1
|
Waseem M, Kaushik P, Dutta S, Chakraborty R, Hassan MI, Parvez S. Modulatory Role of Quercetin in Mitochondrial Dysfunction in Titanium Dioxide Nanoparticle-Induced Hepatotoxicity. ACS OMEGA 2022; 7:3192-3202. [PMID: 35128232 PMCID: PMC8811893 DOI: 10.1021/acsomega.1c04740] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/25/2021] [Indexed: 05/28/2023]
Abstract
Background : Titanium dioxide (TiO2) nanoparticles are among the largely manmade nanomaterials worldwide and are broadly used as both industrial and user products. The primary target site for several nanoparticles is the liver, including TiO2 nanoparticles (TNPs), exposed directly or indirectly through ingestion of contaminated water, food, or animals and elevated environmental contamination. Oxidative stress is a known facet of nanoparticle-induced toxicity, including TNPs. Mitochondria are potential targets for nanoparticles in several types of toxicity, such as hepatotoxicity. Nevertheless, its causal mechanism is still controversial due to scarcity of literature linking the role of mitochondria-mediated TNP-induced hepatotoxicity. Aim : The objective of the current study was to evaluate the relation of mitochondrial oxidative stress and respiratory chain mechanisms with TNP-induced mitochondrial dysfunction in vitro, and explore the hepatoprotective effect of quercetin (QR), which is a polyphenolic flavonoid abundant in fruits and vegetables with known antioxidant properties, on TNP-induced mitochondrial oxidative stress and disturbance in respiratory chain complex enzymes in the liver of rats. Results: Enzymatic and non-enzymatic antioxidant levels, oxidative stress markers, and mitochondrial complexes were assessed with regard to TNP-induced hepatotoxicity. The depleted lipid peroxidation levels and protein carbonyl content, in mitochondria, induced by TNPs were restored significantly by pretreatment with QR. QR modulated the altered non-enzymatic and enzymatic antioxidants and mitochondrial complex enzymes. Conclusion : Based on the findings, we conclude that QR, which mitigates oxidative stress caused by mitochondrial dysfunction, holds promising capability to potentially diminish TNP-induced adverse effects in the liver.
Collapse
Affiliation(s)
- Mohd Waseem
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Shamita Dutta
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rohan Chakraborty
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Md Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Suhel Parvez
- Department
of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
2
|
Zhou J, Zhu X, Dong Y, Yang B, Lu R, Xing G, Wang S, Li F. Type 2 diabetes mellitus potentiates acute acrylonitrile toxicity: Potentiation reduction by phenethyl isothiocyanate. Toxicol Ind Health 2021; 37:695-704. [PMID: 34643460 DOI: 10.1177/07482337211048583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acrylonitrile (AN) is a known animal carcinogen and suspected human carcinogen. Recently, occupational exposure to AN has considerably increased. Previously, we demonstrated that streptozotocin-induced diabetes potentiates AN-induced acute toxicity in rats and that the induced cytochrome P450 2E1 (CYP2E1) is responsible for this effect. In the present study, we examined whether induction of CYP2E1 is also the underlying mechanism for the potentiation of AN-induced acute toxicity in type 2 diabetes in db/db mice. The effect of phenethyl isothiocyanate (PEITC) in reducing potentiation was also investigated. The mice were randomly divided into the normal control, diabetic control, AN, diabetes + AN, PEITC + AN, and diabetes + PEITC + AN groups. PEITC (40 mg/kg) was orally administered to rats for 3 days, and 1 h after the last PEITC gavage, 45 mg/kg AN was intraperitoneally injected. Time to death was observed. The CYP2E1 level and enzymatic activity, cytochrome c oxidase (CCO) activity, and reactive oxygen species (ROS) levels were measured. The survival rate was decreased in AN-treated db/db mice compared with that in AN-treated wild-type mice. The hepatic CYP2E1 level and enzymatic activity remained unaltered in db/db mice. Phenethyl isothiocyanate alleviated AN-induced acute toxicity in db/db mice as evident in the increased survival rate, restored CCO activity, and decreased ROS level in both the liver and brain. The study results suggested that CYP2E1 may not be responsible for the sensitivity to AN-induced acute toxicity in db/db mice and that PEITC reduced the potentiation of AN-induced acute toxicity in db/db mice.
Collapse
Affiliation(s)
- Jie Zhou
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xueyu Zhu
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Dong
- Department of Clinical Laboratory, Rugao Municipal People's Hospital, Rugao, Jiangsu, China
| | - Bobo Yang
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rongzhu Lu
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guangwei Xing
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Suhua Wang
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fang Li
- School of Medicine, 12676Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Ege D. Action Mechanisms of Curcumin in Alzheimer's Disease and Its Brain Targeted Delivery. MATERIALS 2021; 14:ma14123332. [PMID: 34208692 PMCID: PMC8234049 DOI: 10.3390/ma14123332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022]
Abstract
AD is a chronic neurodegenerative disease. Many different signaling pathways, such as Wnt/β-catenin, Notch, ROS/JNK, and PI3K/Akt/mTOR are involved in Alzheimer’s disease and crosstalk between themselves. A promising treatment involves the uses of flavonoids, and one of the most promising is curcumin; however, because it has difficulty permeating the blood–brain barrier (BBB), it must be encapsulated by a drug carrier. Some of the most frequently studied are lipid nanocarriers, liposomes, micelles and PLGA. These carriers are further conjugated with brain-targeting agents such as lactoferrin and transferrin. In this review paper, curcumin and its therapeutic effects, which have been examined in vivo, are analyzed and then the delivery systems to the brain are addressed. Overall, the analysis of the literature revealed great potential for curcumin in treating AD and indicated the challenges that require further research.
Collapse
Affiliation(s)
- Duygu Ege
- Biomedical Engineering, Boğaziçi University, Rasathane Cd, Kandilli Campus, Istanbul 34684, Turkey
| |
Collapse
|
4
|
Shi Y, Bai J, Dang Y, Bai Q, Zheng R, Chen J, Li Z. Protection of apigenin against acrylonitrile-induced sperm and testis injury in rats: involvement of activation of ASK1-JNK/p38 signaling pathway. Toxicol Res (Camb) 2021; 10:159-168. [PMID: 33884167 DOI: 10.1093/toxres/tfab017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 11/14/2022] Open
Abstract
This study aims to clarify if apigenin (AP) could play a pivotal role in attenuating acrylonitrile (ACN)-induced sperm and testis injury by inhibiting ASK1-JNK/p38 signaling pathway. Male Sprague-Dawley rats were randomly divided into five groups: a control group (corn oil), an ACN group (ACN 46 mg kg-1), an ACN + AP1 group (ACN + AP 117 mg kg-1), an ACN + AP2 group (ACN + AP 234 mg kg-1) and an ACN + AP3 group (ACN + AP 351 mg kg-1). The ACN + AP groups were given ACN by gavage after a pretreatment with different dosages of AP for 30 min, whereas the rats in the control group received an equivalent volume of corn oil. The gavage was conducted for 6 days per week in 4 weeks. The results showed that AP reduced sperm deformity rate and DNA fragment index and attenuated the testicular injury induced by ACN. AP could also alleviate oxidative stress, downregulate ASK1-JNK/p38 signaling pathway and eventually inhibit mitochondria-mediated testicular apoptosis. In brief, AP could dampen oxidative stress thereby inhibiting testicular apoptosis mediated by ASK1-JNK/p38 signaling pathway, alleviating ACN-induced sperm and testis injury and exerting a protective effect on male reproductive system.
