1
|
Zainal Z, Khaza'ai H, Kutty Radhakrishnan A, Chang SK. Therapeutic potential of palm oil vitamin E-derived tocotrienols in inflammation and chronic diseases: Evidence from preclinical and clinical studies. Food Res Int 2022; 156:111175. [DOI: 10.1016/j.foodres.2022.111175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
|
2
|
Trujillo M, Kharbanda A, Corley C, Simmons P, Allen AR. Tocotrienols as an Anti-Breast Cancer Agent. Antioxidants (Basel) 2021; 10:1383. [PMID: 34573015 PMCID: PMC8472290 DOI: 10.3390/antiox10091383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/09/2022] Open
Abstract
In the past few years, breast cancer has become the most prevalent type of cancer. The majority of patients receive combinatorial chemotherapy treatments, which may result in increased risk of developing drug resistance, a reduced quality of life, and substantial side effects. Treatment modalities that could lessen the physical toll of standard treatments or act in synergy with chemotherapeutic treatments would benefit women worldwide. Research into tocotrienols has thus far demonstrated their potential to be such an agent, with tocotrienols surpassing the pharmacological potential of tocopherols. Further research using in vitro and preclinical breast cancer models to support clinical trials is needed. This review uses bibliometric analysis to highlight this gap in research and summarizes the current and future landscape of tocotrienols as an anti-breast cancer agent.
Collapse
Affiliation(s)
- Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Anupreet Kharbanda
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Christa Corley
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Pilar Simmons
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Takasu S, Ishii Y, Kijima A, Ogawa K, Nakane S, Umemura T. Furan Induced Characteristic Glutathione S-Transferase Placental Form-Positive Foci in Terms of Cell Kinetics and Gene Expression. Toxicol Pathol 2020; 48:756-765. [PMID: 32833602 DOI: 10.1177/0192623320948782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glutathione S-transferase placental form-positive (GST-P+) foci are markers of preneoplastic lesions in rat hepatocarcinogenesis. Our previous studies using reporter gene transgenic rats showed that furan, a hepatocarcinogen in rodents, rapidly induces the formation of GST-P+ foci after short exposure without reporter gene mutation. We hypothesized that GST-P+ foci induced by furan may have biological characteristics different from those induced by diethylnitrosamine (DEN), a genotoxic hepatocarcinogen. Accordingly, we compared the cell kinetics of GST-P+ foci after cessation of DEN treatment and performed comprehensive gene expression in DEN- or furan-induced GST-P+ foci. The number and area of DEN-induced GST-P+ foci were increased after cessation of treatment, whereas furan decreased these parameters. Size distribution analysis showed that large furan-induced GST-P+ foci disappeared after cessation of treatment. Hierarchical cluster analysis showed that all samples from GST-P+ foci induced by furan were separated from those induced by DEN. SOX9 expression was upregulated in furan-induced GST-P+ foci and was detected by immunohistochemistry in large furan-induced GST-P+ foci. Our results indicated that large furan-induced GST-P+ foci were quite different from DEN-induced GST-P+ foci at the molecular and cellular levels. And one of the properties of disappearing large GST-P+ foci were characterized by inclusion of hepatocytes expressing SOX9.
