1
|
Campbell SID, Chow CY, Neri-Castro E, Alagón A, Gómez A, Soria R, King GF, Fry BG. Taking the sting out of scorpions: Electrophysiological investigation of the relative efficacy of three antivenoms against medically significant Centruroides species. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109977. [PMID: 39025425 DOI: 10.1016/j.cbpc.2024.109977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/22/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
In this study, we report the innovative application of whole-cell patch-clamp electrophysiology in assessing broad-spectrum neutralisation by three different antivenoms, of venoms from the medically significant scorpion genus Centruroides. Envenomations by as many as 21 species from the Centruroides genus result in up to 300,000 envenomations per year in Mexico, which poses significant and potentially life-threatening pathophysiology. We first evaluated the in vitro manifestation of envenomation against two human voltage-gated sodium (hNaV) channel subtypes: hNaV1.4 and hNaV1.5, which are primarily expressed in skeletal muscles and cardiomyocytes, respectively. The neutralisation of venom activity was then characterised for three different antivenoms using a direct competition model against the more potent target, hNaV1.4. While broad-spectrum neutralisation was identified, variation in neutralisation arose for Centruroides elegans, C. limpidus, C. noxius and C. suffusus venoms, despite the presence of a number of these venoms within the immunising mixture. This raises questions regarding the truly "broad" neutralisation capacity of the antivenoms. This study not only extends previous validation of the in vitro investigation of antivenom efficacy utilising the whole-cell patch-clamp technique but also underscores the potential of this animal-free model in exploring cross-reactivity, experimental scalability, and most importantly, informing clinical management practices regarding the administration of antivenom in Mexico.
Collapse
Affiliation(s)
- Sam I D Campbell
- Adaptive Biotoxicology lab, School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Edgar Neri-Castro
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Durango, Mexico; Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Aarón Gómez
- Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Raúl Soria
- Inosan Biopharma S.A. Arbea Campus Empresarial, Edificio 2. Planta 2, Carretera Fuencarral a Alcobendas, Km. 3.8, 28108 Alcobendas, Madrid, Spain
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bryan G Fry
- Adaptive Biotoxicology lab, School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Alfa-Ibrahim Adio A, Malami I, Lawal N, Jega AY, Abubakar B, Bello MB, Ibrahim KG, Abubakar MB, Abdussamad A, Imam MU. Neurotoxic snakebites in Africa: Clinical implications, therapeutic strategies, and antivenom efficacy. Toxicon 2024; 247:107811. [PMID: 38917892 DOI: 10.1016/j.toxicon.2024.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/23/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Snakebite is a significant health concern in Africa, particularly due to neurotoxic envenomation which can lead to neuromuscular paralysis and respiratory failure. In Nigeria, snakes from the Elapidae family are a notable cause of envenomation cases, though these incidents are underreported. This review examined case reports of neurotoxic envenomation in Africa, highlighting the clinical impacts and the efficacy of available antivenoms. Preclinical studies showed that the polyvalent antivenom from the South African Institute for Medical Research (SAIMR) was highly effective against neurotoxicity with a protective efficacy (R) of 1346.80 mg/mL, while clinical assessment emphasized the need for high-dose antivenom therapy along with supportive measures like mechanical ventilation. Unlike hemorrhagic envenomation, where antivenom promptly resolves bleeding, neurotoxic cases often require additional interventions. The review underscores the necessity for tailored approaches in antivenom therapy to address the complexities of neurotoxic snakebites and reduce their public health burden in Africa.
Collapse
Affiliation(s)
- Abdulbaki Alfa-Ibrahim Adio
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Biochemistry and Molecular Biology, Faculty of Chemical and Life Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Nafiu Lawal
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Amina Yusuf Jega
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria; Vaccine Development Unit, Infectious Disease Research Development, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O. Box 2000, Zarqa, 13110, Jordan; Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Abdussamad Abdussamad
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
| |
Collapse
|
3
|
Kandeil MA, Salem HK, Eissa SH, Hassan SS, El-Sawy AM. Reproductive performance of freshwater snail, Helisoma duryi under the effect of bulk and nano zinc oxide. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:683-701. [PMID: 38594790 DOI: 10.1002/jez.2816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Nanotechnology has been used to apply nanoparticle essential elements to enhance the ability of animals to absorb these elements and consequently improve their reproductive performance. High concentrations of nanoparticles (NPs) can directly harm a range of aquatic life forms, ultimately contributing to a decline in biodiversity. Helisoma duryi snails are a good model for studying the toxicological effects of bulk zinc oxide (ZnO-BPs) and nano zinc oxide (ZnO-NPs) on freshwater gastropods. This study aimed to compare the toxic effects of ZnO-BPs and ZnO-NPs on H. duryi snails and explore how waterborne and dietary exposure influenced the reproductive performance of this snail. ZnO-BPs and ZnO-NPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder (XRD). This study revealed that the size of ZnO-BPs and ZnO-NPs were 154 nm and 11-31 nm, respectively. The results showed that exposure of adult snails to sub-lethal concentrations of both ZnO forms (bulk and nano) for 24 h/week for 4 weeks markedly changed their reproductive performance in a concentration-dependent manner, where fecundity was negatively affected by high concentrations. It was concluded that dietary exposure to the lowest tested concentration of ZnO-NPs (1 ppm) has a positive effect as the number of eggs and egg masses/snails increased and the incubation period decreased. Also, poly-vitelline eggs (The formation of twins) were observed. ZnO-NPs at low concentrations positively affect the reproductive performance of snails, especially after dietary exposure. The results revealed that 1 ppm ZnO-NPs could be supplementary provided to snails to improve their fertility, reduce the developmental time course, increase hatchability percentage, and produce poly-vitelline eggs.
Collapse
Affiliation(s)
- Manar A Kandeil
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hoda K Salem
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Samia H Eissa
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sama S Hassan
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | |
Collapse
|
4
|
Sandesha VD, Naveen P, Manikanta K, Mahalingam SS, Girish KS, Kemparaju K. Hump-Nosed Pit Viper ( Hypnale hypnale) Venom-Induced Irreversible Red Blood Cell Aggregation, Inhibition by Monovalent Anti-Venom and N-Acetylcysteine. Cells 2024; 13:994. [PMID: 38920625 PMCID: PMC11201549 DOI: 10.3390/cells13120994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Envenomation by the Hypnale hypnale in the Western Ghats of India (particularly in the Malabar region of Kerala) and the subcontinent island nation of Sri Lanka is known to inflict devastating mortality and morbidity. Currently, H. hypnale bites in India are devoid of anti-venom regimens. A detailed characterization of the venom is essential to stress the need for therapeutic anti-venom. Notably, the deleterious effects of this venom on human blood cells have largely remained less explored. Therefore, in continuation of our previous study, in the present study, we envisioned investigating the effect of venom on the morphological and physiological properties of red blood cells (RBCs). The venom readily induced deleterious morphological changes and, finally, the aggregation of washed RBCs. The aggregation process was independent of the ROS and the intracellular Ca2+ ion concentration. Confocal and scanning electron microscopy (SEM) images revealed the loss of biconcave morphology and massive cytoskeletal disarray. Crenation or serrated plasma membrane projections were evenly distributed on the surface of the RBCs. The venom did not cause the formation of methemoglobin in washed RBCs but was significantly induced in whole blood. Venom did not affect glucose uptake and Na+/K+ -ATPase activity but inhibited glucose 6 phosphate dehydrogenase activity and decreased the fluidity of the plasma membrane. Venom-induced RBC aggregates exhibited pro-coagulant activity but without affecting platelet aggregation. In pre-incubation or co-treatment studies, none of the bioactive compounds, such as melatonin, curcumin, fisetin, berberine, and quercetin, sugars such as mannose and galactose, and therapeutic polyvalent anti-venoms (Bharat and VINS) were inhibited, whereas only N-acetylcysteine and H. hypnale monovalent anti-venom could inhibit venom-induced deleterious morphological changes and aggregation of RBCs. In post-treatment studies, paradoxically, none of the bioactives and anti-venoms, including N-acetylcysteine and H. hypnale monovalent anti-venom, reversed the venom-induced RBC aggregates.
Collapse
Affiliation(s)
- Vaddaragudisalu D. Sandesha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| | - Puttaswamy Naveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| | - Kurnegala Manikanta
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| | - Shanmuga S. Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Kesturu S. Girish
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572103, Karnataka, India
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (V.D.S.); (P.N.); (K.M.)
| |
Collapse
|
5
|
Rodríguez-Vargas A, Franco-Vásquez AM, Triana-Cerón M, Alam-Rojas SN, Escobar-Wilches DC, Corzo G, Lazcano-Pérez F, Arreguín-Espinosa R, Ruiz-Gómez F. Immunological Cross-Reactivity and Preclinical Assessment of a Colombian Anticoral Antivenom against the Venoms of Three Micrurus Species. Toxins (Basel) 2024; 16:104. [PMID: 38393182 PMCID: PMC10891627 DOI: 10.3390/toxins16020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Snakebite accident treatment requires the administration of antivenoms that provide efficacy and effectiveness against several snake venoms of the same genus or family. The low number of immunogenic components in venom mixtures that allow the production of antivenoms consequently gives them partial neutralization and a suboptimal pharmacological response. This study evaluates the immunorecognition and neutralizing efficacy of the polyvalent anticoral antivenom from the Instituto Nacional de Salud (INS) of Colombia against the heterologous endemic venoms of Micrurus medemi, and M. sangilensis, and M. helleri by assessing immunoreactivity through affinity chromatography, ELISA, Western blot, and neutralization capability. Immunorecognition towards the venoms of M. medemi and M. sangilensis showed values of 62% and 68% of the protein composition according to the immunoaffinity matrix, respectively. The analysis by Western blot depicted the highest recognition patterns for M. medemi, followed by M. sangilensis, and finally by M. helleri. These findings suggest that the venom compositions are closely related and exhibit similar recognition by the antivenom. According to enzyme immunoassays, M. helleri requires a higher amount of antivenom to achieve recognition than the others. Besides reinforcing the evaluation of INS antivenom capability, this work recommends the use of M. helleri in the production of Colombian antisera.
Collapse
Affiliation(s)
- Ariadna Rodríguez-Vargas
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.T.-C.); (S.N.A.-R.); (F.R.-G.)
| | - Adrián Marcelo Franco-Vásquez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.M.F.-V.); (F.L.-P.); (R.A.-E.)
| | - Miguel Triana-Cerón
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.T.-C.); (S.N.A.-R.); (F.R.-G.)
- Bacterial Molecular Genetics Laboratory, Research Department, Universidad El Bosque, Bogotá 110121, Colombia
| | - Shaha Noor Alam-Rojas
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.T.-C.); (S.N.A.-R.); (F.R.-G.)
| | | | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | - Fernando Lazcano-Pérez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.M.F.-V.); (F.L.-P.); (R.A.-E.)
