1
|
Jia Z, Zhang H, Lv Y, Yu L, Cui Y, Zhang L, Yang C, Liu H, Zheng T, Xia W, Xu S, Li Y. Intrauterine chromium exposure and cognitive developmental delay: The modifying effect of genetic predisposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174350. [PMID: 38960203 DOI: 10.1016/j.scitotenv.2024.174350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
There is limited evidence on the effects of intrauterine chromium (Cr) exposure on children's cognitive developmental delay (CDD). Further, little is known about the genetic factors in modifying the association between intrauterine Cr exposure and CDD. The present study involved 2361 mother-child pairs, in which maternal plasma Cr concentrations were assessed, a polygenic risk score for the child was constructed, and the child's cognitive development was evaluated using the Bayley Scales of Infant Development. The risks of CDD conferred by intrauterine Cr exposure in children with different genetic backgrounds were evaluated by logistic regression. The additive interaction between intrauterine Cr exposure and genetic factors was evaluated by calculating the relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP), and synergy index (SI). According to present study, higher intrauterine Cr exposure was significantly associated with increased CDD risk [each unit increase in ln-transformed maternal plasma Cr concentration (ln-Cr): adjusted OR (95 % CI), 1.18 (1.04-1.35); highest vs lowest quartile: adjusted OR (95 % CI), 1.57 (1.10-2.23)]. The dose-response relationship of intrauterine Cr exposure and CDD for children with high genetic risk was more prominent [each unit increased ln-Cr: adjusted OR (95 % CI), 1.36 (1.09-1.70)]. Joint effects between intrauterine Cr exposure and genetic factors were found. Specifically, for high genetic risk carriers, the association between intrauterine Cr exposure and CDD was more evident [highest vs lowest quartile: adjusted OR (95 % CI), 2.33 (1.43-3.80)]. For those children with high intrauterine Cr exposure and high genetic risk, the adjusted AP was 0.39 (95 % CI, 0.07-0.72). Conclusively, intrauterine Cr exposure was a high-risk factor for CDD in children, particularly for those with high genetic risk. Intrauterine Cr exposure and one's adverse genetic background jointly contribute to an increased risk of CDD in children.
Collapse
Affiliation(s)
- Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, Hubei, People's Republic of China
| | - Yiqing Lv
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ling Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuan Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Liping Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chenhui Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, People's Republic of China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Fischer F, Stößer S, Wegmann L, Veh E, Lumpp T, Parsdorfer M, Schumacher P, Hartwig A. Chromate Affects Gene Expression and DNA Methylation in Long-Term In Vitro Experiments in A549 Cells. Int J Mol Sci 2024; 25:10129. [PMID: 39337613 PMCID: PMC11431867 DOI: 10.3390/ijms251810129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Chromate has been shown to dysregulate epigenetic mechanisms such as DNA methylation, leading to changes in gene expression and genomic instability. However, most in vitro studies are limited to short incubation periods, although chronic exposure may be more relevant for both environmental and occupational exposure. In this study, human adenocarcinoma A549 cells were treated with 1, 2 or 5 µM chromate for 24 h and compared with incubations with 0.2, 0.5 or 1 µM chromate for 1 to 5 weeks. Chromium accumulated in a pronounced time- and concentration-dependent manner after short-term treatment, whereas a plateau of intracellular chromium content was observed after long-term treatment. While short-term treatment induced a G2 arrest of the cell cycle, this effect was not observed after long-term treatment at lower concentrations. The opposite was observed for global DNA methylation: while short-term treatment showed no effect of chromate, significant dose-dependent hypomethylation was observed in the long-term experiments. Time-dependent effects were also observed in a high-throughput RT-qPCR gene expression analysis, particularly in genes related to the inflammatory response and DNA damage response. Taken together, the results suggest specific differences in toxicity profiles when comparing short-term and long-term exposure to chromate in A549 cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Li ZT, Song X, Yuan S, Zhao HP. Unveiling the inhibitory mechanisms of chromium exposure on microbial reductive dechlorination: Kinetics and microbial responses. WATER RESEARCH 2024; 253:121328. [PMID: 38382292 DOI: 10.1016/j.watres.2024.121328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Chromium and organochlorine solvents, particularly trichloroethene (TCE), are pervasive co-existing contaminants in subsurface aquifers due to their extensive industrial use and improper disposal practices. In this study, we investigated the microbial dechlorination kinetics under different TCE-Cr(Ⅲ/VI) composite pollution conditions and elucidated microbial response mechanisms based on community shift patterns and metagenomic analysis. Our results revealed that the reductive dechlorinating consortium had high resistance to Cr(III) but extreme sensitivity to Cr(VI) disturbance, resulting in a persistent inhibitory effect on subsequent dechlorination. Interestingly, the vinyl chloride-respiring organohalide-respiring bacteria (OHRB) was notably more susceptible to Cr(III/VI) exposure than the trichloroethene-respiring one, possibly due to inferior competition for growth substrates, such as electron donors. In terms of synergistic non-OHRB populations, Cr(III/VI) exposure had limited impacts on lactate fermentation but significantly interfered with H2-producing acetogenesis, leading to inhibited microbial dechlorination due to electron donor deficiencies. However, this inhibition can be effectively mitigated by the amendment of exogenous H2 supply. Furthermore, being the predominant OHRB, Dehalococcoides have inherent Cr(VI) resistance defects and collaborate with synergistic non-OHRB populations to achieve concurrent bio-detoxication of Cr(VI) and TCE. Our findings expand the understanding of the response patterns of different functional populations towards Cr(III/VI) stress, and provide valuable insights for the development of in situ bioremediation strategies for sites co-contaminated with chloroethene and chromium.
