1
|
Cai Y, Wang Y, He Y, Ren K, Liu Z, Zhao L, Wei T. Utilizing alternative in vivo animal models for food safety and toxicity: A focus on thermal process contaminant acrylamide. Food Chem 2025; 465:142135. [PMID: 39579401 DOI: 10.1016/j.foodchem.2024.142135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Rodent models have traditionally been used to assess the toxicity of food chemicals, but this approach is costly, time-consuming, and raises ethical concerns. Alternatively, non-mammalian models such as Drosophila melanogaster, Danio rerio, and Caenorhabditis elegans have been shown to be suitable for studying the toxicity of food hazards. Their advantages include low cost, short life cycles, adaptability to high-throughput screening, and adherence to the 3R principles of replacement, reduction, and refinement. These models have been extensively studied in the context of acrylamide toxicity, a common food contaminant. This article comprehensively reviews the biological characteristics of non-mammalian models, recent advances and challenges in acrylamide toxicity research using these models, and explores the potential of natural plant compounds in ameliorating acrylamide toxicity. The review aims to guide research using non-mammalian models for food safety assessment.
Collapse
Affiliation(s)
- Yang Cai
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yuhan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yanfei He
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Kefeng Ren
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zongzhong Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Lingli Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| | - Tian Wei
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| |
Collapse
|
2
|
Gu X, Wei Y, Lu M, Shen D, Wu X, Huang J. Systematic Analysis of Disulfidptosis-Related lncRNAs in Hepatocellular Carcinoma with Vascular Invasion Revealed That AC131009.1 Can Promote HCC Invasion and Metastasis through Epithelial-Mesenchymal Transition. ACS OMEGA 2024; 9:49986-49999. [PMID: 39713637 PMCID: PMC11656384 DOI: 10.1021/acsomega.4c09411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
Disulfidptosis, a recently identified pathway of cellular demise, served as the focal point of this research, aiming to pinpoint relevant lncRNAs that differentiate between hepatocellular carcinoma (HCC) with and without vascular invasion while also forecasting survival rates and responses to immunotherapy in patients with vascular invasion (VI+). First, we identified 300 DRLRs in the TCGA database. Subsequently, utilizing univariate analysis, LASSO-Cox proportional hazards modeling, and multivariate analytical approaches, we selected three DRLRs (AC009779.2, AC131009.1, and LUCAT1) with the highest prognostic value to construct a prognostic risk model for VI+ HCC patients. Multivariate Cox regression analysis revealed that this model is an independent prognostic factor for predicting overall survival that outperforms traditional clinicopathological factors. Pathway analysis demonstrated the enrichment of tumor and immune-related pathways in the high-risk group. Immune landscape analysis revealed that immune cell infiltration degrees and immune functions had significant differences. Additionally, we identified valuable chemical drugs (AZD4547, BMS-536924, BPD-00008900, dasatinib, and YK-4-279) for high-risk VI+ HCC patients. In-depth bioinformatics analysis was subsequently conducted to assess immune characteristics, drug susceptibility, and potential biological pathways involving the three hub DRLRs. Furthermore, the abnormally elevated transcriptional levels of the three DRLRs in HCC cell lines were validated through qRT-PCR. Functional cell assays revealed that silencing the expression of lncRNA AC131009.1 can inhibit the migratory and invasive capabilities of HCC cells, a finding further corroborated by the chorioallantoic membrane (CAM) assay. Immunohistochemical analysis and hematoxylin-eosin staining (HE) staining provided preliminary evidence that AC131009.1 may promote the invasion and metastasis of HCC cells by inducing epithelial-mesenchymal transition (EMT) in both subcutaneous xenograft models and orthotopic HCC models within nude mice. To summarize, we developed a risk assessment model founded on DRLRs and explored the potential mechanisms by which hub DRLRs promote HCC invasion and metastasis.
Collapse
Affiliation(s)
- Xuefeng Gu
- Department
of Infectious Diseases, Jurong Hospital
Affiliated to Jiangsu University, Zhenjiang, Jiangsu 212400, China
| | - Yanyan Wei
- Department
of Infectious Diseases, The First Affiliated
Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Mao Lu
- Department
of Gastroenterology, The Affiliated Changzhou
Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Duo Shen
- Department
of Gastroenterology, The Affiliated Changzhou
Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Xin Wu
- Department
of General Surgery, The Fourth Affiliated
Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Jin Huang
- Department
of Gastroenterology, The Affiliated Changzhou
Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| |
Collapse
|
3
|
Zhou Z, Pennings JLA, Sahlin U. Causal, predictive or observational? Different understandings of key event relationships for adverse outcome pathways and their implications on practice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 113:104597. [PMID: 39622398 DOI: 10.1016/j.etap.2024.104597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
The Adverse Outcome Pathways (AOPs) framework is pivotal in toxicology, but the, terminology describing Key Event Relationships (KERs) varies within AOP guidelines.This study examined the usage of causal, observational and predictive terms in AOP, documentation and their adaptation in AOP development. A literature search and text, analysis of key AOP guidance documents revealed nuanced usage of these terms, with KERs often described as both causal and predictive. The adaptation of, terminology varies across AOP development stages. Evaluation of KER causality often, relies targeted blocking experiments and weight-of-evidence assessments in the, putative and qualitative stages. Our findings highlight a potential mismatch between,terminology in guidelines and methodologies in practice, particularly in inferring,causality from predictive models. We argue for careful consideration of terms like, causal and essential to facilitate interdisciplinary communication. Furthermore, integrating known causality into quantitative AOP models remains a challenge.
Collapse
Affiliation(s)
- Zheng Zhou
- Center for Environmental and Climate Science, Lund University, Sweden.