Collapse
Affiliation(s)
- Shinji Takasu
- Division of Pathology, 26360National Institute of Health Sciences, Kanagawa, Japan
| | - Yuji Ishii
- Division of Pathology, 26360National Institute of Health Sciences, Kanagawa, Japan
| | - Aki Kijima
- Division of Pathology, 26360National Institute of Health Sciences, Kanagawa, Japan
| | - Kumiko Ogawa
- Division of Pathology, 26360National Institute of Health Sciences, Kanagawa, Japan
| | - Sae Nakane
- Division of Pathology, 26360National Institute of Health Sciences, Kanagawa, Japan.,Faculty of Animal Health Technology, 183800Yamazaki University of Animal Health Technology, Tokyo, Japan
| | - Takashi Umemura
- Division of Pathology, 26360National Institute of Health Sciences, Kanagawa, Japan.,Faculty of Animal Health Technology, 183800Yamazaki University of Animal Health Technology, Tokyo, Japan
| |
Collapse
|
4
|
Bolotta A, Pini A, Abruzzo PM, Ghezzo A, Modesti A, Gamberi T, Ferreri C, Bugamelli F, Fortuna F, Vertuani S, Manfredini S, Zucchini C, Marini M. Effects of tocotrienol supplementation in Friedreich's ataxia: A model of oxidative stress pathology. Exp Biol Med (Maywood) 2020; 245:201-212. [PMID: 31795754 PMCID: PMC7045332 DOI: 10.1177/1535370219890873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023] Open
Abstract
Friedreich’s ataxia is an autosomal recessive disorder characterized by impaired mitochondrial function, resulting in oxidative stress. In this study, we aimed at evaluating whether tocotrienol, a phytonutrient that diffuses easily in tissues with saturated fatty layers, could complement the current treatment with idebenone, a quinone analogue with antioxidant properties. Five young Friedreich’s ataxia patients received a low-dose tocotrienol supplementation (5 mg/kg/day), while not discontinuing idebenone treatment. Several oxidative stress markers and biological parameters related to oxidative stress were evaluated at the time of initiation of treatment and 2 and 12 months post-treatment. Some oxidative stress-related parameters and some inflammation indices were altered in Friedreich’s ataxia patients taking idebenone alone and tended to be normal values following tocotrienol supplementation; likewise, a cardiac magnetic resonance study showed some improvement following one-year tocotrienol treatment. The pathway by which tocotrienol affects the Nrf2 modulation of hepcidin gene expression, a peptide involved in iron handling and in inflammatory responses, is viewed in the light of the disruption of the iron intracellular distribution and of the Nrf2 anergy characterizing Friedreich’s ataxia. This research provides a suitable model to analyze the efficacy of therapeutic strategies able to counteract the excess free radicals in Friedreich’s ataxia, and paves the way to long-term clinical studies.
Collapse
Affiliation(s)
- Alessandra Bolotta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan 20148, Italy
| | - Antonella Pini
- Child Neurology and Psychiatry Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
| | - Provvidenza M Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan 20148, Italy
| | - Alessandro Ghezzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Firenze 50134, Italy
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Firenze 50134, Italy
| | | | - Francesca Bugamelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Filippo Fortuna
- Neurochemistry Laboratory, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro 61121, Italy
| | - Silvia Vertuani
- Department of Pharmaceutical Sciences, University of Ferrara, Ferrara 44100, Italy
| | - Stefano Manfredini
- Department of Pharmaceutical Sciences, University of Ferrara, Ferrara 44100, Italy
| | - Cinzia Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan 20148, Italy
| |
Collapse
|
5
|
SAW TY, MALIK NA, LIM KP, TEO CWL, WONG ESM, KONG SC, FONG CW, PETKOV J, YAP WN. Oral Supplementation of Tocotrienol-Rich Fraction Alleviates Severity of Ulcerative Colitis in Mice. J Nutr Sci Vitaminol (Tokyo) 2019; 65:318-327. [DOI: 10.3177/jnsv.65.318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Tzuen Yih SAW
- Research & Development Department, Davos Life Science
- Research & Development Department, KL-Kepong Oleomas Sdn Bhd (KLK Oleo)
| | - Najib Abdul MALIK
- Research & Development Department, Davos Life Science
- Research & Development Department, KL-Kepong Oleomas Sdn Bhd (KLK Oleo)
| | - Kee Pah LIM
- Research & Development Department, Davos Life Science
- Research & Development Department, KL-Kepong Oleomas Sdn Bhd (KLK Oleo)
