1
|
Alewel DI, Jackson TW, Vance SA, Schladweiler MC, Evansky PA, Henriquez AR, Grindstaff R, Gavett SH, Kodavanti UP. Sex-specific respiratory and systemic endocrine effects of acute acrolein and trichloroethylene inhalation. Toxicol Lett 2023; 382:22-32. [PMID: 37201588 PMCID: PMC10585336 DOI: 10.1016/j.toxlet.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/23/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Acrolein and trichloroethylene (TCE) are priority hazardous air pollutants due to environmental prevalence and adverse health effects; however, neuroendocrine stress-related systemic effects are not characterized. Comparing acrolein, an airway irritant, and TCE with low irritancy, we hypothesized that airway injury would be linked to neuroendocrine-mediated systemic alterations. Male and female Wistar-Kyoto rats were exposed nose-only to air, acrolein or TCE in incremental concentrations over 30 min, followed by 3.5-hr exposure to the highest concentration (acrolein - 0.0, 0.1, 0.316, 1, 3.16 ppm; TCE - 0.0, 3.16, 10, 31.6, 100 ppm). Real-time head-out plethysmography revealed acrolein decreased minute volume and increased inspiratory-time (males>females), while TCE reduced tidal-volume. Acrolein, but not TCE, inhalation increased nasal-lavage-fluid protein, lactate-dehydrogenase activity, and inflammatory cell influx (males>females). Neither acrolein nor TCE increased bronchoalveolar-lavage-fluid injury markers, although macrophages and neutrophils increased in acrolein-exposed males and females. Systemic neuroendocrine stress response assessment indicated acrolein, but not TCE, increased circulating adrenocorticotrophic hormone, and consequently corticosterone, and caused lymphopenia, but only in males. Acrolein also reduced circulating thyroid-stimulating hormone, prolactin, and testosterone in males. In conclusion, acute acrolein inhalation resulted in sex-specific upper respiratory irritation/inflammation and systemic neuroendocrine alterations linked to hypothalamic-pituitary-adrenal axes activation, which is critical in mediating extra-respiratory effects.
Collapse
Affiliation(s)
- Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Thomas W Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Samuel A Vance
- Oak Ridge Institute for Science and Education Research Participation Program, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Paul A Evansky
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Rachel Grindstaff
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Stephen H Gavett
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
2
|
McGraw MD, Yee M, Kim SY, Dylag AM, Lawrence BP, O'Reilly MA. Diacetyl inhalation impairs airway epithelial repair in mice infected with influenza A virus. Am J Physiol Lung Cell Mol Physiol 2022; 323:L578-L592. [PMID: 36068185 PMCID: PMC9639765 DOI: 10.1152/ajplung.00124.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 01/11/2023] Open
Abstract
Bronchiolitis obliterans (BO) is a debilitating disease of the small airways that can develop following exposure to toxic chemicals as well as respiratory tract infections. BO development is strongly associated with diacetyl (DA) inhalation exposures at occupationally relevant concentrations or severe influenza A viral (IAV) infections. However, it remains unclear whether lower dose exposures or more mild IAV infections can result in similar pathology. In the current work, we combined these two common environmental exposures, DA and IAV, to test whether shorter DA exposures followed by sublethal IAV infection would result in similar airways disease. Adult mice exposed to DA vapors 1 h/day for 5 consecutive days followed by infection with the airway-tropic IAV H3N2 (HKx31) resulted in increased mortality, increased bronchoalveolar lavage (BAL) neutrophil percentage, mixed obstruction and restriction by lung function, and subsequent airway remodeling. Exposure to DA or IAV alone failed to result in significant pathology, whereas mice exposed to DA + IAV showed increased α-smooth muscle actin (αSMA) and epithelial cells coexpressing the basal cell marker keratin 5 (KRT5) with the club cell marker SCGB1A1. To test whether DA exposure impairs epithelial repair after IAV infection, mice were infected first with IAV and then exposed to DA during airway epithelial repair. Mice exposed to IAV + DA developed similar airway remodeling with increased subepithelial αSMA and epithelial cells coexpressing KRT5 and SCGB1A1. Our findings reveal an underappreciated concept that common environmental insults while seemingly harmless by themselves can have catastrophic implications on lung function and long-term respiratory health when combined.