| | | | - Ullrika Sahlin
- Center for Environmental and Climate Science, Lund University, Sweden
| |
Collapse
|
4
|
Zhang Y, Li Y, Ren T, Duan JA, Xiao P. Promising tools into oxidative stress: A review of non-rodent model organisms. Redox Biol 2024; 77:103402. [PMID: 39437623 PMCID: PMC11532775 DOI: 10.1016/j.redox.2024.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Oxidative stress is a crucial concept in redox biology, and significant progress has been made in recent years. Excessive levels of reactive oxygen species (ROS) can lead to oxidative damage, heightening vulnerability to various diseases. By contrast, ROS maintained within a moderate range plays a role in regulating normal physiological metabolism. Choosing suitable animal models in a complex research context is critical for enhancing research efficacy. While rodents are frequently utilized in medical experiments, they pose challenges such as high costs and ethical considerations. Alternatively, non-rodent model organisms like zebrafish, Drosophila, and C. elegans offer promising avenues into oxidative stress research. These organisms boast advantages such as their small size, high reproduction rate, availability for live imaging, and ease of gene manipulation. This review highlights advancements in the detection of oxidative stress using non-rodent models. The oxidative homeostasis regulatory pathway, Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), is systematically reviewed alongside multiple regulation of Nrf2-centered pathways in different organisms. Ultimately, this review conducts a comprehensive comparative analysis of different model organisms and further explores the combination of novel techniques with non-rodents. This review aims to summarize state-of-the-art findings in oxidative stress research using non-rodents and to delineate future directions.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Ferreira PMP, Ramos CLS, Filho JIAB, Conceição MLP, Almeida ML, do Nascimento Rodrigues DC, Porto JCS, de Castro E Sousa JM, Peron AP. Laboratory and physiological aspects of substitute metazoan models for in vivo pharmacotoxicological analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03437-5. [PMID: 39298017 DOI: 10.1007/s00210-024-03437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024]
Abstract
New methods are essential to characterize the performance of substitute procedures for detecting therapeutic action(s) of a chemical or key signal of toxicological events. Herein, it was discussed the applications and advantages of using arthropods, worms, and fishes in pharmacological and/or toxicology assessments. First of all, the illusion of similarity covers many differences between humans and mice, remarkably about liver injury and metabolism of xenobiotics. Using invertebrates, especially earthworms (Eisenia fetida), brine shrimps (Artemia salina, Daphnia magna), and insects (Drosophila melanogaster) and vertebrates as small fishes (Oryzias latipes, Pimephales promelas, Danio rerio) has countless advantages, including fewer ethical conflicts, short life cycle, high reproduction rate, simpler to handle, and less complex anatomy. They can be used to find contaminants in organic matters and water and are easier genetically engineered with orthologous-mutated genes to explore specific proteins involved in proliferative and hormonal disturbances, chemotherapy multidrug resistance, and carcinogenicity. As multicellular embryos, larvae, and mature organisms, they can be tested in bigger-sized replication platforms with 24-, 96-, or 384-multiwell plates as cheaper and faster ways to select hit compounds from drug-like libraries to predict acute, subacute or chronic toxicity, pharmacokinetics, and efficacy parameters of pharmaceutical, cosmetic, and personal care products. Meanwhile, sublethal exposures are designed to identify changes in reproduction, body weight, DNA damages, oxidation, and immune defense responses in earthworms and zebrafishes, and swimming behaviors in A. salina and D. rerio. Behavioral parameters also give specificities on sublethal effects that would not be detected in zebrafishes by OECD protocols.
Collapse
Affiliation(s)
- Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil.
| | - Carla Lorena Silva Ramos
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - José Ivo Araújo Beserra Filho
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Micaely Lorrana Pereira Conceição
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Mateus Lima Almeida
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | | | - Jhonatas Cley Santos Porto
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - João Marcelo de Castro E Sousa
- Toxicological Genetics Research Laboratory (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Ana Paula Peron
- Laboratory of Ecotoxicology (Labecotox), Department of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão, 87301-899, Brazil
| |
Collapse
|
6
|
Yong GY, Muniandy N, Beishenaliev A, Lau BF, Kue CS. Anti-angiogenic and anti-tumour activities of Lignosus rhinocerus (Cooke) Ryvarden water extracts on HCT116 human colorectal carcinoma cells implanted in chick embryos. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118213. [PMID: 38636576 DOI: 10.1016/j.jep.2024.118213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The sclerotium of Lignosus rhinocerus (Cooke) Ryvarden is used by the local communities in Southeast Asia and China to treat cancer, asthma, fever, and other ailments based on traditional knowledge. The sclerotial water extracts were previously reported to exhibit cytotoxic, apoptotic, and immunomodulatory activities - providing a scientific basis for its use in treating cancer; however, there is still a lack of evidence on its potential anti-angiogenic activity. AIM OF THE STUDY This study aimed to investigate the toxicity, anti-angiogenic, and anti-tumour activities of the hot-water and cold-water extracts of L. rhinocerus using HCT116 human colorectal carcinoma cells implanted in the chick chorioallantoic membrane (CAM) model. MATERIALS AND METHODS The toxicity of L. rhinocerus extracts towards the chick embryos was determined 24 h post-treatment. The anti-angiogenic activity of the extracts was then investigated at 0.1-10 μg/embryo (6.7-670 μg/mL) at targeted blood vessels. The anti-tumour effect of selected extracts against the HCT116 human colorectal carcinoma cells xenografted onto the chick embryos was also studied. RESULTS The cold-water extracts of L. rhinocerus displayed strong in ovo toxicity (LC50: 1.2-37.7 μg/mL) while the hot-water extracts are non-toxic up to 670 μg/mL. Among the extracts, the hot-water extracts demonstrated the highest anti-angiogenic activity with 44.0 ± 17.7% reduction of capillary diameter (relative to the saline-treated control). Moreover, treatment of the HCT116 cells xenografted onto the chick embryos with the hot-water extracts resulted in smaller tumour size and lower number of blood vessels compared to the saline-treated control. CONCLUSIONS The hot-water extracts of L. rhinocerus sclerotium demonstrated anti-angiogenic and anti-tumour activities but most of the cold-water extracts at similar concentrations were devoid of that. Our findings provide further scientific validation of the medicinal use of the sclerotium in treating cancer and thus, expanding our knowledge on the possible mechanism of its anti-cancer effect apart from direct cytotoxicity, induction of apoptosis and immunomodulation that have been studied thus far.
Collapse
Affiliation(s)
- Gong Yi Yong
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia
| | - Nishalini Muniandy
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia
| | - Adilet Beishenaliev
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Beng Fye Lau
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia.
| |
Collapse
|
7
|
Harayashiki CAY, Rodrigues CC, Rocha TL. Multi- and transgenerational effects of environmental chemicals on mollusks: An underexplored experimental design in aquatic (eco)toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124058. [PMID: 38685557 DOI: 10.1016/j.envpol.2024.124058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
(Eco)toxicological studies frequently evaluate the effects of chemicals in one life stage of organisms, but the use of these outcomes can only partially estimate populational effects. In this regard, multi- and/or transgenerational studies should be performed in order to provide information on contaminant effects in a populational functioning context. The present review aimed to summarize and critically evaluate the current knowledge regarding multi- and/or transgenerational effects of traditional and emerging environmental chemicals on mollusks. Results showed that these kinds of studies were performed in aquatic mollusks (bivalve and gastropod), being Gastropoda the mollusk Class most frequently studied. Additionally, freshwater species and multigenerational studies were more common for this class. For the Bivalvia class, only marine species were evaluated, and transgenerational exposure was more commonly assessed. The effects were reported for 15 species, highlighting the marine bivalves Crassostrea gigas and Saccostrea glomerata, and the freshwater gastropod Lymnaea stagnalis. Multi- and transgenerational effects were described for 8 environmental chemical groups, mainly metals, pesticides, and pharmaceuticals. In general, multi- and transgenerational exposure induced biometric, developmental, and reproductive impairments in mollusks, indicating that environmental chemicals might lead to generational impairments, reduced population growth and reproductive capacity, and decreased fitness. The current study indicated that bivalves and gastropods are suitable organism models to assess the multi- and transgenerational adverse effects induced by traditional and emerging environmental chemicals.