Collapse
Affiliation(s)
- Ying Shi
- Lanzhou Maternal and Child Health Care Hospital, Lanzhou 730030, China
| | - Jin Bai
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yuhui Dang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qingli Bai
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Rong Zheng
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jia Chen
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Zhilan Li
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Walker VE, Fennell TR, Walker DM, Bauer MJ, Upton PB, Douglas GR, Swenberg JA. Analysis of DNA Adducts and Mutagenic Potency and Specificity in Rats Exposed to Acrylonitrile. Chem Res Toxicol 2020; 33:1609-1622. [PMID: 32529823 DOI: 10.1021/acs.chemrestox.0c00153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acrylonitrile (ACN), which is a widely used industrial chemical, induces cancers in multiple organs/tissues of rats by unresolved mechanisms. For this report, evidence for ACN-induced direct/indirect DNA damage and mutagenesis was investigated by assessing the ability of ACN, or its reactive metabolite, 2-cyanoethylene oxide (CEO), to bind to DNA in vitro, to form select DNA adducts [N7-(2'-oxoethyl)guanine, N2,3-ethenoguanine, 1,N6-ethenodeoxyadenosine, and 3,N4-ethenodeoxycytidine] in vitro and/or in vivo, and to perturb the frequency and spectra of mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) gene in rats exposed to ACN in drinking water. Adducts and frequencies and spectra of Hprt mutations were analyzed using published methods. Treatment of DNA from human TK6 lymphoblastoid cells with [2,3-14C]-CEO produced dose-dependent binding of 14C-CEO equivalents, and treatment of DNA from control rat brain/liver with CEO induced dose-related formation of N7-(2'-oxoethyl)guanine. No etheno-DNA adducts were detected in target tissues (brain and forestomach) or nontarget tissues (liver and spleen) in rats exposed to 0, 3, 10, 33, 100, or 300 ppm ACN for up to 105 days or to 0 or 500 ppm ACN for ∼15 months; whereas N7-(2'-oxoethyl)guanine was consistently measured at nonsignificant concentrations near the assay detection limit only in liver of animals exposed to 300 or 500 ppm ACN for ≥2 weeks. Significant dose-related increases in Hprt mutant frequencies occurred in T-lymphocytes from spleens of rats exposed to 33-500 ppm ACN for 4 weeks. Comparisons of "mutagenic potency estimates" for control rats versus rats exposed to 500 ppm ACN for 4 weeks to analogous data from rats/mice treated at a similar age with N-ethyl-N-nitrosourea or 1,3-butadiene suggest that ACN has relatively limited mutagenic effects in rats. Considerable overlap between the sites and types of mutations in ACN-exposed rats and butadiene-exposed rats/mice, but not controls, provides evidence that the carcinogenicity of these epoxide-forming chemicals involves corresponding mutagenic mechanisms.
Collapse
Affiliation(s)
- Vernon E Walker
- Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina 27709, United States.,Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont 05405, United States.,The Burlington HC Research Group, Inc., Jericho, Vermont 05465, United States
| | - Timothy R Fennell
- Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina 27709, United States.,Center for Bioorganic Chemistry, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Dale M Walker
- The Burlington HC Research Group, Inc., Jericho, Vermont 05465, United States.,Experimental Pathology Laboratories, Sterling, Virginia 20167, United States
| | | | - Patricia B Upton
- Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina 27709, United States.,Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - James A Swenberg
- Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina 27709, United States.,Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Goschorska M, Baranowska-Bosiacka I, Dec K, Styburski D, Nowakowska A, Gutowska I. The influence of polyphenols on metabolic disorders caused by compounds released from plastics - Review. CHEMOSPHERE 2020; 240:124901. [PMID: 31563713 DOI: 10.1016/j.chemosphere.2019.124901] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Persistent organic pollutants (POPs) released from plastics into water, soil and air are significant environmental and health problem. Continuous exposure of humans to these substances results not only from the slow biodegradation of plastics but also from their ubiquitous use as industrial materials and everyday products. Exposure to POPs may lead to neurodegenerative disorders, induce inflammation, hepatotoxicity, nephrotoxicity, insulin resistance, allergies, metabolic diseases, and carcinogenesis. This has spurred an increasing intense search for natural compounds with protective effects against the harmful components of plastics. In this paper, we discuss the current state of knowledge concerning the protective functions of polyphenols against the toxic effects of POPs: acrylonitrile, polychlorinated biphenyls, dioxins, phthalates and bisphenol A. We review in detail papers from the last two decades, analyzing POPs in terms of their sources of exposure and demonstrate how polyphenols may be used to counteract the harmful environmental effects of POPs. The protective effect of polyphenols results from their impact on the level and activity of the components of the antioxidant system, enzymes involved in the elimination of xenobiotics, and as a consequence - on the level of reactive oxygen species (ROS). Polyphenols present in daily diet may play a protective role against the harmful effects of POPs derived from plastics, and this interaction is related, among others, to the antioxidant properties of these compounds. To our knowledge, this is the first extensive review of in vitro and in vivo studies concerning the molecular mechanisms of interactions between selected environmental toxins and polyphenols.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Biochemistry, Faculty of Biology, University of Szczecin, 3c Felczaka St., 71-412, Szczecin, Poland
| | - Marta Skórka-Majewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 72 Powst. Wlkp. St., 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 72 Powst. Wlkp. St., 70-111, Szczecin, Poland
| | - Karolina Dec
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Daniel Styburski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460, Szczecin, Poland
| | - Anna Nowakowska
- Centre for Human Structural and Functional Research, Faculty of Physical Education and Health Promotion, University of Szczecin, 17C Narutowicza St., 70-240, Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 72 Powst. Wlkp. St., 70-111, Szczecin, Poland.
| |
Collapse
|
7
|
Kar F, Hacioglu C, Uslu S, Kanbak G. Curcumin Acts as Post-protective Effects on Rat Hippocampal Synaptosomes in a Neuronal Model of Aluminum-Induced Toxicity. Neurochem Res 2019; 44:2020-2029. [DOI: 10.1007/s11064-019-02839-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/15/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
|
8
|
Li F, Lu R, Zhao T, Zhang X, Wang S, Xing G. Comparing the protective effects of three sulfur compounds against acrylonitrile-induced acute toxicity in CYP2E1-induced rats. Toxicol Ind Health 2019; 35:387-397. [PMID: 30991910 DOI: 10.1177/0748233719839847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 2E1 (CYP2E1) can be induced by diabetes mellitus, nonalcoholic liver disease, and obesity. This study assessed the protective effects of three sulfur compounds, namely phenethyl isothiocyanate (PEITC), dimethyl trisulfide (DMTS), and sodium thiosulfate (STS), on acrylonitrile (ACN)-induced acute toxicity in rats enriched with CYP2E1. PEITC and DMTS were administered intragastrically (i.g.), whereas STS was injected intraperitoneally (i.p.) at an identical dose of 0.5 mmol/kg for 3 days in acetone-pretreated rats before ACN (90 mg/kg) injection (i.p.). Acetone-treated rats that expressed high levels of CYP2E1 were more susceptible to ACN-induced acute toxicity. The sulfur compounds reduced the rate of convulsions and loss of the righting reflex in acute ACN-exposed CYP2E1-induced rats; PEITC and DMTS also increased the survival rates. PEITC inhibited hepatic CYP2E1 activity and protected hepatic and cerebral cytochrome c oxidase (CcOx) activities in acute ACN-exposed CYP2E1-enriched rats; DMTS protected hepatic CcOx activity. DMTS attenuated ACN-induced oxidative injury by reducing malondialdehyde (MDA) levels and increasing glutathione content in the brain. STS only reduced cerebral MDA levels, whereas PEITC did not exhibit any antioxidant effects. Collectively, PEITC provided superior protective effects against ACN-induced acute toxicity in rats with increased CYP2E1 activity, followed by DMTS; STS provided limited effects. PEITC and DMTS might be considered as promising chemopreventive agents against ACN-induced acute toxicity in vulnerable subpopulations with increased CYP2E1 activity.
Collapse
Affiliation(s)
- Fang Li
- 1 School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rongzhu Lu
- 1 School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ting Zhao
- 2 School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinyu Zhang
- 1 School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Suhua Wang
- 1 School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guangwei Xing
- 1 School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
9
|
Subcommissural organ-Reissner's fiber complex plasticity in two animal models of copper intoxication and modulatory effect of curcumin: Involvement of serotonin. J Chem Neuroanat 2019; 97:80-86. [PMID: 30794879 DOI: 10.1016/j.jchemneu.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/07/2019] [Accepted: 02/17/2019] [Indexed: 11/23/2022]
Abstract
Metal neurotoxicity is a universal health preoccupation. Previous data revealed an obvious neurochemical impairment induced by metal elements as copper. This investigation was conducted to study the subcommissural organ (SCO) response to acute and subchronic Cu exposure as well as its serotoninergic innervation in Wistar rats, and the probable protective potential of curcumin in these toxicological circumstances. By mean of immunohistochemistry using antibodies against Reissner's fiber (RF) and serotonin (5-HT) in acute model (10 mg/kg i.p. for 3 days) and subchronic model (0.125% in drinking water for six weeks), we noted a significant decrease of RF-immunoreactivity and a whole amplified 5-HT innervation of SCO and ventricular borders in intoxicated rats. Co-treatment with curcumin-I (30 mg/kg B.W) has shown a beneficial effect, reinstating both SCO secretory activity and serotoninergic innervation damaged by Cu exposure. This data revealed for the first time an obvious response of SCO-RF complex to Cu intoxication as well as the neuroprotective effect of curcumin-I. Thus, SCO could play a fundamental role in the strategies of brain resistance to neurotoxicity induced by metal elements in rats, and may be used as biomarker to assist in the diagnosis of this neurotoxicological conditions in rodents.