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.M.F.-V.); (F.L.-P.); (R.A.-E.)
| | - Francisco Ruiz-Gómez
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.T.-C.); (S.N.A.-R.); (F.R.-G.)
| |
Collapse
|
6
|
Antivenom availability, delays and use in Australia. Toxicon X 2023; 17:100145. [DOI: 10.1016/j.toxcx.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
|
7
|
Immunoprofiling of Equine Plasma against Deinagkistrodon acutus in Taiwan: Key to Understanding Differential Neutralization Potency in Immunized Horses. Trop Med Infect Dis 2023; 8:tropicalmed8010051. [PMID: 36668958 PMCID: PMC9866385 DOI: 10.3390/tropicalmed8010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Snakebite envenoming is a public health issue linked to high mortality and morbidity rates worldwide. Although antivenom has been the mainstay treatment for envenomed victims receiving medical care, the diverse therapeutic efficacy of the produced antivenom is a major limitation. Deinagkistrodon acutus is a venomous snake that poses significant concern of risks to human life in Taiwan, and successful production of antivenom against D. acutus envenoming remains a considerable challenge. Among groups of horses subjected to immunization schedules, few or none subsequently meet the quality required for further scale-up harvesting. The determinants underlying the variable immune responses of horses to D. acutus venom are currently unknown. In this study, we assessed the immunoprofiles of high-potency and low-potency horse plasma against D. acutus venom and explored the conspicuous differences between these two groups. Based on the results of liquid chromatography with tandem mass spectrometry (LC-MS/MS), acutolysin A was identified as the major component of venom proteins that immunoreacted differentially with the two plasma samples. Our findings indicate underlying differences in antivenoms with variable neutralization efficacies, and may provide valuable insights for improvement of antivenom production in the future.
Collapse
|
8
|
Rodríguez-Vargas A, Vega N, Reyes-Montaño E, Corzo G, Neri-Castro E, Clement H, Ruiz-Gómez F. Intraspecific Differences in the Venom of Crotalus durissus cumanensis from Colombia. Toxins (Basel) 2022; 14:toxins14080532. [PMID: 36006194 PMCID: PMC9416679 DOI: 10.3390/toxins14080532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Biochemical and biological differences in the venom of Crotalus durissus cumanensis from three ecoregions of Colombia were evaluated. Rattlesnakes were collected from the geographic areas of Magdalena Medio (MM), Caribe (CA) and Orinoquía (OR). All three regionally distributed venoms contain proteases, PLA2s and the basic subunit of crotoxin. However, only crotamine was detected in the CA venom. The highest lethality, coagulant, phospholipase A2 and hyaluronidase activities were found in the MM venom. Also, some differences, observed by western blot and immunoaffinity, were found in all three venoms when using commercial antivenoms. Furthermore, all three eco-regional venoms showed intraspecific variability, considering the differences in the abundance and intensity of their components, in addition to the activity and response to commercial antivenoms.
Collapse
Affiliation(s)
- Ariadna Rodríguez-Vargas
- Grupo de Investigación en Proteínas, Universidad Nacional de Colombia, Bogotá 11001, Colombia; (N.V.); (E.R.-M.)
- Correspondence:
| | - Nohora Vega
- Grupo de Investigación en Proteínas, Universidad Nacional de Colombia, Bogotá 11001, Colombia; (N.V.); (E.R.-M.)
| | - Edgar Reyes-Montaño
- Grupo de Investigación en Proteínas, Universidad Nacional de Colombia, Bogotá 11001, Colombia; (N.V.); (E.R.-M.)
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (G.C.); (E.N.-C.); (H.C.)
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (G.C.); (E.N.-C.); (H.C.)
| | - Herlinda Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (G.C.); (E.N.-C.); (H.C.)
| | - Francisco Ruiz-Gómez
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Instituto Nacional de Salud, Bogotá 111321, Colombia;
| |
Collapse
|
9
|
Immunorecognition and Neutralization of Crotalus durissus cumanensis Venom by a Commercial Antivenom Produced in Colombia. Toxins (Basel) 2022; 14:toxins14040235. [PMID: 35448844 PMCID: PMC9025410 DOI: 10.3390/toxins14040235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022] Open
Abstract
In Colombia, on average 2.9% of the nearly 5600 snakebite events that occur annually involve the rattlesnake Crotalus durissus cumanensis. The envenomation by this snake is mainly characterized by neurotoxicity and the main toxin is crotoxin (~64.7% of the total venom). The Instituto Nacional de Salud (INS) produces a polyvalent antivenom aimed at the treatment of bothropic, crotalid, and lachesic envenomations; nonetheless, its immune reactivity profile and neutralizing capacity over biological activities of the C. d. cumanensis venom has been poorly evaluated. In this sense, the study aims: (1) to describe an in-depth exploration of its immunoreactivity through second-generation antivenomics and HPLC fraction-specific ELISA immunoprofiles; and (2) to evaluate the neutralization pattern of the rattlesnake venom in vitro and in vivo biological activities. The results obtained showed a variable recognition of crotoxin subunits, in addition to a molecular mass-dependent immunoreactivity pattern in which the disintegrins were not recognized, and snake venom metalloproteinases and L-amino acid oxidases were the most recognized. Additionally, a high neutralization of proteolytic and coagulant activities was observed, but not over the PLA2 activity. Further, the median effective dose against C. d. cumanensis venom lethality was 962 μL of antivenom per mg of venom. In conclusion, (1) the antivenom recognition over the crotoxin and the disintegrins of the C. d. cumanensis should be improved, thus aiming upcoming efforts for the exploration of new techniques and approaches in antivenom production in Colombia, and (2) the neutralization activity of the antivenom seems to follow the molecular mass-dependent recognition pattern, although other explanations should be explored.
Collapse
|
10
|
Tupetz A, Barcenas LK, Phillips AJ, Vissoci JRN, Gerardo CJ. BITES study: A qualitative analysis among emergency medicine physicians on snake envenomation management practices. PLoS One 2022; 17:e0262215. [PMID: 34995326 PMCID: PMC8741014 DOI: 10.1371/journal.pone.0262215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 12/19/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Antivenom is currently considered standard treatment across the full spectrum of severity for snake envenomation in the United States. Although safe and effective antivenoms exist, their use in clinical practice is not universal. OBJECTIVE This study explored physicians' perceptions of antivenom use and experience with snake envenomation treatment in order to identify factors that influence treatment decisions and willingness to administer. METHODS We conducted a qualitative study including in-depth interviews via online video conferencing with physicians practicing in emergency departments across the United States. Participants were selected based on purposive sampling methods. Data analysis followed inductive strategies, conducted by two researchers. The codebook and findings were discussed within the research team. FINDINGS Sixteen in-depth interviews with physicians from nine states across the US were conducted. The participants' specialties include emergency medicine (EM), pediatric EM, and toxicology. The experience of treating snakebites ranged from only didactic education to having treated over 100 cases. Emergent themes for this manuscript from the interview data included perceptions of antivenom, willingness to administer antivenom and influencing factors to antivenom usage. Overall, cost-related concerns were a major barrier to antivenom administration, especially in cases where the indications and effectiveness did not clearly outweigh the potential financial burden on the patient in non-life- or limb-threatening cases. The potential to decrease recovery time and long-term functional impairments was not commonly reported by participants as an indication for antivenom. In addition, level of exposure and perceived competence, based on prior education and clinical experience, further impacted the decision to treat. Resources such as Poison Center Call lines were well received and commonly used to guide the treatment plan. The need for better clinical guidelines and updated treatment algorithms with clinical and measurable indicators was stated to help the decision-making process, especially among those with low exposure to snake envenomation patients. CONCLUSIONS A major barrier to physician use of antivenom is a concern about cost, cost transparency and cost-benefit for the patients. Those concerns, in addition to the varying degrees of awareness of potential long-term benefits, further influence inconsistent clinical treatment practices.
Collapse
Affiliation(s)
- Anna Tupetz
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Loren K. Barcenas
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ashley J. Phillips
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Joao Ricardo Nickenig Vissoci
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | - Charles J. Gerardo
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Mender MM, Bolton F, Berry C, Young M. Antivenom: An immunotherapy for the treatment of snakebite envenoming in sub-Saharan Africa. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:435-477. [PMID: 35305724 DOI: 10.1016/bs.apcsb.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Snakebite envenoming (SBE) leads to significant morbidity and mortality, resulting in over 90,000 deaths and approximately 400,000 amputations annually. In sub-Saharan Africa (SSA) alone, SBE accounts for over 30,000 deaths per annum. Since 2017, SBE has been classified as a priority Neglected Tropical Disease (NTD) by the World Health Organisation (WHO). The major species responsible for mortality from SBE within SSA are from the Bitis, Dendroaspis, Echis and Naja genera. Pharmacologically active toxins such as metalloproteinases, serine proteinases, 3-finger toxins, kunitz-type toxins, and phospholipase A2s are the primary snake venom components. These toxins induce cytotoxicity, coagulopathy, hemorrhage, and neurotoxicity in envenomed victims. Antivenom is currently the only available venom-specific treatment for SBE and contains purified equine or ovine polyclonal antibodies, collected from donor animals repeatedly immunized with low doses of adjuvanted venom. The resulting plasma or serum contains a high titre of specific antibodies, which can then be collected and stored until required. The purified antibodies are either whole IgG, monovalent fragment antibody (Fab) or divalent fragment antibody F(ab')2. Despite pharmacokinetic and pharmacodynamic differences, all three are effective in the treatment of SBE. No antivenom is without adverse reactions but, the level of their impact and severity varies from benign early adverse reactions to the rarely occurring fatal anaphylactic shock. However, the major side effects are largely reversible with immediate administration of adrenaline and corticosteroids. There are 16 different antivenoms marketed within SSA, but the efficacy and safety profiles are only published for less than 50% of these products.