Collapse
Affiliation(s)
- Cyntia Ayumi Yokota Harayashiki
- Laboratory of Environmental Biotechnology and Ecotoxicology (LaBAE), Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| | - Cândido Carvalho Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology (LaBAE), Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Environmental Metallomics Laboratory, Department of Biological Sciences, University of Québec at Montréal (UQAM), Montréal, QC, H2X 1Y4, Canada
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology (LaBAE), Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
8
|
Cong J, Wu J, Fang Y, Wang J, Kong X, Wang L, Duan Z. Application of organoid technology in the human health risk assessment of microplastics: A review of progresses and challenges. ENVIRONMENT INTERNATIONAL 2024; 188:108744. [PMID: 38761429 DOI: 10.1016/j.envint.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Microplastic (MP) pollution has become a global environmental issue, and increasing concern has been raised about its impact on human health. Current studies on the toxic effects and mechanisms of MPs have mostly been conducted in animal models or in vitro cell cultures, which have limitations regarding inter-species differences or stimulation of cellular functions. Organoid technology derived from human pluripotent or adult stem cells has broader prospects for predicting the potential health risks of MPs to humans. Herein, we reviewed the current application advancements and opportunities for different organoids, including brain, retinal, intestinal, liver, and lung organoids, to assess the human health risks of MPs. Organoid techniques accurately simulate the complex processes of MPs and reflect phenotypes related to diseases caused by MPs such as liver fibrosis, neurodegeneration, impaired intestinal barrier and cardiac hypertrophy. Future perspectives were also proposed for technological innovation in human risk assessment of MPs using organoids, including extending the lifespan of organoids to assess the chronic toxicity of MPs, and reconstructing multi-organ interactions to explore their potential in studying the microbiome-gut-brainaxis effect of MPs.
Collapse
Affiliation(s)
- Jiaoyue Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jin Wu
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Yanjun Fang
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Jing Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaoyan Kong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
9
|
Vashishat A, Patel P, Das Gupta G, Das Kurmi B. Alternatives of Animal Models for Biomedical Research: a Comprehensive Review of Modern Approaches. Stem Cell Rev Rep 2024; 20:881-899. [PMID: 38429620 DOI: 10.1007/s12015-024-10701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
Biomedical research has long relied on animal models to unravel the intricacies of human physiology and pathology. However, concerns surrounding ethics, expenses, and inherent species differences have catalyzed the exploration of alternative avenues. The contemporary alternatives to traditional animal models in biomedical research delve into three main categories of alternative approaches: in vitro models, in vertebrate models, and in silico models. This unique approach to artificial intelligence and machine learning has been a keen interest to be used in different biomedical research. The main goal of this review is to serve as a guide to researchers seeking novel avenues for their investigations and underscores the importance of considering alternative models in the pursuit of scientific knowledge and medical breakthroughs, including showcasing the broad spectrum of modern approaches that are revolutionizing biomedical research and leading the way toward a more ethical, efficient, and innovative future. Models can insight into cellular processes, developmental biology, drug interaction, assessing toxicology, and understanding molecular mechanisms.
Collapse
Affiliation(s)
- Abhinav Vashishat
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
10
|
Custódio B, Carneiro P, Marques J, Leiro V, Valentim AM, Sousa M, Santos SD, Bessa J, Pêgo AP. Biological Response Following the Systemic Injection of PEG-PAMAM-Rhodamine Conjugates in Zebrafish. Pharmaceutics 2024; 16:608. [PMID: 38794270 PMCID: PMC11125904 DOI: 10.3390/pharmaceutics16050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Numerous therapeutic and diagnostic approaches used within a clinical setting depend on the administration of compounds via systemic delivery. Biomaterials at the nanometer scale, as dendrimers, act as delivery systems by improving cargo bioavailability, circulation time, and the targeting of specific tissues. Although evaluating the efficacy of pharmacological agents based on nanobiomaterials is crucial, conducting toxicological assessments of biomaterials is essential for advancing clinical translation. Here, a zebrafish larvae model was explored to assess the biocompatibility of poly(amido amine) (PAMAM), one of the most exploited dendrimers for drug delivery. We report the impact of a systemic injection of polyethylene glycol (PEG)-modified G4 PAMAM conjugated with rhodamine (Rho) as a mimetic drug (PEG-PAMAM-Rho) on survival, animal development, inflammation, and neurotoxicity. A concentration- and time-dependent effect was observed on mortality, developmental morphology, and innate immune system activation (macrophages). Significant effects in toxicological indicators were reported in the highest tested concentration (50 mg/mL PEG-PAMAM-Rho) as early as 48 h post-injection. Additionally, a lower concentration of PEG-PAMAM-Rho (5 mg/mL) was found to be safe and subsequently tested for neurotoxicity through behavioral assays. In accordance, no significative signs of toxicity were detected. In conclusion, the dose response of the animal was assessed, and the safe dosage for future use in theragnostics was defined. Additionally, new methodologies were established that can be adapted to further studies in toxicology using other nanosystems for systemic delivery.
