1
|
Micheli L, Nobili S, Lucarini E, Toti A, Margiotta F, Ciampi C, Venturi D, Di Cesare Mannelli L, Ghelardini C. New insights in the mechanisms of opioid analgesia and tolerance: Ultramicronized palmitoylethanolamide down-modulates vascular endothelial growth factor-A in the nervous system. Pharmacol Res 2024; 209:107472. [PMID: 39448045 DOI: 10.1016/j.phrs.2024.107472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Growing evidence suggests that opioid analgesics modulate angiogenesis during pathophysiological processes. Vascular endothelial growth factor-A (VEGF-A) was recently proposed to be involved in pain development. To date, no anti-angiogenic drug is used for pain management. When administered in a bioavailable formulation, (i.e., ultramicronized) N-palmitoylethanolamine (PEA) delays the onset of morphine tolerance, improves morphine analgesic activity and reduces angiogenesis in in vivo models. This study aimed at investigating whether VEGF-A is involved in PEA-induced delay of morphine tolerance. The anti-VEGF-A monoclonal antibody bevacizumab was used as a reference drug. Preemptive and concomitant treatment with ultramicronized PEA delayed morphine tolerance and potentiated the analgesic effect of morphine, while counteracting morphine-induced increase of VEGF-A in the nervous system. Similar results were obtained when bevacizumab was administered together with morphine. Of note, bevacizumab showed an analgesic effect per se. In equianalgesic treatment regimens (obtained through increasing morphine doses and associating PEA), PEA resulted in lower expression of VEGF-A in dorsal root ganglia (DRG) and spinal cord compared to morphine alone. Similar results were observed for plasma levels of the soluble VEGF receptor 1 (sFLT-1). Moreover, in morphine-treated animals, two pain-related genes (i.e., Serpina3n and Eaat2) showed a more than 3-fold increase in their expression at spinal cord and DRG level, with the increase being significantly counteracted by PEA treatment. This study supports the hypothesis that the effects of PEA on morphine analgesia and tolerance may be mediated by the down-modulation of VEGF-A and sFLT-1 in the nervous system and plasma, respectively.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, DrugResearch and Child Health - NEUROFARBA - Section of Pharmacology andToxicology, University of Florence, Viale Pieraccini 6, Florence 50139, Italy.
| | - Stefania Nobili
- Department of Neuroscience, Psychology, DrugResearch and Child Health - NEUROFARBA - Section of Pharmacology andToxicology, University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, DrugResearch and Child Health - NEUROFARBA - Section of Pharmacology andToxicology, University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Alessandra Toti
- Department of Neuroscience, Psychology, DrugResearch and Child Health - NEUROFARBA - Section of Pharmacology andToxicology, University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Francesco Margiotta
- Department of Neuroscience, Psychology, DrugResearch and Child Health - NEUROFARBA - Section of Pharmacology andToxicology, University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Clara Ciampi
- Department of Neuroscience, Psychology, DrugResearch and Child Health - NEUROFARBA - Section of Pharmacology andToxicology, University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Daniel Venturi
- Department of Neuroscience, Psychology, DrugResearch and Child Health - NEUROFARBA - Section of Pharmacology andToxicology, University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, DrugResearch and Child Health - NEUROFARBA - Section of Pharmacology andToxicology, University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, DrugResearch and Child Health - NEUROFARBA - Section of Pharmacology andToxicology, University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| |
Collapse
|
2
|
Wang R, Li S, Wang B, Wang G, Zheng H. Impact of opioids and mu-opioid receptors on oncologic metastasis. Am J Cancer Res 2024; 14:4236-4247. [PMID: 39417177 PMCID: PMC11477826 DOI: 10.62347/scls3277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
Opioids are the most effective and widely used treatments for acute and chronic pain in patients with cancer. This review focuses on the impact of opioids and mu-opioid receptors (MORs) on the stages of oncologic metastasis. Studies have shown that opioids can facilitate tumor progression and are related to a poor prognosis in patients with cancer. As the primary receptor for opioids, MORs play a significant role in regulating malignant tumor transformation and are involved in processes, such as proliferation, angiogenesis, epithelial-mesenchymal transition (EMT), circulating tumor cells (CTCs) and the tumor microenvironment (TME). While clinical trials have investigated the relationship between opioids and patient prognosis, further research is needed to clarify the relationship between opioids, MORs and metastasis.
Collapse
Affiliation(s)
- Runjia Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan, Shandong, China
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Bomin Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan, Shandong, China
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan, Shandong, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
3
|
de Sousa JT, Dihl RR, Menezes Boaretto FB, Garcia ALH, Grivicich I, da Silva J, Picada JN. Morphine decreases cytotoxicity and mutagenicity of doxorubicin in vitro: Implications for cancer chemotherapy. Chem Biol Interact 2023; 382:110652. [PMID: 37524295 DOI: 10.1016/j.cbi.2023.110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/02/2023]
Abstract
Morphine is the most common opioid analgesic administered to treat pain in patients undergoing cancer chemotherapy. This study aimed to evaluate the cytotoxic and mutagenic effects of morphine alone and in combination with doxorubicin (Dox), an antineoplastic agent largely used in patients with solid cancers. Cytotoxicity was evaluated in neuroblastoma (SH-SY5Y) and fibroblast (V79) cells using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay while mutagenicity was assessed using the Salmonella/microsome assay in the absence and in the presence of S9 mix. Morphine showed a cytotoxic effect mainly on SH-SY5Y cells and reduced the cytotoxic effects of Dox when evaluated in a co-treatment procedure. In the Salmonella/microsome assay, it was observed that morphine did not induce mutations and, in fact, decreased the mutagenic effects induced by Dox in TA98 and TA102 strains in the absence of metabolic activation. Furthermore, in the presence of metabolic activation, no induction of mutations was observed with morphine. In conclusion, morphine decreased Dox cytotoxicity in both neuronal and non-neuronal cells and showed antimutagenic effects in the TA102 strain which detects mutagens inducing DNA oxidative damages. However, morphine decreased frameshift mutations induced by Dox in non-cytotoxic concentrations, an effect suggesting interference of Dox intercalation activity that could decrease its chemotherapeutic efficacy. These compelling findings highlight the importance of conducting further studies to explore the potential implications of co-administering morphine and Dox during cancer chemotherapy.
Collapse
Affiliation(s)
- Jayne Torres de Sousa
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicity and Cellular Toxic-Genetic Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900, Canoas, Brazil
| | - Rafael Rodrigues Dihl
- Laboratory of Genetic Toxicity and Cellular Toxic-Genetic Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900, Canoas, Brazil
| | - Fernanda Brião Menezes Boaretto
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900, Canoas, RS, Brazil
| | - Ana Leticia Hilário Garcia
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900, Canoas, RS, Brazil; Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, 92010-000, Canoas, RS, Brazil
| | - Ivana Grivicich
- Laboratory of Cancer Biology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900, Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900, Canoas, RS, Brazil; Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, 92010-000, Canoas, RS, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900, Canoas, RS, Brazil.
| |
Collapse
|
4
|
Tarazi D, Maynes JT. Impact of Opioids on Cellular Metabolism: Implications for Metabolic Pathways Involved in Cancer. Pharmaceutics 2023; 15:2225. [PMID: 37765194 PMCID: PMC10534826 DOI: 10.3390/pharmaceutics15092225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Opioid utilization for pain management is prevalent among cancer patients. There is significant evidence describing the many effects of opioids on cancer development. Despite the pivotal role of metabolic reprogramming in facilitating cancer growth and metastasis, the specific impact of opioids on crucial oncogenic metabolic pathways remains inadequately investigated. This review provides an understanding of the current research on opioid-mediated changes to cellular metabolic pathways crucial for oncogenesis, including glycolysis, the tricarboxylic acid cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS). The existing literature suggests that opioids affect energy production pathways via increasing intracellular glucose levels, increasing the production of lactic acid, and reducing ATP levels through impediment of OXPHOS. Opioids modulate pathways involved in redox balance which may allow cancer cells to overcome ROS-mediated apoptotic signaling. The majority of studies have been conducted in healthy tissue with a predominant focus on neuronal cells. To comprehensively understand the impact of opioids on metabolic pathways critical to cancer progression, research must extend beyond healthy tissue and encompass patient-derived cancer tissue, allowing for a better understanding in the context of the metabolic reprogramming already undergone by cancer cells. The current literature is limited by a lack of direct experimentation exploring opioid-induced changes to cancer metabolism as they relate to tumor growth and patient outcome.
Collapse
Affiliation(s)
- Doorsa Tarazi
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jason T. Maynes
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
5
|
Halcrow PW, Kumar N, Hao E, Khan N, Meucci O, Geiger JD. Mu opioid receptor-mediated release of endolysosome iron increases levels of mitochondrial iron, reactive oxygen species, and cell death. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:19-35. [PMID: 37027339 PMCID: PMC10070011 DOI: 10.1515/nipt-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/15/2022]
Abstract
Objectives Opioids including morphine and DAMGO activate mu-opioid receptors (MOR), increase intracellular reactive oxygen species (ROS) levels, and induce cell death. Ferrous iron (Fe2+) through Fenton-like chemistry increases ROS levels and endolysosomes are "master regulators of iron metabolism" and contain readily-releasable Fe2+ stores. However, mechanisms underlying opioid-induced changes in endolysosome iron homeostasis and downstream-signaling events remain unclear. Methods We used SH-SY5Y neuroblastoma cells, flow cytometry, and confocal microscopy to measure Fe2+ and ROS levels and cell death. Results Morphine and DAMGO de-acidified endolysosomes, decreased endolysosome Fe2+ levels, increased cytosol and mitochondria Fe2+ and ROS levels, depolarized mitochondrial membrane potential, and induced cell death; effects blocked by the nonselective MOR antagonist naloxone and the selective MOR antagonist β-funaltrexamine (β-FNA). Deferoxamine, an endolysosome-iron chelator, inhibited opioid agonist-induced increases in cytosolic and mitochondrial Fe2+ and ROS. Opioid-induced efflux of endolysosome Fe2+ and subsequent Fe2+ accumulation in mitochondria were blocked by the endolysosome-resident two-pore channel inhibitor NED-19 and the mitochondrial permeability transition pore inhibitor TRO. Conclusions Opioid agonist-induced increases in cytosolic and mitochondrial Fe2+ and ROS as well as cell death appear downstream of endolysosome de-acidification and Fe2+ efflux from the endolysosome iron pool that is sufficient to affect other organelles.