| | - Cheryl Wei Ling TEO
- Research & Development Department, Davos Life Science
- Research & Development Department, KL-Kepong Oleomas Sdn Bhd (KLK Oleo)
| | | | - San Choon KONG
- Gastroenterology & Hepatology Department, Singapore General Hospital
| | - Chee Wai FONG
- Research & Development Department, Davos Life Science
- Research & Development Department, KL-Kepong Oleomas Sdn Bhd (KLK Oleo)
| | - Jordan PETKOV
- Research & Development Department, KL-Kepong Oleomas Sdn Bhd (KLK Oleo)
| | - Wei Ney YAP
- Research & Development Department, Davos Life Science
- Research & Development Department, KL-Kepong Oleomas Sdn Bhd (KLK Oleo)
| |
Collapse
|
6
|
Corticosterone impairs flexible adjustment of spatial navigation in an associative place–reward learning task. Behav Pharmacol 2018; 29:351-364. [DOI: 10.1097/fbp.0000000000000370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Abstract
Initial research on vitamin E and cancer has focused on α-tocopherol (αT), but recent clinical studies on cancer-preventive effects of αT supplementation have shown disappointing results, which has led to doubts about the role of vitamin E, including different vitamin E forms, in cancer prevention. However, accumulating mechanistic and preclinical animal studies show that other forms of vitamin E, such as γ-tocopherol (γT), δ-tocopherol (δT), γ-tocotrienol (γTE), and δ-tocotrienol (δTE), have far superior cancer-preventive activities than does αT. These vitamin E forms are much stronger than αT in inhibiting multiple cancer-promoting pathways, including cyclo-oxygenase (COX)- and 5-lipoxygenase (5-LOX)-catalyzed eicosanoids, and transcription factors such as nuclear transcription factor κB (NF-κB) and signal transducer and activator of transcription factor 3 (STAT3). These vitamin E forms, but not αT, cause pro-death or antiproliferation effects in cancer cells via modulating various signaling pathways, including sphingolipid metabolism. Unlike αT, these vitamin E forms are quickly metabolized to various carboxychromanols including 13'-carboxychromanols, which have even stronger anti-inflammatory and anticancer effects than some vitamin precursors. Consistent with mechanistic findings, γT, δT, γTE, and δTE, but not αT, have been shown to be effective for preventing the progression of various types of cancer in preclinical animal models. This review focuses on cancer-preventive effects and mechanisms of γT, δT, γTE, and δTE in cells and preclinical models and discusses current progress in clinical trials. The existing evidence strongly indicates that these lesser-known vitamin E forms are effective agents for cancer prevention or as adjuvants for improving prevention, therapy, and control of cancer.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|
8
|
Qualitative/Chemical Analyses of Ankaferd Hemostat and Its Antioxidant Content in Synthetic Gastric Fluids. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8957820. [PMID: 26925418 PMCID: PMC4746270 DOI: 10.1155/2016/8957820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/29/2015] [Accepted: 01/06/2016] [Indexed: 02/02/2023]
Abstract
Introduction. Ankaferd hemostat (ABS) is the first topical haemostatic agent involving the red blood cell-fibrinogen interactions. The antihemorrhagic efficacy of ABS has been tested in controlled clinical trials. The drug induces the formation of an encapsulated complex protein web with vital erythroid aggregation. The aim of this study is to detect the essential toxicity profile and the antioxidant molecules inside ABS. Methods. The pesticides were analyzed by GC-MS and LC-MS. The determination by ICP-MS after pressure digestion was performed for the heavy metals. HPLC was used for the detection of mycotoxins. Dioxin Response Chemically Activated Luciferase Gene Expression method was used for the dioxin evaluation. TOF-MS and spectra data were evaluated to detect the antioxidants and other molecules. Results. TOF-MS spectra revealed the presence of several antioxidant molecules (including tocotrienols, vitamin E, tryptophan, estriol, galangin, apigenin, oenin, 3,4-divanillyltetrahydrofuran, TBHQ, thymol, BHA, BHT, lycopene, glycyrrhetinic acid, and tomatine), which may have clinical implications in the pharmacobiological actions of ABS. Conclusion. The safety of ABS regarding the presence of heavy metals, pesticides, mycotoxins, GMO and dioxins, and PCBs was demonstrated. Thus the present toxicological results indicated the safety of ABS. The antioxidant content of ABS should be investigated in future studies.