Collapse
|
10
|
Farombi EO, Abolaji AO, Adetuyi BO, Awosanya O, Fabusoro M. Neuroprotective role of 6-Gingerol-rich fraction of Zingiber officinale (Ginger) against acrylonitrile-induced neurotoxicity in male Wistar rats. J Basic Clin Physiol Pharmacol 2018; 30:jbcpp-2018-0114. [PMID: 30864424 DOI: 10.1515/jbcpp-2018-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Background Acrylonitrile (AN) is a neurotoxin that is widely used to manufacture synthetic fibres, plastics and beverage containers. Recently, we reported the ameliorative role of 6-gingerol-rich fraction from Zingiber officinale (Ginger, GRF) on the chlorpyrifos-induced toxicity in rats. Here, we investigated the protective role of GRF on AN-induced brain damage in male rats. Methods Male rats were orally treated with corn oil (2 mL/kg, control), AN (50 mg/kg, Group B), GRF (200 mg/kg, Group C), AN [50 mg/kg+GRF (100 mg/kg) Group D], AN [(50 mg/kg)+GRF (200 mg/kg) Group E] and AN [(50 mg/kg)+N-acetylcysteine (AC, 50 mg/kg) Group F] for 14 days. Then, we assessed the selected markers of oxidative damage, antioxidant status and inflammation in the brain of rats. Results The results indicated that GRF restored the AN-induced elevations of brain malondialdehyde (MDA), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and Nitric Oxide (NO) levels. GRF also prevented the AN-induced depletion of brain glutathione (GSH) level and the activities of Glutathione S-transferase (GST), glutathione peroxidase (GPx) and superoxide dismutase (SOD) in rats (p<0.05). Furthermore, GRF prevented the AN-induced cerebral cortex lesion and increased brain immunohistochemical expressions of Caspases-9 and -3. Conclusions Our data suggest that GRF may be a potential therapeutic agent in the treatment of AN-induced model of brain damage.
Collapse
Affiliation(s)
- Ebenezer Olatunde Farombi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria, Phone: +2348023470333, Fax: 234-2-8103043
| | - Amos Olalekan Abolaji
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Babatunde Oluwafemi Adetuyi
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olaide Awosanya
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mobolaji Fabusoro
- Molecular Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
11
|
Zheng L, Pan L, Miao J, Lin Y, Wu J. Application of a series of biomarkers in Scallop Chlamys farreri to assess the toxic effects after exposure to a priority hazardous and noxious substance (HNS)-Acrylonitrile. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:122-130. [PMID: 30342373 DOI: 10.1016/j.etap.2018.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
The antioxidant enzymes and detoxification parameters responses of the scallop Chlamys farreri to different degree of acrylonitrile (AN) were investigated. Accordingly, the median lethal concentration (LC50) at 96 h was 98.5 mg/L AN. Results from chronic toxicity test demonstrated that superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were stimulated in the highest two doses of AN (2.0 and 5.0 mg/L), but significantly inhibited in the highest concentration (5.0 mg/L) at the end of the exposure. The levels of DNA strand breaks, lipid peroxidation (LPO) and protein carbonyl (PC) contents showed damage effects exposed AN at the highest two doses. Additionally, AN significantly induced the enzymatic activity of glutathione-s-transferase (GST), related mRNA expression levels of P-glycoprotein (P-gp) and GST-pi; and no significant changes were found on CYP1A1 mRNA expression and ethoxyresorufin O-deethylase (EROD) activity. Our results indicated that P-gp and GST-pi mRNA expression in digestive glands of the scallop C. farreri may potentially be used in ecological risk assessment of hazardous and noxious substances (HNS) contamination of marine.
Collapse
Affiliation(s)
- Lei Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China.
| | - Jingjing Miao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Yufei Lin
- National Marine Hazard Mitigation Service, State Ocean Administration, 100194 Beijing, China
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, State Ocean Administration, 100194 Beijing, China
| |
Collapse
|
12
|
Lin P, Miao J, Pan L, Zheng L, Wang X, Lin Y, Wu J. Acute and chronic toxicity effects of acrylonitrile to the juvenile marine flounder Paralichthys olivaceus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35301-35311. [PMID: 30341758 DOI: 10.1007/s11356-018-3430-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
Acrylonitrile (ACN) spills in marine environment have the potential to cause ecological hazards and consequences, but currently little is known about the disruptive effects of ACN on marine organisms. In the present study, we investigated the lethal and sublethal effects of ACN on juvenile flounder Paralichthys olivaceus. The results showed that the 96-h LC50 of ACN to P. olivaceus juveniles was 6.07 mg/L. The fish were then exposed to different sublethal concentrations (0.1, 0.2, and 0.4 mg/L) of ACN for 28 days and then transferred to clean seawater and keep in clean seawater for 14 days to simulate the conditions of a spill incident. Biomarkers (EROD, GST, SOD, AChE activity, and levels of LPO and DNA alkaline unwinding) were tested in liver and brain. The weight gain rates and specific growth rate of juvenile marine flounder exposed to ACN (≥ 0.1 mg/L) for 28 days decreased significantly, indicating that ACN had an inhibitory effect on juvenile growth. Deformity of fish tails was observed on individuals exposed to the highest concentration (0.4 mg/L ACN) for 14 days, and the malformation rate was 38% after 28-day exposure. The present study provides the first evidence that ACN causes inhibition of AChE activity in fish brain. Furthermore, the results showed that ACN can significantly inhibit SOD activity and cause lipid peroxidation and DNA damage in fish brain. The results indicated that brain is more sensitive to ACN toxicity compared to liver and provides a suitable tissue for biomonitoring. The biomarkers measured during the depuration period showed that the effects caused by ACN were reversible when the exposure concentration was lower than 0.4 mg/L. These results highlight the adverse effects of ACN in brain of fish, which should be considered in environmental risk assessment. Biomarkers including AChE activity, LPO, and DNA damage of brain tissue should be included in fish bioassays for toxic effect assessment of ACN spills.
Collapse
Affiliation(s)
- Pengfei Lin
- The Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
- Lab. of Environmental Physiology of Aquatic Animal, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, China.
| | - Luqing Pan
- The Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Lei Zheng
- The Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Xiufen Wang
- The Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Yufei Lin
- National Marine Hazard Mitigation Service, State Ocean Administration, Beijing, 100194, China
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, State Ocean Administration, Beijing, 100194, China
| |
Collapse
|
13
|
Saleh HA, S. Abd El-Aziz G, N. Mustafa H, El-Fark M, Mansour Tashkandi J, Hassan Alzahrani A, Mal A, AboRass M, Halim Deifalla A. Beneficial Effects of Curcumin in Maternal and Fetal Oxidative Stress and Brain Damage Induced by Gestational Lead Administration. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bpj/1444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study was planned to explore the protective role of curcumin (Cur) against maternal and fetal oxidative stress and cerebral damage induced by lead (Pb) during pregnancy. Positively pregnant female rats were divided into seven groups: control group, Cur group (300 mg/kg of Cur/b.wt.), DMSO group (50% DMSO), two Pb-treated groups (exposed to 160 and 320 mg/kg b.wt./day of Pb acetate, respectively), and two groups treated with both Pb and Cur (exposed to Pb as previous groups together with 300 mg/kg b.wt./day of Cur). Treatments through oral gavage once a day started from gestation day 1 (GD1) till day 20 (GD20), where the mother rats of different experimental groups were sacrificed to obtain the fetuses. Different chemical parameters were assessed. Brain specimens of mother and fetal groups were processed with examination. The results displayed that Pb administration to pregnant rats resulted in a dose-dependent toxicity for both mothers and fetuses. Also, there was a significant rise in lipid peroxidation and decreased antioxidant enzyme activities in the brains of the different Pb-treated groups. The histological examination of the brain of treated dams and fetuses showed marked alterations. Co-treatment of Cur along with Pb caused a significant decrease in Pb levels as compared with those treated with Pb alone, improving the oxidative condition with amelioration of the brain’s histopathological changes. Co-administration of Cur could have ameliorative effect against Pb-induced neurotoxicity through the reduction of oxidative stress and reversal of histopathological changes.