Collapse
Affiliation(s)
- Peter W. Halcrow
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nirmal Kumar
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Emily Hao
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Olimpia Meucci
- Department of Physiology and Pharmacology, Drexel University School of Medicine, Philadelphia, PA, USA
| | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
6
|
Mazzotti MC, Teti G, Giorgetti A, Carano F, Pelletti G, Pascali JP, Falconi M, Pelotti S, Fais P. Insights in opiates toxicity: impairment of human vascular mesenchymal stromal cells. Int J Legal Med 2023:10.1007/s00414-023-02961-y. [PMID: 36786894 PMCID: PMC10247844 DOI: 10.1007/s00414-023-02961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
The most common pulmonary findings in opiate-related fatalities are congestion and oedema, as well as acute and/or chronic alveolar haemorrhage, the cause of which is thought to be a damage to the capillary endothelium related to ischemia. Human vascular mesenchymal stromal cells (vMSCs) play a fundamental role in tissue regeneration and repair after endothelial cell injury, and they express opioid receptors. The aim of this study was to assess the effect of in vitro morphine exposure on the physiological activity and maintenance of human vMSCs. vMSCs were obtained from abdominal aorta fragments collected during surgery repair and were exposed to incremental doses (0.1 mM, 0.4 mM, 0.8 mM and 1 mM) of morphine sulphate for 7 days. The effect was investigated through cell viability assessment, proliferation assay, reactive oxygen species (ROS) detection assay, senescence-associated β-galactosidase assay, senescent-related markers (p21WAF1/CIP1 and p16INK4) and the apoptosis-related marker caspase 3. Moreover, an ultrastructural analysis by transmission electron microscopy and in vitro vascular differentiation were evaluated. Results showed a decrease of the cellular metabolic activity, a pro-oxidant and pro-senescence effect, an increase in intracellular ROS and the activation of the apoptosis signalling, as well as ultrastructural modifications and impairment of vascular differentiation after morphine treatment of vMSC. Although confirmation studies are required on real fatal opiate intoxications, the approach based on morphological and immunofluorescence methodologies may have a high potential also as a useful tool or as a complementary method in forensic pathology. The application of these techniques in the future may lead to the identification of new markers and morphological parameters useful as complementary investigations for drug-related deaths.
Collapse
Affiliation(s)
- Maria Carla Mazzotti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy
| | - Gabriella Teti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Arianna Giorgetti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy.
| | - Francesco Carano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Guido Pelletti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy
| | - Jennifer Paola Pascali
- Department of Cardiologic, Thoracic and Vascular Sciences, University of Padova, Via Giustiniani, 2, 35127, Padua, Italy
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Susi Pelotti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy
| | - Paolo Fais
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, 40126, Bologna, Italy
| |
Collapse
|
7
|
Evaluating the expression pattern of the opioid receptor in pituitary neuroendocrine tumors (PitNET) and the role of morphine and naloxone in the regulation of pituitary cell line growth and apoptosis. Biomed Pharmacother 2023; 157:114022. [PMID: 36413835 DOI: 10.1016/j.biopha.2022.114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
PURPOSE The expression pattern of the opioid receptor (MOR) in pituitary neuroendocrine tumors (PitNET) and the possible effect of morphine and naloxone on GH3 cell growth and apoptosis were evaluated. METHODS The 114 pituitary tissues including non-functioning, GH-producing and ACTH-producing PitNET and healthy cadaver pituitary tissues were included. The expression level of the MOR gene and protein was assessed using real-time PCR and Western blot. The association with patient demographic characteristics was assessed. Morphine and naloxone were applied to assess their possible pharmacological role in GH3 pituitary adenoma cell death. The cytotoxic effect, the apoptosis rate, the cell cycle distribution, the content of reactive oxygen species and the caspase 3 activity were measured. RESULTS MOR gene levels increased significantly in pituitary neuroendocrine tumors (PitNET) compared to the healthy pituitary samples. The increased level of MOR gene expression was prominent in invasive functional and non-functional pituitary tumors. A consistent expression pattern was demonstrated for MOR protein levels in PitNET samples. A dose- and time-dependent reduction in the rate of GH3 pituitary cells was observed after morphine treatment with an IC50 of 483 µM after 24 h of incubation. Morphine induced early apoptosis, accumulation of cells in sub-G1 phase, increase in cellular ROS levels and caspase-3 activity. The observed effects of morphine were reversed after MOR blockade using 10 and 25 µM naloxone. CONCLUSION The possible contributing role of the MOR in pituitary tumor cell growth and the putative pharmaceutical effect of morphine in pituitary neuroendocrine tumor cell death (PitNET) is illustrated.
Collapse
|
8
|
Rezaeiamiri E, Asadi M, Hosseini FS, Amanlou A, Dehpour AR, Amanlou M. Thebaine Derivatives as a New Regulator of Tumor Angiogenesis. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1922471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Elnaz Rezaeiamiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Sadat Hosseini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Amanlou
- Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Mæhle BO, Eide GE, Morild I, Lilleng PK. Petechial hemorrhages, ethanol, and opioids in victims from intoxication. Forensic Sci Int 2022; 338:111406. [PMID: 35908337 DOI: 10.1016/j.forsciint.2022.111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
Petechial hemorrhages are of interest to forensic pathologists because of their association with pressure on the neck. This study shows the associations between ethanol, opioids in blood and the risk of petechiae in conjunctivae and eye lids of 865 medico-legally examined victims from intoxication, 112 (12.9 %) with petechiae. Livor mortis on the front, face down body position, higher body weight, and younger age of the victims were independently associated with higher risk of petechiae. These variables were used for adjustment in the logistic regression analyzes. We found associations between ethanol, opioids, and the risk of petechiae when analyzed simultaneously. The association between ethanol and the risk of petechiae differed in opioid negative and positive victims (interaction, p = 0.028). In the opioid negative group, the association was J-formed, victims with low to medium level ethanol having lower risk (OR = 0.77) than those without ethanol or opioids, whereas high ethanol level gave a 4-fold higher risk (OR = 3.97). In the opioid positive group, the J-formed pattern was reversed. Victims with low to medium level ethanol had more than 4 times higher risk (OR = 4.65), whereas high level ethanol gave a slightly elevated risk (OR = 1.34) only compared to no ethanol or opioids. The results suggest that ethanol and opioids have a complex association with the risk of petechiae independent of livor mortis, initial body position, body weight, and age in victims from intoxication. Of practical value for the post-mortem examination is that the pathologist must consider both the ethanol level and the presence of opioids when judging the significance of petechiae in the eye regions.
Collapse
Affiliation(s)
- Bjørn Ove Mæhle
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Geir Egil Eide
- Department of Global Public Health and Primary Care, University of Bergen, and Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - Inge Morild
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Peer Kaare Lilleng
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
Giakomidi D, Bird MF, Lambert DG. Opioids and cancer survival: are we looking in the wrong place? BJA OPEN 2022; 2:100010. [PMID: 37588274 PMCID: PMC10430855 DOI: 10.1016/j.bjao.2022.100010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 08/18/2023]
Abstract
There is a controversial narrative in the anaesthetic literature suggesting that anaesthetic technique (including opioids) may be detrimental to survival after tumour resection. The initial observations were retrospective. Several prospective studies are ongoing; one in breast cancer has reported no adverse outcome. The evidence for an effect of opioids stems from three pieces of information: (1) opioids depress the immune system, (2) opioids potentially promote angiogenesis, and (3) opioids potentially support tumour growth. Although the evidence for (2)/(3) is unclear, combinations of these effects are beneficial to tumours and potentially promote metastatic reseeding. Accepted wisdom suggests that opioid effects are driven by opioid receptor activation but the presence of opioid receptors on immune cells for example is unlikely. Immune cells, vascular endothelium and a range of tumour cells express Toll-like receptor 4 (TLR4) receptors (for Gram-negative bacterial wall components), and there is growing evidence for opioids interacting with this alternative receptor; and for some there is paradoxical naloxone sensitivity. Is the focus on opioid receptors and cancer the wrong target? TLR4 receptor activation produces immune activation, stimulates angiogenesis, and supports tumour survival. We know that some opioids are more immune suppressive than others (there is no such comparative information for angiogenesis and tumour survival); this may correlate with TLR4 activation. If there are clusters of opioids that have more opioid than TLR4 profiles and vice versa, this may influence outcome. If this is the case, then evidence-based advice could be given for perioperative use in the oncology-anaesthesia setting.
Collapse
Affiliation(s)
- Despina Giakomidi
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Hodgkin Building, Leicester, UK
| | - Mark F. Bird
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Hodgkin Building, Leicester, UK
| | - David G. Lambert
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Hodgkin Building, Leicester, UK
| |
Collapse
|
11
|
Santoni A, Santoni M, Arcuri E. Chronic Cancer Pain: Opioids within Tumor Microenvironment Affect Neuroinflammation, Tumor and Pain Evolution. Cancers (Basel) 2022; 14:2253. [PMID: 35565382 PMCID: PMC9104169 DOI: 10.3390/cancers14092253] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Pain can be a devastating experience for cancer patients, resulting in decreased quality of life. In the last two decades, immunological and pain research have demonstrated that pain persistence is primarily caused by neuroinflammation leading to central sensitization with brain neuroplastic alterations and changes in pain responsiveness (hyperalgesia, and pain behavior). Cancer pain is markedly affected by the tumor microenvironment (TME), a complex ecosystem consisting of different cell types (cancer cells, endothelial and stromal cells, leukocytes, fibroblasts and neurons) that release soluble mediators triggering neuroinflammation. The TME cellular components express opioid receptors (i.e., MOR) that upon engagement by endogenous or exogenous opioids such as morphine, initiate signaling events leading to neuroinflammation. MOR engagement does not only affect pain features and quality, but also influences directly and/or indirectly tumor growth and metastasis. The opioid effects on chronic cancer pain are also clinically characterized by altered opioid responsiveness (tolerance and hyperalgesia), a hallmark of the problematic long-term treatment of non-cancer pain. The significant progress made in understanding the immune-mediated development of chronic pain suggests its exploitation for novel alternative immunotherapeutic approaches.