Collapse
Affiliation(s)
- Beatriz Custódio
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Patrícia Carneiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Joana Marques
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana M. Valentim
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Mafalda Sousa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
| | - Sofia D. Santos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - José Bessa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P. Pêgo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Li L, Li Y, Zeng K, Wang Q. Mercuric sulfide nanoparticles suppress the neurobehavioral functions of Caenorhabditis elegans through a Skp1-dependent mechanism. Food Chem Toxicol 2024; 186:114576. [PMID: 38458533 DOI: 10.1016/j.fct.2024.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Cinnabar is the naturally occurring mercuric sulfide (HgS) and concerns about its safety have been grown. However, the molecular mechanism of HgS-related neurotoxicity remains unclear. S-phase kinase-associated protein 1 (Skp1), identified as the target protein of HgS, plays a crucial role in the development of neurological diseases. This study aims to investigate the neurotoxic effects and molecular mechanism of HgS based on Skp1 using the Caenorhabditis elegans (C. elegans) model. We prepared the HgS nanoparticles and conducted a comparative analysis of neurobehavioral differences in both wild-type C. elegans (N2) and a transgenic strain of C. elegans (VC1241) with a knockout of the SKP1 homologous gene after exposure to HgS nanoparticles. Our results showed that HgS nanoparticles could suppress locomotion, defecation, egg-laying, and associative learning behaviors in N2 C. elegans, while no significant alterations were observed in the VC1241 C. elegans. Furthermore, we conducted a 4D label-free proteomics analysis and screened 504 key proteins significantly affected by HgS nanoparticles through Skp1. These proteins play pivotal roles in various pathways, including SNARE interactions in vesicular transport, TGF-beta signaling pathway, calcium signaling pathway, FoxO signaling pathway, etc. In summary, HgS nanoparticles at high doses suppress the neurobehavioral functions of C. elegans through a Skp1-dependent mechanism.
Collapse
Affiliation(s)
- Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China.
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China.
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, China.
| |
Collapse
|
12
|
Herculano RD, Mussagy CU, Guerra NB, Sant'Ana Pegorin Brasil G, Floriano JF, Burd BS, Su Y, da Silva Sasaki JC, Marques PAC, Scontri M, Miranda MCR, Ferreira ES, Primo FL, Fernandes MA, He S, Forster S, Ma C, de Lima Lopes Filho PE, Dos Santos LS, Silva GR, Crotti AEM, de Barros NR, Li B, de Mendonça RJ. Recent advances and perspectives on natural latex serum and its fractions for biomedical applications. BIOMATERIALS ADVANCES 2024; 157:213739. [PMID: 38154400 DOI: 10.1016/j.bioadv.2023.213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Advances and the discovery of new biomaterials have opened new frontiers in regenerative medicine. These biomaterials play a key role in current medicine by improving the life quality or even saving the lives of millions of people. Since the 2000s, Natural Rubber Latex (NRL) has been employed as wound dressings, mechanical barrier for Guided Bone Regeneration (GBR), matrix for drug delivery, and grafting. NRL is a natural polymer that can stimulate cell proliferation, neoangiogenesis, and extracellular matrix (ECM) formation. Furthermore, it is well established that proteins and other biologically active molecules present in the Natural Latex Serum (NLS) are responsible for the biological properties of NRL. NLS can be obtained from NRL by three main methods, namely (i) Centrifugation (fractionation of NRL in distinct fractions), (ii) Coagulation and sedimentation (coagulating NRL to separate the NLS from rubber particles), and (iii) Alternative extraction process (elution from NRL membrane). In this review, the chemical composition, physicochemical properties, toxicity, and other biological information such as osteogenesis, vasculogenesis, adhesion, proliferation, antimicrobial behavior, and antitumoral activity of NLS, as well as some of its medical instruments and devices are discussed. The progress in NLS applications in the biomedical field, more specifically in cell cultures, alternative animals, regular animals, and clinical trials are also discussed. An overview of the challenges and future directions of the applications of NLS and its derivatives in tissue engineering for hard and soft tissue regeneration is also given.
Collapse
Affiliation(s)
- Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA.
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | | | - Giovana Sant'Ana Pegorin Brasil
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Juliana Ferreira Floriano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; School of Science, São Paulo State University (UNESP), 17033-360 Bauru, SP, Brazil
| | - Betina Sayeg Burd
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Yanjin Su
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Josana Carla da Silva Sasaki
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Paulo Augusto Chagas Marques
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13560-970 Sao Carlos, SP, Brazil
| | - Mateus Scontri
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Matheus Carlos Romeiro Miranda
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, 275, 09972-270 Diadema, SP, Brazil
| | - Ernando Silva Ferreira
- State University of Feira de Santana (UEFS), Department of Physics, s/n Transnordestina Highway, 44036-900 Feira de Santana, BA, Brazil
| | - Fernando Lucas Primo
- Bionanomaterials and Bioengineering Group, Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), Faculty of Pharmaceutical Sciences, Araraquara 14800-903, São Paulo, Brazil
| | - Mariza Aires Fernandes
- Bionanomaterials and Bioengineering Group, Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), Faculty of Pharmaceutical Sciences, Araraquara 14800-903, São Paulo, Brazil
| | - Siqi He
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Samuel Forster
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Changyu Ma
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | | | - Lindomar Soares Dos Santos
- Department of Physics, Faculty of Philosophy, Sciences and Languages at Ribeirão Preto, Universidade de São Paulo University (USP), 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Glaucio Ribeiro Silva
- Federal Institute of Education, Science, and Technology of Minas Gerais, s/n São Luiz Gonzaga Street, 35577-010 Formiga, Minas Gerais, Brazil
| | - Antônio Eduardo Miller Crotti
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Bingbing Li
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Clevenger T, Paz J, Stafford A, Amos D, Hayes AW. An Evaluation of Zebrafish, an Emerging Model Analyzing the Effects of Toxicants on Cognitive and Neuromuscular Function. Int J Toxicol 2024; 43:46-62. [PMID: 37903286 DOI: 10.1177/10915818231207966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
An emerging alternative to conventional animal models in toxicology research is the zebrafish. Their accelerated development, regenerative capacity, transparent physical appearance, ability to be genetically manipulated, and ease of housing and care make them feasible and efficient experimental models. Nonetheless, their most esteemed asset is their 70% (+) genetic similarity with the human genome, which allows the model to be used in a variety of clinically relevant studies. With these attributes, we propose the zebrafish is an excellent model for analyzing cognitive and neuromuscular responses when exposed to toxicants. Neurocognition can be readily analyzed using visual discrimination, memory and learning, and social behavior testing. Neuromuscular function can be analyzed using techniques such as the startle response, assessment of activity level, and evaluation of critical swimming speed. Furthermore, selectively mutated zebrafish is another novel application of this species in behavioral and pharmacological studies, which can be exploited in toxicological studies. There is a critical need in biomedical research to discover ethical and cost-effective methods to develop new products, including drugs. Through mutagenesis, zebrafish models have become key in meeting this need by advancing the field in numerous areas of biomedical research.