Collapse
|
9
|
Abstract
The discovery of vitamin E (α-tocopherol) began in 1922 as a vital component required in reproduction. Today, there are eight naturally occurring vitamin E isoforms, namely α-, β-, γ- and δ-tocopherol and α-, β-, γ- and δ-tocotrienol. Vitamin E is potent antioxidants, capable of neutralizing free radicals directly by donating hydrogen from its chromanol ring. α-Tocopherol is regarded the dominant form in vitamin E as the α-tocopherol transfer protein in the liver binds mainly α-tocopherol, thus preventing its degradation. That contributed to the oversight of tocotrienols and resulted in less than 3% of all vitamin E publications studying tocotrienols. Nevertheless, tocotrienols have been shown to possess superior antioxidant and anti-inflammatory properties over α-tocopherol. In particular, inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase to lower cholesterol, attenuating inflammation via downregulation of transcription factor NF-κB activation, and potent radioprotectant against radiation damage are some properties unique to tocotrienols, not tocopherols. Aside from cancer, vitamin E has also been shown protective in bone, cardiovascular, eye, nephrological and neurological diseases. In light of the different pharmacological properties of tocopherols and tocotrienols, it becomes critical to specify which vitamin E isoform(s) are being studied in any future vitamin E publications. This review provides an update on vitamin E therapeutic potentials, protective effects and modes of action beyond cancer, with comparison of tocopherols against tocotrienols. With the concerted efforts in synthesizing novel vitamin E analogs and clinical pharmacology of vitamin E, it is likely that certain vitamin E isoform(s) will be therapeutic agents against human diseases besides cancer.
Collapse
Affiliation(s)
- Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - W S Daniel Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Immunology Program, Life Science Institute, National University of Singapore, Singapore.
| |
Collapse
|
10
|
Wong WY, Ward LC, Fong CW, Yap WN, Brown L. Anti-inflammatory γ- and δ-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats. Eur J Nutr 2015; 56:133-150. [PMID: 26446095 DOI: 10.1007/s00394-015-1064-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/25/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE This study tested the hypothesis that γ- and δ-tocotrienols are more effective than α-tocotrienol and α-tocopherol in attenuating the signs of diet-induced metabolic syndrome in rats. METHODS Five groups of rats were fed a corn starch-rich (C) diet containing 68 % carbohydrates as polysaccharides, while the other five groups were fed a diet (H) high in simple carbohydrates (fructose and sucrose in food, 25 % fructose in drinking water, total 68 %) and fats (beef tallow, total 24 %) for 16 weeks. Separate groups from each diet were supplemented with either α-, γ-, δ-tocotrienol or α-tocopherol (85 mg/kg/day) for the final 8 of the 16 weeks. RESULTS H rats developed visceral obesity, hypertension, insulin resistance, cardiovascular remodelling and fatty liver. α-Tocopherol, α-, γ- and δ-tocotrienols reduced collagen deposition and inflammatory cell infiltration in the heart. Only γ- and δ-tocotrienols improved cardiovascular function and normalised systolic blood pressure compared to H rats. Further, δ-tocotrienol improved glucose tolerance, insulin sensitivity, lipid profile and abdominal adiposity. In the liver, these interventions reduced lipid accumulation, inflammatory infiltrates and plasma liver enzyme activities. Tocotrienols were measured in heart, liver and adipose tissue showing that chronic oral dosage delivered tocotrienols to these organs despite low or no detection of tocotrienols in plasma. CONCLUSION In rats, δ-tocotrienol improved inflammation, heart structure and function, and liver structure and function, while γ-tocotrienol produced more modest improvements, with minimal changes with α-tocotrienol and α-tocopherol. The most important mechanism of action is likely to be reduction in organ inflammation.