Collapse
Affiliation(s)
- Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Matteo Santoni
- Medical Oncology Unit, Macerata General Hospital, Via Santa Lucia 2, 62100 Macerata, Italy;
| | - Edoardo Arcuri
- IRCCS Regina Elena Cancer Institute, IFO, Via Elio Chianesi 53, 00128 Rome, Italy;
- Ars Medica Pain Clinic, Via Cesare Ferrero da Cambiano 29, 00191 Rome, Italy
| |
Collapse
|
12
|
Oliver AC, DeSarno M, Irvin CG, Kaminsky D, Tidey JW, Sigmon SC, Heil SH, Gaalema DE, Lee D, Bunn JY, Davis DR, Streck JM, Gallagher T, Higgins ST. Effects of Reduced Nicotine Content Cigarettes on Fractional Exhaled Nitric Oxide and Self-Reported Respiratory Health Outcomes Among Smokers With Psychiatric Conditions or Socioeconomic Disadvantage. Nicotine Tob Res 2022; 24:135-140. [PMID: 34255068 PMCID: PMC8826384 DOI: 10.1093/ntr/ntab145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION This study examined whether exposure to reduced-nicotine-content cigarettes (RNCCs) for 12 weeks alters respiratory health using Fractional Exhaled Nitric Oxide (FeNO), a validated biomarker of respiratory epithelial health, and the Respiratory Health Questionnaire (RHQ), a subject-rated questionnaire on respiratory symptoms. Participants were 747 adult daily smokers enrolled in three double-blind, randomized clinical trials evaluating effects of cigarette nicotine content (0.4, 2.4, 15.8 mg nicotine/g tobacco) in people with affective disorders, opioid use disorder (OUD), or socioeconomic disadvantage. AIMS AND METHODS FeNO levels and RHQ ratings were collected at baseline and Weeks 6 and 12 following randomization. Multiple regression was used to assess associations of FeNO and RHQ with smoking characteristics. Mixed-model repeated-measures ANOVA was used to evaluate the effects of nicotine content on FeNO and RHQ outcomes over the 12-week study period. RESULTS FeNO levels but not RHQ ratings varied inversely with smoking characteristics at baseline (Ps < 0.0001) in smokers with affective disorders and socioeconomic disadvantage but less so in those with OUD. Participants with affective disorders and socioeconomic disadvantage, but not those with OUD, who were assigned to RNCCs had higher FeNO levels at Week 12 than those assigned to the 15.8 mg/g dose [F(2,423) = 4.51, p = .01, Cohen's d = 0.21]. No significant dose-related changes in RHQ scores were identified. CONCLUSIONS Use of RNCCs across a 12-week period attenuates smoking-related reductions in FeNO levels in smokers with affective disorders and socioeconomic disadvantage although not those with OUD. FeNO changes were not accompanied by changes in respiratory-health ratings. TRIAL REGISTRATION Inclusion and exclusion criteria for the sample and experimental manipulation of the nicotine content of assigned cigarettes are registered: NCT02232737, NCT02250664, NCT02250534. The FeNO measure reported in this manuscript is an exploratory outcome that was not registered. IMPLICATIONS Should a reduced nicotine content standard be implemented; these results suggest that reduced nicotine content in cigarettes will not exacerbate and instead may attenuate smoking-related decreases in FeNO. This is significant as NO is an important component in maintaining a healthy respiratory system and necessary to defend against infection. Furthermore, the results of the current study demonstrate that the adoption of the reduced nicotine content standard may result in beneficial impacts on respiratory epithelial health among vulnerable populations that are disproportionally affected by the adverse health outcomes precipitated by combustible tobacco use.
Collapse
Affiliation(s)
- Anthony C Oliver
- Vermont Center on Behavior and Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Psychiatry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Michael DeSarno
- Vermont Center on Behavior and Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Medical Biostatistics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Charles G Irvin
- Vermont Lung Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - David Kaminsky
- Vermont Lung Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jennifer W Tidey
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
| | - Stacey C Sigmon
- Vermont Center on Behavior and Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Psychiatry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Sarah H Heil
- Vermont Center on Behavior and Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Psychiatry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Diann E Gaalema
- Vermont Center on Behavior and Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Psychiatry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Dustin Lee
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janice Y Bunn
- Vermont Center on Behavior and Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Medical Biostatistics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Danielle R Davis
- Vermont Center on Behavior and Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Joanna M Streck
- Vermont Center on Behavior and Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Gallagher
- Vermont Center on Behavior and Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Psychiatry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Stephen T Higgins
- Vermont Center on Behavior and Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Psychiatry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| |
Collapse
|
13
|
Unda SR, Antoniazzi AM, de la Garza Ramos R, Osborn I, Haranhalli N, Altschul DJ. Younger age at intracranial aneurysms rupture among patients with opioid use disorders. J Clin Neurosci 2021; 94:204-208. [PMID: 34863439 DOI: 10.1016/j.jocn.2021.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/22/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Association between opioid abuse and intracranial aneurysms rupture has been suggested in recent studies. However, these observations are limited to single center studies and could be benefited from validation in larger cohorts. Hence, we aimed to study the association between age at aneurysmal subarachnoid hemorrhage (aSAH) and opioid use disorders (OUD) using a large, national database. METHODS This study was conducted using the 2016 and 2017 National Inpatient Sample (NIS) with ICD-10 codes. Cohorts were categorized as "Non-users", "OUD", and "Multi-drug users". Linear regression models were used to examine the association between OUD and multi-drug users with age at aneurysm rupture, and multiple logistic regression models were used for the association between in-hospital mortality and drug abuse. RESULTS A total of 17,391 patients with aSAH were captured in the 2016 and 2017 NIS database. Out of these patients, 235 (1.4%) were included in the OUD group and 59 (0.3%) in the multi-drug users' group. Adjusted linear regression showed an unstandardized coefficient (UC) = -12.3 [95%CI = -14.4/-10.1, p < 0.001] for OUD patients and an UC = -16.8 [95%CI = -21.1/-12.5, p < 0.001] for multi-drug users, compared to non-users. The risk of in-hospital mortality was significantly increased in drug user, OR = 1.47 [95%CI: 1.1-2.01, p = 0.017] for OUD patients, and OR = 2.35 [95%CI: 1.35-4.11, p = 0.003] for multi-drug users. CONCLUSIONS This is the first national study to examine the association between age at intracranial aneurysms rupture and opioid abuse. aSAH patients with history of OUD were 12 years younger compared to non-users, when OUD was combined with other drugs, the age at aneurysms rupture was 17 years younger. Further elucidation regarding the mechanisms by which opioids triggers aneurysms rupture and predispose to worsen outcomes following aSAH is required, as well as appropriate prevention, and management strategies for aSAH patients with OUD.
Collapse
Affiliation(s)
- Santiago R Unda
- Department of Neurological Surgery, Montefiore Medical Center, Bronx, NY, USA.
| | - Aldana M Antoniazzi
- Department of Neurological Surgery, Montefiore Medical Center, Bronx, NY, USA
| | | | - Irene Osborn
- Department of Anesthesiology, Montefiore Medical Center, Bronx, NY, USA
| | - Neil Haranhalli
- Department of Neurological Surgery, Montefiore Medical Center, Bronx, NY, USA
| | - David J Altschul
- Department of Neurological Surgery, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
14
|
Liu X, Yang J, Yang C, Huang X, Han M, Kang F, Li J. Morphine promotes the malignant biological behavior of non-small cell lung cancer cells through the MOR/Src/mTOR pathway. Cancer Cell Int 2021; 21:622. [PMID: 34823532 PMCID: PMC8613927 DOI: 10.1186/s12935-021-02334-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Morphine, a µ-opioid receptor (MOR) agonist, has been shown to be related to the activity of cancer cells, and a higher morphine dosage reduces the survival time of patients with lung cancer. However, the effect of morphine on the malignant behavior of lung cancer cells remains unclear. The aim of this study was to investigate the specific molecular mechanism by which morphine regulates the malignant biological behavior of non-small cell lung cancer. METHODS Immunofluorescence staining and Western blot analyses were performed to detect MOR expression. H460 non-small cell lung cancer cells were used in this study, and cell proliferation, the cell cycle and apoptosis were evaluated using Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. Cell migration and invasion were detected using wound healing and Transwell assays. The effect of morphine on lung cancer development in vivo was examined by performing a xenograft tumor assay following morphine treatment. RESULTS Morphine promoted the growth of H460 cells both in vivo and in vitro. Morphine enhanced cell migration and invasion, modified cell cycle progression through the S/G2 transition and exerted an antiapoptotic effect on H460 cells. Additionally, morphine increased Rous sarcoma oncogene cellular homolog (Src) phosphorylation and activated the phosphoinositide 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. Treatment with the MOR antagonist methylnaltrexone (MNTX) and the Src inhibitor protein phosphatase 1 (PP1) reduced the phosphorylation induced by morphine. Furthermore, MNTX, PP1, and the PI3K/AKT inhibitor deguelin reversed the antiapoptotic effect of morphine on lung cancer cells. CONCLUSION Morphine promotes the malignant biological behavior of H460 cells by activating the MOR and Src/mTOR signaling pathways.
Collapse
Affiliation(s)
- Xingyun Liu
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230036, China
| | - Jia Yang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Chengwei Yang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Xiang Huang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Mingming Han
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Fang Kang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Juan Li
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230036, China.
| |
Collapse
|
15
|
Asgharzadeh F, Roshan-Milani S, Fard AA, Ahmadi K, Saboory E, Pourjabali M, Chodari L, Amini M. The protective effect of zinc on morphine-induced testicular toxicity via p53 and Akt pathways: An in vitro and in vivo approach. J Trace Elem Med Biol 2021; 67:126776. [PMID: 33984544 DOI: 10.1016/j.jtemb.2021.126776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chronic use of morphine is associated with reproductive complications, such as hypogonadism and infertility. While the side effects of morphine have been extensively studied in the testis, much less is known regarding the effects of morphine on Sertoli cells and the effects of zinc on morphine-induced testicular injury as well as their underlying mechanisms. Therefore, the purpose of this study was to investigate the effect of morphine (alone and co-administered with zinc) on cell viability and apoptosis of the testicular (Sertoli) cells as well as the tumor suppressor p53 and phosphorylated-protein kinase B (p-Akt) protein levels in both in vitro and in vivo models. METHODS Cultured Sertoli cells were exposed to morphine (23 μM), zinc (8 μM), and zinc prior to morphine and their effects on Sertoli cell viability and apoptosis were investigated. Morphine (3 mg/kg) and zinc (5 mg/kg, 1 h before morphine) were also injected intraperitoneally to rats and then the apoptotic changes in the testis were evaluated. RESULTS Cell viability and p-Akt protein levels decreased in morphine-treated cells, while apoptosis and p53 protein expression increased in these cells. Pretreatment with zinc recovered morphine-induced apoptotic effects, as well as over-expression of p53 and down-regulation of p-Akt. These findings were supported by a subsequent animal study. CONCLUSION The present data indicated the protective effect of zinc against morphine-induced testicular (Sertoli) cell toxicity via p53/Akt pathways in both in vivo and in vitro models and suggested the clinical importance of zinc on infertility among chronic opioid users and addicted men.