Collapse
Affiliation(s)
- Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China
| | - Xin Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China.
| |
Collapse
|
4
|
Glaß H, Jonitz-Heincke A, Petters J, Lukas J, Bader R, Hermann A. Corrosion Products from Metallic Implants Induce ROS and Cell Death in Human Motoneurons In Vitro. J Funct Biomater 2023; 14:392. [PMID: 37623637 PMCID: PMC10455184 DOI: 10.3390/jfb14080392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Due to advances in surgical procedures and the biocompatibility of materials used in total joint replacement, more and younger patients are undergoing these procedures. Although state-of-the-art joint replacements can last 20 years or longer, wear and corrosion is still a major risk for implant failure, and patients with these implants are exposed for longer to these corrosive products. It is therefore important to investigate the potential effects on the whole organism. Released nanoparticles and ions derived from commonly used metal implants consist, among others, of cobalt, nickel, and chromium. The effect of these metallic products in the process of osteolysis and aseptic implant loosening has already been studied; however, the systemic effect on other cell types, including neurons, remains elusive. To this end, we used human iPSC-derived motoneurons to investigate the effects of metal ions on human neurons. We treated human motoneurons with ion concentrations regularly found in patients, stained them with MitoSOX and propidium iodide, and analyzed them with fluorescence-assisted cell sorting (FACS). We found that upon treatment human motoneurons suffered from the formation of ROS and subsequently died. These effects were most prominent in motoneurons treated with 500 μM of cobalt or nickel, in which we observed significant cell death, whereas chromium showed fewer ROS and no apparent impairment of motoneurons. Our results show that the wear and corrosive products of metal implants at concentrations readily available in peri-implant tissues induced ROS and subsequently cell death in an iPSC-derived motoneuron cell model. We therefore conclude that monitoring of neuronal impairment is important in patients undergoing total joint replacement.
Collapse
Affiliation(s)
- Hannes Glaß
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (H.G.)
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
| | - Janine Petters
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (H.G.)
| | - Jan Lukas
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (H.G.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (H.G.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| |
Collapse
|
5
|
Iyer M, Anand U, Thiruvenkataswamy S, Babu HWS, Narayanasamy A, Prajapati VK, Tiwari CK, Gopalakrishnan AV, Bontempi E, Sonne C, Barceló D, Vellingiri B. A review of chromium (Cr) epigenetic toxicity and health hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163483. [PMID: 37075992 DOI: 10.1016/j.scitotenv.2023.163483] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/13/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Carcinogenic metals affect a variety of cellular processes, causing oxidative stress and cancer. The widespread distribution of these metals caused by industrial, residential, agricultural, medical, and technical activities raises concern for adverse environmental and human health effects. Of these metals, chromium (Cr) and its derivatives, including Cr(VI)-induced, are of a public health concern as they cause DNA epigenetic alterations resulting in heritable changes in gene expression. Here, we review and discuss the role of Cr(VI) in epigenetic changes, including DNA methylation, histone modifications, micro-RNA changes, biomarkers of exposure and toxicity, and highlight prevention and intervention strategies to protect susceptible populations from exposure and adverse occupational health effects. Cr(VI) is a ubiquitous toxin linked to cardiovascular, developmental, neurological, and endocrine diseases as well as immunologic disorders and a high number of cancer types in humans following inhalation and skin contact. Cr alters DNA methylation levels as well as global and gene-specific histone posttranslational modifications, emphasizing the importance of considering epigenetics as a possible mechanism underlying Cr(VI) toxicity and cell-transforming ability. Our review shows that determining the levels of Cr(VI) in occupational workers is a crucial first step in shielding health problems, including cancer and other disorders. More clinical and preventative measures are therefore needed to better understand the toxicity and safeguard employees against cancer.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Saranya Thiruvenkataswamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Department of Zoology (PG-SF), PSG college of arts and science, Coimbatore 641014, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Chandan Kumar Tiwari
- Research and Development section, Carestream Health Inc., Oakdale, MN 55128, United States of America
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore 632 014, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, 25123 Brescia, Italy
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, North block, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
6
|
Chakraborty R, Renu K, Eladl MA, El-Sherbiny M, Elsherbini DMA, Mirza AK, Vellingiri B, Iyer M, Dey A, Valsala Gopalakrishnan A. Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents. Biomed Pharmacother 2022; 151:113119. [PMID: 35613529 DOI: 10.1016/j.biopha.2022.113119] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Heavy metal Chromium (Cr), can adversely affect humans and their health if accumulated in organs of the body, such as the lungs, liver, and kidneys. Cr (VI) is highly toxic and has a higher solubility in water than Cr (III). One of the most common routes for Cr exposure is through inhalation and is associated with liver, lung, kidney damage, widespread dermatitis, GI tract damage, human lung cancer, cardiomyopathies, and cardiovascular disease. The increase in ROS production has been attributed to most of the damage caused by Cr toxicity. Cr-induced ROS-mediated oxidative stress has been seen to cause a redox imbalance affecting the antioxidant system balance in the body. The Nrf2 pathway dysregulation has been implicated in the same. Deregulation of histone acetylation and methylation has been observed, together with gene methylation in genes such as p16, MGMT, APC, hMLH1, and also miR-143 repression. Several ultra-structural changes have been observed following Cr (VI)-toxicity, including rough ER dilation, alteration in the mitochondrial membrane and nuclear membrane, pycnotic nuclei formation, and cytoplasm vacuolization. A significant change was observed in the metabolism of lipid, glucose, and the metabolism of protein after exposure to Cr. Cr-toxicity also leads to immune system dysregulations with changes seen in the expression of IL-8, IL-4, IgM, lymphocytes, and leukocytes among others. P53, as well as pro-and anti-apoptotic proteins, are involved in apoptosis. These Cr-induced damages can be alleviated via agents that restore antioxidant balance, regulate Nrf-2 levels, or increase anti-apoptotic proteins while decreasing pro-apoptotic proteins.
Collapse
Affiliation(s)
- Rituraj Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600 077, India
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O.Box 2014, Sakaka, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Arshi Khalid Mirza
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
7
|
Liu K, Cui Y, Li H, Qi C, Cheng G, Gao X, Zhang Z, Liu Y, Liu J. Hydrogen-Rich Medium Regulates Cr(VI)-Induced ER Stress and Autophagy Signaling in DF-1 Cells. Biol Trace Elem Res 2022; 200:2329-2337. [PMID: 34327609 DOI: 10.1007/s12011-021-02850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Related studies have shown that chromium (Cr) is toxic to cells, and hydrogen can protect cells by regulating endoplasmic reticulum (ER) stress and autophagy. However, there are few reports on the protective effects of hydrogen on heavy metal-induced cell damage. The objective of this study was to investigate the protection of hydrogen-rich medium (HRM) on Cr(VI)-induced ER stress and autophagy in DF-1 cells. Therefore, HRM were pretreated for 30 min before Cr(VI) treatment, and detected the autophagy and ER stress-related indicators to determine the role of HRM. The results showed that HRM could reduce the cell damage caused by Cr(VI), and 3-methyladenine (3-MA) could protect cells by inhibiting over autophagy. HRM can reverse the changes of ER stress- and autophagy-related indexes caused by Cr(VI), and inhibit the excessive autophagy caused by Cr(VI). In conclusion, HRM can protect cells from damage induced by Cr(VI), and play a role by inhibiting ER stress-mediated autophagy.
