1
|
Hatzidaki E, Pagkalou M, Katsikantami I, Vakonaki E, Kavvalakis M, Tsatsakis AM, Tzatzarakis MN. Endocrine-Disrupting Chemicals and Persistent Organic Pollutants in Infant Formulas and Baby Food: Legislation and Risk Assessments. Foods 2023; 12:1697. [PMID: 37107492 PMCID: PMC10137371 DOI: 10.3390/foods12081697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Human milk is the healthiest option for newborns, although, under specific circumstances, infant formula is a precious alternative for feeding the baby. Except for the nutritional content, infant formulas and baby food must be pollutant-free. Thus, their composition is controlled by continuous monitoring and regulated by establishing upper limits and guideline values for safe exposure. Legislation differs worldwide, although there are standard policies and strategies for protecting vulnerable infants. This work presents current regulations and directives for restricting endocrine-disrupting chemicals and persistent organic pollutants in infant formulas. Risk assessment studies, which are limited, are necessary to depict exposure variations and assess the health risks for infants from dietary exposure to pollutants.
Collapse
Affiliation(s)
- Eleftheria Hatzidaki
- Department of Neonatology & NICU, University Hospital of Heraklion, 71003 Heraklion, Crete, Greece
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Marina Pagkalou
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Ioanna Katsikantami
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Matthaios Kavvalakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Manolis N. Tzatzarakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| |
Collapse
|
2
|
Källsten L, Almamoun R, Pierozan P, Nylander E, Sdougkou K, Martin JW, Karlsson O. Adult Exposure to Di-N-Butyl Phthalate (DBP) Induces Persistent Effects on Testicular Cell Markers and Testosterone Biosynthesis in Mice. Int J Mol Sci 2022; 23:ijms23158718. [PMID: 35955852 PMCID: PMC9369267 DOI: 10.3390/ijms23158718] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Studies indicate that phthalates are endocrine disruptors affecting reproductive health. One of the most commonly used phthalates, di-n-butyl phthalate (DBP), has been linked with adverse reproductive health outcomes in men, but the mechanisms behind these effects are still poorly understood. Here, adult male mice were orally exposed to DBP (10 or 100 mg/kg/day) for five weeks, and the testis and adrenal glands were collected one week after the last dose, to examine more persistent effects. Quantification of testosterone, androstenedione, progesterone and corticosterone concentrations by liquid chromatography-mass spectrometry showed that testicular testosterone was significantly decreased in both DBP treatment groups, whereas the other steroids were not significantly altered. Western blot analysis of testis revealed that DBP exposure increased the levels of the steroidogenic enzymes CYP11A1, HSD3β2, and CYP17A1, the oxidative stress marker nitrotyrosine, and the luteinizing hormone receptor (LHR). The analysis further demonstrated increased levels of the germ cell marker DAZL, the Sertoli cell markers vimentin and SOX9, and the Leydig cell marker SULT1E1. Overall, the present work provides more mechanistic understanding of how adult DBP exposure can induce effects on the male reproductive system by affecting several key cells and proteins important for testosterone biosynthesis and spermatogenesis, and for the first time shows that these effects persist at least one week after the last dose. It also demonstrates impairment of testosterone biosynthesis at a lower dose than previously reported.
Collapse
|
3
|
Fragki S, Hoogenveen R, van Oostrom C, Schwillens P, Piersma AH, Zeilmaker MJ. Integrating in vitro chemical transplacental passage into a generic PBK model: A QIVIVE approach. Toxicology 2022; 465:153060. [PMID: 34871708 DOI: 10.1016/j.tox.2021.153060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
Abstract
With the increasing application of cell culture models as primary tools for predicting chemical safety, the quantitative extrapolation of the effective dose from in vitro to in vivo (QIVIVE) is of increasing importance. For developmental toxicity this requires scaling the in vitro observed dose-response characteristics to in vivo fetal exposure, while integrating maternal in vivo kinetics during pregnancy, in particular transplacental transfer. Here the transfer of substances across the placental barrier, has been studied using the in vitro BeWo cell assay and six embryotoxic compounds of different kinetic complexity. The BeWo assay results were incorporated in an existing generic Physiologically Based Kinetic (PBK) model which for this purpose was extended with rat pregnancy. Finally, as a "proof of principle", the BeWo PBK model was used to perform a QIVIVE based on developmental toxicity as observed in various different in vitro toxicity assays. The BeWo results illustrated different transport profiles of the chemicals across the BeWo monolayer, allocating the substances into two distinct groups: the 'quickly-transported' and the 'slowly-transported'. BeWo PBK exposure simulations during gestation were compared to experimentally measured maternal blood and fetal concentrations and a reverse dosimetry approach was applied to translate in vitro observed embryotoxicity into equivalent in vivo dose-response curves. This approach allowed for a direct comparison of the in vitro dose-response characteristics as observed in the Whole Embryo Culture (WEC), and the Embryonic Stem Cell test (cardiac:ESTc and neural:ESTn) with in vivo rat developmental toxicity data. Overall, the in vitro to in vivo comparisons suggest a promising future for the application of such QIVIVE methodologies for screening and prioritization purposes of developmental toxicants. Nevertheless, the clear need for further improvements is acknowledged for a wider application of the approach in chemical safety assessment.