Collapse
Affiliation(s)
- Hamid A. Saleh
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, KSA
| | - Gamal S. Abd El-Aziz
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, KSA
| | - Hehsam N. Mustafa
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, KSA
| | - Magdy El-Fark
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, KSA
| | | | | | - Ahmed Mal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, KSA
| | - Magda AboRass
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, KSA
| | | |
Collapse
|
14
|
Yang B, Bai Y, Yin C, Qian H, Xing G, Wang S, Li F, Bian J, Aschner M, Lu R. Activation of autophagic flux and the Nrf2/ARE signaling pathway by hydrogen sulfide protects against acrylonitrile-induced neurotoxicity in primary rat astrocytes. Arch Toxicol 2018; 92:2093-2108. [PMID: 29725710 DOI: 10.1007/s00204-018-2208-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 04/25/2018] [Indexed: 10/25/2022]
Abstract
Hydrogen sulfide (H2S), the third gasotransmitter, has been shown to act as a neuroprotective factor in numerous pathological processes; however, its underlying mechanism(s) of action remain unclear. It is widely accepted that activation of moderate autophagy and the Nrf2/ARE signaling pathway play important roles in the biological self-defense systems. In the present study, we investigated whether exogenous H2S protects against the cytotoxicity of acrylonitrile (AN), a neurotoxin, in primary rat astrocytes. We found that pretreatment for 1 h with sodium hydrosulfide (NaHS), a donor of H2S (200-800 µM), significantly attenuated the AN-induced decrease in cell viability, increase in lactate dehydrogenase release and morphological changes. Furthermore, NaHS significantly attenuated AN-induced oxidative stress by reducing reactive oxygen species (ROS) levels and increasing glutathione (GSH) concentration. Moreover, NaHS activated the autophagic flux, detectable as a change in autophagy-related proteins (Beclin-1, Atg5 and p62), the formation of acidic vesicular organelles and LC3B aggregation, confirmed by adenoviral expression of mRFP-GFP-LC3. Additionally, NaHS stimulated translocation of Nrf2 into the nucleus and increased expression of heme oxygenase-1 and γ-glutamylcysteine synthetase, downstream targets of Nrf2. Notably, the autophagy inhibitor 3-methyladenine and Beclin-1, or Nrf2-targeted siRNA, significantly attenuated the neuroprotective effects of NaHS against AN-induced neurotoxicity. In conclusion, we identified a crucial role of autophagy and the Nrf2/ARE signaling pathway in H2S-mediated neuroprotection against AN-induced toxicity in primary rat astrocytes. Our findings provide novel insights into the mechanisms of H2S-mediated neuroprotection, and suggest that H2S-based donors may serve as potential new candidate drugs to treat AN-induced neurotoxicity.
Collapse
Affiliation(s)
- Bobo Yang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yu Bai
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Changsheng Yin
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Hai Qian
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Guangwei Xing
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Suhua Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Fang Li
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Jinsong Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China. .,Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, 91 Qianjin(W) Road, Kunshan, 215132, Jiangsu, China.
| |
Collapse
|
15
|
Caito S, Park M, Aschner M. Resistance of mouse primary microglia and astrocytes to acrylonitrile-induced oxidative stress. Neurotoxicology 2017; 63:120-125. [DOI: 10.1016/j.neuro.2017.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 10/25/2022]
|
16
|
Li F, Dong Y, Shen H, Lu R, Yin S, Tian W, Wang S, Xing G. Tolerance to dichloroacetonitrile-induced neurotoxicity in streptozotocin-induced diabetic rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:61-67. [PMID: 28886427 DOI: 10.1016/j.etap.2017.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Diabetes mellitus has potential to alter the toxicity of hazardous chemicals. Dichloroacetonitrile (DCAN) is one of high-risk nitrogenous disinfection by-products. This study evaluated the neurotoxicity of DCAN (11, 44 and 88mg/kg) in normoglycaemic and streptozotocin (STZ)-induced diabetic rats via orally for 28days. STZ diabetes prolonged the median survival time and total lethal time after DCAN (88mg/kg) exposure when compared with that observed in normoglycaemic rats. DCAN altered motor activity and induced anxiety behaviour in normoglycaemic rats; but it did not exaggerate behavioural changes in STZ diabetic rats. DCAN -induced brain oxidative damage by compensatory increase glutathione content and decrease malonaldehyde levels; but it did not induce oxidative damage in diabetic rats. STZ diabetes slowed down the pathological pace of DCAN-induced brain mitochondrial dysfunction by decreasing reactive oxygen species and increasing cytochrome C oxidase activity. In conclusion, the present study indicated that STZ diabetic rats are resistant to DCAN-induced neurotoxicity at the dosage and with the dosage schedule in 28-day subacute toxicity test.
Collapse
Affiliation(s)
- Fang Li
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Ying Dong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haijun Shen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rongzhu Lu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Siqi Yin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Weihong Tian
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suhua Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guangwei Xing
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
17
|
Hu RW, Carey EJ, Lindor KD, Tabibian JH. Curcumin in Hepatobiliary Disease: Pharmacotherapeutic Properties and Emerging Potential Clinical Applications. Ann Hepatol 2017; 16:835-841. [PMID: 29055920 DOI: 10.5604/01.3001.0010.5273] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Curcumin, an aromatic phytoextract from the turmeric (Curcuma longa) rhizome, has been used for centuries for a variety of purposes, not the least of which is medicinal. A growing body of evidence suggests that curcumin has a broad range of potentially therapeutic pharmacological properties, including anti-inflammatory, anti-fibrotic, and anti-neoplastic effects, among others. Clinical applications of curcumin have been hampered by quality control concerns and limited oral bioavailability, although novel formulations appear to have largely overcome these issues. Recent in vitro and in vivo studies have found that curcumin's cytoprotective and other biological activities may play a role in an array of benign and malignant hepatobiliary conditions, including but not limited to non-alcoholic fatty liver disease, cholestatic liver disease (e.g. primary sclerosing cholangitis), and cholangiocarcinoma. Here we provide an overview of fundamental principles, recent discoveries, and potential clinical hepatobiliary applications of this pleiotropic phytocompound.
Collapse
Affiliation(s)
- Robert W Hu
- Department of Biology, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth J Carey
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ, USA
| | - Keith D Lindor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ, USA Executive Vice Provost and Dean, College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - James H Tabibian
- Division of Gastroenterology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA
| |
Collapse
|
18
|
Waseem M, Parvez S, Tabassum H. Mitochondria As the Target for the Modulatory Effect of Curcumin in Oxaliplatin-induced Toxicity in Isolated Rat Liver Mitochondria. Arch Med Res 2017; 48:55-63. [PMID: 28577870 DOI: 10.1016/j.arcmed.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS To explore hepatoprotective action of curcumin (CMN, a bioflavonoid) on oxaliplatin (Oxa)-triggered mitochondrial oxidative stress and respiratory chain complexes in liver of rats. Oxa is a ubiquitously utilized platinum-based chemotherapeutic agent commonly used for the treatment of colorectal cancer. Mitochondria have recently emerged as targets for anticancer drugs in several kinds of toxicity including hepatotoxicity that can lead to neoplastic disease. There is a dearth of evidence involving the role of mitochondria in mediating Oxa-evoked hepatotoxicity and its underlying mechanism is still debatable. METHODS The study was performed in mitochondria isolated from liver of Wistar rats. Oxa (200 μg/mL) and CMN (5 μmol) were incubated under in vitro conditions. RESULTS Oxa evoked a significant increase in the membrane lipid peroxidation (LPO) levels, protein carbonyl (PC) contents, decrease in reduced glutathione (GSH) and nonprotein thiol (NP-SH) levels. Oxa also caused a marked decline in the activities of enzymatic antioxidants and respiratory chain enzymes (I, II, III and V) in liver mitochondria. CMN pre-treatment significantly prevented the activities of enzymatic antioxidants and mitochondrial respiratory chain enzymes. CMN also restored the LPO and PC contents, GSH and NP-SH levels in liver mitochondria. CONCLUSION CMN intake might be effective in regulation of Oxa-evoked mitotoxicity during chemotherapy. Moreover, it is included in the armamentarium for anticancer agent-induced oxidative stress.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Heena Tabassum
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, India.