Collapse
Affiliation(s)
| | - Jakob Paz
- Florida College, Temple Terrace, FL, USA
| | | | | | - A Wallace Hayes
- College of Public Health, University of South Florida, Temple Terrace, FL, USA
| |
Collapse
|
14
|
Gendron D, Bubak G. Carbon Nanotubes and Graphene Materials as Xenobiotics in Living Systems: Is There a Consensus on Their Safety? J Xenobiot 2023; 13:740-760. [PMID: 38132708 PMCID: PMC10744618 DOI: 10.3390/jox13040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Carbon nanotubes and graphene are two types of nanomaterials that have unique properties and potential applications in various fields, including biomedicine, energy storage, and gas sensing. However, there is still a debate about the safety of these materials, and there is yet to be a complete consensus on their potential risks to human health and the environment. While some studies have provided recommendations for occupational exposure limits, more research is needed to fully understand the potential risks of these materials to human health and the environment. In this review, we will try to summarize the advantages and disadvantages of using carbon nanotubes and graphene as well as composites containing them in the context of their biocompatibility and toxicity to living systems. In addition, we overview current policy guidelines and technical regulations regarding the safety of carbon-based nanomaterials.
Collapse
Affiliation(s)
- David Gendron
- Kemitek, Cégep de Thetford, 835 Rue Mooney, Thetford Mines, QC G6G 0A5, Canada
| | - Grzegorz Bubak
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland;
| |
Collapse
|
15
|
Lee S, Kim JH, Kim M, Hong S, Park H, Kim EJ, Kim EY, Lee C, Sohn Y, Jung HS. Exploring the Anti-Osteoporotic Potential of Daucosterol: Impact on Osteoclast and Osteoblast Activities. Int J Mol Sci 2023; 24:16465. [PMID: 38003654 PMCID: PMC10671633 DOI: 10.3390/ijms242216465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Osteoporosis is a debilitating condition characterized by reduced bone mass and density, leading to compromised structural integrity of the bones. While conventional treatments, such as bisphosphonates and selective estrogen receptor modulators (SERMs), have been employed to mitigate bone loss, their effectiveness is often compromised by a spectrum of adverse side effects, ranging from gastrointestinal discomfort and musculoskeletal pain to more severe concerns like atypical fractures and hormonal imbalances. Daucosterol (DC), a natural compound derived from various plant sources, has recently garnered considerable attention in the field of pharmacology. In this study, we investigated the anti-osteoporosis potential of DC by characterizing its role in osteoclasts, osteoblasts, and lipopolysaccharide (LPS)-induced osteoporosis. The inhibitory effect of DC on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring formation by fluorescent staining, and bone resorption by pit formation assay. In addition, the calcification nodule deposition effect of osteoblasts was determined by Alizarin red S staining. The effective mechanisms of both cells were verified by Western blot and reverse transcription polymerase chain reaction (RT-PCR). To confirm the effect of DC in vivo, DC was administered to a model of osteoporosis by intraperitoneal administration of LPS. The anti-osteoporosis effect was then characterized by micro-CT and serum analysis. The results showed that DC effectively inhibited osteoclast differentiation at an early stage, promoted osteoblast activity, and inhibited LPS-induced bone density loss. The results of this study suggest that DC can treat osteoporosis through osteoclast and osteoblast regulation, and therefore may be considered as a new therapeutic alternative for osteoporosis patients in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hyuk Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02-447, Republic of Korea; (S.L.); (J.-H.K.); (M.K.); (S.H.); (H.P.); (E.J.K.); (E.-Y.K.); (C.L.); (Y.S.)
| |
Collapse
|
16
|
Kırcı D, Demirci F, Demirci B. Microbial Transformation of Hesperidin and Biological Evaluation. ACS OMEGA 2023; 8:42610-42621. [PMID: 38024700 PMCID: PMC10652256 DOI: 10.1021/acsomega.3c05334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
The main aim of the study was the biotransformation evaluation of hesperidin for functionalization by 25 different nonhuman pathogenic microorganisms. As a result, four metabolites were identified and characterized. The structure of pinocembrin and naringenin from the microbial transformation of hesperidin was determined initially with LC/MS-MS. The metabolites eriodictyol and hesperetin were isolated, and their molecular structure was determined by NMR and MS. Pinocembrin, eriodictyol, and naringenin were characterized as new hesperidin microbial transformation metabolites, to the best of our knowledge. In order to evaluate the bioactivity, in vitro 5-lipoxygenase (5-LOX) enzyme inhibition, antioxidant, antimicrobial, and acute toxicity evaluations using the brine shrimp assay of hesperidin and its metabolites were performed comparatively. According to antioxidant and anti-inflammatory activity results, hesperetin metabolite was more active than naringenin and hesperidin. The antimicrobial activity of hesperetin and naringenin against the human pathogenic Staphylococcus aureus strain was relatively higher when compared with the substrate hesperidin. In line with this result, biofilm activity of hesperetin and naringenin against S. aureus with combination studies using biofilm formation methods was carried out. The checkerboard combination method was utilized for biofilm layering, also for the first time in the present study. As an initial result, it was observed that hesperidin and naringenin exerted a synergistic activity with a fractional inhibitory concentration index (FICI) value of 1.063. Considering the bioactivity of hesperidin, hesperetin, and naringenin used as substrates are relatively nontoxic. The microbial and enzymatic biotransformation of natural products such as hesperetin and its new bioactive metabolites still have pharmacological potential, which needs further experimentation at the molecular level..
Collapse
Affiliation(s)
- Damla Kırcı
- Department
of Pharmacognosy, Faculty of Pharmacy, Selçuk
University, Konya 42150, Türkiye
| | - Fatih Demirci
- Department
of Pharmacognosy, Faculty of Pharmacy, Anadolu
University, Eskişehir 26470, Türkiye
- Faculty
of Pharmacy, Eastern Mediterranean University, N. Cyprus, Via Mersin, Famagusta 99628, Türkiye
| | - Betül Demirci
- Department
of Pharmacognosy, Faculty of Pharmacy, Anadolu
University, Eskişehir 26470, Türkiye
| |
Collapse
|
17
|
Chen G, Huang J, Jia J, Lou Q, Shi C, Yasheng M, Zhao Y, Yuan Q, Tang K, Liu X, Wang Z, Jiang D, Qian X, Yin Z, Zhai G. The food safety assessment of all-female common carp (Cyprinus carpio) (cyp17a1+/-;XX genotype) generated using genome editing technology. Food Chem Toxicol 2023; 181:114103. [PMID: 37852353 DOI: 10.1016/j.fct.2023.114103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
There are several technical challenges and public issues concerning genome editing applications before they become viable in commercial aquaculture. Recently, we developed a novel strategy to generate all-female (AF) common carp, which exhibited a growth advantage over the control carp, using genetic editing through single gene-targeting manipulation. Here, we found that the body weight of the AF common carp was higher by 22.58% than that of the control common carp. Because the genotype of the AF common carp was cyp17a1+/-;XX, the contents of sex steroids were normally synthesized, as they were comparable to that of the control female carp. To evaluate the food safety of the AF carp, Wistar rats were fed a diet containing control female carp (control, C) or all-female (AF) carp at an incorporation rate of 5, 10 and 20% (w/w) for 90 days. Compared with those fed control carp, the rats fed AF common carp exhibited no significant difference in body weight, food intake, feed conversion ratio, hematology, serum biochemistry, urine test, relative organ weight, gross necropsy, and histopathological examination. This is the first food safety assessment of the farmed fish strain cultured using CRISPR/Cas9, which will further advance the fishery development of genome-edited animals.