Collapse
Affiliation(s)
- Kangping Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yukun Cui
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Hongyan Li
- Central Hospital of Tai'an City, Tai'an, 271018, Shandong, China
| | - Changxi Qi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Guodong Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xin Gao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhuanglong Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
8
|
Schumacher P, Fischer F, Sann J, Walter D, Hartwig A. Impact of Nano- and Micro-Sized Chromium(III) Particles on Cytotoxicity and Gene Expression Profiles Related to Genomic Stability in Human Keratinocytes and Alveolar Epithelial Cells. NANOMATERIALS 2022; 12:nano12081294. [PMID: 35458002 PMCID: PMC9029936 DOI: 10.3390/nano12081294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Exposure to Cr(VI) compounds has been consistently associated with genotoxicity and carcinogenicity, whereas Cr(III) is far less toxic, due to its poor cellular uptake. However, contradictory results have been published in relation to particulate Cr2O3. The aim of the present study was to investigate whether Cr(III) particles exerted properties comparable to water soluble Cr(III) or to Cr(VI), including two nano-sized and one micro-sized particles. The morphology and size distribution were determined by TEM, while the oxidation state was analyzed by XPS. Chromium release was quantified via AAS, and colorimetrically differentiated between Cr(VI) and Cr(III). Furthermore, the toxicological fingerprints of the Cr2O3 particles were established using high-throughput RT-qPCR and then compared to water-soluble Cr(VI) and Cr(III) in A549 and HaCaT cells. Regarding the Cr2O3 particles, two out of three exerted only minor or no toxicity, and the gene expression profiles were comparable to Cr(III). However, one particle under investigation released considerable amounts of Cr(VI), and also resembled the toxicity profiles of Cr(VI); this was also evident in the altered gene expression related to DNA damage signaling, oxidative stress response, inflammation, and cell death pathways. Even though the highest toxicity was found in the case of the smallest particle, size did not appear to be the decisive parameter, but rather the purity of the Cr(III) particles with respect to Cr(VI) content.
Collapse
Affiliation(s)
- Paul Schumacher
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany; (P.S.); (F.F.)
| | - Franziska Fischer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany; (P.S.); (F.F.)
| | - Joachim Sann
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany;
- Center for Materials Research (LaMa/ZfM), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Dirk Walter
- Laboratories of Chemistry and Physics, Institute of Occupational and Social Medicine, Justus-Liebig-University Giessen, Aulweg 129, 35392 Giessen, Germany;
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany; (P.S.); (F.F.)
- Correspondence:
| |
Collapse
|
9
|
Awoyomi OV, Adeoye YD, Oyagbemi AA, Ajibade TO, Asenuga ER, Gbadamosi IT, Ogunpolu BS, Falayi OO, Hassan FO, Omobowale TO, Arojojoye OA, Ola-Davies OE, Saba AB, Adedapo AA, Oguntibeju OO, Yakubu MA. Luteolin mitigates potassium dichromate-induced nephrotoxicity, cardiotoxicity and genotoxicity through modulation of Kim-1/Nrf2 signaling pathways. ENVIRONMENTAL TOXICOLOGY 2021; 36:2146-2160. [PMID: 34272807 DOI: 10.1002/tox.23329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Environmental and occupational exposure to chromium compounds has become potential aetiologic agent for kidney disease with excessive generation of free radicals, apoptosis, and inflammatory. These pathophysiologic mechanisms of potassium dichromate (K2 Cr2 O7 ) have been well correlated with nephrotoxicity and cardiotoxicity. The cardioprotective and nephroprotective effects of Luteolin, a known potent antioxidant were evaluated in this study with 40 healthy rats in four experimental groups: Group A (normal saline), Groups B (30 mg/kg K2 Cr2 O7 ), Group C (Luteolin 100 mg/kg and K2 Cr2 O7 30 mg/kg), and Group D (Luteolin 200 mg/kg and K2 Cr2 O7 30 mg/kg), respectively. Markers of antioxidant defense system, oxidative stress, blood pressure and micronucleated polychromatic erythrocytes (MnPEs), immunohistochemistry of Kidney, injury molecule (Kim-1), nuclear factor erythroid 2-related factor 2 (Nrf2), and cardiac troponin I were determined. Administration of K2 Cr2 O7 increased blood pressure parameters in systolic, diastolic and mean arterial blood pressures, markers of oxidative stress, and frequency of micronucleated polychromatic erythrocytes, together with reduction in serum nitric oxide level. Renal Kim-1 and cardiac troponin I expressions were higher, but lower expressions of renal and cardiac Nrf2 were recorded with immunohistochemical analysis. Pre-treatment with Luteolin restored blood pressure parameters, with concomitant reduction in oxidative stress indicators, augmented antioxidant mechanisms and serum Nitric oxide level, lowered the expressions of Kim-1, cardiac troponin I and up-regulated of both cardiac and renal Nrf2, reduced the frequency of micronucleated polychromatic erythrocytes. Taken together, this study therefore demonstrates the cardioprotective, nephro protective and antigenotoxic effects of Luteolin through antioxidantive and radical scavenging mechanisms.
Collapse
Affiliation(s)
| | | | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Rachael Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Benin, Nigeria
| | | | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fasilat Oluwakemi Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
10
|
Tchouagué M, Grondin M, Glory A, Averill-Bates D. Heat shock induces the cellular antioxidant defenses peroxiredoxin, glutathione and glucose 6-phosphate dehydrogenase through Nrf2. Chem Biol Interact 2019; 310:108717. [DOI: 10.1016/j.cbi.2019.06.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
|
11
|
Shil K, Pal S. Metabolic and morphological disorientations in the liver and skeletal muscle of mice exposed to hexavalent chromium. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s00580-019-03014-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Antholine WE, Vasquez-Vivar J, Quirk BJ, Whelan HT, Wu PK, Park JI, Myers CR. Treatment of Cells and Tissues with Chromate Maximizes Mitochondrial 2Fe2S EPR Signals. Int J Mol Sci 2019; 20:E1143. [PMID: 30845710 PMCID: PMC6429069 DOI: 10.3390/ijms20051143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 11/25/2022] Open
Abstract
In a previous study on chromate toxicity, an increase in the 2Fe2S electron paramagnetic resonance (EPR) signal from mitochondria was found upon addition of chromate to human bronchial epithelial cells and bovine airway tissue ex vivo. This study was undertaken to show that a chromate-induced increase in the 2Fe2S EPR signal is a general phenomenon that can be used as a low-temperature EPR method to determine the maximum concentration of 2Fe2S centers in mitochondria. First, the low-temperature EPR method to determine the concentration of 2Fe2S clusters in cells and tissues is fully developed for other cells and tissues. The EPR signal for the 2Fe2S clusters N1b in Complex I and/or S1 in Complex II and the 2Fe2S cluster in xanthine oxidoreductase in rat liver tissue do not change in intensity because these clusters are already reduced; however, the EPR signals for N2, the terminal cluster in Complex I, and N4, the cluster preceding the terminal cluster, decrease upon adding chromate. More surprising to us, the EPR signals for N3, the cluster preceding the 2Fe2S cluster in Complex I, also decrease upon adding chromate. Moreover, this method is used to obtain the concentration of the 2Fe2S clusters in white blood cells where the 2Fe2S signal is mostly oxidized before treatment with chromate and becomes reduced and EPR detectable after treatment with chromate. The increase of the g = 1.94 2Fe2S EPR signal upon the addition of chromate can thus be used to obtain the relative steady-state concentration of the 2Fe2S clusters and steady-state concentration of Complex I and/or Complex II in mitochondria.