| |
Collapse
|
19
|
Pu X, Wang Z, Zhou S, Klaunig JE. Protective effects of antioxidants on acrylonitrile-induced oxidative stress in female F344 rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:1808-1818. [PMID: 26332274 DOI: 10.1002/tox.22182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/30/2015] [Accepted: 08/05/2015] [Indexed: 06/05/2023]
Abstract
The induction of oxidative stress and damage appears to be involved in acrylonitrile induction of brain astrocytomas in rat. The present study examined the effects of dietary antioxidant supplementation on acrylonitrile-induced oxidative stress and oxidative damage in rats in vivo. To assess the effects of antioxidants on biomarkers of acrylonitrile-induced oxidative stress, female F344 rats were provided with diets containing vitamin E (0.05%), green tea polyphenols (GTP, 0.4%), N-acetyl cysteine (NAC, 0.3%), sodium selenite (0.1mg/kg), and taurine (10g/kg) for 7 days, and then co-administered with 0 and 100 ppm acrylonitrile in drinking water for 28 days. Significant increase in oxidative DNA damage in brain, evidenced by elevated 8OHdG levels, was seen in acrylonitrile-exposed rats. Supplementation with vitamin E, GTP, and NAC reduced acrylonitrile-induced oxidative DNA damage in brain while no protective effects were seen with the selenium or taurine supplementation. Acrylonitrile increased oxidative DNA damage, measured by the fpg-modified alkaline Comet assay in rat WBCs, which was reduced by supplementation of Vitamin E, GTP, NAC, selenium, and taurine. In addition to stimulation of oxidative DNA damage, acrylonitrile triggered induction of pro-inflammatory cytokines Tnfα, Il-1β, and Ccl2, and the growth stimulatory cyclin D1 and cyclin D2 genes, which were effectively down-regulated with antioxidant treatment. Antioxidant treatment also was able to stimulate the pro-apoptotic genes Bad, Bax, and FasL and DNA repair genes Xrcc6 and Gadd45α. The results of this study support the involvement of oxidative stress in the development of acrylonitrile-induced astrocytomas and suggest that antioxidants block acrylonitrile-mediated damage through mechanisms that may involve in the suppression of inflammatory responses, inhibition of cell proliferation and stimulation of apoptosis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1808-1818, 2016.
Collapse
Affiliation(s)
- Xinzhu Pu
- Biomolecular Research Center, Boise State University, Idaho, USA, 47408
| | - Zemin Wang
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, Indiana, 47408
| | - Shaoyu Zhou
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, Indiana, 47408
- Department of Pharmacology, Zunyi Medical College, Zunyi, 563000, China
| | - James E Klaunig
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, Indiana, 47408
| |
Collapse
|
20
|
Waseem M, Tabassum H, Parvez S. Neuroprotective effects of melatonin as evidenced by abrogation of oxaliplatin induced behavioral alterations, mitochondrial dysfunction and neurotoxicity in rat brain. Mitochondrion 2016; 30:168-76. [PMID: 27497633 DOI: 10.1016/j.mito.2016.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/19/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022]
Abstract
Neurotoxicity is a burdensome consequence of platinum-based chemotherapy that neutralizes the administration of effective dosage and often prompts treatment withdrawal. Oxaliplatin (Oxa), a third-era platinum analogue that is active against both early-organize and progressed colorectal growth, produces critical neurotoxicity. It has been reported that the Melatonin (Mel) is a pineal hormone its metabolites display important antioxidant properties in nervous system. There is dearth of literature involving the role of mitochondria and cytosolic compartments mediated Oxa-induced neurotoxicity and its underlying mechanisms are still debatable. Rats were pre-treated with Mel (10mg/kg b.wt., i.p.) and treated with Oxa (4mg/kg b.wt. i.p.) for 5 consecutive days. For neurobehavioral performances, decreased locomotor activity and muscular strength were observed in rats. Treatment with Mel in Oxa treated rats could protect the Oxa induced alterations in motor activity and muscular strength. For painful neuropathy, thermal hyperalgesia/nociceptive tests were evaluated. In addition, pre-treatment of Mel could block or alter the inactivation of Bcl-2, caspase 3 apoptotic protein and alterations Cytochrome c (Cyt c) release in an Oxa rich environment. Pre-treatment of Mel have shown an alteration in hyperalgesia behaviour in Oxa treated rats. Oxidative stress biomarkers, levels of non-enzymatic antioxidants and mitochondrial complexes were evaluated against neurotoxicity induced by Oxa. Mel pre-treatment replenished the mitochondrial lipid peroxidation levels and protein carbonyl content induced by Oxa. Mel also modulated altered non-enzymatic, enzymatic antioxidants and complex enzymes of mitochondria. Futures studies are also required to identify other molecular markers involved in neurotoxicity induced by Oxa and possible action of Mel in its modulation.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| | - Heena Tabassum
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India.
| |
Collapse
|
21
|
Waseem M, Parvez S. Neuroprotective activities of curcumin and quercetin with potential relevance to mitochondrial dysfunction induced by oxaliplatin. PROTOPLASMA 2016; 253:417-30. [PMID: 26022087 DOI: 10.1007/s00709-015-0821-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/15/2015] [Indexed: 05/19/2023]
Abstract
Peripheral neurotoxicity is one of the serious dose-limiting side effects of oxaliplatin (Oxa) when used in the treatment of malignant conditions. It is documented that it elicits major side effects specifically neurotoxicity due to oxidative stress forcing the patients to limit its clinical use in long-term treatment. Oxidative stress has been proven to be involved in Oxa-induced toxicity including neurotoxicity. The mitochondria have recently emerged as targets for anticancer drugs in various kinds of toxicity including neurotoxicity that can lead to neoplastic disease. However, there is paucity of literature involving the role of the mitochondria in mediating Oxa-induced neurotoxicity and its underlying mechanism is still debatable. The purpose of this study was to investigate the dose-dependent damage caused by Oxa on isolated brain mitochondria under in vitro conditions. The study was also designed to investigate the neuroprotective effects of nutraceuticals, curcumin (CMN), and quercetin (QR) on Oxa-induced mitochondrial oxidative stress and respiratory chain complexes in the brain of rats. Oxidative stress biomarkers, levels of nonenzymatic antioxidants, activities of enzymatic antioxidants, and mitochondrial complexes were evaluated against the neurotoxicity induced by Oxa. Pretreatment with CMN and QR significantly replenished the mitochondrial lipid peroxidation levels and protein carbonyl content induced by Oxa. CMN and QR ameliorated altered nonenzymatic and enzymatic antioxidants and complex enzymes of mitochondria. We conclude that CMN and QR, by attenuating oxidative stress as evident by mitochondrial dysfunction, hold promise as agents that can potentially reduce Oxa-induced adverse effects in the brain.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India.
| |
Collapse
|
22
|
Yeong LT, Abdul Hamid R, Saiful Yazan L, Khaza’ai H, Mohtarrudin N. Low dose triterpene-quinone fraction from Ardisia crispa root precludes chemical-induced mouse skin tumor promotion. Altern Ther Health Med 2015; 15:431. [PMID: 26638207 PMCID: PMC4670530 DOI: 10.1186/s12906-015-0954-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
Abstract
Background Drastic increment of skin cancer incidence has driven natural product-based chemoprevention as a promising approach in anticancer drug development. Apart from its traditional usages against various ailments, Ardisia crispa (Family: Myrsinaceae) specifically its triterpene-quinone fraction (TQF) which was isolated from the root hexane extract (ACRH) was recently reported to exert antitumor promoting activity in vitro. This study aimed at determining chemopreventive effect of TQF against chemically-induced mouse skin tumorigenesis as well as elucidating its possible pathway(s). Methods Mice (n = 10) were initiated with single dose of 7,12-dimethylbenz[α]anthracene (DMBA) (390 nmol/100 μl) followed by, a week later, repeated promotion (twice weekly; 20 weeks) with 12-O-tetradecanoylphorbol-13-acetate (TPA) (1.7 nmol/100 μl). TQF (10, 30 and 100 mg/kg) and curcumin (10 mg/kg; reference) were, respectively, applied topically to DMBA/TPA-induced mice 30 min before each TPA application. Upon termination, histopathological and biochemical analysis, as well as Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and transcription factor enzyme-linked immunosorbent assay (ELISA) assays were performed to elucidate the potential mechanism of TQF. Results With comparison to the carcinogen control, results revealed that lower dose of TQF (10 mg/kg) conferred antitumor promoting effect via significant (P < 0.05) suppression against lipid peroxidation (LPO), apoptotic index (cell death) and nuclear factor-kappa B (NF-κB), along with reduction of keratinocyte proliferation; whilst its higher dose (100 mg/kg) was found to promote tumorigenesis by significantly (P < 0.05) increasing LPO and apoptotic index, in addition to aggravating keratinocyte proliferation. Conclusions This study evidenced that TQF, particularly at its lower dosage (10 mg/kg), ameliorated DMBA/TPA-induced mouse skin tumorigenesis. Though, future investigations are warranted to determine the lowest possible therapeutic dose of TQF in subsequent in vivo chemopreventive studies.