Collapse
Affiliation(s)
- Styliani Fragki
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Rudolf Hoogenveen
- Centre for Statistics, Informatics and Modelling, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Conny van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Paul Schwillens
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD, Utrecht, the Netherlands
| | - Marco J Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
4
|
Ma T, Hou J, Zhou Y, Chen Y, Qiu J, Wu J, Ding J, Han X, Li D. Dibutyl phthalate promotes juvenile Sertoli cell proliferation by decreasing the levels of the E3 ubiquitin ligase Pellino 2. Environ Health 2020; 19:87. [PMID: 32738922 PMCID: PMC7395429 DOI: 10.1186/s12940-020-00639-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/27/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND A previous study showed that dibutyl phthalate (DBP) exposure disrupted the growth of testicular Sertoli cells (SCs). In the present study, we aimed to investigate the potential mechanism by which DBP promotes juvenile SC proliferation in vivo and in vitro. METHODS Timed pregnant BALB/c mice were exposed to vehicle, or DBP (50, 250, and 500 mg/kg/day) from 12.5 days of gestation until delivery. In vitro, CCK-8 and EdU incorporation assays were performed to determine the effect of monobutyl phthalate (MBP), the active metabolite of DBP, on the proliferation of TM4 cells, which are a juvenile testicular SC cell line. Western blotting analysis, quantitative PCR (q-PCR), and flow cytometry were performed to analyse the expression of genes and proteins related to the proliferation and apoptosis of TM4 cells. Coimmunoprecipitation was used to determine the relationship between the ubiquitination of interleukin 1 receptor-associated kinase 1 (IRAK1) and the effect of MBP on promoting the proliferation of TM4 cells. RESULTS In the 50 mg/kg/day DBP-exposed male mice offspring, the number of SCs was significantly increased. Consistent with the in vivo results, in vitro experiments revealed that 0.1 mM MBP treatment promoted the proliferation of TM4 cells. Furthermore, the data showed that 0.1 mM MBP-mediated downregulation of the E3 ubiquitin ligase Pellino 2 (Peli2) increased ubiquitination of IRAK1 by K63, which activated MAPK/JNK signalling, leading to the proliferation of TM4 cells. CONCLUSIONS Prenatal exposure to DBP led to abnormal proliferation of SCs in prepubertal mice by affecting ubiquitination of the key proliferation-related protein IRAK1 via downregulation of Peli2.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yusheng Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jiayin Qiu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
5
|
Developmental, behavioral and endocrine alterations in male rats at early and late postnatal life following in utero exposure to low dose di- n-butylphthalate. Toxicol Res 2020; 37:173-181. [PMID: 33868975 DOI: 10.1007/s43188-020-00050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/30/2020] [Accepted: 05/25/2020] [Indexed: 10/23/2022] Open
Abstract
Environmental chemical pollutants that interfere with hormonal homeostasis or hormone signaling are the relevant agents inducing congenital or postnatally developed reproductive abnormalities in human beings, wild and domestic animals. In this study, we are examining reproductive effects of prenatal exposure of male rats to a low dose di-n-butylphthalate (DBP). Wistar female rats were given intragastrically DBP at a daily dose of 100 mg/kg b.w. during 15th-21st days of pregnancy. Anogenital distance (AGD) in male offspring decreased on postnatal day (PND) 2 followed by its normalization on PND 7 and 10. There were no other visible teratogenic lesions in the newborns. The testicle descent into scrotum of control males occurred on PND 38.5 ± 0.1, while in DBP group it accelerated by 5.3 days on the average. At the age of 6 months, DBP-exposed animals exhibited double increase of blood plasma testosterone level as compared to controls, and hyperactive male sexual behavior in the presence of receptive female. The duration of latent periods of the first mount and the first intromission, as well as post-ejaculatory refractory period, have been shortened; the number of mounts with intromission and the number of ejaculations increased significantly. Histological examination of the testes indicated activation of Leydig cells. The female-type sexual behavior as evaluated by appearance of lordosis of orchidectomized and primed with estradiol and progesterone 10-month-old males in response to mount or approach of sexually active normal male was enhanced in DBP-group. Both 10-month-old and aging males (18 months), castrated and hormone-primed, displayed homosexual type of behavior. Prenatal low dose DBP caused in 18-month-old males premature atrophy of the testes and accessory sexual glands, increased number of Leydig cell adenomas, a twice decrease of plasma testosterone level and exhausting of sexual potency. We concluded that prenatal exposition of male rats to low dose DBP determines epigenetic alterations of programming of sex brain differentiation and regulation of testicular steroidogenesis that leads to reproductive disorders and accelerated aging of reproductive system.
Collapse
|
6
|
Application of a combined aggregate exposure pathway and adverse outcome pathway (AEP-AOP) approach to inform a cumulative risk assessment: A case study with phthalates. Toxicol In Vitro 2020; 66:104855. [PMID: 32278033 DOI: 10.1016/j.tiv.2020.104855] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022]
Abstract
Advancements in measurement and modeling capabilities are providing unprecedented access to estimates of chemical exposure and bioactivity. With this influx of new data, there is a need for frameworks that help organize and disseminate information on chemical hazard and exposure in a manner that is accessible and transparent. A case study approach was used to demonstrate integration of the Adverse Outcome Pathway (AOP) and Aggregate Exposure Pathway (AEP) frameworks to support cumulative risk assessment of co-exposure to two phthalate esters that are ubiquitous in the environment and that are associated with disruption of male sexual development in the rat: di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP). A putative AOP was developed to guide selection of an in vitro assay for derivation of bioactivity values for DEHP and DnBP and their metabolites. AEPs for DEHP and DnBP were used to extract key exposure data as inputs for a physiologically based pharmacokinetic (PBPK) model to predict internal metabolite concentrations. These metabolite concentrations were then combined using in vitro-based relative potency factors for comparison with an internal dose metric, resulting in an estimated margin of safety of ~13,000. This case study provides an adaptable workflow for integrating exposure and toxicity data by coupling AEP and AOP frameworks and using in vitro and in silico methodologies for cumulative risk assessment.