Collapse
Affiliation(s)
- Fatemeh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | - Shiva Roshan-Milani
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Amin Abdollahzade Fard
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Kimia Ahmadi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Masoumeh Pourjabali
- Department of Pathology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Leila Chodari
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mohammad Amini
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
16
|
Zhang H, Zhou D, Gu J, Qu M, Guo K, Chen W, Miao C. Targeting the mu-Opioid Receptor for Cancer Treatment. Curr Oncol Rep 2021; 23:111. [PMID: 34342720 DOI: 10.1007/s11912-021-01107-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Opioids are still the most effective and widely used treatments for acute and chronic pain in cancer patients. This review focuses on the impact of opioids and mu-opioid receptors (MOR) on tumor progression and providing new ideas for targeting the MOR in cancer treatment. RECENT FINDINGS Studies estimated that opioids facilitate tumor progression and are related to the worse prognosis in cancer patients. As the primary receptor of opioids, MOR is involved in the regulation of malignant transformation of tumors and participating in proliferation, invasion, metastasis, and angiogenesis. MOR may be a new molecular marker of malignant tumors and thus become a new target for cancer therapy, which may be beneficial to the outcomes of cancer patients.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
| | - Di Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
| | - Jiahui Gu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China. .,Fudan Zhangjiang Institute, Shanghai, 201203, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
| |
Collapse
|
17
|
Dolati-Somarin A, Abd-Nikfarjam B. The Reasons for Higher Mortality Rate in Opium Addicted Patients with COVID-19: A Narrative Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:470-479. [PMID: 34178794 PMCID: PMC8214617 DOI: 10.18502/ijph.v50i3.5587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) caused COVID-19 has developed into an unexampled worldwide pandemic. The most important cause of death in patients with COVID-19 is Acute Respiratory Distress Syndrome (ARDS). Opium is widely used for its analgesic features in control of acute and chronic pain related to different diseases. Opium consumption is increased over the last three decades and leads to adverse effects on the respiratory system; opium also affects the lungs' functions and respiration. The contemplative issue is the higher mortality rate due to SARS-CoV-2 infection in opium addicts' patients. Studies have shown that despite the decrease in proinflammatory cytokines production in opium addicts, there are at least 4 reasons for this increase in mortality rate: downregulation of IFNs expression, development of pulmonary edema, increase thrombotic factors, increase the expression of Angiotensin-converting enzyme 2 (ACE2). Therefore, identifying the causes of mortality and approved therapies for the treatment of COVID-19 patients who use opium for any reason is an important unmet need to reduce SARS-CoV-2 infection-related mortality. This review study demonstrated the effects of opium on immune responses and the reasons for the higher mortality rate in opium addicts' patients with COVID-19.
Collapse
Affiliation(s)
| | - Bahareh Abd-Nikfarjam
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
18
|
Nezamoleslami S, Sheibani M, Mumtaz F, Esmaeili J, Shafaroodi H, Dehpour AR. Lithium reverses the effect of opioids on eNOS/nitric oxide pathway in human umbilical vein endothelial cells. Mol Biol Rep 2020; 47:6829-6840. [PMID: 32888132 DOI: 10.1007/s11033-020-05740-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022]
Abstract
The main challenge of pain management with opioids is development of acute and chronic analgesic tolerance. Several studies on neuronal cells have focused on the molecular mechanisms involved in tolerance such as cyclic AMP (cAMP) activation, and nitric oxide (NO) pathway. However, the effects of opioids on non-neuronal cells and tolerance development have been poorly investigated. Lithium chloride is a glycogen synthase kinase 3β (GSK-3β) inhibitor and exert its effects through modulation of nitric oxide pathway. In this study we examined the effect of lithium on acute/chronic morphine and methadone administration in endothelial cells which express mu opioid receptors. Human umbilical vein endothelial cells (HUVECs) were treated with different doses of morphine, methadone, and lithium for six and 48 h. Then we evaluated cell viability, nitrite and cyclic AMP levels, as well as the expression of endothelial nitric oxide synthase (eNOS) protein using Immunocytochemistry (ICC) assay and phosphorylated GSK-3β enzyme by western blot analysis in cells. Both chronic morphine and methadone treatment increased NO level and eNOS expression in HUVECs. Morphine induced cAMP overproduction after 48 h exposure with cells. Lithium pretreatment (10 mM) in both morphine and methadone received groups significantly reduced nitrite and cAMP levels as well as eNOS expression as compared to the control. The decreased amount of phospho GSK-3β due to the opioid exposure was increased following lithium treatment. Tolerance like pattern may occur in non-neuronal cells with opioid receptors and this study clearly revealed the attenuation of morphine and methadone tolerance like behavior by lithium treatment in HUVECs.
Collapse
Affiliation(s)
- Sadaf Nezamoleslami
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Jamileh Esmaeili
- Department of Biology, Islamic Azad University, P.O. Box 1477893855, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
19
|
Opioid receptors beyond pain control: The role in cancer pathology and the debated importance of their pharmacological modulation. Pharmacol Res 2020; 159:104938. [DOI: 10.1016/j.phrs.2020.104938] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/24/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022]
|
20
|
Tregubenko P, Zvonarev V. Impact of Opioid Use in Hematological Malignancies: Clinical, Immunological and Concomitant Aspects. J Hematol 2020; 9:41-54. [PMID: 32855752 PMCID: PMC7430860 DOI: 10.14740/jh689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Opioid agents play a unique role in pain and symptom management for cancer patients. Research shows that opiate use, especially when associated with underlying cancer, has significant effects on hematological parameters. These changes may lead to greater risk for immunosuppression, tumor growth and progression of metastatic processes. The aim of this review is to explore the effects of opiates on various metabolic and biological processes, as well as the hematopoietic system, especially in cancer patients. Our findings demonstrate that the tumor-promoting effects of opiates remain contradictory, as both growth-promoting and anti-tumor effects have been observed. However, available data suggest that opiates can facilitate the proliferation and migration of tumor cells, and understanding of this process on cancer treatment is tremendously important.
Collapse
Affiliation(s)
- Polina Tregubenko
- Internal Medicine Residency Program, Albert Einstein College of Medicine, Jacobi Medical Center, Bronx, NY, USA
| | - Valeriy Zvonarev
- School of Behavioral Sciences, California Southern University, Costa Mesa, CA, USA.,Psychiatry Residency Training Program, Center for Behavioral Medicine, UMKC, 1000 E. 24th Street, Kansas City, MO 64108, USA
| |
Collapse
|
21
|
Chang MC, Kuo YJ, Hung KH, Peng CL, Chen KY, Yeh LK. Liposomal dexamethasone-moxifloxacin nanoparticle combinations with collagen/gelatin/alginate hydrogel for corneal infection treatment and wound healing. ACTA ACUST UNITED AC 2020; 15:055022. [PMID: 32434164 DOI: 10.1088/1748-605x/ab9510] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infectious keratitis is still one of the major causes of visual impairment and blindness, often affecting developing countries. Eye-drop therapy to reduce disease progression is the first line of treatment for infectious keratitis. The current limitations in controlling ophthalmic infections include rapid precorneal drug loss and the inability to provide long-term extraocular drug delivery. The aim of the present study was to develop a novel ophthalmic formulation to treat corneal infection. The formulation was prepared by constructing moxifloxacin (MFX) and dexamethasone (DEX)-loaded nanostructured lipid carriers (Lipo-MFX/DEX) mixed with a collagen/gelatin/alginate (CGA) biodegradable material (CGA-Lipo-MFX/DEX) for prolonged ocular application. The characteristics of the prepared Lipo-MFX/DEX nanoparticles were as follows: average size, 132.1 ± 73.58 nm; zeta potential, -6.27 ± 4.95 mV; entrapment efficiency, 91.5 ± 3.5%; drug content, 18.1 ± 1.7%. Our results indicated that CGA-Lipo-MFX/DEX could release an effective working concentration in 60 min and sustain the drug release for at least 12 h. CGA-Lipo-MFX/DEX did not produce significant toxicities, but it increased cell numbers when co-cultured with ocular epithelial cells. An animal study also confirmed that CGA-Lipo-MFX/DEX could inhibit pathogen microorganism growth and improve corneal wound healing. Our results suggest that CGA-Lipo-MFX/DEX could be a useful anti-inflammatory formulation for ophthalmological disease treatment.
Collapse
Affiliation(s)
- Ming-Cheng Chang
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan
| | | | | | | | | | | |
Collapse
|
22
|
Agarwal S, Sharma H, Chen L, Dhillon NK. NADPH oxidase-mediated endothelial injury in HIV- and opioid-induced pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1097-L1108. [PMID: 32233792 DOI: 10.1152/ajplung.00480.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We previously demonstrated that the combined exposure of human pulmonary microvascular endothelial cells (HPMECs) to morphine and viral protein(s) results in the oxidative stress-mediated induction of autophagy, leading to shift in the cells from early apoptotic to apoptosis-resistant proliferative status associated with the angioproliferative remodeling observed in pulmonary arterial hypertension (PAH). In this study, we tried to delineate the major source of HIV-1 protein Tat and morphine induced oxidative burst in HPMECs and its consequences on vascular remodeling and PAH in an in vivo model. We observed switch from the initial increased expression of NADPH oxidase (NOX) 2 in response to acute treatment of morphine and HIV-Tat to later increased expression of NOX4 on chronic treatment in the endoplasmic reticulum of HPMECs without any alterations in the mitochondria. Furthermore, NOX-dependent induction of autophagy was observed to play a pivotal role in regulating the endothelial cell survival. Our in vivo findings showed significant increase in pulmonary vascular remodeling, right ventricular systolic pressure, and Fulton index in HIV-transgenic rats on chronic administration of morphine. This was associated with increased oxidative stress in lung tissues and rat pulmonary microvascular endothelial cells. Additionally, endothelial cells from morphine-treated HIV-transgenic rats demonstrated increased expression of NOX2 and NOX4 proteins, inhibition of which ameliorated their increased survival upon serum starvation. In conclusion, this study describes NADPH oxidases as one of the main players in the oxidative stress-mediated endothelial dysfunction on the dual hit of HIV-viral protein(s) and opioids.