Collapse
|
23
|
Yu B, Changsheng Y, Wenjun Z, Ben L, Hai Q, Jing M, Guangwei X, Shuhua W, Fang L, Aschner M, Rongzhu L. Differential protection of pre- versus post-treatment with curcumin, Trolox, and N -acetylcysteine against acrylonitrile-induced cytotoxicity in primary rat astrocytes. Neurotoxicology 2015; 51:58-66. [DOI: 10.1016/j.neuro.2015.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 01/30/2023]
|
24
|
Oxaliplatin-induced Oxidative Stress Provokes Toxicity in Isolated Rat Liver Mitochondria. Arch Med Res 2015; 46:597-603. [DOI: 10.1016/j.arcmed.2015.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 10/27/2015] [Indexed: 01/05/2023]
|
25
|
Li Y, Mei L, Qiang J, Zee CS, Li X, Liu J. Neurotoxicity of acrylonitrile evaluated by manganese enhanced magnetic resonance imaging. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Casas-Grajales S, Muriel P. Antioxidants in liver health. World J Gastrointest Pharmacol Ther 2015; 6:59-72. [PMID: 26261734 PMCID: PMC4526841 DOI: 10.4292/wjgpt.v6.i3.59] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/04/2015] [Accepted: 06/18/2015] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are a worldwide medical problem because the liver is the principal detoxifying organ and maintains metabolic homeostasis. The liver metabolizes various compounds that produce free radicals (FR). However, antioxidants scavenge FR and maintain the oxidative/antioxidative balance in the liver. When the liver oxidative/antioxidative balance is disrupted, the state is termed oxidative stress. Oxidative stress leads to deleterious processes in the liver and produces liver diseases. Therefore, restoring antioxidants is essential to maintain homeostasis. One method of restoring antioxidants is to consume natural compounds with antioxidant capacity. The objective of this review is to provide information pertaining to various antioxidants found in food that have demonstrated utility in improving liver diseases.
Collapse
|
27
|
Shivanoor SM, David M. Protective role of turmeric against deltamethrin induced renal oxidative damage in rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bionut.2014.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Benammi H, El Hiba O, Romane A, Gamrani H. A blunted anxiolytic like effect of curcumin against acute lead induced anxiety in rat: involvement of serotonin. Acta Histochem 2014; 116:920-5. [PMID: 24721902 DOI: 10.1016/j.acthis.2014.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 01/15/2023]
Abstract
Anxiety is one of the most common mental disorders sharing extreme or pathological anxiety states as the primary disturbance in mood or emotional tone, with increased fear and exaggerated acute stress responses. Medicinal plants are very variable, but some of them are used as a spice such as curcumin (Curcuma longa). Curcumin shows a wide range of pharmacological potentialities, however, little is known about its anxiolytic properties. The aim of our study was to assess the anti-anxiety potential of curcumin extract against experimental lead induced-anxiety in rats. Experiments were carried out on male Wistar rats intoxicated acutely with an intraperitoneal injection of Pb (25mg/kg B.W.) and/or concomitantly with administration of curcumin (30 mg/kg B.W.) for 3 days. Using immunohistochemistry and anxiety assessment tests (dark light box and elevated plus maze), we evaluated, respectively, the expression of serotonin (5HT) in the dorsal raphe nucleus (DRN) and the anxiety state in our animals. Our results showed, for the first time, a noticeable anxiolytic effect of curcumin against lead induced anxiety in rats and this may possibly result from modulation of central neuronal monoaminergic neurotransmission, especially serotonin, which has shown a significant reduction of the immunoreactivity within the DRN.
Collapse
Affiliation(s)
- Hind Benammi
- Laboratoire Neurosciences, Pharmacology and Environment, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech BP 2390, Morocco
| | - Omar El Hiba
- Laboratoire Neurosciences, Pharmacology and Environment, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech BP 2390, Morocco
| | - Abderrahmane Romane
- Laboratoire de Chimie Organique Appliquée, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
| | - Halima Gamrani
- Laboratoire Neurosciences, Pharmacology and Environment, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech BP 2390, Morocco.
| |
Collapse
|
29
|
Differential inflammatory response to acrylonitrile in rat primary astrocytes and microglia. Neurotoxicology 2014; 42:1-7. [DOI: 10.1016/j.neuro.2014.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 01/04/2023]
|
30
|
García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69:182-201. [PMID: 24751969 DOI: 10.1016/j.fct.2014.04.016] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico
| | - José Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico.
| |
Collapse
|
31
|
Protective effects of curcumin against oxidative stress parameters and DNA damage in the livers and kidneys of rats with biliary obstruction. Food Chem Toxicol 2013; 61:28-35. [DOI: 10.1016/j.fct.2013.01.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/11/2013] [Accepted: 01/13/2013] [Indexed: 12/21/2022]
|
32
|
Neuparth T, Capela R, Rey-Salgueiro L, Moreira SM, Santos MM, Reis-Henriques MA. Simulation of a Hazardous and Noxious Substances (HNS) spill in the marine environment: lethal and sublethal effects of acrylonitrile to the European seabass. CHEMOSPHERE 2013; 93:978-985. [PMID: 23800594 DOI: 10.1016/j.chemosphere.2013.05.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/21/2013] [Accepted: 05/24/2013] [Indexed: 06/02/2023]
Abstract
Despite the extensive maritime transportation of Hazardous and Noxious Substances (HNS), there is a current lack of knowledge on the effects posed by HNS spills on the marine biota. Among the HNS identified as priority, acrylonitrile was selected to conduct ecotoxicological assays. We assessed the acute and subletal effects of acrylonitrile in seabass, followed by a recovery phase to simulate the conditions of a spill incident. The work aimed at testing a broad range of biological responses induced by acrylonitrile. Sublethal exposure to the highest two doses increased the fish mortality rate (8.3% and 25% mortality in 0.75 and 2 mg L(-1) acrylonitrile concentrations), whereas no mortality were observed in control and 0.15 mg L(-1) treatments. Additionally, important alterations at sub-individual level were observed. Acrylonitrile significantly induced the activities of Catalase- CAT and Glutathione S-Transferase - GST; and the levels of DNA damage were significantly increased. Conversely, Superoxide Dismutase- SOD - activity was found to be significantly inhibited and no effects were found on Lipid Peroxidation- LPO and ethoxyresorufin O-deethylase - EROD - activity. Following a 7d recovery period, the levels of CAT, GST and EROD fell to levels at or below those in the control. In the 2 mg L(-1) group, SOD remained at the levels found during exposure phase. This study has gathered essential information on the acute and subletal toxicity of acrylonitrile to seabass. It also demonstrated that 7d recovery allowed a return of most endpoints to background levels. These data will be useful to assist relevant bodies in preparedness and response to HNS spills.
Collapse
Affiliation(s)
- T Neuparth
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
33
|
Curcumin pretreatment prevents potassium dichromate-induced hepatotoxicity, oxidative stress, decreased respiratory complex I activity, and membrane permeability transition pore opening. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:424692. [PMID: 23956771 PMCID: PMC3730379 DOI: 10.1155/2013/424692] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/07/2013] [Accepted: 06/16/2013] [Indexed: 01/26/2023]
Abstract
Curcumin is a polyphenol derived from turmeric with recognized antioxidant properties. Hexavalent chromium is an environmental toxic and carcinogen compound that induces oxidative stress. The objective of this study was to evaluate the potential protective effect of curcumin on the hepatic damage generated by potassium dichromate (K2Cr2O7) in rats. Animals were pretreated daily by 9-10 days with curcumin (400 mg/kg b.w.) before the injection of a single intraperitoneal of K2Cr2O7 (15 mg/kg b.w.). Groups of animals were sacrificed 24 and 48 h later. K2Cr2O7-induced damage to the liver was evident by histological alterations and increase in the liver weight and in the activity of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase in plasma. In addition, K2Cr2O7 induced oxidative damage in liver and isolated mitochondria, which was evident by the increase in the content of malondialdehyde and protein carbonyl and decrease in the glutathione content and in the activity of several antioxidant enzymes. Moreover, K2Cr2O7 induced decrease in mitochondrial oxygen consumption, in the activity of respiratory complex I, and permeability transition pore opening. All the above-mentioned alterations were prevented by curcumin pretreatment. The beneficial effects of curcumin against K2Cr2O7-induced liver oxidative damage were associated with prevention of mitochondrial dysfunction.