Collapse
|
7
|
Baken KA, Lambrechts N, Remy S, Mustieles V, Rodríguez-Carrillo A, Neophytou CM, Olea N, Schoeters G. A strategy to validate a selection of human effect biomarkers using adverse outcome pathways: Proof of concept for phthalates and reproductive effects. ENVIRONMENTAL RESEARCH 2019; 175:235-256. [PMID: 31146096 DOI: 10.1016/j.envres.2019.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/21/2023]
Abstract
Human biomonitoring measures the concentrations of environmental chemicals or their metabolites in body fluids or tissues. Complementing exposure biomarkers with mechanistically based effect biomarkers may further elucidate causal pathways between chemical exposure and adverse health outcomes. We combined information on effect biomarkers previously implemented in human observational studies with mechanisms of action reported in experimental studies and with information from published Adverse Outcome Pathways (AOPs), focusing on adverse reproductive effects of phthalate exposure. Phthalates constitute a group of chemicals that are ubiquitous in consumer products and have been related to a wide range of adverse health effects. As a result of a comprehensive literature search, we present an overview of effect biomarkers for reproductive toxicity that are substantiated by mechanistic information. The activation of several receptors, such as PPARα, PPARγ, and GR, may initiate events leading to impaired male and female fertility as well as other adverse effects of phthalate exposure. Therefore, these receptors appear as promising targets for the development of novel effect biomarkers. The proposed strategy connects the fields of epidemiology and toxicology and may strengthen the weight of evidence in observational studies that link chemical exposures to health outcomes.
Collapse
Affiliation(s)
- Kirsten A Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium.
| | - Nathalie Lambrechts
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Sylvie Remy
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - Vicente Mustieles
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Christiana M Neophytou
- Department of Biological Sciences, School of Pure and Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nicolas Olea
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Greet Schoeters
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Wang G, Wang J, Zhu L, Wang J, Li H, Zhang Y, Liu W, Gao J. Oxidative Damage and Genetic Toxicity Induced by DBP in Earthworms (Eisenia fetida). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 74:527-538. [PMID: 28913550 DOI: 10.1007/s00244-017-0451-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Di-n-butyl phthalate (DBP) is one of the most ubiquitous plasticizers used worldwide. However, it has negatives effects on the soil, water, atmosphere, and other environmental media and can cause serious pollution. According to the artificial soil test and previous studies, this study was conducted to evaluate the toxicity of earthworms induced by DBP at different concentrations (0, 0.1, 1.0, 10, and 50 mg kg-1) on the 7th, 14th, 21st, and 28th days of exposure. The variations in the antioxidant activities of enzymes, such as catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and glutathione-S-transferase (GST), in the amounts of malondialdehyde (MDA) and reactive oxygen species (ROS) and in the amount of DNA damage were measured to evaluate the toxic impact of DBP in earthworms. Upon exposure to DBP, the SOD, CAT, POD, and GST activities were significantly increased, with the exception of the 0.1 mg kg-1 treatment dose. High concentrations of DBP (10 and 50 mg kg-1) induced superfluous ROS to be produced and caused the MDA content to increase significantly. Therefore, we proposed that DBP led to DNA damage in earthworm coelomocytes in a dose-dependent manner, which means that DBP is a source of oxidative damage and genetic toxicity in earthworms.
Collapse
Affiliation(s)
- Guanying Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China
| | - Hengzhou Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China
| | - Yizhang Zhang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenjun Liu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China
| | - Jianpeng Gao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
9
|
Moreau M, Leonard J, Phillips KA, Campbell J, Pendse SN, Nicolas C, Phillips M, Yoon M, Tan YM, Smith S, Pudukodu H, Isaacs K, Clewell H. Using exposure prediction tools to link exposure and dosimetry for risk-based decisions: A case study with phthalates. CHEMOSPHERE 2017; 184:1194-1201. [PMID: 28672700 PMCID: PMC6084441 DOI: 10.1016/j.chemosphere.2017.06.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/15/2017] [Accepted: 06/23/2017] [Indexed: 05/22/2023]
Abstract
A few different exposure prediction tools were evaluated for use in the new in vitro-based safety assessment paradigm using di-2-ethylhexyl phthalate (DEHP) and dibutyl phthalate (DnBP) as case compounds. Daily intake of each phthalate was estimated using both high-throughput (HT) prediction models such as the HT Stochastic Human Exposure and Dose Simulation model (SHEDS-HT) and the ExpoCast heuristic model and non-HT approaches based on chemical specific exposure estimations in the environment in conjunction with human exposure factors. Reverse dosimetry was performed using a published physiologically based pharmacokinetic (PBPK) model for phthalates and their metabolites to provide a comparison point. Daily intakes of DEHP and DnBP were estimated based on the urinary concentrations of their respective monoesters, mono-2-ethylhexyl phthalate (MEHP) and monobutyl phthalate (MnBP), reported in NHANES (2011-2012). The PBPK-reverse dosimetry estimated daily intakes at the 50th and 95th percentiles were 0.68 and 9.58 μg/kg/d and 0.089 and 0.68 μg/kg/d for DEHP and DnBP, respectively. For DEHP, the estimated median from PBPK-reverse dosimetry was about 3.6-fold higher than the ExpoCast estimate (0.68 and 0.18 μg/kg/d, respectively). For DnBP, the estimated median was similar to that predicted by ExpoCast (0.089 and 0.094 μg/kg/d, respectively). The SHEDS-HT prediction of DnBP intake from consumer product pathways alone was higher at 0.67 μg/kg/d. The PBPK-reverse dosimetry-estimated median intake of DEHP and DnBP was comparable to values previously reported for US populations. These comparisons provide insights into establishing criteria for selecting appropriate exposure prediction tools for use in an integrated modeling platform to link exposure to health effects.
