
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Yunus Luqmani
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA, Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA, Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA, Department of Pathology, Wayne State University, Detroit, MI 48201, USA, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia, Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA, Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA, Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, Viagrande 95029, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and
| | - Silvana Papagerakis
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
| | - Gregory T Wolf
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
| | - Chenfang Dong
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Binhua P Zhou
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
| | - Chiara Mondello
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - A Ivana Scovassi
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
| | - Rabeah Al-Temaimi
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Fahd Al-Mulla
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Sakina E Eltom
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA, Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA, Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA, Department of Pathology, Wayne State University, Detroit, MI 48201, USA, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia, Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA, Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA, Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, Viagrande 95029, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and
| |
Collapse
|
17
|
Effects of exposure to benzo[a]pyrene on metastasis of breast cancer are mediated through ROS-ERK-MMP9 axis signaling. Toxicol Lett 2015; 234:201-10. [DOI: 10.1016/j.toxlet.2015.02.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/02/2015] [Accepted: 02/23/2015] [Indexed: 11/17/2022]
|
18
|
Ceccaroli C, Pulliero A, Geretto M, Izzotti A. Molecular fingerprints of environmental carcinogens in human cancer. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:188-228. [PMID: 26023758 DOI: 10.1080/10590501.2015.1030491] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Identification of specific molecular changes (fingerprints) is important to identify cancer etiology. Exploitable biomarkers are related to DNA, epigenetics, and proteins. DNA adducts are the turning point between environmental exposures and biological damage. DNA mutational fingerprints are induced by carcinogens in tumor suppressor and oncogenes. In an epigenetic domain, methylation changes occurs in specific genes for arsenic, benzene, chromium, and cigarette smoke. Alteration of specific microRNA has been reported for environmental carcinogens. Benzo(a)pyrene, cadmium, coal, and wood dust hits specific heat-shock proteins and metalloproteases. The multiple analysis of these biomarkers provides information on the carcinogenic mechanisms activated by exposure to environmental carcinogens.
Collapse
Affiliation(s)
- C Ceccaroli
- a Department of Health Sciences, University of Genoa , Italy
| | | | | | | |
Collapse
|
19
|
Kalkhof S, Dautel F, Loguercio S, Baumann S, Trump S, Jungnickel H, Otto W, Rudzok S, Potratz S, Luch A, Lehmann I, Beyer A, von Bergen M. Pathway and time-resolved benzo[a]pyrene toxicity on Hepa1c1c7 cells at toxic and subtoxic exposure. J Proteome Res 2014; 14:164-82. [PMID: 25362887 DOI: 10.1021/pr500957t] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Benzo[a]pyrene (B[a]P) is an environmental contaminant mainly studied for its toxic/carcinogenic effects. For a comprehensive and pathway orientated mechanistic understanding of the effects directly triggered by a toxic (5 μM) or a subtoxic (50 nM) concentration of B[a]P or indirectly by its metabolites, we conducted time series experiments for up to 24 h to study the effects in murine hepatocytes. These cells rapidly take up and actively metabolize B[a]P, which was followed by quantitative analysis of the concentration of intracellular B[a]P and seven representative degradation products. Exposure with 5 μM B[a]P led to a maximal intracellular concentration of 1604 pmol/5 × 10(4) cells, leveling at 55 pmol/5 × 10(4) cells by the end of the time course. Changes in the global proteome (>1000 protein profiles) and metabolome (163 metabolites) were assessed in combination with B[a]P degradation. Abundance profiles of 236 (both concentrations), 190 (only 5 μM), and 150 (only 50 nM) proteins were found to be regulated in response to B[a]P in a time-dependent manner. At the endogenous metabolite level amino acids, acylcarnitines and glycerophospholipids were particularly affected by B[a]P. The comprehensive chemical, proteome and metabolomic data enabled the identification of effects on the pathway level in a time-resolved manner. So in addition to known alterations, also protein synthesis, lipid metabolism, and membrane dysfunction were identified as B[a]P specific effects.