Collapse
Affiliation(s)
- Weng-Yew Wong
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
- Laboratory of Cardiovascular Signalling, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Leigh C Ward
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Chee Wai Fong
- Davos Life Science Pte Ltd, 3 Biopolis Drive, #04-19 Synapse, Singapore, 138623, Singapore
| | - Wei Ney Yap
- Davos Life Science Pte Ltd, 3 Biopolis Drive, #04-19 Synapse, Singapore, 138623, Singapore
| | - Lindsay Brown
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
| |
Collapse
|
11
|
Peh HY, Ho WE, Cheng C, Chan TK, Seow ACG, Lim AYH, Fong CW, Seng KY, Ong CN, Wong WSF. Vitamin E Isoform γ-Tocotrienol Downregulates House Dust Mite-Induced Asthma. THE JOURNAL OF IMMUNOLOGY 2015; 195:437-44. [PMID: 26041537 DOI: 10.4049/jimmunol.1500362] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022]
Abstract
Inflammation and oxidative damage contribute to the pathogenesis of asthma. Although corticosteroid is the first-line treatment for asthma, a subset of patients is steroid resistant, and chronic steroid use causes side effects. Because vitamin E isoform γ-tocotrienol possesses both antioxidative and anti-inflammatory properties, we sought to determine protective effects of γ-tocotrienol in a house dust mite (HDM) experimental asthma model. BALB/c mice were sensitized and challenged with HDM. Bronchoalveolar lavage (BAL) fluid was assessed for total and differential cell counts, oxidative damage biomarkers, and cytokine levels. Lungs were examined for cell infiltration and mucus hypersecretion, as well as the expression of antioxidants and proinflammatory biomarkers. Sera were assayed for IgE and γ-tocotrienol levels. Airway hyperresponsiveness in response to methacholine was measured. γ-Tocotrienol displayed better free radical-neutralizing activity in vitro and inhibition of BAL fluid total, eosinophil, and neutrophil counts in HDM mouse asthma in vivo, as compared with other vitamin E isoforms, including α-tocopherol. Besides, γ-tocotrienol abated HDM-induced elevation of BAL fluid cytokine and chemokine levels, total reactive oxygen species and oxidative damage biomarker levels, and of serum IgE levels, but it promoted lung-endogenous antioxidant activities. Mechanistically, γ-tocotrienol was found to block nuclear NF-κB level and enhance nuclear Nrf2 levels in lung lysates to greater extents than did α-tocopherol and prednisolone. More importantly, γ-tocotrienol markedly suppressed methacholine-induced airway hyperresponsiveness in experimental asthma. To our knowledge, we have shown for the first time the protective actions of vitamin E isoform γ-tocotrienol in allergic asthma.
Collapse
Affiliation(s)
- Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore 119228; Immunology Program, Life Science Institute, National University of Singapore, Singapore 117456
| | - Wanxing Eugene Ho
- Saw Swee Hock School of Public Health, National University Health System, Singapore 117597; Singapore-MIT Alliance for Research and Technology, National University of Singapore, Singapore 117543
| | - Chang Cheng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore 119228
| | - Tze Khee Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore 119228; Immunology Program, Life Science Institute, National University of Singapore, Singapore 117456; Singapore-MIT Alliance for Research and Technology, National University of Singapore, Singapore 117543
| | - Ann Ching Genevieve Seow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore 119228
| | - Albert Y H Lim
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore 308433
| | - Chee Wai Fong
- Davos Life Science Private Limited, Singapore 637795; and
| | - Kok Yong Seng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore 119228; Defence Medical and Environmental Research Institute, Defence Science Organisation National Laboratories, Singapore 117510
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University Health System, Singapore 117597
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore 119228; Immunology Program, Life Science Institute, National University of Singapore, Singapore 117456;
| |
Collapse
|
12
|
Abruzzo PM, Marini M, Bolotta A, Malisardi G, Manfredini S, Ghezzo A, Pini A, Tasco G, Casadio R. Frataxin mRNA isoforms in FRDA patients and normal subjects: effect of tocotrienol supplementation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:276808. [PMID: 24175286 PMCID: PMC3794619 DOI: 10.1155/2013/276808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/06/2013] [Accepted: 08/17/2013] [Indexed: 11/22/2022]
Abstract
Friedreich's ataxia (FRDA) is caused by deficient expression of the mitochondrial protein frataxin involved in the formation of iron-sulphur complexes and by consequent oxidative stress. We analysed low-dose tocotrienol supplementation effects on the expression of the three splice variant isoforms (FXN-1, FXN-2, and FXN-3) in mononuclear blood cells of FRDA patients and healthy subjects. In FRDA patients, tocotrienol leads to a specific and significant increase of FXN-3 expression while not affecting FXN-1 and FXN-2 expression. Since no structural and functional details were available for FNX-2 and FXN-3, 3D models were built. FXN-1, the canonical isoform, was then docked on the human iron-sulphur complex, and functional interactions were computed; when FXN-1 was replaced by FXN-2 or FNX-3, we found that the interactions were maintained, thus suggesting a possible biological role for both isoforms in human cells. Finally, in order to evaluate whether tocotrienol enhancement of FXN-3 was mediated by an increase in peroxisome proliferator-activated receptor-γ (PPARG), PPARG expression was evaluated. At a low dose of tocotrienol, the increase of FXN-3 expression appeared to be independent of PPARG expression. Our data show that it is possible to modulate the mRNA expression of the minor frataxin isoforms and that they may have a functional role.