Collapse
Affiliation(s)
- Marjory Moreau
- Scitovation, 6 Davis Drive, Durham, NC 27709, United States
| | - Jeremy Leonard
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Rd, Oak Ridge, TN 37830, United States
| | - Katherine A Phillips
- National Exposure Research Laboratory, US Environmental Protection Agency, 109 TW Alexander Dr, Durham, NC 27709, United States
| | - Jerry Campbell
- Ramboll Environ, 6 Davis Drive, Durham, NC 27709, United States
| | - Salil N Pendse
- Scitovation, 6 Davis Drive, Durham, NC 27709, United States
| | | | | | - Miyoung Yoon
- Scitovation, 6 Davis Drive, Durham, NC 27709, United States.
| | - Yu-Mei Tan
- National Exposure Research Laboratory, US Environmental Protection Agency, 109 TW Alexander Dr, Durham, NC 27709, United States.
| | - Sherrie Smith
- North Carolina State University, Raleigh, NC 27695, United States
| | - Harish Pudukodu
- North Carolina State University, Raleigh, NC 27695, United States
| | - Kristin Isaacs
- National Exposure Research Laboratory, US Environmental Protection Agency, 109 TW Alexander Dr, Durham, NC 27709, United States
| | - Harvey Clewell
- Scitovation, 6 Davis Drive, Durham, NC 27709, United States
| |
Collapse
|
10
|
Ozaki H, Sugihara K, Watanabe Y, Moriguchi K, Uramaru N, Sone T, Ohta S, Kitamura S. Comparative study of hydrolytic metabolism of dimethyl phthalate, dibutyl phthalate and di(2-ethylhexyl) phthalate by microsomes of various rat tissues. Food Chem Toxicol 2016; 100:217-224. [PMID: 28007454 DOI: 10.1016/j.fct.2016.12.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022]
Abstract
Phthalates are used in food packaging, and are transferred to foods as contaminants. In this study, we examined the hydrolytic metabolism of dimethyl phthalate (DMP), dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) by rat tissue microsomes. We found that carboxylesterase and lipase contribute differently to these activities. When DMP, DBP and DEHP were incubated with rat liver microsomes, DBP was most effectively hydrolyzed to the phthalate monoester, followed by DMP, and the activity toward DEHP was marginal. In contrast, small-intestinal microsomes exhibited relatively higher activity toward long-side-chain phthalates. Pancreatic microsomes showed high activity toward DEHP and DBP. Liver microsomal hydrolase activity toward DMP was markedly inhibited by bis(4-nitrophenyl)phosphate, and could be extracted with Triton X-100. The activity toward DBP and DEHP was partly inhibited by carboxylesterase inhibitor, and was partly solubilized with Triton X-100. Ces1e, Ces1d and Ces1f expressed in COS cells exhibited the highest hydrolase activity toward DBP, showing a similar pattern to that of liver microsomes. Ces1e showed activity towards DMP and DEHP. Pancreatic lipase also hydrolyzed DBP and DEHP. Thus, carboxylesterase and lipase contribute differently to phthalate hydrolysis: short-side-chain phthalates are mainly hydrolyzed by carboxylesterase and long-side-chain phthalates are mainly hydrolyzed by lipase.
Collapse
Affiliation(s)
- Hitomi Ozaki
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazumi Sugihara
- Faculty of Pharmaceutical Science, Hiroshima International University, Koshingai 5-1-1, Kure, Hiroshima, 737-0112, Japan
| | - Yoko Watanabe
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Kyoko Moriguchi
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Naoto Uramaru
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Tomomichi Sone
- Faculty of Pharmaceutical Sciences, Setsunan University, Nagaotoge-cho 45-1, Hirakata, Osaka 573-0101, Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Shigeyuki Kitamura
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan.
| |
Collapse
|
11
|
Katsikantami I, Sifakis S, Tzatzarakis MN, Vakonaki E, Kalantzi OI, Tsatsakis AM, Rizos AK. A global assessment of phthalates burden and related links to health effects. ENVIRONMENT INTERNATIONAL 2016; 97:212-236. [PMID: 27669632 DOI: 10.1016/j.envint.2016.09.013] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 05/17/2023]
Abstract
Phthalates are ubiquitous environmental contaminants which are used in industry as plasticizers and additives in cosmetics. They are classified as Endocrine Disrupting Chemicals (EDCs) which impair the human endocrine system inducing fertility problems, respiratory diseases, childhood obesity and neuropsychological disorders. The aim of this review is to summarize the current state of knowledge on the toxicity that phthalates pose in humans based on human biomonitoring studies conducted over the last decade. Except for conventional biological matrices (such as urine and serum), amniotic fluid, human milk, semen, saliva, sweat, meconium and human hair are also employed for the estimation of exposure and distribution of pollutants in the human body, although data are not enough yet. Children are highly exposed to phthalates relative to adults and in most studies children's daily intake surpasses the maximum reference dose (RfD) set from US Environmental Protection Agency (US EPA). However, the global trend is that human exposure to phthalates is decreasing annually as a result of the strict regulations applied to phthalates.