Collapse
Affiliation(s)
- Guanghui Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jianfei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingyi Jia
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiyong Lou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chuang Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Musha Yasheng
- Key Laboratory of Safety Assessment of Agricultural Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Yijia Zhao
- Key Laboratory of Safety Assessment of Agricultural Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Qingyun Yuan
- Huanggang Academy of Agricultural Sciences, Huanggang, 438000, China
| | - Kui Tang
- HAID Research Institute, Guangdong HAID Group Co., Ltd., Guangzhou, 511400, China
| | - Xiaolong Liu
- HAID Research Institute, Guangdong HAID Group Co., Ltd., Guangzhou, 511400, China
| | - Zhengkai Wang
- HAID Research Institute, Guangdong HAID Group Co., Ltd., Guangzhou, 511400, China
| | - Donghuo Jiang
- HAID Research Institute, Guangdong HAID Group Co., Ltd., Guangzhou, 511400, China
| | - Xueqiao Qian
- HAID Research Institute, Guangdong HAID Group Co., Ltd., Guangzhou, 511400, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China; Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan, 430070, China; The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China; Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
18
|
Rüggeberg S, Wanglin A, Demirel Ö, Hack R, Niederhaus B, Bidlingmaier B, Blumrich M, Usener D. Progress towards the Replacement of the Rabbit Blood Sugar Test for the Quantitative Determination of the Biological Activity of Insulins (USP <121>) with an In Vitro Assay. Animals (Basel) 2023; 13:2953. [PMID: 37760353 PMCID: PMC10525547 DOI: 10.3390/ani13182953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
For the quantification of insulin activity, United States Pharmacopeia (USP) general chapter <121> continues to require the rabbit blood sugar test. For new insulin or insulin analogue compounds, those quantitative data are expected for stability or comparability studies. At Sanofi, many rabbits were used to fulfil the authority's requirements to obtain quantitative insulin bioactivity data until the in vivo test was replaced. In order to demonstrate comparability between the in vivo and in vitro test systems, this study was designed to demonstrate equivalency. The measurement of insulin lispro and insulin glargine drug substance and drug product batches, including stress samples (diluted or after temperature stress of 30 min at 80 °C), revealed a clear correlation between the in vitro and in vivo test results. The recovery of quantitative in vitro in-cell Western (ICW) results compared to the in vivo test results was within the predefined acceptance limits of 80% to 125%. Thus, the in vitro ICW cell-based bioassay leads to results that are equivalent to the rabbit blood sugar test per USP <121>, and it is highly suitable for insulin activity quantification. For future development compounds, the in vitro in-cell Western cell-based assay can replace the rabbit blood sugar test required by USP <121>.
Collapse
Affiliation(s)
| | - Antje Wanglin
- CMC-Bioanalytics, R&D Sanofi, 65926 Frankfurt, Germany
| | - Özlem Demirel
- CMC-Bioanalytics, R&D Sanofi, 65926 Frankfurt, Germany
| | - Rüdiger Hack
- TIM Global Compliance and Policy, R&D Sanofi, 65926 Frankfurt, Germany
| | | | | | | | - Dirk Usener
- CMC-Bioanalytics, R&D Sanofi, 65926 Frankfurt, Germany
| |
Collapse
|
19
|
Galeane MC, Gomes PC, Singulani JL, Mendes-Giannini MJ, Fusco-Almeida AM. Study of IsCT analogue peptide against Candida albicans and toxicity/teratogenicity in zebrafish embryos ( Danio rerio). Future Microbiol 2023; 18:939-947. [PMID: 37702001 DOI: 10.2217/fmb-2022-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Aim: An IsCT analogue peptide (PepM3) was designed based on structural studies of wasp mastoparans and tested against Candida albicans. Its effects on fungal cell membranes and toxicity were evaluated. Materials & methods: Antifungal activity was analyzed using a microdilution susceptibility test. Toxicity was assessed using human skin keratinocytes (HaCaT) and zebrafish embryos. Results: PepM3 demonstrated activity against C. albicans and a synergistic effect with amphotericin B. The peptide presented fungicidal action with damage to the fungal cell membrane, low toxicity in HaCat cells and was nonteratogenic in zebrafish embryos. Conclusion: Evaluating structural modifications is essential for the development of new agents with potential activity against fungal pathogens and for the reduction of toxic and teratogenic effects.
Collapse
Affiliation(s)
- Mariana C Galeane
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Paulo C Gomes
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Junya L Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Maria Js Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Ana M Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, SP, Brazil
| |
Collapse
|
20
|
Freires IA, Morelo DFC, Soares LFF, Costa IS, de Araújo LP, Breseghello I, Abdalla HB, Lazarini JG, Rosalen PL, Pigossi SC, Franchin M. Progress and promise of alternative animal and non-animal methods in biomedical research. Arch Toxicol 2023; 97:2329-2342. [PMID: 37394624 DOI: 10.1007/s00204-023-03532-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
Cell culture and invertebrate animal models reflect a significant evolution in scientific research by providing reliable evidence on the physiopathology of diseases, screening for new drugs, and toxicological tests while reducing the need for mammals. In this review, we discuss the progress and promise of alternative animal and non-animal methods in biomedical research, with a special focus on drug toxicity.