Collapse
Affiliation(s)
- Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Himanshu Sharma
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ling Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
23
|
Baharin A, Hashim NE, Sonsudin F, Hashim NH. Morphine and Phoenix dactylifera (dates) effects on the histological features of male rat reproductive organs. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:20. [PMID: 32174992 PMCID: PMC7053161 DOI: 10.4103/jrms.jrms_681_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 04/04/2018] [Accepted: 12/05/2019] [Indexed: 11/11/2022]
Abstract
Background: Previous studies have shown that morphine negatively effects male fertility while Phoenix dactylifera (dates) could cure male infertility by the exhibition of antagonist effects. This study was conducted to assess the possible ameliorating effects of dates on the histological features of morphine-induced male rat reproductive organs. Materials and Methods: Adult male Sprague Dawley rats age 7–9 weeks old, 200–250 g body weight (BW) were divided into six rats per each group: Group 1, force-fed with distilled water, 1 ml/kg BW for 35 days (control); Group 2, intramuscularly (IM) injected with morphine, 20 mg/kg BW for 7 days followed by force-fed with distilled water for 28 days; Group 3, force-fed with distilled water for 7 days followed by crude P. dactylifera extract, 200 mg/kg for 28 days; Group 4, injected (IM) with morphine, 20 mg/kg BW for 7 days followed by force-fed of crude P. dactylifera extract, 200 mg/kg for 28 days. Rats were sacrificed on day 36. The seminal vesicle (SV) and prostate gland (PG) were removed and fixed before histological processes. Results: In morphine-treated rats, the SV showed the absence of honeycomb-like appearance with flattened columnar cells while in the PG, eosinophilic secretion was noted to be absent from glandular lumina as compared to the control group. Administration of P. dactylifera extract in Group 4 showed improvement in histoarchitecture of the SV and PG with complex mucosal infoldings and glands luminal filled with secretion. Conclusion: P. dactylifera extract has a protective effect against the adverse effects of morphine on the male rat reproductive organs.
Collapse
Affiliation(s)
- Amirah Baharin
- Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Eliza Hashim
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Faridah Sonsudin
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hashida Hashim
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Agarwal S, Harter ZJ, Krishnamachary B, Chen L, Nguyen T, Voelkel NF, Dhillon NK. Sugen-morphine model of pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894019898376. [PMID: 32110385 PMCID: PMC7000869 DOI: 10.1177/2045894019898376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension is a fatal disease associated with pulmonary
vascular remodeling and right ventricular hypertrophy. Pre-clinical animal
models that reproduce the human pulmonary arterial hypertension process and
pharmacological response to available therapies are critical for future drug
development. The most prevalent animal model reproducing many aspects of
angioobliterative forms of pulmonary arterial hypertension is the rat
Sugen/hypoxia model in which Sugen, a vascular endothelial growth factor
receptor antagonist, primarily causes initiation of endothelial injury and later
in the presence of hypoxia promotes proliferation of apoptosis-resistant
endothelial cells. We previously demonstrated that exposure of human pulmonary
microvascular endothelium to morphine and HIV-proteins results in initial
apoptosis followed by increased proliferation. Here, we demonstrate that the
double-hit of morphine and Sugen 5416 (Sugen–morphine) in rats leads to the
development of pulmonary arterial hypertension with significant medial
hypertrophy of pre-acinar pulmonary arteries along with neo-intimal thickening
of intra-acinar vessels. In addition, the pulmonary smooth muscle and
endothelial cells isolated from Sugen–morphine rats showed hyperproliferation
and apoptotic resistance, respectively, in response to serum starvation. Our
findings support that the dual hit model of Sugen 5416 and morphine provides
another experimental strategy to induce significant pulmonary vascular
remodeling and development of severe pulmonary arterial hypertension pathology
in rats without exposure to hypoxia.
Collapse
Affiliation(s)
- Stuti Agarwal
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Zachery J Harter
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Balaji Krishnamachary
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ling Chen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tyler Nguyen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Norbert F Voelkel
- Department of Pulmonary Sciences, Vrije University Medical Center, Amsterdam, The Netherlands
| | - Navneet K Dhillon
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
25
|
Integrin αvβ3-Specific Hydrocyanine for Cooperative Targeting of Glioblastoma with High Sensitivity and Specificity. Anal Chem 2019; 91:12587-12595. [PMID: 31496223 DOI: 10.1021/acs.analchem.9b03725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glioblastoma is a highly malignant brain tumor with poor prognosis and survival rate because of a lack of effective diagnostic methods. Hydrocyanines are a type of reactive oxygen species (ROS)-responsive fluorescent probes, allowing for distinguishing tumor cells from normal cells based on their different intracellular levels of ROS. However, their diagnostic applications for glioblastoma have been limited because of the inability to discriminate between tumor cells and other tissues with high ROS production, leading to high false-positive diagnosis. Therefore, tumor-responsive and -specific hydrocyanines with cooperative targeting ability have great potential for improving the diagnosis and treatment of glioblastoma. Integrin αvβ3 plays a critical role in the progression and angiogenesis of glioblastoma and has become a promising target for diagnosing glioblastoma. Herein, we identify a specific peptide ligand for integrin αvβ3, Arg-Trp-(d-Arg)-Asn-Arg (RWrNR), which shows high binding affinity to human glioblastoma U87MG cells. Importantly, hydro-Cy5-RWrNR conjugation allowed for distinguishing U87MG cells from normal cells in response to intracellular ROS. Particularly, hydro-Cy5-RWrNR could not only selectively accumulate in orthotopic U87MG tumor with minimal background fluorescence but also effectively discriminate between glioblastoma and inflammatory tissues for the first time, leading to detection of glioblastoma in vivo with high target-to-background ratios and minimal background fluorescence. Therefore, hydro-Cy5-RWrNR is the first integrin αvβ3-specific hydrocyanine probe and has great potential in precise tumor diagnosis because of its cooperative targeting of integrin αvβ3 and ROS.
Collapse
|
26
|
Dayyani M, Zabihyan S, Salehi M, Baharvahdat H, Ahmadi S, Etemadrezaie H. Association of Opium Addiction with Rupture of Intracranial Aneurysms: A Case-Control Study. World Neurosurg 2019; 126:e492-e499. [PMID: 30825629 DOI: 10.1016/j.wneu.2019.02.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Disorders related to opioid use account for the most substantial burden of disease attributable to drug use disorders. We aimed to justify if there is an association between either opium consumption or addiction and rupture of intracranial aneurysms. METHODS In this case-control study, we enrolled 50 cases with ruptured intracranial aneurysms and 43 control subjects with an incidental finding of an intracranial aneurysm without history of subarachnoid hemorrhage (SAH). Four major risk factors of rupture including age, sex, size, and site of aneurysm were matched among both groups. All participants were asked about cigarette smoking state, opium addiction, opium consumption, and duration and route of opium consumption. Eight other trigger factors were assessed in the period soon before SAH (hazard period). The odds ratio (OR) of all factors was calculated separately, and then a logistic regression for the factors with significant odds was calculated. RESULTS Sixty-two percent of cases and 32.6% of control subjects were addicted to opium. The OR for opium consumption in the hazard period was 8.1 (95% confidence interval [CI], 2.2-30.1) and for opium addiction was 3.3 (95% CI, 1.4-7.9). Of those trigger factors, cola consumption was included in the logistic regression model. After adjustment, results demonstrated an OR of 9.2 (95% CI, 2.4-34.7) for opium consumption in the hazard period. CONCLUSIONS There is an association between opium addiction and opium consumption in the hazard period with the occurrence of aneurysmal SAH. Replication of the study with a larger sample size and conduction of prospective studies is suggested.
Collapse
Affiliation(s)
- Mojtaba Dayyani
- Department of Neurosurgery, Ghaem Teaching Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Zabihyan
- Department of Neurosurgery, Ghaem Teaching Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Salehi
- Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Humain Baharvahdat
- Department of Neurosurgery, Ghaem Teaching Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Ahmadi
- Department of Neurosurgery, Ghaem Teaching Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Etemadrezaie
- Department of Neurosurgery, Ghaem Teaching Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Abstract
: Improved survival among HIV-1-infected individuals with the advent of antiretroviral therapy has clearly led to a greater prevalence of noninfectious complications. One of the most devastating sequelae in these individuals is the development of pulmonary arterial hypertension (PAH). Various epidemiological studies suggest worse survival of HIV-PAH patients when compared with other forms of PAH. Given that only a subset and not all HIV-infected individuals develop HIV-PAH, it is suggested that an additional second-hit of genetic or environmental trigger is needed for the development of PAH. In this context, it has been well documented that HIV patients who abuse illicit drugs such as stimulants, opioids, and the like, are more susceptible to develop PAH. In this review, we highlight the studies that support the significance of a double hit of HIV and drug abuse in the incidence of PAH and focus on the research that has been undertaken to unravel the pathobiology and vascular remodeling mechanisms underlying the deleterious synergy between HIV infection and drugs of abuse in orchestrating the development of PAH.
Collapse
|
28
|
Brinkman D, Wang JH, Redmond HP. Morphine as a treatment of cancer-induced pain-is it safe? A review of in vivo studies and mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:1169-1178. [PMID: 30232510 DOI: 10.1007/s00210-018-1565-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/11/2018] [Indexed: 11/26/2022]
Abstract
Morphine has been used in the treatment of pain for centuries. It is commonly used by oncology in terminal cancer cases and by surgery perioperatively for oncology surgery. Its extra-analgesic effects on cancer have been described extensively but conflicting results abound. It has been shown to have varying effects on tumour progression, cell proliferation, tumour invasion, angiogenesis, immune function, and metastatic potential. In vivo studies on the effects of morphine and the mu-opioid receptor on tumours are discussed below. Mechanisms involved are also discussed, drawn from a combination of both in vivo and in vitro methods. At present, no consensus can be drawn from data collected, and further studies are necessary to elicit the safest method and agent for analgesia in oncology patients.
Collapse
Affiliation(s)
- David Brinkman
- Department of Academic Surgery, Cork University Hospital, Wilton, Cork, Ireland.
- University College Cork, College Road, Cork, Ireland.
| | - Jiang H Wang
- Department of Academic Surgery, Cork University Hospital, Wilton, Cork, Ireland
- University College Cork, College Road, Cork, Ireland
| | - Henry P Redmond
- Department of Academic Surgery, Cork University Hospital, Wilton, Cork, Ireland
- University College Cork, College Road, Cork, Ireland
| |
Collapse
|
29
|
Opioids: Modulators of angiogenesis in wound healing and cancer. Oncotarget 2018; 8:25783-25796. [PMID: 28445930 PMCID: PMC5421968 DOI: 10.18632/oncotarget.15419] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/07/2017] [Indexed: 12/12/2022] Open
Abstract
Opioids are potent drugs that are widely used to control wound or cancer pain. Increasing evidence suggest that opioids mediate clinically relevant effects that go beyond their classical role as analgesics. Of note, opioids appear to modulate angiogenesis - a process that is critical in wound healing and cancer progression. In this review, we focus on pro- and anti-angiogenic facets of opioids that arise from the activation of individual opioid receptors and the usage of individual concentrations or application routes. We overview the still incompletely elucidated mechanisms of these angiogenic opioid actions. Moreover, we describe plausible opioids effects, which - although not primarily studied in the context of vessel formation - may be related to the opioid-driven processes of angiogenesis. Finally we discuss the use of opioids as an innovative therapeutic avenue for the treatment of chronic wounds and cancer.