Collapse
Affiliation(s)
- Mender M Mender
- School of Bioscience, Cardiff University, Cardiff, United Kingdom; Department of Research and Development, MicroPharm Ltd, Newcastle Emlyn, United Kingdom.
| | - Fiona Bolton
- Department of Research and Development, MicroPharm Ltd, Newcastle Emlyn, United Kingdom
| | - Colin Berry
- School of Bioscience, Cardiff University, Cardiff, United Kingdom
| | - Mark Young
- School of Bioscience, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
12
|
Calvete JJ, Lomonte B, Saviola AJ, Bonilla F, Sasa M, Williams DJ, Undheim EA, Sunagar K, Jackson TN. Mutual enlightenment: A toolbox of concepts and methods for integrating evolutionary and clinical toxinology via snake venomics and the contextual stance. Toxicon X 2021; 9-10:100070. [PMID: 34195606 PMCID: PMC8234350 DOI: 10.1016/j.toxcx.2021.100070] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease that may claim over 100,000 human lives annually worldwide. Snakebite occurs as the result of an interaction between a human and a snake that elicits either a defensive response from the snake or, more rarely, a feeding response as the result of mistaken identity. Snakebite envenoming is therefore a biological and, more specifically, an ecological problem. Snake venom itself is often described as a "cocktail", as it is a heterogenous mixture of molecules including the toxins (which are typically proteinaceous) responsible for the pathophysiological consequences of envenoming. The primary function of venom in snake ecology is pre-subjugation, with defensive deployment of the secretion typically considered a secondary function. The particular composition of any given venom cocktail is shaped by evolutionary forces that include phylogenetic constraints associated with the snake's lineage and adaptive responses to the snake's ecological context, including the taxa it preys upon and by which it is predated upon. In the present article, we describe how conceptual frameworks from ecology and evolutionary biology can enter into a mutually enlightening relationship with clinical toxinology by enabling the consideration of snakebite envenoming from an "ecological stance". We detail the insights that may emerge from such a perspective and highlight the ways in which the high-fidelity descriptive knowledge emerging from applications of -omics era technologies - "venomics" and "antivenomics" - can combine with evolutionary explanations to deliver a detailed understanding of this multifactorial health crisis.
Collapse
Affiliation(s)
- Juan J. Calvete
- Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Unidad de Proteómica, Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fabián Bonilla
- Laboratorio de Investigación en Animales Peligrosos (LIAP), Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mahmood Sasa
- Laboratorio de Investigación en Animales Peligrosos (LIAP), Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Museo de Zoología, Centro de Investigaciones en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, Costa Rica
| | | | - Eivind A.B. Undheim
- Centre for Biodiversity Dynamics, Department of Biology, NTNU, Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Timothy N.W. Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Jafari H, Tamadoni Jahromi S, Zargan J, Zamani E, Ranjbar R, Honari H. Cloning and Expression of N-CFTX-1 Antigen from Chironex fleckeri in Escherichia coli and Determination of Immunogenicity in Mice. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:376-383. [PMID: 33748002 PMCID: PMC7956099 DOI: 10.18502/ijph.v50i2.5355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: Most jellyfish species are poisonous. Human victims of jellyfish sting each year are 120 million. Chironex fleckeri is a venomous box jellyfish that inflicts painful and potentially fatal stings to humans. The CfTX-1 is one of the antigenic proteins of venom that is suggested to stimulate the immune system for treatment and vaccine. This study aimed to clone and express the CfTX-1 antigen in E. coli and then to determine the synthesis of related antibody in the mice. Methods: The study was performed in the Persian Gulf and Oman Sea Ecology Research Center, Bandar Abbas, Iran in autumn 2016. The synthetic CfTX-1 gene in PUC57 plasmid was purchased from Nedaye Fan Company. The 723 bp fragment of N-CfTX-1 was amplified by PCR, PUC57 plasmid containing CfTX-1 with BamHI SalI restriction enzyme sites were subcloned in pET28a [+] expression vector and transformed into E. coli BL21 (DE3). The CfTX-1 gene expression was induced by IPTG. Then antibody produced from the mice serum were isolated and confirmed by ELISA. After protein purification, resulted antigen was injected to mice in 4 repeats and then evaluated the rate of antibody in mice serum. Mice were challenged by the Carybdea alata. Results: The 726 bp of N-CfTX-1 were cloned in a vector of expression pET28a [+] and confirmed by PCR, sequencing and enzymatic analysis. Moreover, the recombinant protein was confirmed by SDS-PAGE and Western blotting. Then the antibody was isolated from mice serum and confirmed by ELISA test. The results showed that immunized mice tolerated 50x LD501 of jellyfish venom. Conclusion: The CfTX-1 recombinant protein was able to protect the BALB/c mice against jellyfish venom. The produced protein can be used as a candidate for vaccine against jellyfish venom.
Collapse
Affiliation(s)
- Hossein Jafari
- Department of Biology, Faculty of Basic Sciences, Imam Hossein Comprehensive University, Tehran, Iran
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Jamil Zargan
- Department of Biology, Faculty of Basic Sciences, Imam Hossein Comprehensive University, Tehran, Iran
| | - Ehsan Zamani
- Department of Biology, Faculty of Basic Sciences, Imam Hossein Comprehensive University, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Honari
- Department of Biology, Faculty of Basic Sciences, Imam Hossein Comprehensive University, Tehran, Iran
| |
Collapse
|
14
|
Noutsos T, Currie BJ, Lek RA, Isbister GK. Snakebite associated thrombotic microangiopathy: a systematic review of clinical features, outcomes, and evidence for interventions including plasmapheresis. PLoS Negl Trop Dis 2020; 14:e0008936. [PMID: 33290400 PMCID: PMC7748274 DOI: 10.1371/journal.pntd.0008936] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/18/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Snakebite is a neglected tropical disease with significant morbidity and mortality. Thrombotic microangiopathy (TMA) is an important but poorly understood complication of snakebite associated with acute kidney injury (AKI). Numerous treatments have been attempted based on limited evidence. We conducted a systematic review of TMA following snakebite using a pre-determined case definition of blood film red cell schistocytes or histologically diagnosed TMA. The search strategy included major electronic databases and grey literature. We present a descriptive synthesis for the outcomes of AKI, dialysis free survival (DFS), other end-organ damage, overall survival, and interventions with antivenom and therapeutic plasmapheresis (TPE). This study was prospectively registered with PROSPERO (CRD42019121436). Seventy-two studies reporting 351 cases were included, predominantly small observational studies. Heterogeneity for study selection, design, reporting and outcomes were observed. The commonest envenoming species were hump-nosed vipers (Hypnale spp.), Russell's viper (Daboia russelii) and Australian brown snakes (Pseudechis spp.). The prevalence of TMA was at least 5.4% in proven and probable Hypnale bites, and 10-15% of Australian elapid envenomings, AKI occurred in 94% (293/312) of TMA cases, excluding case reports. The majority of cases with AKI required dialysis. Included prospective and retrospective cohort studies reporting interventions and renal outcomes showed no evidence for benefit from antivenom or TPE with respect to DFS in dialysis dependant AKI. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) assessment for quality of accumulated evidence for interventions was low. The major complication of TMA following snakebite is AKI. AKI improves in most cases. We found no evidence to support benefit from antivenom in snakebite associated TMA, but antivenom remains the standard of care for snake envenoming. There was no evidence for benefit of TPE in snakebite associated TMA, so TPE cannot be recommended. The quality of accumulated evidence was low, highlighting a need for high quality larger studies.
Collapse
Affiliation(s)
- Tina Noutsos
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Flinders Health and Medical Research Institute, Flinders University, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Bart J. Currie
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Rachel A. Lek
- Flinders Health and Medical Research Institute, Flinders University, Australia
| | - Geoffrey K. Isbister
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
15
|
Isbister GK, Mirajkar N, Fakes K, Brown SGA, Veerati PC. Phospholipase A2 (PLA 2) as an Early Indicator of Envenomation in Australian Elapid Snakebites (ASP-27). Biomedicines 2020; 8:biomedicines8110459. [PMID: 33138056 PMCID: PMC7692658 DOI: 10.3390/biomedicines8110459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 01/28/2023] Open
Abstract
Early diagnosis of snake envenomation is essential, especially neurotoxicity and myotoxicity. We investigated the diagnostic value of serum phospholipase (PLA2) in Australian snakebites. In total, 115 envenomated and 80 non-envenomated patients were recruited over 2 years, in which an early blood sample was available pre-antivenom. Serum samples were analyzed for secretory PLA2 activity using a Cayman sPLA2 assay kit (#765001 Cayman Chemical Company, Ann Arbor MI, USA). Venom concentrations were measured for snake identification using venom-specific enzyme immunoassay. The most common snakes were Pseudonaja spp. (33), Notechis scutatus (24), Pseudechis porphyriacus (19) and Tropidechis carinatus (17). There was a significant difference in median PLA2 activity between non-envenomated (9 nmol/min/mL; IQR: 7–11) and envenomated patients (19 nmol/min/mL; IQR: 10–66, p < 0.0001) but Pseudonaja spp. were not different to non-envenomated. There was a significant correlation between venom concentrations and PLA2 activity (r = 0.71; p < 0.0001). PLA2 activity was predictive for envenomation; area under the receiver-operating-characteristic curve (AUC-ROC), 0.79 (95% confidence intervals [95%CI]: 0.72–0.85), which improved with brown snakes excluded, AUC-ROC, 0.88 (95%CI: 0.82–0.94). A cut-point of 16 nmol/min/mL gives a sensitivity of 72% and specificity of 100% for Australian snakes, excluding Pseudonaja. PLA2 activity was a good early predictor of envenomation in most Australian elapid bites. A bedside PLA2 activity test has potential utility for early case identification but may not be useful for excluding envenomation.
Collapse
Affiliation(s)
- Geoffrey K. Isbister
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW 2298, Australia; (N.M.); (K.F.); (P.C.V.)
- Correspondence: ; Tel.: +61-249211211
| | - Nandita Mirajkar
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW 2298, Australia; (N.M.); (K.F.); (P.C.V.)
| | - Kellie Fakes
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW 2298, Australia; (N.M.); (K.F.); (P.C.V.)
| | - Simon G. A. Brown
- Aeromedical and Retrieval Medicine, Ambulance Tasmania, Hobart, TAS 7001, Australia;
| | - Punnam Chander Veerati
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW 2298, Australia; (N.M.); (K.F.); (P.C.V.)
| |
Collapse
|
16
|
GÜLEN M, SATAR S, YEŞİLOĞLU Ö, İNCE Ç, ESEN C, ACEHAN S. Tedavide kullanılan iki tip polivalan yılan antivenomunun karşılaştırılması. CUKUROVA MEDICAL JOURNAL 2020. [DOI: 10.17826/cumj.737922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Ramdhani N, Jonker S, van 't Kruys K, Bansie R, Zijlmans W. Snakebites in Suriname: Evaluation of the Protocolled Administration of Anti-Snake Venom in a Tertiary Care Setting. Am J Trop Med Hyg 2020; 103:1711-1716. [PMID: 32662397 DOI: 10.4269/ajtmh.20-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Venomous snakebites regularly occur in Suriname, a middle-income country located on the north coast of South America. Officially reported data on incidence and mortality are lacking. The aim of this retrospective study was to assess whether the use of our national snakebite protocol with selective administration of anti-snake venom (ASV) in patients with signs of snakebite envenoming improved clinical outcome as measured by mortality and length of stay (LOS) in the hospital. Medical records of all patients admitted at the Academic Hospital Paramaribo from 2013 to 2015, before and after the introduction of the protocol, with signs of snakebite envenoming, were reviewed for demographics, snakebite characteristics, mortality, length of hospital stay, administration of ASV, and occurrence of complications. Secondary outcome measures were the development of late complications due to a snakebite. Sixty-eight and 76 patients in 2013 and 2015, respectively, with venomous or potentially venomous snakebites were identified. One patient (1.5%) in 2013 and 29 patients (38.2%) in 2015 received ASV. In 2013 one patient died: deterioration of renal function occurred before protocolled ASV administration. No deaths were reported in 2015. There was no difference in the overall length of hospital stay between 2013 and 2015 or in the total number of late complications. In 2015, the mean LOS (±SD) for patients who did not receive ASV (n = 47) was significantly lower than that for patients who received ASV (n = 29), 2.15 ± 2.27 versus 5.31 ± 5.53 days, respectively (P = 0.001). The mean LOS (±SD) for patients who did not receive ASV in 2013 (n = 67) and 2015 (n = 47) was 4.06 ± 5.44 and 2.15 ± 2.27 days, respectively, which also differed significantly (P = 0.025). The protocolled evaluation of snakebite victims resulted in more patients being admitted to the intensive care unit and receiving ASV and a shorter length of hospital stay for the patients who did not receive ASV, and no difference in the occurrence of complications was observed in Suriname's largest hospital responsible for the acute care of snakebite victims.