Collapse
Affiliation(s)
- Irlan Almeida Freires
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| | - David Fernando Colon Morelo
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | | | | | | | - Henrique Ballassini Abdalla
- Laboratory of Neuroimmune Interface of Pain Research, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Josy Goldoni Lazarini
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
- Graduate Program in Biological Sciences, Federal University of Alfenas, Alfenas, Brazil
| | | | - Marcelo Franchin
- School of Dentistry, Federal University of Alfenas, Alfenas, Brazil
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
21
|
Ivan BC, Barbuceanu SF, Hotnog CM, Olaru OT, Anghel AI, Ancuceanu RV, Mihaila MA, Brasoveanu LI, Shova S, Draghici C, Nitulescu GM, Dumitrascu F. Synthesis, Characterization and Cytotoxic Evaluation of New Pyrrolo[1,2- b]pyridazines Obtained via Mesoionic Oxazolo-Pyridazinones. Int J Mol Sci 2023; 24:11642. [PMID: 37511401 PMCID: PMC10380841 DOI: 10.3390/ijms241411642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
New pyrrolo[1,2-b]pyridazines were synthesized by 3 + 2 cycloaddition reaction between mesoionic oxazolo-pyridazinones and methyl/ethyl propiolate. The mesoionic compounds were generated in situ by action of acetic anhydride on 3(2H)pyridazinone acids obtained from corresponding esters by alkaline hydrolysis followed by acidification. The structures of the compounds were confirmed by elemental analyses and IR, 1H-NMR, 13C-NMR, and X-ray diffraction data. The regioselectivity of cycloaddition was evidenced by NMR spectroscopy and confirmed by X-ray analysis. The compounds were evaluated for their cytotoxicity on plant cells (Triticum aestivum L.) and crustacean animal cells (Artemia franciscana Kellogg and Daphnia magna Straus). The results indicated that the tested compounds exhibited low toxicity on the plant cell (IC50 values higher than 200 µM), while on Artemia nauplii no lethality was observed. Daphnia magna assay showed that pyrrolo[1,2-b]pyridazines 5a and 5c could exhibit toxic effects, whereas, for the other compounds, toxicity was low to moderate. Also, the cytotoxic effects of the compounds were tested on three human adenocarcinoma-derived adherent cell lines (colon LoVo, ovary SK-OV-3, breast MCF-7). The in vitro compound-mediated cytotoxicity assays, performed by the MTS technique, demonstrated dose- and time-dependent cytotoxic activity for several compounds, the highest anti-tumor activity being observed for 5a, 2c, and 5f, especially against colon cancer cells.
Collapse
Affiliation(s)
- Beatrice-Cristina Ivan
- Department of Organic Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Stefania-Felicia Barbuceanu
- Department of Organic Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Camelia Mia Hotnog
- Center of Immunology, "Stefan S. Nicolau" Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania
| | - Octavian Tudorel Olaru
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Adriana Iuliana Anghel
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Robert Viorel Ancuceanu
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Mirela Antonela Mihaila
- Center of Immunology, "Stefan S. Nicolau" Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania
| | - Lorelei Irina Brasoveanu
- Center of Immunology, "Stefan S. Nicolau" Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania
| | - Sergiu Shova
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iasi, Romania
- Laboratory of Advanced Materials in Biofarmaceutics and Technics, Moldova State University, 2009 Chişinău, Moldova
| | - Constantin Draghici
- "Costin D. Nenitescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Splaiul Independenței, 060023 Bucharest, Romania
| | - George Mihai Nitulescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Florea Dumitrascu
- "Costin D. Nenitescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Splaiul Independenței, 060023 Bucharest, Romania
| |
Collapse
|
22
|
Lee S, Jung GT, Cho M, Lee JW, Eghan K, Lee J, Yoon S, Kim KP, Kim WK. Plausibility of Daphnia magna as an alternative experimental model to evaluate effects on eicosanoid synthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115119. [PMID: 37327520 DOI: 10.1016/j.ecoenv.2023.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Eicosanoids play important roles in inflammation, allergy, fever, and immune responses. In the eicosanoid pathway, cyclooxygenase (COX) catalyzes the conversion of arachidonic acid to prostaglandins and is a crucial target of nonsteroidal anti-inflammatory drugs (NSAIDs). Thus, toxicological studies on the eicosanoid pathway are important for drug discovery and the evaluation of adverse health outcomes due to environmental contaminants. However, experimental models are limited owing to concerns regarding ethical standards. Thus, new alternative models for evaluating toxic effects on the eicosanoid pathway must be developed. To this end, we adopted an invertebrate species, Daphnia magna, as an alternative model. D. magna was exposed to ibuprofen, a major NSAID, for 6 and 24 h. Transcription of eicosanoid-related genes (pla2, cox, pgd synthase, pgd2r2, ltb4dh, and lox) was analyzed by qPCR, eicosanoids (arachidonic acid, prostaglandin F2, dihydroxy prostaglandin F2, and 5-hydroxyeicosatetraenoate) were quantified by multiple reaction monitoring, and enzyme-linked immunosorbent assay was used to determine protein levels of arachidonic acid and prostaglandin E2 (PGE2). After 6 h of exposure, transcription of the pla2 and cox genes was downregulated. In addition, the whole-body level of arachidonic acid, an upstream of COX pathway, increased by over 1.5-fold. The levels of PGE2, a downstream of COX pathway, decreased after 24 h of exposure. According to our results, it is expected that the eicosanoid pathway might be conserved in D. magna, at least partially. This indicates the plausibility of D. magna as an alternative model for the screening of new drugs or chemical toxicity.
Collapse
Affiliation(s)
- Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, the Republic of Korea
| | - Gun Tae Jung
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul 02453, the Republic of Korea
| | - Mina Cho
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, the Republic of Korea
| | - Jae Won Lee
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, the Republic of Korea
| | - Kojo Eghan
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, the Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, the Republic of Korea
| | - Jieon Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, the Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, the Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, the Republic of Korea
| | - Kwang Pyo Kim
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul 02453, the Republic of Korea; Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, the Republic of Korea.
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, the Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, the Republic of Korea.