Collapse
Affiliation(s)
- Stefan Kalkhof
- Department of Proteomics, UFZ, Helmholtz-Centre for Environmental Research , Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rabilloud T, Lescuyer P. Proteomics in mechanistic toxicology: History, concepts, achievements, caveats, and potential. Proteomics 2014; 15:1051-74. [DOI: 10.1002/pmic.201400288] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/25/2014] [Accepted: 08/25/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals; CNRS UMR; 5249 Grenoble France
- Laboratory of Chemistry and Biology of Metals; Université Grenoble Alpes; Grenoble France
- Laboratory of Chemistry and Biology of Metals; CEA Grenoble; iRTSV/CBM; Grenoble France
| | - Pierre Lescuyer
- Department of Human Protein Sciences; Clinical Proteomics and Chemistry Group; Geneva University; Geneva Switzerland
- Toxicology and Therapeutic Drug Monitoring Laboratory; Department of Genetic and Laboratory Medicine; Geneva University Hospitals; Geneva Switzerland
| |
Collapse
|
21
|
Maria VL, Gomes T, Barreira L, Bebianno MJ. Impact of benzo(a)pyrene, Cu and their mixture on the proteomic response of Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:284-295. [PMID: 24211336 DOI: 10.1016/j.aquatox.2013.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 06/02/2023]
Abstract
In natural waters, chemical interactions between mixtures of contaminants can result in potential synergistic and/or antagonic effects in aquatic animals. Benzo(a)pyrene (BaP) and copper (Cu) are two widespread environmental contaminants with known toxicity towards mussels Mytilus spp. The effects of the individual and the interaction of BaP and Cu exposures were assessed in mussels Mytilus galloprovincialis using proteomic analysis. Mussels were exposed to BaP [10 μg L(-1) (0.396 μM)], and Cu [10 μg L(-1) (0.16 μM)], as well as to their binary mixture (mixture) for a period of 7 days. Proteomic analysis showed different protein expression profiles associated to each selected contaminant condition. A non-additive combined effect was observed in mixture in terms of new and suppressed proteins. Proteins more drastically altered (new, suppressed and 2-fold differentially expressed) were excised and analyzed by mass spectrometry, and eighteen putatively identified. Protein identification demonstrated the different accumulation, metabolism and chemical interactions of BaP, Cu and their mixture, resulting in different modes of action. Proteins associated with adhesion and motility (catchin, twitchin and twitchin-like protein), cytoskeleton and cell structure (α-tubulin and actin), stress response (heat shock cognate 71, heat shock protein 70, putative C1q domain containing protein), transcription regulation (zinc-finger BED domain-containing and nuclear receptor subfamily 1G) and energy metabolism (ATP synthase F0 subunit 6 protein and mannose-6-phosphate isomerase) were assigned to all three conditions. Cu exposure alone altered proteins associated with oxidative stress (glutathione-S-transferase) and digestion, growth and remodelling processes (chitin synthase), while the mixture affected only one protein (major vault protein) possibly related to multi drug resistance. Overall, new candidate biomarkers, namely zinc-finger BED domain-containing protein, chitin synthase and major vault protein, were also identified for BaP, Cu and mixture, respectively.