Collapse
|
30
|
Grandhi RK, Lee S, Abd-Elsayed A. Does Opioid Use Cause Angiogenesis and Metastasis? PAIN MEDICINE 2017; 18:140-151. [PMID: 27346886 DOI: 10.1093/pm/pnw132] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objective To provide a comprehensive overview of the potential for morphine to lead to angiogenesis and metastasis. Background Morphine is often the treatment of choice for severe cancer-related pain. Small studies have been emerging that indicate that opioids may influence angiogenesis and metastasis, but this has not yet been comprehensively synthesized. Purpose To highlight morphine's relationship with angiogenesis and metastasis in in vitro models. Method A review of the literature was conducted using PubMed (1966 to 2015) and Cochrane Library (1987 to 2015) electronic databases. The search, as well as consultation with experts, yielded 84 articles for initial review, 12 of which met inclusion for review. Possible theories of the underlying etiology of the metastasis and angiogenesis were recorded. Results All studies were assessed using the PRISMA checklist. Conclusion This systematic review demonstrates that morphine has a potential causal relationship with angiogenesis and metastasis. This is likely due to multiple etiologies, including immunosuppressive, pro-inflammatory, and pro-angiogenetic.
Collapse
Affiliation(s)
- Ravi K Grandhi
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, OH, USA
| | - Samuel Lee
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, OH, USA
| | - Alaa Abd-Elsayed
- Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Abstract
In recent years, there has been a substantial increase in opioid use and abuse, and in opioid-related fatal overdoses. The increase in opioid use has resulted at least in part from individuals transitioning from prescribed opioids to heroin and fentanyl, which can cause significant respiratory depression that can progress to apnea and death. Heroin and fentanyl may be used individually, together, or in combination with other substances such as ethanol, benzodiazepines, or other drugs that can have additional deleterious effects on respiration. Suspicion that a death is drug-related begins with the decedent's medical and social history, and scene investigation, where drugs and drug paraphernalia may be encountered, and examination of the decedent, which may reveal needle punctures and needle track marks. At autopsy, the most significant internal finding that is reflective of opioid toxicity is pulmonary edema and congestion, and frothy watery fluid is often present in the airways. Various medical ailments such as heart and lung disease and obesity may limit an individual's physiologic reserve, rendering them more susceptible to the toxic effects of opioids and other drugs. Although many opioids will be detected on routine toxicology testing, more specialized testing may be warranted for opioid analogs, or other uncommon, synthetic, or semisynthetic drugs.
Collapse
|
32
|
Grandhi RK, Lee S, Abd-Elsayed A. The Relationship Between Regional Anesthesia and Cancer: A Metaanalysis. Ochsner J 2017; 17:345-361. [PMID: 29230120 PMCID: PMC5718448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Some studies have suggested using epidural analgesia after cancer surgery to reduce metastasis. This article examines the relationship between regional anesthesia (RA) and cancer metastasis in an array of cancers. METHODS We conducted a review of the literature using PubMed and included 67,577 patients across 28 studies in a metaanalysis, evaluating the hazard ratios (HRs) of overall survival, recurrence-free survival, and biochemical recurrence-free survival. RESULTS We found no benefit to RA as it relates to cancer. The HR was 0.92 for overall survival, 1.06 for recurrence-free survival, and 1.05 for biochemical recurrence-free survival. Despite the overall analysis showing no benefit, we found some benefit when we evaluated only the randomized trials. However, we found no significant benefit of RA when we evaluated the cancers (gastrointestinal, prostate, breast, and ovarian) individually. CONCLUSION This metaanalysis shows that RA has no overall survival, recurrence-free survival, or biochemical recurrence-free survival benefit. However, some individual studies have shown significant benefit in terms of cancer recurrence. Further, RA reduces the use of opioids, which has led to some secondary benefits. Further studies are needed to establish the benefits of RA as it relates to cancer.
Collapse
Affiliation(s)
- Ravi K. Grandhi
- Department of Anesthesiology, Maimonides Medical Center, Brooklyn, NY
| | - Samuel Lee
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
33
|
Dalvi P, Sharma H, Chinnappan M, Sanderson M, Allen J, Zeng R, Choi A, O'Brien-Ladner A, Dhillon NK. Enhanced autophagy in pulmonary endothelial cells on exposure to HIV-Tat and morphine: Role in HIV-related pulmonary arterial hypertension. Autophagy 2016; 12:2420-2438. [PMID: 27723373 DOI: 10.1080/15548627.2016.1238551] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Intravenous drug use is one of the major risk factors for HIV-infection in HIV-related pulmonary arterial hypertension patients. We previously demonstrated exaggerated pulmonary vascular remodeling with enhanced apoptosis followed by increased proliferation of pulmonary endothelial cells on simultaneous exposure to both opioids and HIV protein(s). Here we hypothesize that the exacerbation of autophagy may be involved in the switching of endothelial cells from an early apoptotic state to later hyper-proliferative state. Treatment of human pulmonary microvascular endothelial cells (HPMECs) with both the HIV-protein Tat and morphine resulted in an oxidative stress-dependent increase in the expression of various markers of autophagy and formation of autophagosomes when compared to either Tat or morphine monotreatments as demonstrated by western blot, transmission electron microscopy and immunofluorescence. Autophagy flux experiments suggested increased formation rather than decreased clearance of autolysosomes. Inhibition of autophagy resulted in a significant increase in apoptosis and reduction in proliferation of HPMECs with combined morphine and Tat (M+T) treatment compared to monotreatments whereas stimulation of autophagy resulted in opposite effects. Significant increases in the expression of autophagy markers as well as the number of autophagosomes and autolysosomes was observed in the lungs of SIV-infected macaques and HIV-infected humans exposed to opioids. Overall our findings indicate that morphine in combination with viral protein(s) results in the induction of autophagy in pulmonary endothelial cells that may lead to an increase in severity of angio-proliferative remodeling of the pulmonary vasculature on simian and human immunodeficiency virus infection in the presence of opioids.
Collapse
Affiliation(s)
- Pranjali Dalvi
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Himanshu Sharma
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Mahendran Chinnappan
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Miles Sanderson
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Julie Allen
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Ruoxi Zeng
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Augustine Choi
- b Department of Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Amy O'Brien-Ladner
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Navneet K Dhillon
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA.,c Department of Molecular and Integrative Physiology , University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
34
|
|
35
|
Lou W, Zhang X, Hu XY, Hu AR. MicroRNA-219-5p Inhibits Morphine-Induced Apoptosis by Targeting Key Cell Cycle Regulator WEE1. Med Sci Monit 2016; 22:1872-9. [PMID: 27253431 PMCID: PMC4913725 DOI: 10.12659/msm.895439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND To identify the effects of microRNA (miR)-219-5p on morphine-induced apoptosis by targeting WEE1. MATERIAL AND METHODS Forty Balb/C mice (Toll-like receptor 9, TLR9 knockout) were randomly allocated to the experimental and control groups (20 in each group). The baseline miR-219-5p expression was detected using quantitative real-time PCR (qRT-PCR). After morphine was injected at 6 h on the 2nd and 6th days, experimental and control groups received miR-219-5p mimics or miRNA-negative control (NC), respectively, compound injection. Tissues and cells were later obtained from subjects in each group separately after mice were killed. TUNEL assay was used to investigate apoptosis in both groups. RAW264.7 cells were treated with miR-219-5p mimics and controls, respectively. After 24 h, 10 μM of morphine was added at 24 h. Cell apoptosis was assessed by flow cytometer. The WEE1 and Phospho-cdc2 (Tyr15) expressions were examined by Western blotting. RESULTS MiR-219-5p expression in the experimental group was significantly lower than that in the control group (P<0.05). Mice injected with miR-219-5p mimic experienced an evident increase in apoptosis rate compared with the control group (P<0.05). The miR-219-5p NC group and the morphine group both presented an elevated apoptosis rate compared with the blank control group (both, P<0.05). The apoptosis rate in the miR-219-5p mimic group was 10.06%, remarkably lower than in the miR-219-5p NC group and blank control group (both P<0.05). WEE1 and Tyr15 protein expressions in the miR-219-5p NC group and morphine group were obviously stronger than those in the blank control group (all P<0.05). In the miR-219-5p mimic group, WEE1 and Tyr15 protein expressions were significantly lower compared with those in the miR-219-5p NC group and morphine group (all P<0.05). CONCLUSIONS Morphine significantly downregulated the expression of miRNA-219-5p, which targets WEE1 to suppress Tyr15 expressions and activate Cdc2, thus inhibiting the morphine-induced macrophage apoptosis.
Collapse
Affiliation(s)
- Wei Lou
- Department of Pain Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang, China (mainland)
| | - Xingwang Zhang
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Xiao-Ying Hu
- Hemodialysis Center, Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China (mainland)
| | - Ai-Rong Hu
- Division of Scientific Research and Education Management, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China (mainland)
| |
Collapse
|
36
|
Tian M, Jin L, Li R, Zhu S, Ji M, Li W. Comparison of oxycodone and morphine on the proliferation, apoptosis and expression of related molecules in the A549 human lung adenocarcinoma cell line. Exp Ther Med 2016; 12:559-566. [PMID: 27446244 PMCID: PMC4950733 DOI: 10.3892/etm.2016.3346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to compare the effects of oxycodone and morphine hydrochloride on the proliferation, apoptosis and migration of A549 lung cancer cells. A549 human lung cancer cells were cultured in vitro and treated with oxycodone or morphine at various concentrations (10, 20 and 40 µg/ml). Cell migration was determined using a wound healing assay, whereas apoptosis was detected using flow cytometry. Reverse transcription quantitative-polymerase chain reaction was performed in order to assess the apoptosis-related gene expression levels, including p53, B-cell lymphoma (Bcl)-2 and Bcl-2-associated X protein (Bax). The levels of vascular endothelial growth factor (VEGF) and urokinase-type plasminogen activator (uPA) were detected using enzyme-linked immunosorbent assays. The expression levels of intercellular cell adhesion molecule (ICAM)-1 were determined by immunofluorescence. In the present study, oxycodone and morphine induced apoptosis in A549 lung cancer cells with similar potency; however, >20 µg/ml oxycodone was more effective at inhibiting cell proliferation (P<0.05) and migration (P<0.05), as compared with morphine at the same concentration. Oxycodone induced a dose-dependent increase in the expression levels of p53 and Bax apoptosis-related genes, whereas it decreased the gene expression levels of Bcl-2. Furthermore, oxycodone decreased, whereas morphine increased, the expression levels of ICAM-1 in a concentration-dependent manner. In addition, at 40 µg/ml, the expression levels of VEGF and uPA in the morphine group were significantly higher than those demonstrated in the oxycodone group (P<0.05). In conclusion, oxycodone was more effective in inhibiting the proliferation and migration of A549 lung cancer cells, as compared with morphine.