Collapse
Affiliation(s)
- Ioanna Katsikantami
- Department of Chemistry, University of Crete, and Foundation for Research and Technology-Hellas, FORTH-IESL, GR-71003 Heraklion, Crete, Greece
| | - Stavros Sifakis
- Department of Obstetrics and Gynecology, University Hospital of Heraklion, GR-71003 Heraklion, Crete, Greece
| | - Manolis N Tzatzarakis
- Center of Toxicology Science and Research, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece
| | - Elena Vakonaki
- Center of Toxicology Science and Research, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece
| | | | - Aristidis M Tsatsakis
- Center of Toxicology Science and Research, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece.
| | - Apostolos K Rizos
- Department of Chemistry, University of Crete, and Foundation for Research and Technology-Hellas, FORTH-IESL, GR-71003 Heraklion, Crete, Greece
| |
Collapse
|
12
|
Jiang JT, Zhong C, Zhu YP, Xu DL, Wood K, Sun WL, Li EH, Liu ZH, Zhao W, Ruan Y, Xia SJ. Prenatal exposure to di-n-butyl phthalate (DBP) differentially alters androgen cascade in undeformed versus hypospadiac male rat offspring. Reprod Toxicol 2016; 61:75-81. [PMID: 26948521 DOI: 10.1016/j.reprotox.2016.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 12/01/2022]
Abstract
This study was to compare the alterations of androgen cascades in di-n-butyl phthalate (DBP)-exposed male offspring without hypospadias (undeformed) versus those with hypospadias. To induce hypospadias in male offspring, pregnant rats received DBP via oral gavage at a dose of 750mg/kg BW/day during gestational days 14-18. The mRNA expression levels of genes downstream of the androgen signaling pathway, such as androgen receptor (AR) and Srd5a2, in testes of undeformed rat pups were similar to those in controls; in hypospadiac rat pups these levels were significantly lower than those of control pups. In contrast, both undeformed and hypospadiac rats had decreased serum testosterone levels, reduced mRNA expression of key enzymes in the androgen synthetic pathway in the testes, and ablated genes of developmental pathways, such as Shh, Bmp4, Fgf8, Fgf10 and Fgfr2, in the genital tubercle (GT) as compared to those in DBP-unexposed controls, albeit hypospadiac rats had a more severe decrement than those of undeformed rats. Although other possibilities cannot be excluded, our findings suggest that the relatively normal levels of testosterone-AR-Srd5a2 may contribute to the resistance to DBP toxicity in undeformed rats. In conclusion, our results showed a potential correlation between decreased testosterone levels, reduced mRNA expression of AR and Srd5a2 and the occurrence of hypospadias in male rat offspring prenatally exposed to DBP.
Collapse
Affiliation(s)
- Jun-Tao Jiang
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Chen Zhong
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Yi-Ping Zhu
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Dong-Liang Xu
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Kristofer Wood
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ 85013, United States
| | - Wen-Lan Sun
- Department of Geriatrics, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - En-Hui Li
- Department of Urology, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou 310014, China
| | - Zhi-Hong Liu
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Wei Zhao
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Yuan Ruan
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China.
| |
Collapse
|
13
|
Harris S, Hermsen SAB, Yu X, Hong SW, Faustman EM. Comparison of toxicogenomic responses to phthalate ester exposure in an organotypic testis co-culture model and responses observed in vivo. Reprod Toxicol 2015; 58:149-59. [PMID: 26472102 DOI: 10.1016/j.reprotox.2015.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/16/2015] [Accepted: 10/07/2015] [Indexed: 12/20/2022]
Abstract
We have developed a three-dimensional testicular co-culture system (3D-TCS) which mimics in vivo testes. In this study, transcriptomic responses to phthalate esters (PE's) were compared in the 3D-TCS with responses in rat testes in vivo. Microarray data from the 3D-TCS and from in vivo testes were used to compare changes in gene expression patterns after exposure to developmentally toxic (DTPE) or developmentally non-toxic (DNTPE) phthalate esters. DTPE treatments clustered separately from DNTPE treatments based on principle components analysis both in vitro and in vivo. Pathway analysis using GO-Elite software showed that terms relating to steroid metabolism or reproductive development were enriched both in vitro and in vivo after DTPE exposure. Processes such as cell cycle, cell proliferation and apoptosis were enriched for DTPE treatments in vitro, but not in vivo. Based on these analyses we concluded that transcriptomic responses in the 3D-TCS reflect key aspects of in vivo phthalate toxicity.