Collapse
Affiliation(s)
- V L Maria
- CIMA, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
22
|
Proteome analysis for profiling infertility markers in male mouse sperm after carbon ion radiation. Toxicology 2013; 306:85-92. [DOI: 10.1016/j.tox.2013.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/22/2013] [Accepted: 02/12/2013] [Indexed: 11/23/2022]
|
23
|
Heppenstall LD, Strong RJ, Trevisan J, Martin FL. Incorporation of deuterium oxide in MCF-7 cells to shed further mechanistic insights into benzo[a]pyrene-induced low-dose effects discriminated by ATR-FTIR spectroscopy. Analyst 2013; 138:2583-91. [DOI: 10.1039/c3an36721e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Ben Fredj F, Han J, Irie M, Funamizu N, Ghrabi A, Isoda H. Assessment of wastewater-irrigated soil containing heavy metals and establishment of specific biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:54-62. [PMID: 22795889 DOI: 10.1016/j.ecoenv.2012.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/18/2012] [Accepted: 06/20/2012] [Indexed: 06/01/2023]
Abstract
Irrigation with treated wastewater (TWW) is a vital alternative for arid and semi-arid lands but it poses pollution-risk to soil, vegetation and groundwater. Therefore, in the present study, in vitro bioassays were used to evaluate the adverse effects of TWW and irrigated-soil extract sample, on mammalian cells, with respect to heavy metal--Ni, Cd, Pb, Fe, Al-content. The heat shock protein (HSP) 47, E-screen, and transepithelial electrical resistance (TEER) assays served to investigate the stress response of treated-HSP47-transfected Chinese hamster ovary (CHO) cells, the estrogenic activity of the samples in MCF-7 breast cancer cells, and the barrier function (BF) of Caco-2 cells. Furthermore, proteomics analyses were performed to shed light on involved mechanisms and to establish pollution biomarkers. Results showed that the TWW elicited a stress response on HSP cells from 0.1% concentration while soil extract samples exhibited a stress at 1%. TWW induced an estrogenic activity at 10%; up-regulating cell proliferation and tumor-related proteins. Soil extract triggered the enhanced expression of HSP70 family proteins as survival mechanisms against their cytotoxicity toward MCF-7 cells. Moreover, depending on the concentration, 1% of soil extract from 20 cm depth (T20) resulted in a disruption of BF in Caco-2 cells involving cell metabolism, protein synthesis and tumor marker proteins, whereas, 5% of T20 induced the expression of BF-related proteins associated to heat shock, oxidative stress, cell proliferation and glycolytic metabolic pathway. These biological techniques were found to be extremely useful to evaluate the impact of wastewater reuse and to establish specific biomarkers that are common proteins for humans, other mammals and plants. Future studies should focus on exposure quantifications.
Collapse
Affiliation(s)
- F Ben Fredj
- Alliance for Research on North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Verma N, Pink M, Rettenmeier AW, Schmitz-Spanke S. Review on proteomic analyses of benzo[a]pyrene toxicity. Proteomics 2012; 12:1731-55. [DOI: 10.1002/pmic.201100466] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nisha Verma
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| | - Mario Pink
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| | - Albert W. Rettenmeier
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| | - Simone Schmitz-Spanke
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| |
Collapse
|
26
|
Pang W, Li J, Ahmadzai AA, Heppenstall LD, Llabjani V, Trevisan J, Qiu X, Martin FL. Identification of benzo[a]pyrene-induced cell cycle-associated alterations in MCF-7 cells using infrared spectroscopy with computational analysis. Toxicology 2012; 298:24-9. [PMID: 22561278 DOI: 10.1016/j.tox.2012.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/06/2012] [Accepted: 04/19/2012] [Indexed: 01/03/2023]
Abstract
Chemical contaminants, such as benzo[a]pyrene (B[a]P), may modulate transcriptional responses in cells via the activation of aryl hydrocarbon receptor (AhR) or through responses to DNA damage following adduct formation. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy can be employed in a non-destructive fashion to interrogate the biochemical signature of cells via generation of infrared (IR) spectra. By applying to generated spectral datasets subsequent computational approaches such as principal component analysis plus linear discriminant analysis (PCA-LDA), derived data reduction is achieved to facilitate the visualization of wavenumber-related alterations in target cells. Discriminating spectral variables might be associated with lipid or glycogen content, conformational protein changes and phosphorylation, and structural alterations in DNA/RNA. Using this approach, we investigated the dose-related effects of B[a]P in MCF-7 cells concentrated in S- or G₀/G₁-phase. Our findings identified that in PCA-LDA scores plots a clear segregation of IR spectra was evident, with the major spectral alterations associated with DNA/RNA, secondary protein structure and lipid. Dose-related effects were observed and even with exposures as low as 10⁻⁹ M B[a]P, significant (P ≤ 0.001) separation of B[a]P-treated vs. vehicle control cells was noted. ATR-FTIR spectroscopy with computational analysis is a novel approach to identify the effects of environmental contaminants in target cells.