Collapse
Affiliation(s)
- Navin Ramdhani
- Department of Intensive Care Unit, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Simone Jonker
- Department of Intensive Care Unit, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Kevin van 't Kruys
- Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Rakesh Bansie
- Department of Internal Medicine, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Wilco Zijlmans
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname.,Scientific Research Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| |
Collapse
|
18
|
Manion J, Waller MA, Clark T, Massingham JN, Neely GG. Developing Modern Pain Therapies. Front Neurosci 2019; 13:1370. [PMID: 31920521 PMCID: PMC6933609 DOI: 10.3389/fnins.2019.01370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Chronic pain afflicts as much as 50% of the population at any given time but our methods to address pain remain limited, ineffective and addictive. In order to develop new therapies an understanding of the mechanisms of painful sensitization is essential. We discuss here recent progress in the understanding of mechanisms underlying pain, and how these mechanisms are being targeted to produce modern, specific therapies for pain. Finally, we make recommendations for the next generation of targeted, effective, and safe pain therapies.
Collapse
Affiliation(s)
- John Manion
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Matthew A. Waller
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Teleri Clark
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Joshua N. Massingham
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - G. Gregory Neely
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Genome Editing Initiative, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Sarmiento K, Rodríguez A, Quevedo-Buitrago W, Torres I, Ríos C, Ruíz L, Salazar J, Hidalgo-Martínez P, Diez H. Comparación de la eficacia, la seguridad y la farmacocinética de los antivenenos antiofídicos: revisión de literatura. UNIVERSITAS MÉDICA 2019. [DOI: 10.11144/javeriana.umed61-1.anti] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
En Colombia se presentan anualmente alrededor de 5000 casos de mordedura de serpiente y su tratamiento se basa en la neutralización con inmunoglobulinas completas purificadas, sin embargo, globalmente se utilizan antivenenos faboterápicos. Objetivo: Dar a conocer diferencias entre las generaciones de antivenenos, la importancia del veneno en la producción de anticuerpos, comparar aspectos farmacocinéticos y los efectos adversos en pacientes. Materiales Métodos: Se realizó una búsqueda de literatura en bases de datos utilizando combinaciones de los descriptores y términos Mesh, en inglés y español. Se cotejaron parámetros farmacocinéticos en estudios preclínicos y los efectos adversos en estudios clínicos. Resultados: Se encontraron diferencias debidas al tamaño de la fracción de la inmunoglobulina que la compone, así entre más pequeña es ésta, se observa mayor distribución a los tejidos y una vida media más corta, comparada con las moléculas más pesadas. Se encontraron estudios con disminución de efectos adversos con antivenenos faboterápicos
Collapse
|
20
|
Jeon YJ, Kim JW, Park S, Shin DW. Risk factor, monitoring, and treatment for snakebite induced coagulopathy: a multicenter retrospective study. Acute Crit Care 2019; 34:269-275. [PMID: 31743633 PMCID: PMC6895465 DOI: 10.4266/acc.2019.00591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022] Open
Abstract
Background Snakebite can cause various complications, including coagulopathy. The clinical features of snakebite-associated coagulopathy differ from those of disseminated intravascular coagulation (DIC) caused by other diseases and its treatment is controversial. Methods We retrospectively reviewed the medical records of patients hospitalized for snakebite between January 2006 and September 2018. Results A total of 226 patients were hospitalized due to snakebite. Their median hospital stay was 4.0 days (interquartile range, 2.0 to 7.0 days). Five patients arrived at hospital with shock and one patient died. Twenty-one patients had overt DIC according to the International Society of Thrombosis and Hemostasis scoring system. Two patients developed major bleeding complications. Initial lower cholesterol level at presentation was associated with the development of overt DIC. International normalization ratio (INR) exceeding the laboratory’s measurement limit was recorded as late as 4 to 5 days after the bite. Higher antivenom doses (≥18,000 units) and transfusion of fresh frozen plasma (FFP) or cryoprecipitate did not affect prolonged INR duration or hospital stay in the overt DIC patients without bleeding. Conclusions Initial lower cholesterol level may be a risk factor for overt DIC following snakebite. Although patients lack apparent symptoms, the risk of coagulopathy should be assessed for at least 4 to 5 days following snakebite. Higher antivenom doses and transfusion of FFP or cryoprecipitate may be unbeneficial for coagulopathic patients without bleeding.
Collapse
Affiliation(s)
- Yong Jun Jeon
- Department of Surgery, Chinjujeil Hospital, Jinju, Korea
| | - Jong Wan Kim
- Department of Surgery, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - SungGil Park
- Department of Surgery, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Dong Woo Shin
- Department of Surgery, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| |
Collapse
|
21
|
Williams HF, Layfield HJ, Vallance T, Patel K, Bicknell AB, Trim SA, Vaiyapuri S. The Urgent Need to Develop Novel Strategies for the Diagnosis and Treatment of Snakebites. Toxins (Basel) 2019; 11:E363. [PMID: 31226842 PMCID: PMC6628419 DOI: 10.3390/toxins11060363] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Snakebite envenoming (SBE) is a priority neglected tropical disease, which kills in excess of 100,000 people per year. Additionally, many millions of survivors also suffer through disabilities and long-term health consequences. The only treatment for SBE, antivenom, has a number of major associated problems, not least, adverse reactions and limited availability. This emphasises the necessity for urgent improvements to the management of this disease. Administration of antivenom is too frequently based on symptomatology, which results in wasting crucial time. The majority of SBE-affected regions rely on broad-spectrum polyvalent antivenoms that have a low content of case-specific efficacious immunoglobulins. Research into small molecular therapeutics such as varespladib/methyl-varespladib (PLA2 inhibitors) and batimastat/marimastat (metalloprotease inhibitors) suggest that such adjunctive treatments could be hugely beneficial to victims. Progress into toxin-specific monoclonal antibodies as well as alternative binding scaffolds such as aptamers hold much promise for future treatment strategies. SBE is not implicit during snakebite, due to venom metering. Thus, the delay between bite and symptom presentation is critical and when symptoms appear it may often already be too late to effectively treat SBE. The development of reliable diagnostical tools could therefore initiate a paradigm shift in the treatment of SBE. While the complete eradication of SBE is an impossibility, mitigation is in the pipeline, with new treatments and diagnostics rapidly emerging. Here we critically review the urgent necessity for the development of diagnostic tools and improved therapeutics to mitigate the deaths and disabilities caused by SBE.
Collapse
Affiliation(s)
| | | | - Thomas Vallance
- School of Pharmacy, University of Reading, Reading RG6 6AH, UK.
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK.
| | - Andrew B Bicknell
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK.
| | | | | |
Collapse
|
22
|
Monzavi SM, Afshari R, Khoshdel AR, Mahmoudi M, Salarian AA, Samieimanesh F, Shirmast E, Mihandoust A. Analysis of effectiveness of Iranian snake antivenom on Viper venom induced effects including analysis of immunologic biomarkers in the Echis carinatus sochureki envenomed victims. Toxicon 2019; 158:38-46. [PMID: 30452924 DOI: 10.1016/j.toxicon.2018.11.293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023]
Abstract
Snakebite is an important toxicologic emergency with the potential of triggering local and systemic inflammation. Antivenom has remained the mainstay of treatment for snakebite envenomation. In this study we sought to investigate the effectiveness of Iranian antivenom in a series of 44 viper envenomed patients through analysis of changes in clinical severity and the levels of inflammatory markers. Clinical envenomation severity assessed by snakebite severity score (SSS) and laboratory exams of the patients were recorded before (baseline visit) and after antivenom therapy. During 12-h antivenom therapy, the median (range) score of SSS significantly decreased from 3.5 (2-10) on admission to 1 (0-5) in the last visit (P < 0.001). Moreover, a significant decrease in prothrombin time and international normalized ratio was found (P = 0.006 and 0.008; respectively). Plasma concentrations of interleukin (IL) 1-β, IL-6, IL-8, tumor necrosis factor α (TNF-α), complement hemolytic activity (CH50) were also measured in 10 severely Echis carinatus sochureki envenomed victims and 10 age and gender-matched healthy controls. Except IL-8, the baseline levels of IL-1β, IL-6 and TNF-α in victims were significantly higher than healthy controls (P = 0.005, <0.001 and < 0.001, respectively). Moreover, the baseline level of CH50 was significantly lower in the patients compared to healthy controls (P < 0.001). After 12-h antivenom therapy, the plasma levels of IL-1β, IL-6 and TNF-α significantly decreased (P = 0.032, 0.006 and 0.003, respectively), the levels of IL-8 remained relatively unchanged and the CH50 significantly increased (P = 0.011). Iranian snake antivenom was effective in treating viper bite envenomation as it reversed clinical venom effects and restored near normal underlying inflammatory status. This study is the first to ascertain and report the effectiveness of this antivenom in human subjects.