Collapse
|
34
|
Differential response to acrylonitrile toxicity in rat primary astrocytes and microglia. Neurotoxicology 2013; 37:93-9. [PMID: 23628792 DOI: 10.1016/j.neuro.2013.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/09/2013] [Accepted: 04/14/2013] [Indexed: 12/11/2022]
Abstract
Acrylonitrile (ACN) is a widely used chemical in the production of plastics, resins, nitriles, acrylic fibers, synthetic rubber and acrylamide. While acute high level exposures to ACN are known to be lethal, chronic low dose exposures causes glial cell tumors in rats. Recently, these glial tumors have been characterized as microglial in origin. While effects of ACN on astrocytes, the more numerous glial cell, have been investigated, the effects on microglia are unknown. This study was conducted to compare the responses of astrocytes and microglia to ACN treatment in vitro to address differential sensitivities and adaptive responses to this toxic chemical. Cell viability, ACN uptake, lipid peroxidation byproducts (F2-isoprostanes), glutathione (GSH) levels and expression of NF-E2-related factor 2 (Nrf2) were evaluated in primary rat microglia and astrocytes following ACN treatment. Results indicate that microglia are more sensitive to ACN than astrocytes, accumulating less ACN while demonstrating higher F2-isoprostane levels. GSH levels were up-regulated in both cell types, as a protective mechanism against ACN-induced oxidative stress, while Nrf2 levels were only induced in microglia. Our data suggest that microglia and astrocytes exhibit different sensitivities and responses to ACN, which are linked to the intracellular thiol status inherent to each of these cell types.
Collapse
|
35
|
Salama SM, Abdulla MA, AlRashdi AS, Ismail S, Alkiyumi SS, Golbabapour S. Hepatoprotective effect of ethanolic extract of Curcuma longa on thioacetamide induced liver cirrhosis in rats. Altern Ther Health Med 2013; 13:56. [PMID: 23496995 PMCID: PMC3605171 DOI: 10.1186/1472-6882-13-56] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 02/20/2013] [Indexed: 02/07/2023]
Abstract
Background Hepatology research has focused on developing traditional therapies as pharmacological medicines to treat liver cirrhosis. Thus, this study evaluated mechanisms of the hepatoprotective activity of Curcuma longa rhizome ethanolic extract (CLRE) on thioacetamide-induced liver cirrhosis in rats. Methods The hepatoprotective effect of CLRE was measured in a rat model of thioacetamide-induced liver cirrhosis over 8 weeks. Hepatic cytochrome P450 2E1 and serum levels of TGF-β1 and TNF-α were evaluated. Oxidative stress was measured by malondialdehyde, urinary 8-hydroxyguanosine and nitrotyrosine levels. The protective activity of CLRE free-radical scavenging mechanisms were evaluated through antioxidant enzymes. Protein expression of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins in animal blood sera was studied and confirmed by immunohistochemistry of Bax, Bcl2 proteins and proliferating cell nuclear antigen. Results Histopathology, immunohistochemistry and liver biochemistry were significantly lower in the Curcuma longa-treated groups compared with controls. CLRE induced apoptosis, inhibited hepatocytes proliferation but had no effect on hepatic CYP2E1 levels. Conclusion The progression of liver cirrhosis could be inhibited by the antioxidant and anti-inflammatory activities of CLRE and the normal status of the liver could be preserved.
Collapse
|
36
|
Waseem M, Parvez S. Mitochondrial dysfunction mediated cisplatin induced toxicity: Modulatory role of curcumin. Food Chem Toxicol 2013; 53:334-42. [DOI: 10.1016/j.fct.2012.11.055] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 01/30/2023]
|
37
|
Waseem M, Kaushik P, Parvez S. Mitochondria-mediated mitigatory role of curcumin in cisplatin-induced nephrotoxicity. Cell Biochem Funct 2013; 31:678-84. [PMID: 23408677 DOI: 10.1002/cbf.2955] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/30/2012] [Accepted: 01/02/2013] [Indexed: 12/13/2022]
Abstract
Cisplatin (CP) is one of the most potent chemotherapeutic anti-tumour drugs, and it has been implicated in renal toxicity. Oxidative stress has been proven to be involved in CP-induced toxicity including nephrotoxicity. However, there is paucity of literature involving role of mitochondria in mediating CP-induced renal toxicity, and its underlying mechanism remains unclear. Therefore, the present study was undertaken to examine the antioxidant potential of curcumin (CMN; a natural polyphenolic compound) against the mitochondrial toxicity of CP in kidneys of male rats. Acute toxicity was induced by a single intra-peritoneal injection of CP (6 mg kg(-1) ). We studied the ameliorative effect of CMN pre-treatment (200 mg kg(-1) ) on the toxicity of CP in rat kidney mitochondria. CP caused a significant elevation in the mitochondrial lipid peroxidation (LPO) levels and protein carbonyl (PC) content. Pre-treatment of rat with CMN significantly replenished the mitochondrial LPO levels and PC content. It also restored the CP-induced modulatory effects on altered enzymatic and non-enzymatic antioxidants in kidney mitochondria. We hypothesize that the reno-protective effects of CMN may be related to its predisposition to scavenge free radicals, and upregulate antioxidant machinery in kidney mitochondria.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | | | | |
Collapse
|
38
|
Vera-Ramirez L, Pérez-Lopez P, Varela-Lopez A, Ramirez-Tortosa M, Battino M, Quiles JL. Curcumin and liver disease. Biofactors 2013; 39:88-100. [PMID: 23303639 DOI: 10.1002/biof.1057] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/13/2012] [Indexed: 12/12/2022]
Abstract
Liver diseases pose a major medical problem worldwide and a wide variety of herbs have been studied for the management of liver-related diseases. In this respect, curcumin has long been used in traditional medicine, and in recent years it has been the object of increasing research interest. In combating liver diseases, it seems clear that curcumin exerts a hypolipidic effect, which prevents the fatty acid accumulation in the hepatocytes that may result from metabolic imbalances, and which may cause nonalcoholic steatohepatitis. Another crucial protective activity of curcumin, not only in the context of chronic liver diseases but also regarding carcinogenesis and other age-related processes, is its potent antioxidant activity, which affects multiple processes and signaling pathways. The effects of curcumin on NF-κβ are crucial to our understanding of the potent hepatoprotective role of this herb-derived micronutrient. Because curcumin is a micronutrient that is closely related to cellular redox balance, its properties and activity give rise to a series of molecular reactions that in every case and biological situation affect the mitochondria.
Collapse
Affiliation(s)
- Laura Vera-Ramirez
- GENyO Center Pfizer-University of Granada & Andalusian Government Centre for Genomics & Oncology, Granada, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Liu AC, Zhao LX, Xing J, Liu T, Du FY, Lou HX. Pre-treatment with curcumin enhances plasma concentrations of losartan and its metabolite EXP3174 in rats. Biol Pharm Bull 2012; 35:145-50. [PMID: 22293343 DOI: 10.1248/bpb.35.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study was carried out in the Wistar rats to investigate the effect of curcumin pre-treatment on the pharmacokinetics of the hypertension-treating drug losartan and its metabolite EXP3174 following single oral administration. In the treatment group, rats were gavaged with losartan 10 mg/kg after repeat oral doses of curcumin (100 mg/kg, for 7 d), while rats in the control group were administrated only with the same dose losartan. The results showed that curcumin significantly increased the plasma concentrations of losartan and its metabolite EXP3174. The present study implicated the existence of herb-drug interaction between curcumin and losartan, and further evaluation of the possible interaction during curcumin administration needs to be considered.