Collapse
Affiliation(s)
- William E Antholine
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | - Brendan J Quirk
- Departments of Neurology and Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Harry T Whelan
- Departments of Neurology and Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Pui Kei Wu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Charles R Myers
- Department of Pharmacology and Toxicology, Medical College Wisconsin, Wauwatosa, WI 53226, USA.
| |
Collapse
|
13
|
Lacerda LM, Garcia SC, da Silva LB, de Ávila Dornelles M, Presotto AT, Lourenço ED, de Franceschi ID, Fernandes E, Wannmacher CMD, Brucker N, Sauer E, Gioda A, Machado AB, Oliveira E, Trombini TL, Feksa LR. Evaluation of hematological, biochemical parameters and thiol enzyme activity in chrome plating workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1892-1901. [PMID: 30460648 DOI: 10.1007/s11356-018-3755-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The most commonly used solution in chrome plating bath is chromic acid (hexavalent Cr), and a considerable amount of mists is released into the air and consequently produce hazards to workers. Thus, the aim of this study was to evaluate whether the biomarker of exposure to metals, specially Cr levels, presents associations with hematological and biochemical parameters and if they can alter the activity of enzymes that contain thiol groups such as pyruvate kinase, creatine kinase, adenylate kinase, and δ-aminolevulinate dehydratase. Fifty male chrome plating workers were used for exposed group and 50 male non-exposed workers for control group. For that, biological monitoring was performed through quantification of metals on total blood and urine by inductively coupled plasma mass spectrometry (ICP-MS) and enzyme activity was performed by spectrometry in erythrocytes. In addition, chromium levels in water was quantified and ecotoxicology assay was performed with Allium cepa test. The results demonstrated that blood and urinary chromium levels in exposed group were higher than the control group (p < 0.0001). Furthermore, decreased activity of enzymes was found in those that contain thiol groups from exposed group when compared with the control group (p < 0.001). The water analysis did not present a statistical difference between control and exposed groups (p > 0.05), demonstrating that water did not seem to be the source of contamination. In summary, our findings indicated some toxicology effects observed in the exposed group, such as thiol enzyme inhibition, mainly associated with occupational exposure in chrome plating and besides the presence of other metals, and Cr demonstrated to influence the activity of the enzymes analyzed in this research.
Collapse
Affiliation(s)
- Larissa Machado Lacerda
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luciano Basso da Silva
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
| | | | | | | | | | - Elissa Fernandes
- Biochemistry Department, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Natália Brucker
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Aline Belem Machado
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil.
- Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil.
| | - Evandro Oliveira
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
| | - Thereza Luciano Trombini
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
| | - Luciane Rosa Feksa
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil
- Biochemistry Department, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Liu X, Liu K, Li C, Cai J, Huang L, Chen H, Wang H, Zou J, Liu M, Wang K, Tan S, Zhang H. Heat-shock protein B1 upholds the cytoplasm reduced state to inhibit activation of the Hippo pathway in H9c2 cells. J Cell Physiol 2018; 234:5117-5133. [PMID: 30256412 DOI: 10.1002/jcp.27322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022]
Abstract
Heat-shock protein B1 (HSPB1) is a multifunctional protein that protects against oxidative stress; however, its function in antioxidant pathways remains largely unknown. Here, we sought to determine the roles of HSPB1 in H9c2 cells subjected to oxidative stress. Using nonreducing sodium dodecyl sulfate polyacrylamide gel electrophoresis, we found that increased HSPB1 expression promoted the reduced states of glutathione reductase (GR), peroxiredoxin 1 (Prx1), and thioredoxin 1, whereas knockdown of HSPB1 attenuated these responses following oxidative stress. Increased HSPB1 expression promoted the activation of GR and thioredoxin reductase. Conversely, knockdown of HSPB1 attenuated these responses following oxidative stress. Importantly, overexpression of HSPB1 promoted the complex formation between HSPB1 and oxidized Prx1, leading to dephosphorylation of STE-mammalian STE20-like kinase 1 (MST1) in H9c2 cells exposed to H2 O 2 , whereas downregulation of HSPB1 induced the opposite results. Mechanistically, HSPB1 regulated the Hippo pathway by enhancing the dephosphorylation of MST1, resulting in reduced phosphorylation of LATS1 and Yes-associated protein (YAP). Moreover, HSPB1 regulated YAP-dependent gene expression. Thus, HSPB1 promoted the reduced state of endogenous antioxidant pathways following oxidative stress in H9c2 cells and improved the redox state of the cytoplasm via modulation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Xiehong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Ke Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Caiyan Li
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Jiaodi Cai
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Li Huang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Huan Chen
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Hao Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Jiang Zou
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Meidong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Sipin Tan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| |
Collapse
|
15
|
Ouyang Y, Peng Y, Li J, Holmgren A, Lu J. Modulation of thiol-dependent redox system by metal ionsviathioredoxin and glutaredoxin systems. Metallomics 2018; 10:218-228. [DOI: 10.1039/c7mt00327g] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metal and metalloid ions regulate thioredoxin and glutaredoxin system-mediated biological functions by targeting mammalian thioredoxin reductase and mitochondrial glutaredoxin 2&5.