Collapse
Affiliation(s)
- Seyed Mostafa Monzavi
- Medical Toxicology Center, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Afshari
- Medical Toxicology Center, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Reza Khoshdel
- Department of Epidemiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Central Laboratory, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Farhad Samieimanesh
- Central Laboratory, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Shirmast
- Central Laboratory, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Mihandoust
- Medical Toxicology Center, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Isbister GK, Silva A. Addressing the global challenge of snake envenoming. Lancet 2018; 392:619-620. [PMID: 30017549 DOI: 10.1016/s0140-6736(18)31328-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle, Waratah, NSW 2298, Australia.
| | - Anjana Silva
- Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| |
Collapse
|
24
|
Mcalees TJ, Abraham LA. Australian elapid snake envenomation in cats: Clinical priorities and approach. J Feline Med Surg 2017; 19:1131-1147. [PMID: 29068247 PMCID: PMC10816621 DOI: 10.1177/1098612x17735761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Practical relevance: No fewer than 140 species of terrestrial snakes reside in Australia, 92 of which possess venom glands. With the exception of the brown tree snake, the venom-producing snakes belong to the family Elapidae. The venom of a number of elapid species is more toxic than that of the Indian cobra and eastern diamondback rattle snake, which has earned Australia its reputation for being home to the world's most venomous snakes. Clinical challenges: The diagnosis of elapid snake envenomation is not always easy. Identification of Australian snakes is not straightforward and there are no pathognomonic clinical signs. In cats, diagnosis of envenomation is confounded by the fact that, in most cases, there is a delay in seeking veterinary attention, probably because snake encounters are not usually witnessed by owners, and also because of the tendency of cats to hide and seek seclusion when unwell. Although the administration of antivenom is associated with improved outcomes, the snake venom detection kit and antivenom are expensive and so their use may be precluded if there are financial constraints. Evidence base: In providing comprehensive guidance on the diagnosis and treatment of Australian elapid snake envenomation in cats, the authors of this review draw on the published veterinary, medical and toxicology literature, as well as their professional experience as specialists in medicine, and emergency medicine and critical care.
Collapse
Affiliation(s)
| | - Linda A Abraham
- Centre for Animal Referral and Emergency, Melbourne, Australia
| |
Collapse
|
25
|
Lister C, Arbuckle K, Jackson TNW, Debono J, Zdenek CN, Dashevsky D, Dunstan N, Allen L, Hay C, Bush B, Gillett A, Fry BG. Catch a tiger snake by its tail: Differential toxicity, co-factor dependence and antivenom efficacy in a procoagulant clade of Australian venomous snakes. Comp Biochem Physiol C Toxicol Pharmacol 2017; 202:39-54. [PMID: 28757215 DOI: 10.1016/j.cbpc.2017.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/07/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
Abstract
A paradigm of venom research is adaptive evolution of toxins as part of a predator-prey chemical arms race. This study examined differential co-factor dependence, variations relative to dietary preference, and the impact upon relative neutralisation by antivenom of the procoagulant toxins in the venoms of a clade of Australian snakes. All genera were characterised by venoms rich in factor Xa which act upon endogenous prothrombin. Examination of toxin sequences revealed an extraordinary level of conservation, which indicates that adaptive evolution is not a feature of this toxin type. Consistent with this, the venoms did not display differences on the plasma of different taxa. Examination of the prothrombin target revealed endogenous blood proteins are under extreme negative selection pressure for diversification, this in turn puts a strong negative selection pressure upon the toxins as sequence diversification could result in a drift away from the target. Thus this study reveals that adaptive evolution is not a consistent feature in toxin evolution in cases where the target is under negative selection pressure for diversification. Consistent with this high level of toxin conservation, the antivenom showed extremely high-levels of cross-reactivity. There was however a strong statistical correlation between relative degree of phospholipid-dependence and clotting time, with the least dependent venoms producing faster clotting times than the other venoms even in the presence of phospholipid. The results of this study are not only of interest to evolutionary and ecological disciplines, but also have implications for clinical toxinology.
Collapse
Affiliation(s)
- Callum Lister
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2, 8PP, UK
| | - Timothy N W Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia; Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Christina N Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Daniel Dashevsky
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| | | | | | - Chris Hay
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Brian Bush
- Snakes Harmful & Harmless, 9 Birch Place, Stoneville, WA 6081, Australia
| | - Amber Gillett
- Fauna Vet Wildlife Veterinary Consultancy, Beerwah, QLD, Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
26
|
Alekseeva A, Tretiakova D, Chernikov V, Utkin Y, Molotkovsky J, Vodovozova E, Boldyrev I. Heterodimeric V. nikolskii phospholipases A2 induce aggregation of the lipid bilayer. Toxicon 2017; 133:169-179. [DOI: 10.1016/j.toxicon.2017.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022]
|
27
|
Treatments for Latrodectism-A Systematic Review on Their Clinical Effectiveness. Toxins (Basel) 2017; 9:toxins9040148. [PMID: 28430165 PMCID: PMC5408222 DOI: 10.3390/toxins9040148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 11/16/2022] Open
Abstract
Latrodectism or envenomation by widow-spiders is common and clinically significant worldwide. Alpha-latrotoxin is the mammalian-specific toxin in the venom that results in toxic effects observed in humans. Symptoms may be incapacitating and include severe pain that can persist for days. The management of mild to moderate latrodectism is primarily supportive while severe cases have variously been treated with intravenous calcium, muscle relaxants, widow-spider antivenom and analgesic opioids. The object of this systematic review is to examine the literature on the clinical effectiveness of past and current treatments for latrodectism. MEDLINE, EMBASE and Google Scholar were searched from 1946 to December 2016 to identify clinical studies on the treatment of latrodectism. Studies older than 40 years and not in English were not reviewed. There were only two full-publications and one abstract of placebo-controlled randomised trials on antivenom use for latrodectism. Another two randomised comparative trials compared the route of administration of antivenom for latrodectism. There were fourteen case series (including two abstracts), fourteen case reports and one letter investigating drug treatments for latrodectism with the majority of these also including antivenom for severe latrodectism. Antivenom with opioid analgesia is often the major treatment reported for latrodectism however; recent high quality evidence has cast doubt on the clinical effectiveness of this combination and suggests that other treatments need to be investigated.
Collapse
|
28
|
Antivenom for Neuromuscular Paralysis Resulting From Snake Envenoming. Toxins (Basel) 2017; 9:toxins9040143. [PMID: 28422078 PMCID: PMC5408217 DOI: 10.3390/toxins9040143] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
Antivenom therapy is currently the standard practice for treating neuromuscular dysfunction in snake envenoming. We reviewed the clinical and experimental evidence-base for the efficacy and effectiveness of antivenom in snakebite neurotoxicity. The main site of snake neurotoxins is the neuromuscular junction, and the majority are either: (1) pre-synaptic neurotoxins irreversibly damaging the presynaptic terminal; or (2) post-synaptic neurotoxins that bind to the nicotinic acetylcholine receptor. Pre-clinical tests of antivenom efficacy for neurotoxicity include rodent lethality tests, which are problematic, and in vitro pharmacological tests such as nerve-muscle preparation studies, that appear to provide more clinically meaningful information. We searched MEDLINE (from 1946) and EMBASE (from 1947) until March 2017 for clinical studies. The search yielded no randomised placebo-controlled trials of antivenom for neuromuscular dysfunction. There were several randomised and non-randomised comparative trials that compared two or more doses of the same or different antivenom, and numerous cohort studies and case reports. The majority of studies available had deficiencies including poor case definition, poor study design, small sample size or no objective measures of paralysis. A number of studies demonstrated the efficacy of antivenom in human envenoming by clearing circulating venom. Studies of snakes with primarily pre-synaptic neurotoxins, such as kraits (Bungarus spp.) and taipans (Oxyuranus spp.) suggest that antivenom does not reverse established neurotoxicity, but early administration may be associated with decreased severity or prevent neurotoxicity. Small studies of snakes with mainly post-synaptic neurotoxins, including some cobra species (Naja spp.), provide preliminary evidence that neurotoxicity may be reversed with antivenom, but placebo controlled studies with objective outcome measures are required to confirm this.
Collapse
|
29
|
Kalita B, Patra A, Mukherjee AK. Unraveling the Proteome Composition and Immuno-profiling of Western India Russell's Viper Venom for In-Depth Understanding of Its Pharmacological Properties, Clinical Manifestations, and Effective Antivenom Treatment. J Proteome Res 2017; 16:583-598. [PMID: 27936776 DOI: 10.1021/acs.jproteome.6b00693] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proteome composition of western India (WI) Russell's viper venom (RVV) was correlated with pharmacological properties and pathological manifestations of RV envenomation. Proteins in the 5-19 and 100-110 kDa mass ranges were the most predominate (∼35.1%) and least abundant (∼3.4%) components, respectively, of WI RVV. Non-reduced SDS-PAGE indicated the occurrence of multiple subunits, non-covalent oligomers, self-aggregation, and/or interactions among the RVV proteins. A total of 55 proteins belonging to 13 distinct snake venom families were unambiguously identified by ESI-LC-MS/MS analysis. Phospholipase A2 (32.5%) and Kunitz-type serine protease inhibitors (12.5%) represented the most abundant enzymatic and non-enzymatic proteins, respectively. However, ATPase, ADPase, and hyaluronidase, detected by enzyme assays, were not identified by proteomic analysis owing to limitations in protein database deposition. Several biochemical and pharmacological properties of WI RVV were also investigated. Neurological symptoms exhibited by some RV-bite patients in WI may be correlated to the presence of neurotoxic phospholipase A2 enzymes and Kunitz-type serine protease inhibitor complex in this venom. Monovalent antivenom was found to be better than polyvalent antivenom in immuno-recognition and neutralization of the tested pharmacological properties and enzyme activities of WI RVV; nevertheless, both antivenoms demonstrated poor cross-reactivity and neutralization of pharmacological activities shown by low-molecular-mass proteins (<18 kDa) of this venom.
Collapse
Affiliation(s)
- Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University , Tezpur 784028, Assam, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University , Tezpur 784028, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University , Tezpur 784028, Assam, India
| |
Collapse
|
30
|
Tan KY, Tan CH, Sim SM, Fung SY, Tan NH. Geographical venom variations of the Southeast Asian monocled cobra (Naja kaouthia): venom-induced neuromuscular depression and antivenom neutralization. Comp Biochem Physiol C Toxicol Pharmacol 2016; 185-186:77-86. [PMID: 26972756 DOI: 10.1016/j.cbpc.2016.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/06/2016] [Accepted: 03/09/2016] [Indexed: 11/30/2022]
Abstract
The Southeast Asian monocled cobras (Naja kaouthia) exhibit geographical variations in their venom proteomes, especially on the composition of neurotoxins. This study compared the neuromuscular depressant activity of the venoms of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V), and the neutralization of neurotoxicity by a monospecific antivenom. On chick biventer cervicis nerve-muscle preparation, all venoms abolished the indirect twitches, with NK-T venom being the most potent (shortest t90, time to 90% twitch inhibition), followed by NK-V and NK-M. Acetylcholine and carbachol failed to reverse the blockade, indicating irreversible/pseudo-irreversible post-synaptic neuromuscular blockade. KCl restored the twitches variably (NK-M preparation being the least responsive), consistent with different degree of muscle damage. The findings support that NK-T venom has the most abundant curarimimetic alpha-neurotoxins, while NK-M venom contains more tissue-damaging cytotoxins. Pre-incubation of tissue with N. kaouthia monovalent antivenom (NKMAV) prevented venom-induced twitch depression, with the NK-T preparation needing the largest antivenom dose. NKMAV added after the onset of neuromuscular depression could only halt the inhibitory progression but failed to restore full contraction. The findings highlight the urgency of early antivenom administration to sequester as much circulating neurotoxins as possible, thereby hastening toxin elimination from the circulation. In envenomed mice, NKMAV administered upon the first neurological sign neutralized the neurotoxic effect, with the slowest full recovery noticed in the NK-T group. This is consistent with the high abundance of neurotoxins in the NK-T venom, implying that a larger amount or repeated dosing of NKMAV may be required in NK-T envenomation.