Collapse
Affiliation(s)
- Weiyi Pang
- The School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Carvalho RN, Bopp SK, Lettieri T. Transcriptomics responses in marine diatom Thalassiosira pseudonana exposed to the polycyclic aromatic hydrocarbon benzo[a]pyrene. PLoS One 2011; 6:e26985. [PMID: 22073232 PMCID: PMC3207822 DOI: 10.1371/journal.pone.0026985] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/07/2011] [Indexed: 01/06/2023] Open
Abstract
Diatoms are unicellular, photosynthetic, eukaryotic algae with a ubiquitous distribution in water environments and they play an important role in the carbon cycle. Molecular or morphological changes in these species under ecological stress conditions are expected to serve as early indicators of toxicity and can point to a global impact on the entire ecosystem. Thalassiosira pseudonana, a marine diatom and the first with a fully sequenced genome has been selected as an aquatic model organism for ecotoxicological studies using molecular tools. A customized DNA microarray containing probes for the available gene sequences has been developed and tested to analyze the effects of a common pollutant, benzo(a)pyrene (BaP), at a sub-lethal concentration. This approach in diatoms has helped to elucidate pathway/metabolic processes involved in the mode of action of this pollutant, including lipid metabolism, silicon metabolism and stress response. A dose-response of BaP on diatoms has been made and the effect of this compound on the expression of selected genes was assessed by quantitative real time-PCR. Up-regulation of the long-chain acyl-CoA synthetase and the anti-apoptotic transmembrane Bax inhibitor, as well as down-regulation of silicon transporter 1 and a heat shock factor was confirmed at lower concentrations of BaP, but not the heat-shock protein 20. The study has allowed the identification of molecular biomarkers to BaP to be later on integrated into environmental monitoring for water quality assessment.
Collapse
Affiliation(s)
- Raquel N. Carvalho
- Rural, Water, and Ecosystem Resources Unit, Institute for Environment and Sustainability, European Commission - Joint Research Centre, Ispra, Varese, Italy
| | - Stephanie K. Bopp
- Rural, Water, and Ecosystem Resources Unit, Institute for Environment and Sustainability, European Commission - Joint Research Centre, Ispra, Varese, Italy
| | - Teresa Lettieri
- Rural, Water, and Ecosystem Resources Unit, Institute for Environment and Sustainability, European Commission - Joint Research Centre, Ispra, Varese, Italy
- * E-mail:
| |
Collapse
|
28
|
Min L, He S, Chen Q, Peng F, Peng H, Xie M. Comparative proteomic analysis of cellular response of human airway epithelial cells (A549) to benzo(a)pyrene. Toxicol Mech Methods 2011; 21:374-82. [PMID: 21417634 DOI: 10.3109/15376516.2010.551555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work aimed to investigate the cellular response of human airway epithelial cells (A549) to oxidative stress induced by benzo(a)pyrene [B(a)P]. Levels of intracellular reactive oxygen species (ROS) and lipid peroxidation were investigated in A549 cells treated with varying concentrations of B(a)P. A comparative proteomic analysis of total proteins was performed in cells treated with 1 µM B(a)P [B(a)P-1] and untreated cells. The expression of Mn superoxide dismutase (Mn SOD), one of the identified down-regulated proteins in B(a)P-1 cells, was then analyzed by Western blotting. The total antioxidant activity, total superoxide dismutase activity, catalase (CAT) activity, and glutathione reductase (GR) activity were all analyzed after B(a)P treatment. Our results demonstrated that 1 µM B(a)P could induce ROS generation and lead to lipid peroxidation in A549 cells, and 23 differentially expressed proteins were identified. The expression levels of Mn SOD and the total SOD were induced at 0.1 µM and suppressed at 1 µM and 10 µM. Up-regulation of CAT and GR activity resulted in an increase in total antioxidant activity in A549 after exposure to B(a)P. These findings provide a basis for understanding the mechanisms of mitochondrial dysfunction and perturbation of antioxidant status induced by B(a)P on airway epithelial cells.