Collapse
Affiliation(s)
- Mi Tian
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Li Jin
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Renqi Li
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Sihai Zhu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Muhuo Ji
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Weiyan Li
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
37
|
Li MC, Yu JH, Yu SS, Chi YY, Xiang YB. MicroRNA-873 Inhibits Morphine-Induced Macrophage Apoptosis by Elevating A20 Expression. PAIN MEDICINE 2015; 16:1993-9. [DOI: 10.1111/pme.12784] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/19/2015] [Accepted: 04/04/2015] [Indexed: 12/11/2022]
|
38
|
Xie N, Parat MO. Opioid Analgesic Agents and Cancer Cell Biology. CURRENT ANESTHESIOLOGY REPORTS 2015. [DOI: 10.1007/s40140-015-0118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Morphine Promotes Tumor Angiogenesis and Increases Breast Cancer Progression. BIOMED RESEARCH INTERNATIONAL 2015; 2015:161508. [PMID: 26064880 PMCID: PMC4433634 DOI: 10.1155/2015/161508] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/14/2014] [Indexed: 01/22/2023]
Abstract
Morphine is considered a highly potent analgesic agent used to relieve suffering of patients with cancer. Several in vitro and in vivo studies showed that morphine also modulates angiogenesis and regulates tumour cell growth. Unfortunately, the results obtained by these studies are still contradictory. In order to better dissect the role of morphine in cancer cell growth and angiogenesis we performed in vitro studies on ER-negative human breast carcinoma cells, MDA.MB231 and in vivo studies on heterotopic mouse model of human triple negative breast cancer, TNBC. We demonstrated that morphine in vitro enhanced the proliferation and inhibited the apoptosis of MDA.MB231 cells. In vivo studies performed on xenograft mouse model of TNBC revealed that tumours of mice treated with morphine were larger than those observed in other groups. Moreover, morphine was able to enhance the neoangiogenesis. Our data showed that morphine at clinical relevant doses promotes angiogenesis and increases breast cancer progression.
Collapse
|
40
|
Motaghinejad M, Karimian SM, Motaghinejad O, Shabab B, Asadighaleni M, Fatima S. The effect of various morphine weaning regimens on the sequelae of opioid tolerance involving physical dependency, anxiety and hippocampus cell neurodegeneration in rats. Fundam Clin Pharmacol 2015; 29:299-309. [PMID: 25846801 DOI: 10.1111/fcp.12121] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 01/16/2023]
Abstract
Chronic consumption of morphine induces physical dependency, anxiety, and neurodegeneration. In this study, morphine on its own has been used for the management of morphine-induced dependency, oxidative stress, and apoptosis. Forty-eight male rats were randomly divided into six groups. Rats in groups 1-5 were made morphine dependent by an increasing manner of morphine for 7 days (15-45 mg/kg). For the next 14 days, morphine was administered using the following regimen: (i) once daily 45 mg/kg (positive controls), (ii) the same dose at additional intervals (6 h longer than the previous intervals each time), (iii) 45 mg/kg of morphine at irregular intervals like of 12, 24, 36 h, (iv) decreasing dose once daily (every time 2.5 mg/kg less than the former dosage). Group 5 received 45 mg/kg of morphine and 10 mg/kg of SOD mimetic agent (M40401) injection per day. Group 6 (negative control) received saline solution only. On day 22, all animals received naloxone (3 mg/kg) and their Total Withdrawal Index (TWI) and blood cortisol levels were measured. After drug treatment, hippocampus cells were isolated, and oxidative, antioxidative, and apoptotic factors were evaluated. Various regimens of morphine reduced TWI, cortisol levels, Bax activity, caspase-3, caspase-9, TNF-α, and IL-1β and lipid peroxidation. In all treatment groups, GSH level, superoxide dismutase, glutathione peroxidase, and Bcl-2 activity were significantly increased. Furthermore, SOD mimetic agent c diminished morphine effect on SOD activity. Thus, varying the dosage regimen of morphine can reduce the severity of morphine-induced dependency and neurodegeneration.
Collapse
Affiliation(s)
- Majid Motaghinejad
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Motaghinejad
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Shabab
- Solid Dosage Form Department, Iran Hormone Pharmaceuticals Company, Tehran, Iran
| | - Majid Asadighaleni
- Solid Dosage Form Department, Iran Hormone Pharmaceuticals Company, Tehran, Iran
| | - Sulail Fatima
- Department of Physiology, Tehran University of Medical Sciences- International Campus, Tehran, Iran
| |
Collapse
|
41
|
Ma J, Yuan X, Qu H, Zhang J, Wang D, Sun X, Zheng Q. The role of reactive oxygen species in morphine addiction of SH-SY5Y cells. Life Sci 2015; 124:128-35. [PMID: 25623851 DOI: 10.1016/j.lfs.2015.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 02/04/2023]
Abstract
AIMS The alteration of ROS level is frequently observed in the course of morphine addiction, and ROS is proverbially involved in this process. This study aims to explore the relationship among morphine addiction, reactive oxygen species (ROS) and expression of μ-opioid receptor (MOR) in differentiated SH-SY5Y cells. MAIN METHODS SH-SY5Y cells were induced to differentiation by treatment with retinoic acid (RA); the activity of lactate dehydrogenase (LDH) and the nitro blue tetrazolium (NBT) reduction were assessed by spectrophotometry. Intracellular reactive oxygen species (ROS) was measured with the 2,7-dichlorofluorescin diacetate (DCFH-DA) assay. Cellular cAMP was determined by using a competitive protein binding kit. The mRNA expression of μ-opioid receptor (MOR) was evaluated by qRT-PCR. KEY FINDINGS Morphine-induced ROS are generated in a concentration- and time-dependent manner and inhibited by naloxone. Exogenous oxidants increase the level of ROS and aggravate morphine addiction, while the exogenous antioxidants efficiently reverse these effects. Morphine decreases the mRNA level of MOR in a concentration-dependent manner. And the mRNA level of MOR is remarkably reduced in the presence of exogenous oxidants and effectively promoted by antioxidants. SIGNIFICANCE This study indicates that ROS can affect morphine addiction through involving MOR. Treatment with ROS scavenging can serve as a medical therapy for morphine addiction.
Collapse
Affiliation(s)
- Jun Ma
- Binzhou Medical University, Yantai 264000, Shandong, China; Life Science School, Yantai University, Yantai 264000, Shandong, China
| | - Xuan Yuan
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, Xinjiang, China
| | - Hengyi Qu
- Binzhou Medical University, Yantai 264000, Shandong, China
| | - Juan Zhang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, Xinjiang, China
| | - Dong Wang
- Qianfoshan Hospital of Shandong Province, Jinan 250014, China
| | - Xiling Sun
- Binzhou Medical University, Yantai 264000, Shandong, China.
| | - Qiusheng Zheng
- Binzhou Medical University, Yantai 264000, Shandong, China; Life Science School, Yantai University, Yantai 264000, Shandong, China.
| |
Collapse
|
42
|
Silva-Torres L, Veléz C, Álvarez L, Zayas B. Xylazine as a drug of abuse and its effects on the generation of reactive species and DNA damage on human umbilical vein endothelial cells. J Toxicol 2014; 2014:492609. [PMID: 25435874 PMCID: PMC4243599 DOI: 10.1155/2014/492609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/05/2014] [Accepted: 10/15/2014] [Indexed: 01/14/2023] Open
Abstract
Human xylazine (XYL) abuse among addicts has received great interest due to its potential toxic effects upon addicts and the need to understand the mechanism of action associated with the potential health effects. XYL is an alpha-2 agonist restricted to veterinarian applications, without human medical applications. Our previous work demonstrated that XYL and its combination with cocaine (COC) and/or 6-monoacetylmorphine (6-MAM) induce cell death through an apoptotic mechanism. The aim of this study was to determine the effect of xylazine on the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as well as DNA damage on endothelial cell. Human umbilical vein endothelial cells (HUVEC) were treated with XYL (60 μM), COC (160 μM), 6-MAM (160 μM), camptothecin (positive control, 50 μM), XYL/COC (50 μM), XYL/6-MAM (50 μM), and XYL/COC/6-MAM (40 μM) for a period of 24 hours. Generation of intracellular ROS, RNS, and DNA fragmentation were analyzed using a fluorometric assay. Results reveal that XYL and 6-MAM increase levels of ROS; no induction of RNS production was observed. The combination of these drugs shows significant increase in DNA fragmentation in G2/M phase, while XYL, COC, and 6-MAM, without combination, present higher DNA fragmentation in G0/G1 phase. These findings support that these drugs and their combination alter important biochemical events aligned with an apoptotic mechanism of action in HUVEC.