Collapse
Affiliation(s)
- Matthew D McGraw
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Min Yee
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - So-Young Kim
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Andrew M Dylag
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Michael A O'Reilly
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
3
|
Card JW, Scaife KM, Haighton LA. Review of evidence relating to occupational exposure limits for alpha-diketones and acetoin, and considerations for deriving an occupational exposure limit for 2,3-pentanedione. Crit Rev Toxicol 2022; 52:715-730. [PMID: 36803409 DOI: 10.1080/10408444.2023.2168175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Alpha-diketones, notably diacetyl, have been used as flavoring agents. When airborne in occupational settings, exposures to diacetyl have been associated with serious respiratory disease. Other α-diketones, such as 2,3-pentanedione, and analogues such as acetoin (a reduced form of diacetyl), require evaluation, particularly, in light of recently available toxicological studies. The current work reviewed mechanistic, metabolic, and toxicology data available for α-diketones. Data were most available for diacetyl and 2,3-pentanedione, and a comparative assessment of their pulmonary effects was performed, and an occupational exposure limit (OEL) was proposed for 2,3-pentanedione. Previous OELs were reviewed and an updated literature search was performed. Respiratory system histopathology data from 3-month toxicology studies were evaluated with benchmark dose (BMD) modelling of sensitive endpoints. This demonstrated comparable responses at concentrations up to 100 ppm, with no consistent overall pattern of greater sensitivity to either diacetyl or 2,3-pentanedione. In contrast, based on draft raw data, no adverse respiratory effects were observed in comparable 3-month toxicology studies that evaluated exposure to acetoin at up to 800 ppm (highest tested concentration), indicating that acetoin does not present the same inhalation hazard as diacetyl or 2,3-pentanedione. To derive an OEL for 2,3-pentanedione, BMD modelling was conducted for the most sensitive endpoint from 90-day inhalation toxicity studies, namely, hyperplasia of nasal respiratory epithelium. On the basis of this modelling, an 8-hour time-weighted average OEL of 0.07 ppm is proposed to be protective against respiratory effects that may be associated with chronic workplace exposure to 2,3-pentanedione.
Collapse
Affiliation(s)
- Jeffrey W Card
- Intertek Health Sciences Inc., Mississauga, Ontario, Canada
| | - Kevin M Scaife
- Intertek Health Sciences Inc., Mississauga, Ontario, Canada
| | | |
Collapse
|
4
|
LeBouf RF, Ranpara A, Ham J, Aldridge M, Fernandez E, Williams K, Burns DA, Stefaniak AB. Chemical Emissions From Heated Vitamin E Acetate—Insights to Respiratory Risks From Electronic Cigarette Liquid Oil Diluents Used in the Aerosolization of Δ9-THC-Containing Products. Front Public Health 2022; 9:765168. [PMID: 35127617 PMCID: PMC8814346 DOI: 10.3389/fpubh.2021.765168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
As of February 18, 2020, the e-cigarette, or vaping, product use associated lung injury (EVALI) outbreak caused the hospitalization of a total of 2,807 patients and claimed 68 lives in the United States. Though investigations have reported a strong association with vitamin E acetate (VEA), evidence from reported EVALI cases is not sufficient to rule out the contribution of other chemicals of concern, including chemicals in either THC or non-THC products. This study characterized chemicals evolved when diluent oils were heated to temperatures that mimic e-cigarette, or vaping, products (EVPs) to investigate production of potentially toxic chemicals that might have caused lung injury. VEA, vitamin E, coconut, and medium chain triglyceride (MCT) oil were each diluted with ethanol and then tested for constituents and impurities using a gas chromatograph mass spectrometer (GC/MS). Undiluted oils were heated at 25°C (control), 150°C, and 250°C in an inert chamber to mimic a range of temperatures indicative of aerosolization from EVPs. Volatilized chemicals were collected using thermal desorption tubes, analyzed using a GC/MS, and identified. Presence of identified chemicals was confirmed using retention time and ion spectra matching with analytic standards. Direct analysis of oils, as received, revealed that VEA and vitamin E were the main constituents of their oils, and coconut and MCT oils were nearly identical having two main constituents: glycerol tricaprylate and 2-(decanoyloxy) propane-1,3-diyl dioctanoate. More chemicals were measured and with greater intensities when diluent oils were heated at 250°C compared to 150°C and 25°C. Vitamin E and coconut/MCT oils produced different chemical emissions. The presence of some identified chemicals is of potential health consequence because many are known respiratory irritants and acute respiratory toxins. Exposure to a mixture of hazardous chemicals may be relevant to the development or exacerbation of EVALI, especially when in concert with physical damage caused by lung deposition of aerosols produced by aerosolizing diluent oils.
Collapse
Affiliation(s)
- Ryan F. LeBouf
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
- *Correspondence: Ryan F. LeBouf
| | - Anand Ranpara
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Jason Ham
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Michael Aldridge
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Elizabeth Fernandez
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Kenneth Williams
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Dru A. Burns
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| | - Aleksandr B. Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States
| |
Collapse
|
5
|
White AV, Wambui DW, Pokhrel LR. Risk assessment of inhaled diacetyl from electronic cigarette use among teens and adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145486. [PMID: 33770882 DOI: 10.1016/j.scitotenv.2021.145486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Diacetyl (C4H6O2) is a toxicant commonly found in electronic cigarettes (e-Cigs) as a flavoring component and an enhancer of e-juices. Lung injury in current and former workers in popcorn manufacturing suggests a possible association with diacetyl inhalation exposure. Although the number of e-Cig users continues to rise steadily among the teens and adults, the potential risk of pulmonary disease has not been characterized. A systematic review of the open literature identified bronchiolitis obliterans-a pathological inflammation resulting in fibrosis of the bronchioles leading to an irreversible limitation to airflow in lungs-as the primary outcome of diacetyl exposures. Following the deterministic United States National Research Council/Environmental Protection Agency's risk assessment framework, that consists of four key steps: hazard identification, dose-response assessment, exposure assessment and risk characterization, we estimated noncarcinogenic (systemic) risks using a Hazard Quotient (HQ) approach upon exposure to diacetyl among teens and adults who use e-Cigs. Based on the NIOSH Benchmark Dose (BMD; 0.0175 mg/kg-day) and modelled Average Daily Doses (ADDs; range 0.11-5.2 mg/kg-day), we estimated 12 different HQ values-a measure of non-carcinogenic risk for diacetyl inhalation exposures-all of which were greater than 1 (range 6.2875-297.1429), suggesting a significantly higher non-carcinogenic risk from diacetyl exposures among the teens and adults who use e-Cigs. These results underscore the need to regulate e-Cigs to protect teens and adults from diacetyl exposures and risk of developing lung injuries, including bronchiolitis obliterans.