Collapse
Affiliation(s)
- Sean Harris
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA 98105, USA
| | - Sanne A B Hermsen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA 98105, USA
| | - Xiaozhong Yu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA 98105, USA
| | - Sung Woo Hong
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA 98105, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA 98105, USA; Center for Ecogenetics and Environmental Health and Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
14
|
Chen X, Zhou QH, Leng L, Chen X, Sun ZR, Tang NJ. Effects of di(n-butyl) and monobutyl phthalate on steroidogenesis pathways in the murine Leydig tumor cell line MLTC-1. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:332-338. [PMID: 23712133 DOI: 10.1016/j.etap.2013.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/26/2013] [Accepted: 04/28/2013] [Indexed: 06/02/2023]
Abstract
Di(n-butyl) phthalate (DBP) and its active metabolite monobutyl phthalate (MBP) have been shown to disrupt reproductive organ growth. The objective of this study was to evaluate the effects of DBP/MBP on steroidogenesis in the murine Leydig tumor cell line MLTC-1 in vitro. MLTC-1 cells were incubated with various concentrations of DBP (100, 1, 0.01, and 0μmol/l in DMSO) and MBP (1000, 10, 0.1, and 0μmol/l in DMSO) for 24h. Testosterone secretion was stimulated at the lowest doses and inhibited at higher treatment doses of DBP and MBP. The mRNA levels of the side-chain cleavage enzyme (P450scc), cytochrome p450c17 (P450c17) and 3β-hydroxy-steroid dehydrogenase (3βHSD) were significantly reduced in the phthalate-exposed groups, whereas, the transcription and translation of insulin-like hormone 3 (INSL3) was affected by DBP and MBP. Alterations of the steroidogenic enzymes and INSL3 in MLTC-1 cells may be involved in the biphasic effects of DBP/MBP on androgen production.
Collapse
Affiliation(s)
- Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
| | - Qing-Hong Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
| | - Ling Leng
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
| | - Xu Chen
- Tianjin Center Hospital of Gynecology and Obstetrics, Nankai-sanma Road No. 156, Nankai District, Tianjin 300100, China
| | - Zeng-Rong Sun
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China.
| |
Collapse
|
15
|
Balbuena P, Campbell J, Clewell HJ, Clewell RA. Evaluation of a predictive in vitro Leydig cell assay for anti-androgenicity of phthalate esters in the rat. Toxicol In Vitro 2013; 27:1711-8. [DOI: 10.1016/j.tiv.2013.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/26/2013] [Accepted: 03/31/2013] [Indexed: 11/28/2022]
|
16
|
Zeng Q, Wei C, Wu Y, Li K, Ding S, Yuan J, Yang X, Chen M. Approach to distribution and accumulation of dibutyl phthalate in rats by immunoassay. Food Chem Toxicol 2013; 56:18-27. [PMID: 23419389 DOI: 10.1016/j.fct.2013.01.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 01/17/2013] [Accepted: 01/20/2013] [Indexed: 11/17/2022]
Abstract
Dibutyl phthalate (DBP) is mainly taken up by the general population from food intake. To estimate intake of phthalates, determining distribution and accumulation of DBP in biological materials was a critical need. In this work, we set up two novel approaches with a monoclonal antibody specific to DBP to determine the distribution and accumulation of DBP in vivo. The contents of DBP in liver, kidney, stomach and testes were detected by immunofluorescence assays and indirect competitive ELISA. This data give directly evidence that indicates the distribution and accumulation of DBP in vivo. Double-label immunofluorescence assay provides with a visual approach to determination of the distribution and accumulation of DBP. It indicated that DBP accumulated in subcutaneous tissue such as sweat gland, hair follicle. Both of immunofluorescence assay and ELISA can be used to detect the content of DBP in biological materials. Our assays showed that DBP accumulated in viscera being rich in fat, such as liver, kidney and could overcome physiological barriers to penetrate testes. The date suggested that the accumulations of DBP exposed through dermal route were less than that of oral route and most of DBP was metabolized in 2 or 3 days.
Collapse
Affiliation(s)
- Qiang Zeng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chang LW, Hou ML, Tsai TH. Pharmacokinetics of dibutyl phthalate (DBP) in the rat determined by UPLC-MS/MS. Int J Mol Sci 2013; 14:836-49. [PMID: 23344044 PMCID: PMC3565294 DOI: 10.3390/ijms14010836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 01/24/2023] Open
Abstract
Dibutyl phthalate (DBP) is commonly used to increase the flexibility of plastics in industrial products. However, several plasticizers have been illegally used as clouding agents to increase dispersion of aqueous matrix in beverages. This study thus develops a rapid and validated analytical method by ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) for the evaluation of pharmacokinetics of DBP in free moving rats. The UPLC-MS/MS system equipped with positive electrospray ionization (ESI) source in multiple reaction monitoring (MRM) mode was used to monitor m/z 279.25→148.93 transitions for DBP. The limit of quantification for DBP in rat plasma and feces was 0.05 μg/mL and 0.125 μg/g, respectively. The pharmacokinetic results demonstrate that DBP appeared to have a two-compartment model in the rats; the area under concentration versus time (AUC) was 57.8 ± 5.93 min μg/mL and the distribution and elimination half-life (t1/2,α and t1/2,β) were 5.77 ± 1.14 and 217 ± 131 min, respectively, after DBP administration (30 mg/kg, i.v.). About 0.18% of the administered dose was recovered from the feces within 48 h. The pharmacokinetic behavior demonstrated that DBP was quickly degraded within 2 h, suggesting a rapid metabolism low fecal cumulative excretion in the rat.
Collapse
Affiliation(s)
- Li-Wen Chang
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; E-Mails: (L.-W.C.); (M.-L.H.)
| | - Mei-Ling Hou
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; E-Mails: (L.-W.C.); (M.-L.H.)
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; E-Mails: (L.-W.C.); (M.-L.H.)