Collapse
Affiliation(s)
- Lingfeng Min
- Department of Geriatric Medicine, Department of Respiratory, Xiangya Hospital of Central South University, Changsha, China
| | | | | | | | | | | |
Collapse
|
29
|
Dautel F, Kalkhof S, Trump S, Michaelson J, Beyer A, Lehmann I, von Bergen M. DIGE-based protein expression analysis of B[a]P-exposed hepatoma cells reveals a complex stress response including alterations in oxidative stress, cell cycle control, and cytoskeleton motility at toxic and subacute concentrations. J Proteome Res 2010; 10:379-93. [PMID: 21171653 DOI: 10.1021/pr100723d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although the effects of high concentrations of the carcinogen benzo[a]pyrene (B[a]P) have been studied extensively, little is known about its effects at subacute toxic concentrations, which are typical for environmental pollutants. We exposed murine Hepa1c1c7 cells to a toxic concentration (5 μM) and a subacute concentration (50 nM) of B[a]P over a period of 2-24 h to differentiate between acute and pseudochronic effects and conducted a time-course analysis of B[a]P-influenced protein expression by DIGE. In total, a set of 120 spots were found to be significantly altered due to B[a]P exposure of which 112 were subsequently identified by mass spectrometry. Clustering and principal component analysis were conducted to identify sets of proteins responding in a concerted manner to the exposure. Our results indicate an immediate response to the contaminant at the protein level and demonstrate that B[a]P exposure alters the cellular response by disturbing proteins involved in oxidative stress, cell cycle regulation, apoptosis, and cytoskeleton organization. Furthermore, network analysis of protein-protein interactions revealed a complex network of interacting, B[a]P-regulated proteins mostly belonging to the cytoskeleton organization and several signal transduction pathways.
Collapse
Affiliation(s)
- Franziska Dautel
- Department of Proteomics, UFZ, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Ozbalci Ç, Unsal Ç, Kazan D, Sariyar-Akbulut B. Proteomic response of Escherichia coli to the alkaloid extract of Papaver polychaetum. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0118-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1540-70. [PMID: 19559056 DOI: 10.1016/j.bbamcr.2009.06.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/21/2022]
Abstract
There has been increasing evidence pointing to the mitochondrial respiratory chain (MRC) as a novel and important target for the actions of 17beta-estradiol (E(2)) and estrogen receptors (ER) in a number of cell types and tissues that have high demands for mitochondrial energy metabolism. This novel E(2)-mediated mitochondrial pathway involves the cooperation of both nuclear and mitochondrial ERalpha and ERbeta and their co-activators on the coordinate regulation of both nuclear DNA- and mitochondrial DNA-encoded genes for MRC proteins. In this paper, we have: 1) comprehensively reviewed studies that reveal a novel role of estrogens and ERs in the regulation of MRC biogenesis; 2) discussed their physiological, pathological and pharmacological implications in the control of cell proliferation and apoptosis in relation to estrogen-mediated carcinogenesis, anti-cancer drug resistance in human breast cancer cells, neuroprotection for Alzheimer's disease and Parkinson's disease in brain, cardiovascular protection in human heart and their beneficial effects in lens physiology related to cataract in the eye; and 3) pointed out new research directions to address the key questions in this important and newly emerging area. We also suggest a novel conceptual approach that will contribute to innovative regimens for the prevention or treatment of a wide variety of medical complications based on E(2)/ER-mediated MRC biogenesis pathway.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|