Collapse
Affiliation(s)
- Yanfang Ouyang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
| | - Yi Peng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
| | - Jing Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
| | - Arne Holmgren
- Division of Biochemistry
- Department of Medical Biochemistry and Biophysics
- Karolinska Institutet
- SE-171 77 Stockholm
- Sweden
| | - Jun Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
| |
Collapse
|
16
|
Chen G, Gao Z, Chu W, Cao Z, Li C, Zhao H. Effects of chromium picolinate on fat deposition, activity and genetic expression of lipid metabolism-related enzymes in 21 day old Ross broilers. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:569-575. [PMID: 28830127 PMCID: PMC5838330 DOI: 10.5713/ajas.17.0289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/05/2017] [Accepted: 08/21/2017] [Indexed: 01/04/2023]
Abstract
Objective This experiment was conducted to investigate the effects of chromium picolinate (CrP) on fat deposition, genetic expression and enzymatic activity of lipid metabolism-related enzymes. Methods Two hundred forty one-day-old Ross broilers were randomly divided into 5 groups with 4 replicates per group and 12 Ross broiler chicks per replicate. The normal control group was fed a basal diet, and the other groups fed the same basal diet supplemented with 0.1, 0.2, 0.4, and 0.8 mg/kg CrP respectively. The experiment lasted for 21 days. Results Added CrP in the basal diet decreased the abdominal fat, had no effects on subcutaneous fat thickness and inter-muscular fat width; 0.2 mg/kg CrP significantly decreased the fatty acid synthase (FAS) enzymatic (p<0.05); acetyl-CoA carboxylase (ACC) enzymatic activity decreased in all CrP groups (p<0.05); hormone-sensitive lipase (HSL) enzymatic activity also decreased, but the change was not significant (p>0.05); 0.4 mg/kg CrP group significantly decreased the lipoprotein lipase (LPL) enzymatic activity. FAS mRNA expression increased in all experimental groups, and the LPL mRNA expression significantly increased in all experimental groups (p<0.05), but not 0.2 mg/kg CrP group. Conclusion The results indicated that adding CrP in basal diet decreased the abdominal fat percentage, had no effects on subcutaneous fat thickness and inter-muscular fat width, decreased the enzymatic activity of FAS, ACC, LPL and HSL and increased the genetic expression levels of FAS and LPL.
Collapse
Affiliation(s)
- Guangxin Chen
- State Key Laboratory of Special Animal Molecular Biology, Changchun 130112, China.,Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China.,College of Agriculture, Guangdong Ocean University, Zhanjiang 524000, China
| | - Zhenhua Gao
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524000, China
| | - Wenhui Chu
- State Key Laboratory of Special Animal Molecular Biology, Changchun 130112, China.,Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Zan Cao
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524000, China
| | - Chunyi Li
- State Key Laboratory of Special Animal Molecular Biology, Changchun 130112, China.,Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Haiping Zhao
- State Key Laboratory of Special Animal Molecular Biology, Changchun 130112, China.,Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| |
Collapse
|
17
|
Nieczyporowska E, Kita E, Katafias A, Bajek A, Kaźmierski Ł. Oxidation in vitro of chromium(III) dietary supplements mer-[Cr(pic)3] and trans(S,S)-[Cr(Cys)2]− by hydrogen peroxide. TRANSIT METAL CHEM 2017. [DOI: 10.1007/s11243-017-0168-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
CoQ10 Deficiency May Indicate Mitochondrial Dysfunction in Cr(VI) Toxicity. Int J Mol Sci 2017; 18:ijms18040816. [PMID: 28441753 PMCID: PMC5412400 DOI: 10.3390/ijms18040816] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 01/18/2023] Open
Abstract
To investigate the toxic mechanism of hexavalent chromium Cr(VI) and search for an antidote for Cr(VI)-induced cytotoxicity, a study of mitochondrial dysfunction induced by Cr(VI) and cell survival by recovering mitochondrial function was performed. In the present study, we found that the gene expression of electron transfer flavoprotein dehydrogenase (ETFDH) was strongly downregulated by Cr(VI) exposure. The levels of coenzyme 10 (CoQ10) and mitochondrial biogenesis presented by mitochondrial mass and mitochondrial DNA copy number were also significantly reduced after Cr(VI) exposure. The subsequent, Cr(VI)-induced mitochondrial damage and apoptosis were characterized by reactive oxygen species (ROS) accumulation, caspase-3 and caspase-9 activation, decreased superoxide dismutase (SOD) and ATP production, increased methane dicarboxylic aldehyde (MDA) content, mitochondrial membrane depolarization and mitochondrial permeability transition pore (MPTP) opening, increased Ca2+ levels, Cyt c release, decreased Bcl-2 expression, and significantly elevated Bax expression. The Cr(VI)-induced deleterious changes were attenuated by pretreatment with CoQ10 in L-02 hepatocytes. These data suggest that Cr(VI) induces CoQ10 deficiency in L-02 hepatocytes, indicating that this deficiency may be a biomarker of mitochondrial dysfunction in Cr(VI) poisoning and that exogenous administration of CoQ10 may restore mitochondrial function and protect the liver from Cr(VI) exposure.
Collapse
|
19
|
Kart A, Koc E, Dalginli KY, Gulmez C, Sertcelik M, Atakisi O. The Therapeutic Role of Glutathione in Oxidative Stress and Oxidative DNA Damage Caused by Hexavalent Chromium. Biol Trace Elem Res 2016; 174:387-391. [PMID: 27165098 DOI: 10.1007/s12011-016-0733-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/02/2016] [Indexed: 11/28/2022]
Abstract
Hexavalent chromium Cr (VI) causes various toxic and carcinogenic effects. The main carcinogenic effect is observed in the pulmonary system through inhalation route. Reduction of Cr (VI) to Cr (V, IV, and III) reactive intermediates within the cells by intracellular reducing agents such as glutathione is an important event leading to oxidative stress and oxidative DNA damage. This study evaluated the effects of intraperitoneal administration of Cr (VI) and GSH on total oxidant status (TOS), total antioxidant capacity (TAC), oxidative stress index, and oxidative DNA damage by evaluating the level of 8-hydroxy-2́-deoxyguanosine (8-OHdG) in Swiss-Albino mice. Seventy two mice were divided into 6 groups and treated intraperitoneally as follow: control (saline), group GSH (30 mg/kg GSH) groups of Cr-20 (20 mg/kg, K2Cr2O7), Cr-30 (30 mg/kg K2Cr2O7), Cr-20 + GSH (20 mg/kg K2Cr2O7 + 30 mg/kg GSH), Cr-30 + GSH (30 mg/kg K2Cr2O7 + 30 mg/kg GSH). Total oxidant capacities of Cr-20 and Cr-30 were increased compared to control, Cr-20 + GSH, and Cr-30 + GSH. TOS levels in Cr-20 + GSH and Cr-30 + GSH were lower than in Cr-20 and Cr-30. No difference in TAC was observed among the groups. 8-Hydroxy-2́-deoxyguanosine levels were increased in groups Cr-20 and Cr-30 compared with control and groups Cr-20 + GSH and Cr-30 + GSH. No difference was determined in 8-OHdG levels among control, groups GSH, Cr-20 + GSH and Cr-30 + GSH. Results indicate that Cr (VI) given i.p. route causes increased oxidative stress and oxidative DNA damage in the blood of Swiss-Albino mice. Administration of GSH via i.p. route protects from oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Asim Kart
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey.