Collapse
Affiliation(s)
- Avian V White
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA; Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, USA
| | - David W Wambui
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Lok R Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA; Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
6
|
Hubbs AF, Kreiss K, Cummings KJ, Fluharty KL, O'Connell R, Cole A, Dodd TM, Clingerman SM, Flesher JR, Lee R, Pagel S, Battelli LA, Cumpston A, Jackson M, Kashon M, Orandle MS, Fedan JS, Sriram K. Flavorings-Related Lung Disease: A Brief Review and New Mechanistic Data. Toxicol Pathol 2019; 47:1012-1026. [PMID: 31645208 DOI: 10.1177/0192623319879906] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Flavorings-related lung disease is a potentially disabling and sometimes fatal lung disease of workers making or using flavorings. First identified almost 20 years ago in microwave popcorn workers exposed to butter-flavoring vapors, flavorings-related lung disease remains a concern today. In some cases, workers develop bronchiolitis obliterans, a severe form of fixed airways disease. Affected workers have been reported in microwave popcorn, flavorings, and coffee production workplaces. Volatile α-dicarbonyl compounds, particularly diacetyl (2,3-butanedione) and 2,3-pentanedione, are implicated in the etiology. Published studies on diacetyl and 2,3-pentanedione document their ability to cause airway epithelial necrosis, damage biological molecules, and perturb protein homeostasis. With chronic exposure in rats, they produce airway fibrosis resembling bronchiolitis obliterans. To add to this knowledge, we recently evaluated airway toxicity of the 3-carbon α-dicarbonyl compound, methylglyoxal. Methylglyoxal inhalation causes epithelial necrosis at even lower concentrations than diacetyl. In addition, we investigated airway toxicity of mixtures of diacetyl, acetoin, and acetic acid, common volatiles in butter flavoring. At ratios comparable to workplace scenarios, the mixtures or diacetyl alone, but not acetic acid or acetoin, cause airway epithelial necrosis. These new findings add to existing data to implicate α-dicarbonyl compounds in airway injury and flavorings-related lung disease.
Collapse
Affiliation(s)
- Ann F Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Kathleen Kreiss
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Kristin J Cummings
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Kara L Fluharty
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Ryan O'Connell
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA. Cummings is now with California Department of Public Health, Richmond, CA, USA. O'Connell is now with Department of Biochemistry, West Virginia, University, Morgantown, WV, USA. Flesher is now with Department of Biology, West Virginia University, Morgantown, WV, USA. Cole is now with Department of Pediatrics-Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA. Kreiss (retired) is in Sitka, AK, USA
| | - Allison Cole
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Tiana M Dodd
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Sidney M Clingerman
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA. Cummings is now with California Department of Public Health, Richmond, CA, USA. O'Connell is now with Department of Biochemistry, West Virginia, University, Morgantown, WV, USA. Flesher is now with Department of Biology, West Virginia University, Morgantown, WV, USA. Cole is now with Department of Pediatrics-Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA. Kreiss (retired) is in Sitka, AK, USA
| | - Jordan R Flesher
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA. Cummings is now with California Department of Public Health, Richmond, CA, USA. O'Connell is now with Department of Biochemistry, West Virginia, University, Morgantown, WV, USA. Flesher is now with Department of Biology, West Virginia University, Morgantown, WV, USA. Cole is now with Department of Pediatrics-Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA. Kreiss (retired) is in Sitka, AK, USA
| | - Rebecca Lee
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA. Cummings is now with California Department of Public Health, Richmond, CA, USA. O'Connell is now with Department of Biochemistry, West Virginia, University, Morgantown, WV, USA. Flesher is now with Department of Biology, West Virginia University, Morgantown, WV, USA. Cole is now with Department of Pediatrics-Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA. Kreiss (retired) is in Sitka, AK, USA
| | - Samantha Pagel
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA. Cummings is now with California Department of Public Health, Richmond, CA, USA. O'Connell is now with Department of Biochemistry, West Virginia, University, Morgantown, WV, USA. Flesher is now with Department of Biology, West Virginia University, Morgantown, WV, USA. Cole is now with Department of Pediatrics-Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA. Kreiss (retired) is in Sitka, AK, USA
| | - Lori A Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Amy Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Mark Jackson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Michael Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Marlene S Orandle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|