Collapse
Affiliation(s)
- Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Si Mui Sim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Maduwage K, Silva A, O’Leary MA, Hodgson WC, Isbister GK. Efficacy of Indian polyvalent snake antivenoms against Sri Lankan snake venoms: lethality studies or clinically focussed in vitro studies. Sci Rep 2016; 6:26778. [PMID: 27231196 PMCID: PMC4882578 DOI: 10.1038/srep26778] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/06/2016] [Indexed: 11/09/2022] Open
Abstract
In vitro antivenom efficacy studies were compared to rodent lethality studies to test two Indian snake antivenoms (VINS and BHARAT) against four Sri Lankan snakes. In vitro efficacy was tested at venom concentrations consistent with human envenoming. Efficacy was compared statistically for one batch from each manufacturer where multiple vials were available. In binding studies EC50 for all VINS antivenoms were less than BHARAT for D. russelii [553 μg/mL vs. 1371 μg/mL;p = 0.016), but were greater for VINS antivenoms compared to BHARAT for N. naja [336 μg/mL vs. 70 μg/mL;p < 0.0001]. EC50 of both antivenoms was only slighty different for E. carinatus and B. caeruleus. For procoagulant activity neutralisation, the EC50 was lower for VINS compared to BHARAT - 60 μg/mL vs. 176 μg/mL (p < 0.0001) for Russell's viper and 357 μg/mL vs. 6906μg/mL (p < 0.0001) for Saw-scaled viper. Only VINS antivenom neutralized in vitro neurotoxicity of krait venom. Both antivenoms partially neutralized cobra and didn't neutralize Russell's viper neurotoxicity. Lethality studies found no statistically significant difference in ED50 values between VINS and BHARAT antivenoms. VINS antivenoms appeared superior to BHARAT at concentrations equivalent to administering 10 vials antivenom, based on binding and neutralisation studies. Lethality studies were inconsistent suggesting rodent death may not measure relevant efficacy outcomes in humans.
Collapse
Affiliation(s)
- Kalana Maduwage
- Clinical Toxicology Research Group, University of Newcastle, NSW, Australia
- South Asian Clinical Toxicology Research Collaboration (SACTRC), Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Anjana Silva
- Department of Pharmacology, Monash Venom Group, Monash University, Clayton, Victoria, Australia
- Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| | | | - Wayne C. Hodgson
- Department of Pharmacology, Monash Venom Group, Monash University, Clayton, Victoria, Australia
| | - Geoffrey K. Isbister
- Clinical Toxicology Research Group, University of Newcastle, NSW, Australia
- South Asian Clinical Toxicology Research Collaboration (SACTRC), Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
32
|
Horiike T, Nagai H, Kitani S. Identification of Allergens in the Box Jellyfish Chironex yamaguchii That Cause Sting Dermatitis. Int Arch Allergy Immunol 2015. [DOI: 10.1159/000434721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
33
|
Maduwage K, Buckley NA, de Silva HJ, Lalloo DG, Isbister GK. Snake antivenom for snake venom induced consumption coagulopathy. Cochrane Database Syst Rev 2015; 2015:CD011428. [PMID: 26058967 PMCID: PMC11103661 DOI: 10.1002/14651858.cd011428.pub2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Snake venom induced consumption coagulopathy is a major systemic effect of envenoming. Observational studies suggest that antivenom improves outcomes for venom induced consumption coagulopathy in some snakebites and not others. However, the effectiveness of snake antivenom in all cases of venom induced consumption coagulopathy is controversial. OBJECTIVES To assess the effect of snake antivenom as a treatment for venom induced consumption coagulopathy in people with snake bite. SEARCH METHODS The search was done on 30 January 2015. We searched the Cochrane Injuries Group's Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library), Ovid MEDLINE(R), Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid OLDMEDLINE(R), Embase Classic+Embase (OvidSP), three other sources, clinical trials registers, and we also screened reference lists. SELECTION CRITERIA All completed, published or unpublished, randomised, controlled trials with a placebo or no treatment arm, where snake antivenom was administered for venom induced consumption coagulopathy in humans with snake bites. DATA COLLECTION AND ANALYSIS Two authors reviewed the identified trials and independently applied the selection criteria. MAIN RESULTS No studies met the inclusion criteria for this review. AUTHORS' CONCLUSIONS Randomised placebo-controlled trials are required to investigate the effectiveness of snake antivenom for clinically relevant outcomes in patients with venom induced consumption coagulopathy resulting from snake bite. Although ethically difficult, the routine administration of a treatment that has a significant risk of anaphylaxis cannot continue without strong evidence of benefit.
Collapse
Affiliation(s)
- Kalana Maduwage
- University of NewcastleSchool of Medicine and Public HealthC/O Calvary Mater NewcastleWaratahNSWAustralia2294
| | - Nick A Buckley
- University of SydneyDepartment of PharmacologyBlackburn Building D06Sydney Medical SchoolCamperdownNSWAustralia2006
| | | | - David G Lalloo
- Liverpool School of Tropical MedicineClinical Research GroupPembroke PlaceLiverpoolMerseysideUKL3 5QA
| | - Geoffrey K Isbister
- University of NewcastleSchool of Medicine and Public HealthC/O Calvary Mater NewcastleWaratahNSWAustralia2294
| | | |
Collapse
|
34
|
Intracranial haemorrhages associated with venom induced consumption coagulopathy in Australian snakebites (ASP-21). Toxicon 2015; 102:8-13. [PMID: 26003794 DOI: 10.1016/j.toxicon.2015.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 11/23/2022]
Abstract
Intracranial haemorrhage (ICH) is a rare life-threatening consequence of venom induced consumption coagulopathy in snake-bite. It is unclear why certain patients haemorrhage. We aimed to investigate ICH in snake envenoming. Cases of venom-induced consumption coagulopathy from July 2005-June 2014 were identified from the Australian Snakebite Project, a prospective multicentre cohort of snake-bites. Cases with venom-induced consumption coagulopathy were extracted with data on the snake-bite, clinical effects, laboratory investigations, treatment and outcomes. 552 cases had venom-induced consumption coagulopathy; median age, 40 y (2-87 y), 417 (76%) males, 253 (46%) from brown snakes and 17 died (3%). There were 6/552 (1%) cases of ICH; median age, 71 y (59-80 y), three males and five from brown snakes. All received antivenom and five died. All six had a history of hypertension. Time to onset of clinical effects consistent with ICH was 8-12 h in four cases, and within 3 h in two. Difficult to manage hypertension and vomiting were common. One patient had a normal cerebral CT on presentation and after the onset of focal neurological effects a repeat CT showed an ICH. ICH is rare in snake-bite with only 1% of patients with coagulopathy developing one. Older age and hypertension were associated with ICH.
Collapse
|
35
|
Maduwage K, Buckley NA, de Silva HJ, Lalloo DG, Isbister G. Snake antivenom for snake venom induced consumption coagulopathy. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2014. [DOI: 10.1002/14651858.cd011428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Berling I, Isbister GK. Hematologic effects and complications of snake envenoming. Transfus Med Rev 2014; 29:82-9. [PMID: 25556574 DOI: 10.1016/j.tmrv.2014.09.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 11/30/2022]
Abstract
Hematologic abnormalities are the most common effects of snake envenoming globally. Venom-induced consumption coagulopathy (VICC) is the commonest and most important. Other hematologic abnormalities are an anticoagulant coagulopathy and thrombotic microangiopathy. Venom-induced consumption coagulopathy is a venom-induced activation of the clotting pathway by procoagulant toxins, resulting in clotting factor consumption and coagulopathy. The type of procoagulant toxin differs between snakes and can activate prothrombin, factor X, and factor V or consume fibrinogen. The most useful investigation in VICC is a prothrombin time/international normalized ratio. The d-dimer may assist in early diagnosis, but fibrinogen levels often add little in the clinical setting. Bedside investigations would be ideal, but point-of-care testing international normalized ratio and whole blood clotting tests have been shown to be unreliable in VICC. The major complication of VICC is hemorrhage, including intracranial hemorrhage which is often fatal. The role of antivenom in VICC is controversial and may only be beneficial for some types of snakes including Echis spp where the duration of abnormal clotting is reduced from more than a week to 24 to 48 hours. In contrast, antivenom does not appear to speed the recovery of VICC in Australian snake envenoming. Other treatments for VICC include factor replacement, observation and prevention of trauma, and heparin. An Australian study showed that fresh-frozen plasma speeds recovery of VICC, but early use may increase consumption. There is no evidence to support heparin.
Collapse
Affiliation(s)
- Ingrid Berling
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia.
| | - Geoffrey K Isbister
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
37
|
Randomized Controlled Trial of Intravenous Antivenom Versus Placebo for Latrodectism: The Second Redback Antivenom Evaluation (RAVE-II) Study. Ann Emerg Med 2014; 64:620-8.e2. [DOI: 10.1016/j.annemergmed.2014.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/29/2014] [Accepted: 06/06/2014] [Indexed: 11/20/2022]
|
38
|
Abstract
Venomous snakebite is considered the single most important cause of human injury from venomous animals worldwide. Coagulopathy is one of the commonest important systemic clinical syndromes and can be complicated by serious and life-threatening haemorrhage. Venom-induced consumption coagulopathy (VICC) is the commonest coagulopathy resulting from snakebite and occurs in envenoming by Viperid snakes, certain elapids, including Australian elapids, and a few Colubrid (rear fang) snakes. Procoagulant toxins activate the clotting pathway, causing a broad range of factor deficiencies depending on the particular procoagulant toxin in the snake venom. Diagnosis and monitoring of coagulopathy is problematic, particularly in resource-poor countries where further research is required to develop more reliable, cheap clotting tests. MEDLINE and EMBASE up to September 2013 were searched to identify clinical studies of snake envenoming with VICC. The UniPort database was searched for coagulant snake toxins. Despite preclinical studies demonstrating antivenom binding toxins (efficacy), there was less evidence to support clinical effectiveness of antivenom for VICC. There were no placebo-controlled trials of antivenom for VICC. There were 25 randomised comparative trials of antivenom for VICC, which compared two different antivenoms (ten studies), three different antivenoms (four), two or three different doses or repeat doses of antivenom (five), heparin treatment and antivenom (five), and intravenous immunoglobulin treatment and antivenom (one). There were 13 studies that compared two groups in which there was no randomisation, including studies with historical controls. There have been numerous observational studies of antivenom in VICC but with no comparison group. Most of the controlled trials were small, did not use the same method for assessing coagulopathy, varied the dose of antivenom, and did not provide complete details of the study design (primary outcomes, randomisation, and allocation concealment). Non-randomised trials including comparison groups without antivenom showed that antivenom was effective for some snakes (e.g., Echis), but not others (e.g., Australasian elapids). Antivenom is the major treatment for VICC, but there is currently little high-quality evidence to support effectiveness. Antivenom is not risk free, and adverse reactions can be quite common and potentially severe. Studies of heparin did not demonstrate it improved outcomes in VICC. Fresh frozen plasma appeared to speed the recovery of coagulopathy and should be considered in bleeding patients.