| | - Evren Koc
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | - Kezban Yildiz Dalginli
- Department of Chemistry, Division of Biochemistry, Faculty of Science and Letter, Kafkas University, Kars, Turkey
| | - Canan Gulmez
- Department of Chemistry, Division of Biochemistry, Faculty of Science and Letter, Kafkas University, Kars, Turkey
| | - Mustafa Sertcelik
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | - Onur Atakisi
- Department of Chemistry, Division of Biochemistry, Faculty of Science and Letter, Kafkas University, Kars, Turkey
| |
Collapse
|
20
|
Singh P, Chowdhuri DK. Environmental Presence of Hexavalent but Not Trivalent Chromium Causes Neurotoxicity in Exposed Drosophila melanogaster. Mol Neurobiol 2016; 54:3368-3387. [DOI: 10.1007/s12035-016-9909-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/03/2016] [Indexed: 02/06/2023]
|
21
|
Feng W, Zhang W, Zhao T, Mao G, Wang W, Wu X, Zhou Z, Huang J, Bao Y, Yang L, Wu X. Evaluation of the Reproductive Toxicity, Glycometabolism, Glycometabolism-Related Enzyme Levels and Lipid Metabolism of Chromium Malate Supplementation in Sprague-Dawley Rats. Biol Trace Elem Res 2015; 168:150-68. [PMID: 25876088 DOI: 10.1007/s12011-015-0336-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/06/2015] [Indexed: 11/27/2022]
Abstract
Our previous study showed that chromium malate improved the regulation of blood glucose in mice with alloxan-induced diabetes. The present study was designed to evaluate the reproductive toxicity of chromium malate in Sprague-Dawley rats and then inspected the effect of chromium malate on glycometabolism, glycometabolism-related enzymes, and lipid metabolism. The results showed that no pathological, toxic feces and urine changes were observed in clinical signs of parental and fetal rats in chromium malate groups. The fasting blood glucose, serum insulin, insulin resistance index, C-peptide, hepatic glycogen, glucose-6-phosphate dehydrogenase, glucokinase, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglyceride levels of chromium malate groups have no significant change compared with control group and chromium picolinate group. The serum and organ contents of Cr in chromium malate groups have no significant change when compared with control group. No measurable damage on liver, brain, kidney, and testis/uterus of chromium malate groups was found. No significant change in body mass, absolute and relative organ weights, and hematological and biochemical changes of rats were observed compared with the control and chromium picolinate groups. The results indicated that supplements with chromium malate does not cause obvious damage and has no obvious effect on glycometabolism, glycometabolism-related enzyme, and lipid metabolism on female and male rats. The results of this study suggested that chromium malate is safe for human consumption and has the potential for application as a functional food ingredient and dietary supplement.
Collapse
Affiliation(s)
- Weiwei Feng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Weijie Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Wei Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Xueshan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Zhaoxiang Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Jing Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Yongtuan Bao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
22
|
Madrigal-Matute J, Fernandez-Garcia CE, Blanco-Colio LM, Burillo E, Fortuño A, Martinez-Pinna R, Llamas-Granda P, Beloqui O, Egido J, Zalba G, Martin-Ventura JL. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis. Free Radic Biol Med 2015; 86:352-61. [PMID: 26117319 DOI: 10.1016/j.freeradbiomed.2015.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/13/2015] [Accepted: 06/16/2015] [Indexed: 01/12/2023]
Abstract
To assess the potential association between TRX-1/PRX-1 and NADPH oxidase (Nox) activity in vivo and in vitro, TRX-1/PRX-1 levels were assessed by ELISA in 84 asymptomatic subjects with known phagocytic NADPH oxidase activity and carotid intima-media thickness (IMT). We found a positive correlation between TRX-1/PRX-1 and NADPH oxidase-dependent superoxide production (r=0.48 and 0.47; p<0.001 for both) and IMT (r=0.31 and 0.36; p<0.01 for both) adjusted by age and sex. Moreover, asymptomatic subjects with plaques have higher PRX-1 and TRX plasma levels (p<0.01 for both). These data were confirmed in a second study in which patients with carotid atherosclerosis showed higher PRX-1 and TRX plasma levels than healthy subjects (p<0.001 for both). In human atherosclerotic plaques, the NADPH oxidase subunit p22phox colocalized with TRX-1/PRX-1 in macrophages (immunohistochemistry). In monocytes and macrophages, phorbol 12-myristate 13-acetate (PMA) induced NADPH activation and TRX-1/PRX-1 release to the extracellular medium, with a concomitant decrease in their intracellular levels, which was reversed by the NADPH inhibitor apocynin (Western blot). In loss-of-function experiments, genetic silencing of the NADPH oxidase subunit Nox2 blocked PMA-induced intracellular TRX-1/PRX-1 downregulation in macrophages. Furthermore, the PMA-induced release of TRX-1/PRX-1 involves the modulation of their redox status and exosome-like vesicles. TRX-1/PRX-1 levels are associated with NADPH oxidase-activity in vivo and in vitro. These data could suggest a coordinated antioxidant response to oxidative stress in atherothrombosis.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Luis Miguel Blanco-Colio
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Elena Burillo
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Ana Fortuño
- Division of Cardiovascular Sciences, Center for Applied Medical Research University of Navarra, Pamplona, Spain
| | - Roxana Martinez-Pinna
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Patricia Llamas-Granda
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Oscar Beloqui
- Department of Internal Medicine, University Clinic, University of Navarra, Pamplona, Spain
| | - Jesus Egido
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Guillermo Zalba
- Division of Cardiovascular Sciences, Center for Applied Medical Research University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - José Luis Martin-Ventura
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain.