Collapse
Affiliation(s)
- Provvidenza Maria Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Alessandra Bolotta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Gemma Malisardi
- Department of Pharmaceutical Sciences, University of Ferrara, 44100 Ferrara, Italy
| | - Stefano Manfredini
- Department of Pharmaceutical Sciences, University of Ferrara, 44100 Ferrara, Italy
| | - Alessandro Ghezzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
- ANFFAS ONLUS Macerata, 62100 Macerata, Italy
| | - Antonella Pini
- Child Neurology and Psychiatry Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, 40100 Bologna, Italy
| | - Gianluca Tasco
- Biocomputing Group, CIRI-Health Science and Technology, Department of Biology, Bologna 40126, Italy
| | - Rita Casadio
- Biocomputing Group, CIRI-Health Science and Technology, Department of Biology, Bologna 40126, Italy
| |
Collapse
|
13
|
Physiological effects and tissue distribution from large doses of tocotrienol in rats. Biosci Biotechnol Biochem 2012; 76:1805-8. [PMID: 22972347 DOI: 10.1271/bbb.120387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Supplementation to an AIN93G-based diet of tocotrienol (T3) for 13 weeks administered to Fischer 344/slc rats showed a safety profile with no side effects. Dose-dependent T3 levels were detected in many tissues. Under the present experimental conditions, a continuous intake of the T3 concentrate would be safe in the rats as long as the T3 content was less than 0.20% of the dietary intake.
Collapse
|
14
|
Thoolen B, Maronpot RR, Harada T, Nyska A, Rousseaux C, Nolte T, Malarkey DE, Kaufmann W, Küttler K, Deschl U, Nakae D, Gregson R, Vinlove MP, Brix AE, Singh B, Belpoggi F, Ward JM. Proliferative and nonproliferative lesions of the rat and mouse hepatobiliary system. Toxicol Pathol 2011; 38:5S-81S. [PMID: 21191096 DOI: 10.1177/0192623310386499] [Citation(s) in RCA: 405] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally-accepted nomenclature for proliferative and non-proliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature and differential diagnosis for classifying microscopic lesions observed in the hepatobiliary system of laboratory rats and mice, with color microphotographs illustrating examples of some lesions. The standardized nomenclature presented in this document is also available for society members electronically on the internet (http://goreni.org). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous and aging lesions as well as lesions induced by exposure to test materials. A widely accepted and utilized international harmonization of nomenclature for lesions of the hepatobiliary system in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Bob Thoolen
- Global Pathology Support, The Hague, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Aggarwal BB, Sundaram C, Prasad S, Kannappan R. Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases. Biochem Pharmacol 2010; 80:1613-31. [PMID: 20696139 DOI: 10.1016/j.bcp.2010.07.043] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/12/2010] [Accepted: 07/27/2010] [Indexed: 02/07/2023]
Abstract
Initially discovered in 1938 as a "fertility factor," vitamin E now refers to eight different isoforms that belong to two categories, four saturated analogues (α, β, γ, and δ) called tocopherols and four unsaturated analogues referred to as tocotrienols. While the tocopherols have been investigated extensively, little is known about the tocotrienols. Very limited studies suggest that both the molecular and therapeutic targets of the tocotrienols are distinct from those of the tocopherols. For instance, suppression of inflammatory transcription factor NF-κB, which is closely linked to tumorigenesis and inhibition of HMG-CoA reductase, mammalian DNA polymerases and certain protein tyrosine kinases, is unique to the tocotrienols. This review examines in detail the molecular targets of the tocotrienols and their roles in cancer, bone resorption, diabetes, and cardiovascular and neurological diseases at both preclinical and clinical levels. As disappointment with the therapeutic value of the tocopherols grows, the potential of these novel vitamin E analogues awaits further investigation.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 143, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