Collapse
|
39
|
|
40
|
Engineering venom's toxin-neutralizing antibody fragments and its therapeutic potential. Toxins (Basel) 2014; 6:2541-67. [PMID: 25153256 PMCID: PMC4147596 DOI: 10.3390/toxins6082541] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 11/24/2022] Open
Abstract
Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety.
Collapse
|
41
|
Bhattacharya S, Chakraborty M, Mukhopadhyay P, Kundu PP, Mishra R. Viper and cobra venom neutralization by alginate coated multicomponent polyvalent antivenom administered by the oral route. PLoS Negl Trop Dis 2014; 8:e3039. [PMID: 25102172 PMCID: PMC4125299 DOI: 10.1371/journal.pntd.0003039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 06/09/2014] [Indexed: 11/24/2022] Open
Abstract
Background Snake bite causes greater mortality than most of the other neglected tropical diseases. Snake antivenom, although effective in minimizing mortality in developed countries, is not equally so in developing countries due to its poor availability in remote snake infested areas as, and when, required. An alternative approach in this direction could be taken by making orally deliverable polyvalent antivenom formulation, preferably under a globally integrated strategy, for using it as a first aid during transit time from remote trauma sites to hospitals. Methodology/Principal Findings To address this problem, multiple components of polyvalent antivenom were entrapped in alginate. Structural analysis, scanning electron microscopy, entrapment efficiency, loading capacity, swelling study, in vitro pH sensitive release, acid digestion, mucoadhesive property and venom neutralization were studied in in vitro and in vivo models. Results showed that alginate retained its mucoadhesive, acid protective and pH sensitive swelling property after entrapping antivenom. After pH dependent release from alginate beads, antivenom (ASVS) significantly neutralized phospholipaseA2 activity, hemolysis, lactate dehydrogenase activity and lethality of venom. In ex vivo mice intestinal preparation, ASVS was absorbed significantly through the intestine and it inhibited venom lethality which indicated that all the components of antivenom required for neutralization of venom lethality were retained despite absorption across the intestinal layer. Results from in vivo studies indicated that orally delivered ASVS can significantly neutralize venom effects, depicted by protection against lethality, decreased hemotoxicity and renal toxicity caused by russell viper venom. Conclusions/Significance Alginate was effective in entrapping all the structural components of ASVS, which on release and intestinal absorption effectively reconstituted the function of antivenom in neutralizing viper and cobra venom. Further research in this direction can strategize to counter such dilemma in snake bite management by promoting control release and oral antivenom rendered as a first aid. Antivenom, the only effective therapy against snake bite in practice, is successful in controlling mortality in developed countries, but not in developing countries. Unavailability of antivenom at the proper time and place of snake bite in developing countries is a major factor in this account, which results not only from production deficit but also from dependence on hospitals located too faraway for intravenous administration. It lengthens the period between bite and treatment, and thereby worsens the outcome. To make antivenom available immediately after bite, we need to develop an oral formulation which, by its property of controlled release, can supply antivenom as first aid until further hospitalization. In this work, multiple components of antivenom were entrapped in alginate, an economic, biodegradable polymer, which retained the functional property of the antivenom even after intestinal absorption and showed in vivo and in vitro venom neutralization effects. This study promises the development of an effective first aid against snake envenomation, thereby increasing chances of survival of the victim.
Collapse
Affiliation(s)
- Sourav Bhattacharya
- Department of Physiology, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
| | | | - Piyasi Mukhopadhyay
- Department of Polymer Science and Technology, University of Calcutta, Kolkata, India
| | - P. P. Kundu
- Department of Polymer Science and Technology, University of Calcutta, Kolkata, India
| | - Roshnara Mishra
- Department of Physiology, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
- * E-mail:
| |
Collapse
|
42
|
Abstract
BACKGROUND Human activity in wilderness areas has increased globally in recent decades, leading to increased risk of injury and illness. Wilderness medicine has developed in response to both need and interest. METHODS The field of wilderness medicine encompasses many areas of interest. Some focus on special circumstances (such as avalanches) while others have a broader scope (such as trauma care). Several core areas of key interest within wilderness medicine are discussed in this study. RESULTS Wilderness medicine is characterized by remote and improvised care of patients with routine or exotic illnesses or trauma, limited resources and manpower, and delayed evacuation to definitive care. Wilderness medicine is developing rapidly and draws from the breadth of medical and surgical subspecialties as well as the technical fields of mountaineering, climbing, and diving. Research, epidemiology, and evidence-based guidelines are evolving. A hallmark of this field is injury prevention and risk mitigation. The range of topics encompasses high-altitude cerebral edema, decompression sickness, snake envenomation, lightning injury, extremity trauma, and gastroenteritis. Several professional societies, academic fellowships, and training organizations offer education and resources for laypeople and health care professionals. CONCLUSIONS THE FUTURE OF WILDERNESS MEDICINE IS UNFOLDING ON MULTIPLE FRONTS: education, research, training, technology, communications, and environment. Although wilderness medicine research is technically difficult to perform, it is essential to deepening our understanding of the contribution of specific techniques in achieving improvements in clinical outcomes.
Collapse
Affiliation(s)
- Douglas G. Sward
- Department of Emergency Medicine, University of Maryland School of Medicine, Hyperbaric Medicine, Shock Trauma Center, Baltimore, Maryland, USA
| | - Brad L. Bennett
- Military & Emergency Medicine Department, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
43
|
O'Leary MA, Isbister GK. Detection of venom-antivenom (VAV) immunocomplexes in vitro as a measure of antivenom efficacy. Toxicon 2013; 77:125-32. [PMID: 24252422 DOI: 10.1016/j.toxicon.2013.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/23/2013] [Accepted: 11/06/2013] [Indexed: 11/27/2022]
Abstract
The measurement of free venom with enzyme immunoassay in serum of patients with snake envenoming is used to confirm snake identification and to determine if sufficient antivenom has been given. Recent studies with Russell's viper (RV; Daboia russelii) envenoming have detected free venom post-antivenom despite recovery of coagulopathy. This raises the question as to whether this assay also measures venom-antivenom (VAV) complexes. In this study we developed an assay to measure VAV complexes and investigate the binding of venom and antivenom in vitro. The assay consisted of rabbit anti-snake venom IgG attached to a microplate which binds the venom component of VAV and anti-horse IgG antibodies conjugated to horseradish peroxidase to detect the antivenom portion of VAV. A known amount of venom or toxin was incubated with increasing antivenom concentrations and VAV was detected as absorbance at 450 nm and plotted against AV concentration. Pseudonaja textilis (brown snake), Notechis scutatus (tiger snake), Oxyuranus scutellatus (taipan), Tropidechis carinatus (rough-scaled snake), Pseudechis porphyriacus (red-bellied black snake) and D. russelii mixtures with appropriate antivenoms were assayed. Measured VAV initially increased with increasing antivenom concentration until it reached a maximum after which the VAV concentration decreased with further increasing antivenom concentrations. The VAV curves for two Australian snake venom-antivenom mixtures, Hoplocephalus stephensii and Ancanthophis antarcticus, had broad VAV peaks with two maxima. Two fractions isolated from N. scutatus venom and Russell's viper factor X activator toxin produced similar VAV curves to their whole venoms. The antivenom concentration for which the maximum VAV occurred was linearly related to the venom concentration, and this slope or ratio was consistent with that used to define the neutralisation units for Australian antivenoms. The maximal VAV point appears to represent the antivenom concentration where every venom molecule (toxin) is attached to at least one antivenom molecule (antibody) on average and may be a useful measure of antivenom efficacy. In vivo this would mean that for a defined antivenom concentration, venom components will be eliminated and are trapped in the central compartment.
Collapse
Affiliation(s)
- M A O'Leary
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, Australia
| | - G K Isbister
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, Australia; School of Medicine and Public Health, University of Newcastle, Australia.
| |
Collapse
|
44
|
Abstract
Snakebite is classified by the WHO as a neglected tropical disease. Envenoming is a significant public health problem in tropical and subtropical regions. Neurotoxicity is a key feature of some envenomings, and there are many unanswered questions regarding this manifestation. Acute neuromuscular weakness with respiratory involvement is the most clinically important neurotoxic effect. Data is limited on the many other acute neurotoxic manifestations, and especially delayed neurotoxicity. Symptom evolution and recovery, patterns of weakness, respiratory involvement, and response to antivenom and acetyl cholinesterase inhibitors are variable, and seem to depend on the snake species, type of neurotoxicity, and geographical variations. Recent data have challenged the traditional concepts of neurotoxicity in snake envenoming, and highlight the rich diversity of snake neurotoxins. A uniform system of classification of the pattern of neuromuscular weakness and models for predicting type of toxicity and development of respiratory weakness are still lacking, and would greatly aid clinical decision making and future research. This review attempts to update the reader on the current state of knowledge regarding this important issue.