| |
Collapse
|
23
|
Li WJ, Yang CL, Chow KC, Kuo TW. Hexavalent chromium induces expression of mesenchymal and stem cell markers in renal epithelial cells. Mol Carcinog 2015; 55:182-92. [PMID: 25620490 PMCID: PMC5024070 DOI: 10.1002/mc.22268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/11/2014] [Accepted: 11/26/2014] [Indexed: 11/11/2022]
Abstract
Cr(VI) causes severe kidney damage. The patient's renal function could gradually recover by spontaneous kidney regeneration. The molecular effect of Cr(VI) on recovery of kidney cells, however, has not been clearly elucidated. Here we show that Cr(VI) induces expression of mesenchymal and stem cell markers, cell markers, such as paxillin, vimentin, α-SMA, nanog, and CD133 of HK-2 cells. Moreover, Cr(VI) activates epithelial-to-mesenchymal transition (EMT). By revealing that levels of dihydrodiol dehydrogenase were promptly reduced following Cr(VI) challenge, our data suggested that DDH could be involved in a Cr(VI)-related oxidation to generate massive reactive oxygen species and H2 O2 , and to create intracellular hypoxia, which then increased levels of SUMO-1 activating enzyme subunit 2, and sumoylation of eukaryotic elongation factor-2, to mediate the subsequent molecular and cellular responses, e.g., expression of mesenchymal and stem cell markers. Pretreatment with vitamin C reduced Cr(VI)-related cellular effects. However, no evident effect was observed when vitamin C was added following Cr(VI) challenge.
Collapse
Affiliation(s)
- Wei-Jen Li
- Department of Health Beauty, School of Medical and Health Sciences, Fooyin University, Kaohsiung, Taiwan
| | - Cheng-Lin Yang
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kuan-Chih Chow
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ting-Wei Kuo
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
24
|
Wang K, Zhang J, Wang X, Liu X, Zuo L, Bai K, Shang J, Ma L, Liu T, Wang L, Wang W, Ma X, Liu H. Thioredoxin reductase was nitrated in the aging heart after myocardial ischemia/reperfusion. Rejuvenation Res 2014; 16:377-85. [PMID: 23802942 DOI: 10.1089/rej.2013.1437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The age-related loss of anti-oxidant defense reduces recovery from myocardial ischemia/reperfusion injury (MI/R) in aged people. Our previous data showed that inactivation of thioredoxin (Trx) was involved in enhanced aging MI/R injury. Thioredoxin reductase (TrxR), the enzyme known to regulate Trx, is less efficient with age. The aim of the current study was to determine why TrxR activity was reduced and whether reduced TrxR activity contributed to enhanced aging MI/R injury. Both Trx and TrxR activity were decreased in the aging heart, and this difference was further amplified after MI/R. However, MI/R injury did not change TrxR expression between young and aging rats. Increased nitrogen oxide (NOx) but decreased nitric oxide (NO) bioavailability (decreased phosphorylated vasodilator-stimulated phosphoprotein) was observed in aging hearts. Peroxynitrite (ONOO⁻) was increased in aging hearts and was further amplified after MI/R. TrxR nitration in young and aging hearts was detected by immunoprecipitation (anti-nitrotyrosine) followed by immunoblotting (anti-TrxR). Compared with young hearts, TrxR nitration was increased in the aging hearts, and this was further intensified after MI/R. The ONOO⁻ decomposition catalyst (FeTMPyp) reduced TrxR nitration and increased TrxR and Trx activity. More importantly, FeTMPyp attenuated the MI/R injury in aging hearts as evidenced by decreased caspase-3 and malondialdehyde (MDA) concentration and increased cardiac function. Increased ONOO⁻ nitrated TrxR in the aging heart as a post-translational modification, which may be related to the enhanced MI/R injury of aging rats. Interventions that inhibit nitration and restore TrxR activity might be a therapy for attenuating enhanced MI/R injury in aging heart.
Collapse
Affiliation(s)
- Ke Wang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University , Beijing, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Romero A, Ramos E, de Los Ríos C, Egea J, Del Pino J, Reiter RJ. A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res 2014; 56:343-70. [PMID: 24628077 DOI: 10.1111/jpi.12132] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/11/2014] [Indexed: 12/31/2022]
Abstract
Metal exposure is associated with several toxic effects; herein, we review the toxicity mechanisms of cadmium, mercury, arsenic, lead, aluminum, chromium, iron, copper, nickel, cobalt, vanadium, and molybdenum as these processes relate to free radical generation. Free radicals can be generated in cells due to a wide variety of exogenous and endogenous processes, causing modifications in DNA bases, enhancing lipid peroxidation, and altering calcium and sulfhydryl homeostasis. Melatonin, an ubiquitous and pleiotropic molecule, exerts efficient protection against oxidative stress and ameliorates oxidative/nitrosative damage by a variety of mechanisms. Also, melatonin has a chelating property which may contribute in reducing metal-induced toxicity as we postulate here. The aim of this review was to highlight the protective role of melatonin in counteracting metal-induced free radical generation. Understanding the physicochemical insights of melatonin related to the free radical scavenging activity and the stimulation of antioxidative enzymes is of critical importance for the development of novel therapeutic strategies against the toxic action of these metals.
Collapse
Affiliation(s)
- Alejandro Romero
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
26
|
García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69:182-201. [PMID: 24751969 DOI: 10.1016/j.fct.2014.04.016] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico
| | - José Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico.