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei 106, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-2-2826-7115; Fax: +886-2-2822-5044
| |
Collapse
|
18
|
Mitchell RT, Childs AJ, Anderson RA, van den Driesche S, Saunders PTK, McKinnell C, Wallace WHB, Kelnar CJH, Sharpe RM. Do phthalates affect steroidogenesis by the human fetal testis? Exposure of human fetal testis xenografts to di-n-butyl phthalate. J Clin Endocrinol Metab 2012; 97:E341-8. [PMID: 22238399 DOI: 10.1210/jc.2011-2411] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CONTEXT Phthalates are ubiquitous environmental chemicals. Fetal exposure to certain phthalates [e.g. di-n-butyl phthalate (DBP)] causes masculinization disorders in rats, raising concern for similar effects in humans. We investigated whether DBP exposure impairs steroidogenesis by the human fetal testis. OBJECTIVE The aim of the study was to determine effects of DBP exposure on testosterone production by normally growing human fetal testis xenografts. DESIGN Human fetal testes (14-20 wk gestation; n=12) were xenografted into castrate male nude mice that were treated for 4-21 d with vehicle, or 500 mg/kg·d DBP, or monobutyl phthalate (active metabolite of DBP); all mice were treated with human chorionic gonadotropin to mimic normal human pregnancy. Rat fetal testis xenografts were exposed for 4 d to DBP as a positive control. MAIN OUTCOME MEASURES Testosterone production was assessed by measuring host serum testosterone and seminal vesicle (SV) weights at termination, plus testis gene expression (rats). RESULTS Human fetal testis xenografts showed similar survival (∼80%) and total graft weight (8.6 vs. 10.1 mg) in vehicle and DBP-exposed hosts, respectively. Serum testosterone (0.56 vs. 0.64 ng/ml; P>0.05) and SV weight (67.2 vs. 81.9 mg; P>0.05) also did not differ. Exposure to monobutyl phthalate gave similar results. In contrast, exposure of rat fetal xenografts to DBP significantly reduced SV weight and testis Cyp11a1/StAR mRNA expression and lowered testosterone levels, confirming that DBP exposure can inhibit steroidogenesis in xenografts, further validating the negative findings on testosterone production in the human. CONCLUSIONS Exposure of human fetal testes to DBP is unlikely to impair testosterone production as it does in rats. This has important safety and regulatory implications.
Collapse
Affiliation(s)
- R T Mitchell
- Medical Research Council/University of Edinburgh Centre for Reproductive Health, The Queen's Medical Research Institute, Edinburgh Royal Hospital for Sick Children, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
TONG HL, GAO XJ, LI QZ, LIU J, LI N, WAN ZY. Metabolic Regulation of Mammary Gland Epithelial Cells of Dairy Cow by Galactopoietic Compound Isolated from Vaccariae segetalis. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60100-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Scarano WR, Toledo FC, Guerra MT, Pinheiro PFF, Domeniconi RF, Felisbino SL, Campos SGP, Taboga SR, Kempinas WG. Functional and morphological reproductive aspects in male rats exposed to di-n-butyl phthalate (DBP) in utero and during lactation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:972-984. [PMID: 20563931 DOI: 10.1080/15287391003751760] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The potential adverse reproductive effects, with emphasis on the epididymis, of in utero and lactational exposure to 100 mg/kg/d di-n-butyl phthalate (DBP) in adult male rat offspring were investigated. The fetal testis histopathology was also determined. The selected endpoints included reproductive organ weights, sperm motility and morphology, sperm epididymal transit time, sperm quantity in the testis and epididymis, hormonal status, fetal testis and epididymal histopathology and stereology, and androgen receptor (AR), aquaporin 9 (AQP9), and Ki-67 immunoreactivities. Pregnant females were divided into two groups: control (C) and treated (T). The treated females received DBP (100 mg/kg/d, by gavage) from gestation day (GD) 12 to postnatal day (PND) 21, while control dams received the vehicle. Some pregnant dams were killed by decapitation on GD20, and testes from male fetuses were collected for histopathogy. Male rats from other dams were killed at PND 90. Fetal testes from treated group showed Leydig-cell clusters, presence of multinucleated germinative cells, and increase of the interstitial component. Testosterone levels and reproductive organ weights were similar between the treated and control adult groups. DBP treatment did not markedly affect relative proportions of epithelial, stromal, or luminal compartments in the epididymis; sperm counts in the testis and epididymis; sperm transit time; or sperm morphology and motility in adult rats. The AR and AQP9 immunoreactivities and proliferation index were similar for the two groups. These results showed that fetal testes were affected by DBP as evidenced by testicular histopathologic alterations, but reproductive parameters and epididymal structure/function were not significantly altered in the adult animals exposed to 100 mg/kg DBP in utero and during lactation.