Collapse
Affiliation(s)
- Udaya K. Ranawaka
- Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
- * E-mail:
| | - David G. Lalloo
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | |
Collapse
|
45
|
Isbister GK, Maduwage K, Shahmy S, Mohamed F, Abeysinghe C, Karunathilake H, Ariaratnam CA, Buckley NA. Diagnostic 20-min whole blood clotting test in Russell's viper envenoming delays antivenom administration. QJM 2013; 106:925-32. [PMID: 23674721 DOI: 10.1093/qjmed/hct102] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The 20-min whole blood clotting test (WBCT20) is widely used for the identification of coagulopathy in snake envenoming, but its performance in practice has not been evaluated. AIM We aimed to investigate the diagnostic utility of the WBCT20 for coagulopathy in Russell's viper envenoming. DESIGN Prospective observational study. METHODS Adult patients with snake envenoming were recruited. Age, sex, bite information, clinical effects, serial WBCT20 and antivenom treatment were recorded. Definite Russell's viper envenoming was confirmed with venom specific enzyme immunoassay. We assessed sensitivity of admission WBCT20 to coagulopathy (international normalized ratio, INR > 1.5) in Russell's viper envenoming, the specificity of negative WBCT20 in non-envenomed patients and directly compared paired WBCT20 and INR. RESULTS Admission WBCT20 was done in 140 Russell's viper bites with coagulopathy and was positive in 56/140 [sensitivity 40% (95% confidence interval (CI): 32-49%)]. A negative WBCT20 led to delayed antivenom administration [WBCT20-ve tests: median delay, 1.78 h (interquartile range (IQR): 0.83-3.7 h) vs. WBCT20 + ve tests: median delay, 0.82 h (IQR: 0.58-1.48 h); P = 0.0007]. Delays to antivenom were largely a consequence of further WBCT20 being performed and more common if the first test was negative (41/84 vs. 12/56). Initial WBCT20 was negative in 9 non-envenomed patients and 48 non-venomous snakebites [specificity: 100% (95% CI: 94-100%)]. In 221 paired tests with INR > 1.5, the WBCT20 was positive in 91(41%). The proportion of positive WBCT20 only increased slightly with higher INR. CONCLUSION In clinical practice, the WBCT20 has low sensitivity for detecting coagulopathy in snake envenoming and should not over-ride clinical assessment-based decisions about antivenom administration. There is an urgent need to develop a simple bedside test for coagulopathy in snake envenoming.
Collapse
Affiliation(s)
- G K Isbister
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Edith St, Waratah, NSW 2298, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Antivenom therapy of carpet viper (Echis ocellatus) envenoming: effectiveness and strategies for delivery in West Africa. Toxicon 2013; 69:82-9. [PMID: 23339853 DOI: 10.1016/j.toxicon.2013.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/29/2012] [Accepted: 01/03/2013] [Indexed: 11/23/2022]
Abstract
In West Africa, response to specific, geographically appropriate, antivenom is often dramatic following carpet viper (Echis ocellatus) envenoming with rapid restoration of blood coagulability and resolution of spontaneous haemorrhage. Envenoming from Australasian snakes causing similar coagulopathies may respond less dramatically and the effectiveness of antivenom is being questioned. Here we have reviewed and re-analysed all published preclinical and clinical studies on envenoming and antivenom therapy conducted in West Africa to determine the effectiveness of antivenom. 22 studies provided relevant information: 12 observational studies, 4 RCTs and 6 preclinical studies. Four comparative studies confirmed statistically significant protection against mortality ranging from 57 to 87% using specific antivenoms compared to non-specific or no antivenoms. Meta-analysis estimated combined Odds Ratio (95% CI) of 0.25 (0.14-0.45) of dying among those treated with specific antivenom or 75% (95% CI: 55-86%) protection against death. Mortality more than doubled during times when stocks of reliable antivenoms ran out, with Relative Risk (95% CI)] of 2.33 (1.26-4.06). Serum kinetics of venom antigen/antivenom levels also confirmed that decline of venom antigen levels coincided with resolution of coagulopathy while decline of antivenom levels was associated with venom antigen reappearance and recurrence of coagulopathy. Preclinical and antivenomics analysis confirmed efficacy of regionally appropriate antivenoms against E. ocellatus and related species' venoms in Sub-Saharan Africa but not against Asian Echis carinatus venom. Antivenoms raised against E. carinatus were ineffective in human studies. In West Africa, specific antivenom is effective in managing carpet viper envenoming. A centralized hub-and-spoke strategy is suggested for broadening antivenom access to endemic rural areas together with instituting quality assurance, standardization and manpower training. Benefits, risks, cost-effectiveness and feasibility of the approach should be formally assessed.
Collapse
|
47
|
Allen GE, Brown SGA, Buckley NA, O’Leary MA, Page CB, Currie BJ, White J, Isbister GK. Clinical effects and antivenom dosing in brown snake (Pseudonaja spp.) envenoming--Australian snakebite project (ASP-14). PLoS One 2012; 7:e53188. [PMID: 23300888 PMCID: PMC3532501 DOI: 10.1371/journal.pone.0053188] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/29/2012] [Indexed: 11/29/2022] Open
Abstract
Background Snakebite is a global health issue and treatment with antivenom continues to be problematic. Brown snakes (genus Pseudonaja) are the most medically important group of Australian snakes and there is controversy over the dose of brown snake antivenom. We aimed to investigate the clinical and laboratory features of definite brown snake (Pseudonaja spp.) envenoming, and determine the dose of antivenom required. Methods and Finding This was a prospective observational study of definite brown snake envenoming from the Australian Snakebite Project (ASP) based on snake identification or specific enzyme immunoassay for Pseudonaja venom. From January 2004 to January 2012 there were 149 definite brown snake bites [median age 42y (2–81y); 100 males]. Systemic envenoming occurred in 136 (88%) cases. All envenomed patients developed venom induced consumption coagulopathy (VICC), with complete VICC in 109 (80%) and partial VICC in 27 (20%). Systemic symptoms occurred in 61 (45%) and mild neurotoxicity in 2 (1%). Myotoxicity did not occur. Severe envenoming occurred in 51 patients (38%) and was characterised by collapse or hypotension (37), thrombotic microangiopathy (15), major haemorrhage (5), cardiac arrest (7) and death (6). The median peak venom concentration in 118 envenomed patients was 1.6 ng/mL (Range: 0.15–210 ng/mL). The median initial antivenom dose was 2 vials (Range: 1–40) in 128 patients receiving antivenom. There was no difference in INR recovery or clinical outcome between patients receiving one or more than one vial of antivenom. Free venom was not detected in 112/115 patients post-antivenom with only low concentrations (0.4 to 0.9 ng/ml) in three patients. Conclusions Envenoming by brown snakes causes VICC and over a third of patients had serious complications including major haemorrhage, collapse and microangiopathy. The results of this study support accumulating evidence that giving more than one vial of antivenom is unnecessary in brown snake envenoming.
Collapse
Affiliation(s)
- George E. Allen
- Emergency Department, Queen Elizabeth II Jubilee Hospital, Brisbane, Australia
| | - Simon G. A. Brown
- Centre for Clinical Research in Emergency Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and the University of Western Australia, Perth, Australia
| | - Nicholas A. Buckley
- Medical Professorial Unit, Prince of Wales Hospital Medical School, University of New South Wales, Sydney, Australia
- NSW Poisons Information Centre, Sydney Children’s Hospital Network, Sydney, Australia
| | - Margaret A. O’Leary
- Discipline of Clinical Pharmacology, University of Newcastle, Newcastle, Australia
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, Australia
| | - Colin B. Page
- NSW Poisons Information Centre, Sydney Children’s Hospital Network, Sydney, Australia
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, Australia
- Emergency Department, Princess Alexandra Hospital, Brisbane, Australia
| | - Bart J. Currie
- Menzies School of Health Research and Northern Territory Clinical School, Darwin, Australia
| | - Julian White
- Department of Toxinology, Women’s and Children’s Hospital, Adelaide, Australia
| | - Geoffrey K. Isbister
- NSW Poisons Information Centre, Sydney Children’s Hospital Network, Sydney, Australia
- Discipline of Clinical Pharmacology, University of Newcastle, Newcastle, Australia
- Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, Newcastle, Australia
- * E-mail:
| | | |
Collapse
|
48
|
Kurtović T, Leonardi A, Lang Balija M, Brgles M, Habjanec L, Križaj I, Halassy B. The standard mouse assay of anti-venom quality does not measure antibodies neutralising the haemorrhagic activity of Vipera ammodytes venom. Toxicon 2012; 59:709-17. [DOI: 10.1016/j.toxicon.2012.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/21/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
|
49
|
Abstract
Clinical toxinology is a specialized area of clinical medicine focused on the pathophysiology, diagnosis, treatment, and prevention of diseases caused by animal, plant, and fungal toxins. This review focuses on recent developments in snakebite. Snakebite is newly recognized as a Neglected Tropical Disease by the World Health Organization (WHO), reflecting the large human and economic cost of this disease. New WHO guidelines on antivenom production are available. The methods of producing antivenom and dosing are changing as understanding of envenoming improves. Lower antivenom doses in some regions are delivering equal outcomes, but antivenom cannot fully treat all envenoming types. Early antivenom treatment may reduce local tissue damage in some types of snakebite.
Collapse
Affiliation(s)
- Julian White
- Toxinology Department, Women's and Children's Hospital, North Adelaide, SA, 5006, Australia,
| |
Collapse
|
50
|
Yin S, Kokko J, Lavonas E, Mlynarchek S, Bogdan G, Schaeffer T. Factors associated with difficulty achieving initial control with crotalidae polyvalent immune fab antivenom in snakebite patients. Acad Emerg Med 2011; 18:46-52. [PMID: 21166732 DOI: 10.1111/j.1553-2712.2010.00958.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The prescribing information for Crotalidae Fab antivenom (FabAV) instructs clinicians to administer FabAV until initial control of the envenomation syndrome is achieved. Risk factors for difficulty achieving initial control are not known. OBJECTIVES The study aim was to identify factors present before administration of antivenom associated with difficulty achieving initial control. METHODS The authors conducted a retrospective study of all patients presenting to any one of 17 centers and receiving FabAV from 2002 to 2004. Demographic and historical information, as well as data about nine specific venom effects, were collected prior to the administration of antivenom. An expert panel used standard criteria to determine if initial control was achieved. The patient group that had difficulty achieving initial control was compared to the group that achieved initial control, and adjusted odds ratios were calculated using stepwise logistic regression. RESULTS A total of 247 patients were included in the final analysis. The majority of patients were envenomated on the upper extremity and were young males. A total of 203 patients (82.2%) achieved initial control. In univariate analysis, thrombocytopenia, bleeding, neurologic effects, and a severe bite were significantly associated with difficulty achieving initial control. After logistic regression, the presence of neurologic effects and thrombocytopenia remained significantly associated with difficulty achieving initial control. When both factors were present, the patient was 13.8 times more likely to have difficulty achieving initial control. CONCLUSIONS A number of factors were present before the administration of FabAV that were independently associated with difficulty achieving initial control of the envenomation syndrome. Predicting which patients will have difficulty achieving initial control has important ramifications for patient disposition and may provide insight into the mechanisms for lack of antivenom efficacy.
Collapse
Affiliation(s)
- Shan Yin
- Denver Health Hospital Authority, Rocky Mountain Poison and Drug Center, Denver, CO, USA.
| | | | | | | | | | | |
Collapse
|