| |
Collapse
|
27
|
Abreu PL, Ferreira LMR, Alpoim MC, Urbano AM. Impact of hexavalent chromium on mammalian cell bioenergetics: phenotypic changes, molecular basis and potential relevance to chromate-induced lung cancer. Biometals 2014; 27:409-43. [DOI: 10.1007/s10534-014-9726-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
|
28
|
Luczak MW, Zhitkovich A. Role of direct reactivity with metals in chemoprotection by N-acetylcysteine against chromium(VI), cadmium(II), and cobalt(II). Free Radic Biol Med 2013; 65:262-269. [PMID: 23792775 PMCID: PMC3823631 DOI: 10.1016/j.freeradbiomed.2013.06.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 12/20/2022]
Abstract
The antioxidant N-acetylcysteine (NAC) is widely used for the assessment of the role of reactive oxygen species (ROS) in various biological processes and adverse drug reactions. NAC has been found to effectively inhibit the toxicity of carcinogenic metals, which was attributed to its potent ROS-suppressive properties. However, the absence of redox activity among some metals and findings from genetic models suggested a more diverse, smaller role of oxidative stress in metal toxicity. Here, we examined mechanisms of chemoprotection by NAC against Cd(II), Co(II), and Cr(VI) in human cells. We found that NAC displayed a broad-spectrum chemoprotective activity against all three metals, including suppression of cytotoxicity, apoptosis, p53 activation, and HSP72 and HIF-1α upregulation. Cytoprotection by NAC was independent of cellular glutathione. NAC strongly inhibited the uptake of all three metals in histologically different types of human cells, explaining its high chemoprotective potential. A loss of Cr(VI) accumulation by cells was caused by NAC-mediated extracellular reduction of chromate to membrane-impermeative Cr(III). Suppression of Co(II) uptake resulted from a rapid formation of Co(II)-NAC conjugates that were unable to enter cells. Our results demonstrate that NAC acts through more than one mechanism in preventing metal toxicity and its chemoprotective activity can be completely ROS-independent. Good clinical safety and effectiveness in Co(II) sequestration suggest that NAC could be useful in the prevention of tissue accumulation and toxic effects of Co ions released by cobalt-chromium hip prostheses.
Collapse
Affiliation(s)
- Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
29
|
Peroxiredoxins as biomarkers of oxidative stress. Biochim Biophys Acta Gen Subj 2013; 1840:906-12. [PMID: 23939310 DOI: 10.1016/j.bbagen.2013.08.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/25/2013] [Accepted: 08/01/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis. SCOPE OF REVIEW This review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems. MAJOR CONCLUSIONS Two Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources. GENERAL SIGNIFICANCE Monitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
|
30
|
Barry NPE, Sadler PJ. Exploration of the medical periodic table: towards new targets. Chem Commun (Camb) 2013; 49:5106-5131. [PMID: 23636600 DOI: 10.1039/c3cc41143e] [Citation(s) in RCA: 573] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Metallodrugs offer potential for unique mechanisms of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. We discuss recent progress in identifying new target sites and elucidating the mechanisms of action of anti-cancer, anti-bacterial, anti-viral, anti-parasitic, anti-inflammatory, and anti-neurodegenerative agents, as well as in the design of metal-based diagnostic agents. Progress in identifying and defining target sites has been accelerated recently by advances in proteomics, genomics and metal speciation analysis. Examples of metal compounds and chelating agents (enzyme inhibitors) currently in clinical use, clinical trials or preclinical development are highlighted.
Collapse
Affiliation(s)
- Nicolas P E Barry
- University of Warwick, Department of Chemistry, Gibbet Hill Road, Warwick, UK.
| | | |
Collapse
|
31
|
Abstract
The carcinogenicity of cadmium, arsenic, and chromium(VI) compounds has been recognized for some decades. However, the underlying molecular mechanisms seem to be complex and are not completely understood at present. Although, with the exception of chromium(VI), direct DNA damage seems to be of minor importance, interactions with DNA repair processes, tumor suppressor functions, and signal transduction pathways have been described in diverse biological systems. In addition to the induction of damage to cellular macromolecules by reactive oxygen species, the interference with cellular redox regulation by reaction with redox-sensitive protein domains or amino acids may provide one plausible mechanism involved in metal carcinogenicity. Consequences are the distortion of zinc-binding structures and the activation or inactivation of redox-regulated signal transduction pathways, provoking metal-induced genomic instability. Nevertheless, the relevance of the respective mechanisms depends on the actual metal or metal species under consideration and more research is needed to further strengthen this hypothesis.
Collapse
Affiliation(s)
- Andrea Hartwig
- Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| |
Collapse
|
32
|
Myers CR. The effects of chromium(VI) on the thioredoxin system: implications for redox regulation. Free Radic Biol Med 2012; 52:2091-107. [PMID: 22542445 PMCID: PMC3955998 DOI: 10.1016/j.freeradbiomed.2012.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 01/01/2023]
Abstract
Hexavalent chromium [Cr(VI)] compounds are highly redox active and have long been recognized as potent cytotoxins and carcinogens. The intracellular reduction of Cr(VI) generates reactive Cr intermediates, which are themselves strong oxidants, as well as superoxide, hydrogen peroxide, and hydroxyl radical. These probably contribute to the oxidative damage and effects on redox-sensitive transcription factors that have been reported. However, the identification of events that initiate these signaling changes has been elusive. More recent studies show that Cr(VI) causes irreversible inhibition of thioredoxin reductase (TrxR) and oxidation of thioredoxin (Trx) and peroxiredoxin (Prx). Mitochondrial Trx2/Prx3 are more sensitive to Cr(VI) treatment than cytosolic Trx1/Prx1, although both compartments show thiol oxidation with higher doses or longer treatments. Thiol redox proteomics demonstrate that Trx2, Prx3, and Trx1 are among the most sensitive proteins in cells to Cr(VI) treatment. Their oxidation could therefore represent initiating events that have widespread implications for protein thiol redox control and for multiple aspects of redox signaling. This review summarizes the effects of Cr(VI) on the TrxR/Trx system and how these events could influence a number of downstream redox signaling systems that are influenced by Cr(VI) exposure. Some of the signaling events discussed include the activation of apoptosis signal regulating kinase and MAP kinases (p38 and JNK) and the modulation of a number of redox-sensitive transcription factors including AP-1, NF-κB, p53, and Nrf2.
Collapse
Affiliation(s)
- Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
33
|
Genome-wide gene expression effects in B6C3F1 mouse intestinal epithelia following 7 and 90 days of exposure to hexavalent chromium in drinking water. Toxicol Appl Pharmacol 2012; 259:13-26. [DOI: 10.1016/j.taap.2011.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/15/2011] [Accepted: 11/18/2011] [Indexed: 12/31/2022]
|
34
|
Mammalian metallothionein in toxicology, cancer, and cancer chemotherapy. J Biol Inorg Chem 2011; 16:1087-101. [PMID: 21822976 DOI: 10.1007/s00775-011-0823-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/20/2011] [Indexed: 12/16/2022]
Abstract
The present paper centers on mammalian metallothionein 1 and 2 in relationship to cell and tissue injury beginning with its reaction with Cd²⁺ and then considering its role in the toxicology and chemotherapy of both metals and non-metal electrophiles and oxidants. Intertwined is a consideration of MTs role in tumor cell Zn²⁺ metabolism. The paper updates and expands on our recent review by Petering et al. (Met Ions Life Sci 5:353-398, 2009).
Collapse
|
35
|
|