16
|
alpha-Tocopherol attenuates the cytotoxic effect of delta-tocotrienol in human colorectal adenocarcinoma cells. Biochem Biophys Res Commun 2010; 397:214-9. [PMID: 20493172 DOI: 10.1016/j.bbrc.2010.05.087] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 05/16/2010] [Indexed: 12/27/2022]
Abstract
Recent studies have demonstrated that tocotrienol (T3) is superior to tocopherol (Toc) for cancer chemoprevention. However, there is little information on whether Toc influences the anticancer property of T3. In this study, we investigated the influence of Toc on the cytotoxic effects of delta-T3 in DLD-1 human colorectal adenocarcinoma cells. Toc, especially alpha-Toc, attenuated delta-T3-induced cytotoxicity and apoptosis in DLD-1 cells, whereas Toc alone did not exhibit any cytotoxic effect. delta-T3-induced cell cycle arrest and proapoptotic gene/protein expression (e.g., p21, p27, and caspases) were abrogated by alpha-Toc. Furthermore, coadministration of alpha-Toc decreased delta-T3 uptake into DLD-1 cells in a dose-dependent manner. These results indicate that alpha-Toc is not only less cytotoxic to cancer cells, but it also reduces the cytotoxicity of delta-T3 by inhibiting its cellular uptake.
Collapse
|
17
|
Tasaki M, Umemura T, Kijima A, Inoue T, Okamura T, Kuroiwa Y, Ishii Y, Nishikawa A. Simultaneous induction of non-neoplastic and neoplastic lesions with highly proliferative hepatocytes following dietary exposure of rats to tocotrienol for 2 years. Arch Toxicol 2009; 83:1021-30. [PMID: 19669731 DOI: 10.1007/s00204-009-0461-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/27/2009] [Indexed: 01/11/2023]
Abstract
It was recently shown that 1-year chronic exposure of rats to tocotrienol (TT) induced highly proliferative liver lesions, nodular hepatocellular hyperplasia (NHH), and independently increased the number of glutathione S-transferase placental form (GST-P)-positive hepatocytes. Focusing attention on the pathological intrinsic property of NHH, a 104-week carcinogenicity study was performed in male and female Wistar Hannover rats given TT at concentrations of 0, 0.4 or 2% in the diet. The high-dose level was adjusted to 1% in both sexes from week 51 because the survival rate of the high-dose males dropped to 42% by week 50. At necropsy, multiple cyst-like nodules were observed, as in the chronic study, but were further enlarged in size, which consequently formed a protuberant surface with a partly pedunculated shape in the liver at the high dose in both sexes. Unlike the chronic study, NHH was not always accompanied by spongiosis, and instead angiectasis was prominent in some nodules. However, several findings in the affected hepatocytes such as minimal atypia, no GST-P immunoreactivity and heterogeneous proliferation, implied that NHH did not harbor neoplastic characteristics from increased exposure despite sustained high cell proliferation. On the other hand, in the high-dose females, the incidence of hepatocellular adenomas was significantly higher than in the control. There was no TT treatment-related tumor induction in any other organs besides the liver. Thus, the overall data clearly suggested that NHH is successively enlarged by further long-term exposure to TT, but does not become neoplastic. In contrast, TT induces low levels of hepatocellular adenomas in female rats.
Collapse
Affiliation(s)
- Masako Tasaki
- Division of Pathology, National Institute of Health Sciences, Setagaya-ku, Tokyo, 158-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|