Collapse
Affiliation(s)
- An-Chang Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | | | | | | | | | | |
Collapse
|
40
|
Al-Abbasi FA. Acrylonitrile-induced gastric toxicity in rats: the role of xanthine oxidase. Med Sci Monit 2012; 18:BR208-14. [PMID: 22648241 PMCID: PMC3560737 DOI: 10.12659/msm.882896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/08/2011] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Acrylonitrile (ACN) is an extensively produced aliphatic nitrile. The gastrointestinal tract is an important target organ for ACN toxicity. The objective of the present study was to investigate the role of xanthine oxidase (XO) in ACN-induced gastric toxicity in rats. MATERIAL/METHODS We assessed the effect of ACN on oxidative stress parameters as xanthine oxidase (XO) and total xanthine dehydrogenase (XD)/ XO activity, superoxide anion (O(2)(.-)) production, reduced glutathione (GSH) levels and lipid peroxidation in gastric tissues. RESULTS A single oral dose of ACN (25 mg/kg) caused a significant enhancement in XO activity. ACN also caused a significant depletion of GSH levels, enhanced O(2)(.-) production and increased lipid peroxidation in the time-course experiment. In the dose-response experiment, ACN accelerated the conversion of XD to XO, with a significant depletion of gastric GSH in a dose-related manner. A strong negative correlation existed between the levels of GSH and the percentage enhancement in XO activity (r =-0.997). (O(2)(.-)) production and malondialdehyde (MDA) formation were significantly elevated in a dose-related manner. Pretreatment with allopurinol (50 mg/kg) significantly protected against ACN-induced rise in XO activity, depletion of GSH, and elevated production of (O(2)(.-)). However, pretreatment with diethyl maleate (DEM; 100 mg/kg) significantly aggravated the ACN-induced GSH depletion and rise in XO activity. Furthermore, DEM significantly enhanced (O(2)(.-)) and MDA production. CONCLUSIONS The present study indicates that enhancement of XO activity could be implicated in ACN-induced gastric damage in rats.
Collapse
Affiliation(s)
- Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
41
|
Serum cytokeratin 18 and cytokine elevations suggest a high prevalence of occupational liver disease in highly exposed elastomer/polymer workers. J Occup Environ Med 2012; 53:1128-33. [PMID: 21915069 DOI: 10.1097/jom.0b013e31822cfd68] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Cytokeratin 18 (CK18) is a novel serologic biomarker for occupational liver disease. The purpose of this study is to determine the prevalence of CK18 elevation in elastomer/polymer workers exposed to acrylonitrile, 1,3-butadiene, and styrene. METHODS A total of 82 chemical workers were evaluated. Cytokeratin 18 was determined by enzyme-linked immunosorbent assay and proinflammatory cytokines were measured by multi-analyte chemiluminescent detection. RESULTS Thirty-nine percent (32 of 82) had elevated CK18 levels, which were not explained by alcohol or obesity, except in potentially four cases. The pattern of CK18 elevation was consistent with toxicant-associated steatohepatitis (TASH) in the majority of cases (78%). Tumor necrosis factor α, interleukin-6, interleukin-8, monocyte chemotactic protein-1, and plasminogen activator inhibitor-1 were increased in these workers compared with those with normal CK18 levels. CONCLUSIONS These results suggest a high prevalence of occupational liver disease and TASH in elastomer/polymer workers with elevated proinflammatory cytokines.
Collapse
|
42
|
Yuanqing H, Suhua W, Guangwei X, Chunlan R, Hai Q, Wenrong X, Rongzhu L, Aschner M, Milatovic D. Acrylonitrile has Distinct Hormetic Effects on Acetyl-Cholinesterase Activity in Mouse Brain and Blood that are Modulated by Ethanol. Dose Response 2011; 11:49-59. [PMID: 23550232 DOI: 10.2203/dose-response.11-030.yuanqing] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Acrylonitrile(AN) is a neurotoxin both in animals and humans, but its effects on acetylcholinesterase (AChE) activity remain controversial. This study aimed to determine the dose-response effects of AN on AChE activity and the modulatory role of ethanol pre-treatment. A total of 144 Kunming mice were randomly divided into 18 groups: nine groups received 5% ethanol in their drinking water, and the remaining nine groups received regular tap water. One week later, both the ethanol and tap water only groups were given an intraperitoneal injection of AN at the following doses: 0 (control), 0.156, 0.3125, 0.625, 1.25, 2.5, 5, 10 or 20 mg AN/kg body weight. AChE activity was determined on whole blood and brain 24 h later. Blood AChE activity was higher in AN-injected mice than in controls at all doses. AChE activity in blood increased in a dose-dependent manner, peaking at 0.156 mg/kg, after which a gradual decrease ensued, displaying a β-typed dose-response relationship. In contrast, brain AChE activity, following a single AN injection, was consistently lower than in control mice, and continued to fall up to a dose of 0.313 mg/kg, and thereafter increased gradually with higher doses. Mice receiving a 20 mg/kg dose of AN exhibited AChE brain activity indistinguishable from that of control mice, demonstrating a typical U-typed dose-response relationship. The activity of AChE in the blood and brain of the AN + ethanol-treated groups displayed a shift to the right, and the magnitude of the decrease in AChE activity induced by AN was attenuated relative to the AN-only group. These results suggest that AN affects AChE activity in both mouse blood and brain in a hormetic manner. Pretreatment with ethanol modifies the effect of AN on AChE, indicating that parent AN has a more prominent role than its metabolites in modulating enzyme activity.
Collapse
Affiliation(s)
- He Yuanqing
- School of Medical Science and Laboratory Medicine and the Laboratory Animal Center, Jiangsu University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sood PK, Nahar U, Nehru B. Curcumin attenuates aluminum-induced oxidative stress and mitochondrial dysfunction in rat brain. Neurotox Res 2011; 20:351-61. [PMID: 21656326 DOI: 10.1007/s12640-011-9249-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/04/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
Aluminum is neurotoxic both in animals and human beings primarily because of its interference with biological enzymes in key mechanisms of metabolic pathways. Mitochondrial dysfunction is one such mechanism that has been implicated in the pathogenesis of neurodegenerative diseases like Alzheimer's disease. Aluminum toxicity is very closely related to Alzheimer's disease. We evaluated the potentials of curcumin, a known cytoprotectant, against neurotoxic consequences of aluminum that acts through a wide range of mechanisms. Curcumin has been reported to be an antioxidant, and it is this property that is widely held to be responsible for its protective effects in tissue. Aluminum was administered by oral gavage at a dose level of 100 mg/kg body wt/day for a period of 8 weeks. Curcumin was administered in conjunction with aluminum at a dose of 50 mg/kg of body wt i.p. for a period of 8 weeks on alternate days. The effects of different treatments were studied on oxidative phosphorylation and reduced glutathione of different regions of rat brain. The study indicates reduced activity of NADH dehydrogenase (complex I), succinic dehydrogenase (complex II), and cytochrome oxidize (Complex IV) in all the three regions of rat brain, i.e., cerebral cortex, mid brain, and cerebellum. Curcumin supplementation to aluminum-treated rats was able to normalize significantly the activities of all the three mitochondrial complexes as well as reduced glutathione content in all the three regions of brain which were altered following aluminum treatment. We conclude that curcumin, by attenuating oxidative stress, as evident by hypoxia in histological observations and mitochondrial dysfunction holds a promise as an agent that can potentially reduce aluminum-induced adverse effects in brain.
Collapse
Affiliation(s)
- Pooja Khanna Sood
- Department of Biophysics, Panjab University, Chandigarh, India 160014
| | | | | |
Collapse
|
44
|
Jaisin Y, Thampithak A, Meesarapee B, Ratanachamnong P, Suksamrarn A, Phivthong-ngam L, Phumala-Morales N, Chongthammakun S, Govitrapong P, Sanvarinda Y. Curcumin I protects the dopaminergic cell line SH-SY5Y from 6-hydroxydopamine-induced neurotoxicity through attenuation of p53-mediated apoptosis. Neurosci Lett 2011; 489:192-6. [DOI: 10.1016/j.neulet.2010.12.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/13/2010] [Accepted: 12/08/2010] [Indexed: 01/29/2023]
|
45
|
Srivastava RM, Singh S, Dubey SK, Misra K, Khar A. Immunomodulatory and therapeutic activity of curcumin. Int Immunopharmacol 2010; 11:331-41. [PMID: 20828642 DOI: 10.1016/j.intimp.2010.08.014] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/22/2010] [Indexed: 12/13/2022]
Abstract
Inflammation is a disease of vigorous uncontrolled activated immune responses. Overwhelming reports have suggested that the modulation of immune responses by curcumin plays a dominant role in the treatment of inflammation and metabolic diseases. Observations from both in-vitro and in-vivo studies have provided strong evidence towards the therapeutic potential of curcumin. These studies have also identified a plethora of biological targets and intricate mechanisms of action that characterize curcumin as a potent 'drug' for numerous ailments. During inflammation the functional influence of lymphocytes and the related cross-talk can be modulated by curcumin to achieve the desired immune status against diseases. This review describes the regulation of immune responses by curcumin and effectiveness of curcumin in treatment of diseases of diverse nature.
Collapse
Affiliation(s)
- Raghvendra M Srivastava
- Department of Otolaryngology, Hillman Cancer Centre, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|