Collapse
Affiliation(s)
- Luz Silva-Torres
- Pharmacology and Toxicology Department, School of Medicine, University of Puerto Rico, Medical Science Campus, P.O. Box 335067, San Juan, PR 00936-5067, USA
- Puerto Rico Institute of Forensic Science, PR, USA
| | - Christian Veléz
- School of Environmental Affairs, Universidad Metropolitana, PR, USA
| | - Lyvia Álvarez
- Pharmacology and Toxicology Department, School of Medicine, University of Puerto Rico, Medical Science Campus, P.O. Box 335067, San Juan, PR 00936-5067, USA
- Puerto Rico Institute of Forensic Science, PR, USA
| | - Beatriz Zayas
- Pharmacology and Toxicology Department, School of Medicine, University of Puerto Rico, Medical Science Campus, P.O. Box 335067, San Juan, PR 00936-5067, USA
- School of Environmental Affairs, Universidad Metropolitana, PR, USA
| |
Collapse
|
43
|
Fatahi Z, Zeighamy Alamdary S, Khodagholi F, Zareh Shahamati S, Razavi Y, Haghparast A. Effect of physical stress on the alteration of mesolimbic system apoptotic factors in conditioned place preference paradigm. Pharmacol Biochem Behav 2014; 124:231-7. [DOI: 10.1016/j.pbb.2014.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/07/2014] [Accepted: 06/16/2014] [Indexed: 11/17/2022]
|
44
|
Meloxicam and buprenorphine treatment after ovarian transplantation does not affect estrous cyclicity and follicular integrity in aged CBA/J mice. PLoS One 2014; 9:e106013. [PMID: 25153315 PMCID: PMC4143324 DOI: 10.1371/journal.pone.0106013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/28/2014] [Indexed: 11/29/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is important for the survival of ovarian transplants and the restoration of ovarian functions. Without angiogenesis, transplanted ovarian tissue becomes more susceptible to tissue damage and necrosis. Administration of analgesics for pain management has been shown to decrease angiogenesis, which can influence transplant success especially in aged animals. Aging and the effects of hypoxia after transplantation decrease reproductive viability of the ovarian transplant; therefore, it is important to understand the additional effects of analgesics on aged animal models. The present study investigated the effects of two analgesics, buprenorphine, an opiate, and meloxicam, a non-steroidal anti-inflammatory drug (NSAID), on the reproductive indicators related to estrous cyclicity and follicular integrity after ovarian transplantation of young ovaries into aged CBA/J mice. These aged females did not show any different reproductive responses when treated with either buprenorphine or meloxicam. No significant differences were observed in estrous cycle length, the onset of estrous cycling, the regularity of estrous cycles, and the proportion of viable follicles and total number of follicles per ovarian sample across treatment groups.
Collapse
|
45
|
Silva-Torres LA, Vélez C, Lyvia Alvarez J, Ortiz JG, Zayas B. Toxic effects of xylazine on endothelial cells in combination with cocaine and 6-monoacetylmorphine. Toxicol In Vitro 2014; 28:1312-9. [PMID: 25017475 DOI: 10.1016/j.tiv.2014.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 11/19/2022]
Abstract
The use of xylazine as a drug of abuse has emerged worldwide in the last 7 years, including Puerto Rico. Clinical findings reported that xylazine users present greater physiological deterioration, than heroin users. The aim of this study was to assess the xylazine toxicity on endothelial cells, as this is one of the first tissues impact upon administration. Human umbilical vein endothelial cells in culture were treated with xylazine, cocaine, 6-monoacetylmorphine (heroin metabolite) and its combinations, at concentrations of 0.10-400 μM, for periods of 24, 48 and 72 h. IC50 were calculated and the Annexin V assay implemented to determine the cell death mechanism. Results indicated IC50 values at 24h as follow: xylazine 62 μM, cocaine 210 μM, 6-monoacetylmorphine 300 μM. When these drugs were combined the IC50 value was 57 μM. Annexin V results indicated cell death by an apoptosis mechanism in cells treated with xylazine or in combination. Results demonstrated that xylazine use inhibits the endothelial cell proliferation, at lower concentrations than cocaine and 6-monoacetylmorphine. These findings contribute to the understanding of the toxicity mechanisms induced by xylazine on endothelial cells.
Collapse
Affiliation(s)
- L A Silva-Torres
- University of Puerto Rico, Pharmacology and Toxicology Department, School of Medicine, Medical Science Campus, Puerto Rico; Puerto Rico Institute of Forensic Science, San Juan, Puerto Rico.
| | - C Vélez
- Universidad Metropolitana, School of Environmental Affairs, San Juan, Puerto Rico
| | - J Lyvia Alvarez
- Puerto Rico Institute of Forensic Science, San Juan, Puerto Rico; University of Puerto Rico, School of Health Professions, Medical Science Campus, Puerto Rico
| | - J G Ortiz
- University of Puerto Rico, Pharmacology and Toxicology Department, School of Medicine, Medical Science Campus, Puerto Rico
| | - B Zayas
- University of Puerto Rico, Pharmacology and Toxicology Department, School of Medicine, Medical Science Campus, Puerto Rico; Universidad Metropolitana, School of Environmental Affairs, San Juan, Puerto Rico
| |
Collapse
|
46
|
Razavi Y, Alamdary SZ, Katebi SN, Khodagholi F, Haghparast A. Morphine-induced apoptosis in the ventral tegmental area and hippocampus after the development but not extinction of reward-related behaviors in rats. Cell Mol Neurobiol 2014; 34:235-45. [PMID: 24281942 DOI: 10.1007/s10571-013-0007-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022]
Abstract
Some data suggest that morphine induces apoptosis in neurons, while other evidences show that morphine could have protective effects against cell death. In this study, we suggested that there is a parallel role of morphine in reward circuitry and apoptosis processing. Therefore, we investigated the effect of morphine on modifications of apoptotic factors in the ventral tegmental area (VTA) and hippocampus (HPC) which are involved in the reward circuitry after the acquisition and extinction periods of conditioned place preference (CPP). In behavioral experiments, different doses of morphine (0.5, 5, and 10 mg/kg) and saline were examined in the CPP paradigm. Conditioning score and locomotor activity were recorded by Ethovision software after acquisition on the post-conditioning day, and days 4 and 8 of extinction periods. In order to investigate the molecular mechanisms in each group, we then dissected the brains and measured the expression of apoptotic factors in the VTA and HPC by western blotting analysis. All of the morphine-treated groups showed an increase of apoptotic factors in these regions during acquisition but not in extinction period. In the HPC, morphine significantly increased the ratio of Bax/Bcl-2, caspases-3, and PARP by the lowest dose (0.5 mg/kg), but, in the VTA, a considerable increase was seen in the dose of 5 mg/kg; promotion of apoptotic factors in the HPC and VTA insinuates that morphine can affect the molecular mechanisms that interfere with apoptosis through different receptors. Our findings suggest that a specific opioid receptor involves in modification of apoptotic factors expression in these areas. It seems that the reduction of cell death in response to high dose of morphine in the VTA and HPC may be due to activation of low affinity opioid receptors which are involved in neuroprotective features of morphine.
Collapse
Affiliation(s)
- Yasaman Razavi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran
| | | | | | | | | |
Collapse
|
47
|
Skrabalova J, Drastichova Z, Novotny J. Morphine as a Potential Oxidative Stress-Causing Agent. MINI-REV ORG CHEM 2013; 10:367-372. [PMID: 24376392 PMCID: PMC3871421 DOI: 10.2174/1570193x113106660031] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 12/21/2022]
Abstract
Morphine exhibits important pharmacological effects for which it has been used in medical practice for quite a long time. However, it has a high addictive potential and can be abused. Long-term use of this drug can be connected with some pathological consequences including neurotoxicity and neuronal dysfunction, hepatotoxicity, kidney dysfunction, oxidative stress and apoptosis. Therefore, most studies examining the impact of morphine have been aimed at determining the effects induced by chronic morphine exposure in the brain, liver, cardiovascular system and macrophages. It appears that different tissues may respond to morphine diversely and are distinctly susceptible to oxidative stress and subsequent oxidative damage of biomolecules. Importantly, production of reactive oxygen/nitrogen species induced by morphine, which have been observed under different experimental conditions, can contribute to some pathological processes, degenerative diseases and organ dysfunctions occurring in morphine abusers or morphine-treated patients. This review attempts to provide insights into the possible relationship between morphine actions and oxidative stress.
Collapse
Affiliation(s)
- Jitka Skrabalova
- Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Czech Republic
| |
Collapse
|
48
|
Ash SA, Buggy DJ. Does regional anaesthesia and analgesia or opioid analgesia influence recurrence after primary cancer surgery? An update of available evidence. Best Pract Res Clin Anaesthesiol 2013; 27:441-56. [PMID: 24267550 DOI: 10.1016/j.bpa.2013.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
Abstract
Cancer continues to be a key cause of morbidity and mortality worldwide and its overall incidence continues to increase. Anaesthetists are increasingly faced with the challenge of managing cancer patients, for surgical resection to debulk or excise the primary tumour, or for surgical emergencies in patients on chemotherapy or for the analgesic management of disease- or treatment-related chronic pain. Metastatic recurrence is a concern. Surgery and a number of perioperative factors are suspected to accelerate tumour growth and potentially increase the risk of metastatic recurrence. Retrospective analyses have suggested an association between anaesthetic technique and cancer outcomes, and anaesthetists have sought to ameliorate the consequences of surgical trauma and minimise the impact of anaesthetic interventions. Just how anaesthesia and analgesia impact cancer recurrence and consequent survival is very topical, as understanding the potential mechanisms and interactions has an impact on the anaesthetist's ability to contribute to the successful outcome of oncological interventions. The outcome of ongoing, prospective, randomized trials are awaited with interest.
Collapse
Affiliation(s)
- Simon A Ash
- Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland.
| | | |
Collapse
|
49
|
Abstract
Opioids are widely used for their analgesic properties for the management of acute and chronic pain related to a variety of illnesses. Opioid usage is associated with adverse effects on respiration which are often attributed to depression of the central nervous system. Recent data indicate that opioid use has increased over the last two decades. There is also increasing evidence that opioids have a variety of effects on the lungs besides suppression of respiration. Opioids can affect immune cells function, increase histamine release causing bronchospasm, vaso-constriction and hypersensitivity reactions. Together, these actions have a variety of effects on lung function. Here, we provide a comprehensive review of the effects of opioids on the lungs including the respiratory centre, immune function, airways and pulmonary vasculature.
Collapse
Affiliation(s)
- Travis Yamanaka
- Department of Veterans Affairs, Jesse Brown VA Hospital, Section of Pulmonary, Critical Care, and Sleep Medicine, University of Illinois, Chicago Section of Pulmonary and Critical Care Medicine, University of Florida, Gainesville, Florida 32608, USA
| | | |
Collapse
|
50
|
The role of morphine in animal models of human cancer: does morphine promote or inhibit the tumor growth? BIOMED RESEARCH INTERNATIONAL 2013; 2013:258141. [PMID: 24069592 PMCID: PMC3771243 DOI: 10.1155/2013/258141] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/29/2013] [Indexed: 01/22/2023]
Abstract
Morphine, a highly potent analgesic agent, is widely used to relieve pain and suffering of patients with cancer. Additionally, it has been reported that morphine is important in the regulation of cancerous tissue. Morphine relieves pain by acting directly on the central nervous system, although its activities on peripheral tissues are responsible for many adverse side effects. For these reasons, it is very important also to understand the role of morphine in cancer treatment. The published literature reporting the effect of morphine on tumor growth presents some discrepancies, with reports suggesting that morphine may either promote or inhibit the tumor growth. It has been also demonstrated that morphine modulates angiogenesis which is important for primary tumour growth, invasiveness, and the development of metastasis. This review will focus on the latest findings on the role of morphine in the regulation of cancer cell growth and angiogenesis.
Collapse
|