Collapse
Affiliation(s)
- Wellerson R Scarano
- Institute of Biosciences, UNESP-University Estadual Paulista, Botucatu, Sao Paulo State, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Struve MF, Gaido KW, Hensley JB, Lehmann KP, Ross SM, Sochaski MA, Willson GA, Dorman DC. Reproductive toxicity and pharmacokinetics of di-n-butyl phthalate (DBP) following dietary exposure of pregnant rats. ACTA ACUST UNITED AC 2009; 86:345-54. [PMID: 19585553 DOI: 10.1002/bdrb.20199] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Most rodent developmental toxicity studies of dibutylphthalate (DBP) have relied on bolus gavage dosing. This study characterized the developmental toxicity of dietary DBP. Pregnant CD rats were given nominal doses of 0, 100, or 500 mg DBP/kg/day in diet (actual intake 0, 112, and 582 mg/kg/day) from gestational day (GD) 12 through the morning of GD 19. Rats were killed 4 or 24 hr thereafter. DBP dietary exposure resulted in significant dose-dependent reductions in testicular mRNA concentration of scavenger receptor class B, member 1; steroidogenic acute regulatory protein; cytochrome P450, family 11, subfamily a, polypeptide 1; and cytochrome P450 family 17, subfamily a, polypeptide 1. These effects were most pronounced 4 hr after the end of exposure. Testicular testosterone was reduced 24 hr post-exposure in both DBP dose groups and 4 hr after termination of the 500-mg DBP/kg/day exposure. Maternal exposure to 500 mg DBP/kg/day induced a significant reduction in male offspring's anogenital distance indicating in utero disruption of androgen function. Leydig cell aggregates, increased cord diameters, and multinucleated gonocytes were present in DBP-treated rats. Monobutyl phthalate, the developmentally toxic metabolite of DBP, and its glucuronide conjugate were found in maternal and fetal plasma, amniotic fluid, and maternal urine. Our results, when compared to previously conducted gavage studies, indicate that approximately equal doses of oral DBP exposure of pregnant rats, from diet or gavage, result in similar responses in male offspring.
Collapse
Affiliation(s)
- Melanie F Struve
- CIIT at The Hamner Institutes for Health Sciences, 6 Davis Drive, P.O. Box 12137, Research Triangle Park, NC 27709-2137, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Drake AJ, van den Driesche S, Scott HM, Hutchison GR, Seckl JR, Sharpe RM. Glucocorticoids amplify dibutyl phthalate-induced disruption of testosterone production and male reproductive development. Endocrinology 2009; 150:5055-64. [PMID: 19819957 DOI: 10.1210/en.2009-0700] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Common male reproductive abnormalities including cryptorchidism, hypospadias, and low sperm counts may comprise a testicular dysgenesis syndrome (TDS), resulting from fetal testis dysfunction during a critical developmental period involving reduced androgen production/action. The recent increase in TDS prevalence suggests environmental/lifestyle factors may be etiologically important. The developing fetus is exposed to multimodal challenges, and we hypothesized that exposure to a combination of factors rather than single agents may be important in the pathogenesis of TDS. We experimentally induced fetal testis dysfunction in rats via treatment of pregnant females daily from embryonic day (e) 13.5 to e21.5 with vehicle, 100 or 500 mg/kg . d dibutyl phthalate (DBP), 0.1 mg/kg . d dexamethasone (Dex), or a combination of DBP + Dex. In adulthood, penile length/normality, testis weight/descent, prostate weight, and plasma testosterone levels were measured plus anogenital distance (AGD) as a measure of androgen action within the masculinization programming window. Intratesticular testosterone and steroidogenic enzyme gene expression were measured in fetal testes at e17.5. High-dose DBP reduced fetal intratesticular testosterone and steroidogenic gene expression; induced mild hypospadias (31%) and cryptorchidism (53%); and reduced penile length, AGD, and testis and prostate weight in adulthood. Dex alone had no effect except to reduce birth weight but amplified the adverse effects of 500 mg/kg . d DBP and exacerbated the effects of 100 mg/kg . d DBP. All adverse effects were highly correlated to AGD, emphasizing the etiological importance of the masculinization programming window. These findings suggest that exposure to common environmental chemicals in combination with, for example, maternal stress, may increase the risk of common male reproductive abnormalities, with implications for human populations.
Collapse
Affiliation(s)
- Amanda J Drake
- Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
23
|
Aylward LL, Hays SM, Gagné M, Krishnan K. Derivation of Biomonitoring Equivalents for di-n-butyl phthalate (DBP), benzylbutyl phthalate (BzBP), and diethyl phthalate (DEP). Regul Toxicol Pharmacol 2009; 55:259-67. [PMID: 19751787 DOI: 10.1016/j.yrtph.2009.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/10/2009] [Indexed: 11/19/2022]
Abstract
Recent efforts worldwide have resulted in a growing database of measured concentrations of chemicals in blood and urine samples taken from the general population. However, few tools exist to assist in the interpretation of the measured values in a health risk context. Biomonitoring Equivalents (BEs) are defined as the concentration or range of concentrations of a chemical or its metabolite in a biological medium (blood, urine, or other medium) that is consistent with an existing health-based exposure guideline, and are derived by integrating available data on pharmacokinetics with existing chemical risk assessments. This study reviews available health-based exposure guidance values for di-n-butyl phthalate (DBP), benzylbutyl phthalate (BzBP), and diethyl phthalate (DEP) from Health Canada, the United States Environmental Protection Agency (U.S. EPA), the Agency for Toxic Substances and Disease Registry (ATSDR), and the European Food Safety Authority (EFSA). BE values corresponding to the oral reference dose (RfD), minimal risk level (MRL) or tolerable daily intake (TDI) estimates from these agencies were derived for each compound based on data on excretion fractions of key urinary metabolites. These values may be used as screening tools for evaluation of biomonitoring data for metabolites of these three phthalate compounds in the context of existing risk assessments and for prioritization of the potential need for additional risk assessment efforts for each of these compounds relative to other chemicals.
Collapse
|
24
|
Liu PS, Tseng FW, Liu JH. Comparative suppression of phthalate monoesters and phthalate diesters on calcium signalling coupled to nicotinic acetylcholine receptors. J Toxicol Sci 2009; 34:255-63. [DOI: 10.2131/jts.34.255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | - Jenn-Hwa Liu
- Division of Gastroenerology, Kuang-Tien General Hospital
| |
Collapse
|