| |
Collapse
|
23
|
Silva ICA, Azevedo LS, Castro AHF, Farias KDS, Zanuncio VSS, Silva DB, Lima LARDS. Chemical profile, antioxidant potential and toxicity of Smilax brasiliensis Sprengel (Smilacaceae) stems. Food Res Int 2023; 168:112781. [PMID: 37120225 DOI: 10.1016/j.foodres.2023.112781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/17/2023] [Accepted: 03/26/2023] [Indexed: 04/05/2023]
Abstract
Smilax brasiliensis Sprengel is a monocotyledon of the Smilacaceae family, native to the Brazilian Cerrado, popularly known as "salsaparrilha" or "japecanga". In this study, the ethanol extract (EE) and the hexane (HEXF), dichloromethane (DCMF), ethyl acetate (ACF), and hydroethanol (HEF) fractions of the stems were obtained. The chemical composition was determined, the contents of phenolic compounds and flavonoids were quantified, and the antioxidant potential and the cytotoxic effect on Artemia salina were evaluated. Fatty acid esters, hydrocarbons, and phytosterols were identified in the HEXF analyzed by gas chromatography - mass spectrometry (GC-MS). The EE and DCMF, ACF, and HEF were analyzed by liquid chromatography coupled to a diode array detector and mass spectrometer (LC-DAD-MS), and the identified constituents included glycosylated (rutin, 3-O-β-galactopyranosyl quercetin, 3-O-β-glucopyranosyl quercetin, O-deoxyhexosyl-hexosyl quercetin, O-deoxyhexosyl-hexosyl kaempferol, O-deoxyhexosyl-hexosyl O-methyl quercetin, and others), and non-glycosylated (quercetin) flavonoids, phenylpropanoids (3-O-E-caffeoyl quinic acid, 5-O-E-caffeoyl quinic acid, O-caffeoyl shikimic acid, and others), neolignan, steroidal saponin (dioscin), and N-feruloyltyramine. The EE, DCMF, and ACF showed high total contents of phenolic compounds (112.99, 175.71, and 524.02 µg of GAE/mg, respectively), and in the ACF and DCMF a great content of flavonoids was also quantified (50.08 and 31.49 µg of QE/mg, respectively). The EE, DCMF, ACF, and HEF exhibited great antioxidant potential by DPPH (IC50 1.71 - 32.83 µg/mL) and FRAP (IC50 0.63 - 6,71 µg/mL) assays. A maximum cytotoxic activity on A. salina of 60% was observed for the DCMF (LC50 = 856.17 µg/mL). This study contributes to the phytochemical study of S. brasiliensis since these compounds were identified for the first time in the stems of this species. The S. brasiliensis stems demonstrated to be a rich source of polyphenols compounds and exhibited high antioxidant potential without toxicity. Thus, extract and fractions obtained from the S. brasiliensis stems can be used in food supplements or as natural antioxidants in the food industry.
Collapse
Affiliation(s)
- Izabela Caputo Assis Silva
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Rua Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| | - Lucas Santos Azevedo
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Rua Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| | - Ana Hortência Fonsêca Castro
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Rua Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| | - Katyuce de Souza Farias
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Av. Costa e Silva, Pioneiros, 79070-900, Campo Grande, MS, Brazil
| | - Vanessa Samúdio Santos Zanuncio
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Av. Costa e Silva, Pioneiros, 79070-900, Campo Grande, MS, Brazil
| | - Denise Brentan Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Cidade Universitária, Av. Costa e Silva, Pioneiros, 79070-900, Campo Grande, MS, Brazil
| | - Luciana Alves Rodrigues Dos Santos Lima
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Rua Sebastião Gonçalves Coelho, 400, Chanadour, 35501-296, Divinópolis, MG, Brazil.
| |
Collapse
|
24
|
Schietgat L, Cuissart B, De Grave K, Efthymiadis K, Bureau R, Crémilleux B, Ramon J, Lepailleur A. Automated detection of toxicophores and prediction of mutagenicity using PMCSFG algorithm. Mol Inform 2023; 42:e2200232. [PMID: 36529710 DOI: 10.1002/minf.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022]
Abstract
Maximum common substructures (MCS) have received a lot of attention in the chemoinformatics community. They are typically used as a similarity measure between molecules, showing high predictive performance when used in classification tasks, while being easily explainable substructures. In the present work, we applied the Pairwise Maximum Common Subgraph Feature Generation (PMCSFG) algorithm to automatically detect toxicophores (structural alerts) and to compute fingerprints based on MCS. We present a comparison between our MCS-based fingerprints and 12 well-known chemical fingerprints when used as features in machine learning models. We provide an experimental evaluation and discuss the usefulness of the different methods on mutagenicity data. The features generated by the MCS method have a state-of-the-art performance when predicting mutagenicity, while they are more interpretable than the traditional chemical fingerprints.
Collapse
Affiliation(s)
- Leander Schietgat
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussel, Belgium.,Department of Computer Science, KU Leuven, Leuven, Belgium
| | - Bertrand Cuissart
- Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, UNICAEN, ENSICAEN, CNRS - UMR GREYC, Normandie Univ., Caen, France
| | | | | | - Ronan Bureau
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, UNICAEN, CERMN, Normandie Univ., Caen, France
| | - Bruno Crémilleux
- Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, UNICAEN, ENSICAEN, CNRS - UMR GREYC, Normandie Univ., Caen, France
| | - Jan Ramon
- INRIA Lille Nord Europe, Lille, France
| | - Alban Lepailleur
- Centre d'Etudes et de Recherche sur le Médicament de Normandie, UNICAEN, CERMN, Normandie Univ., Caen, France
| |
Collapse
|
25
|
Arslan P. Pyrethroid-induced oxidative stress and biochemical changes in the primary mussel cell cultures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48484-48490. [PMID: 36763268 DOI: 10.1007/s11356-023-25845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Pyrethroids are among the most widely used insecticides. Permethrin and tetramethrin, which are synthetic pyrethroids, are generally used to control insects in agricultural areas and household applications. Due to broad use areas, they contaminate aquatic ecosystems and cause adverse effects to the non-target aquatic organisms. Even though permethrin and tetramethrin are known to alter the oxidative stress parameters of in vivo aquatic animal model organisms, there are limited studies in vitro. This study aims to determine the adverse effects of permethrin and tetramethrin in the in vitro models of freshwater mussels exposed to 1 mg/L, 10 μg/L, 100 ng/L and 1 ng/L concentrations of chemicals for 24 h. For this purpose, reduced glutathione activities were evaluated as biomarkers of the primary gill and digestive gland cell cultures. In both cell cultures, reduced glutathione values increased in the exposed groups, compared to the control group. Even though the results showed that reduced glutathione activities had not significantly changed concentration-dependently (p > 0.05), significant differences were observed in the reduced glutathione activities of both cell cultures (p < 0.05). This study showed that permethrin and tetramethrin had highly toxic effects in the in vitro models of mussels even at low concentrations.
Collapse
Affiliation(s)
- Pınar Arslan
- Department of Biology, Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey.
| |
Collapse
|
26
|
Nishimura Y, Kudoh T, Komada M. Editorial: Model organisms in predictive toxicology 2022. Front Pharmacol 2023; 14:1205945. [PMID: 37201026 PMCID: PMC10185904 DOI: 10.3389/fphar.2023.1205945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- *Correspondence: Yuhei Nishimura,
| | - Tetsuhiro Kudoh
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Munekazu Komada
- Mammalian Embryology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka, Japan
| |
Collapse
|
27
|
Liu JY, Sayes CM. Lung surfactant as a biophysical assay for inhalation toxicology. Curr Res Toxicol 2022; 4:100101. [PMID: 36687216 PMCID: PMC9849875 DOI: 10.1016/j.crtox.2022.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/21/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Lung surfactant (LS) is a mixture of lipids and proteins that forms a thin film at the gas-exchange surfaces of the alveoli. The components and ultrastructure of LS contribute to its biophysical and biochemical functions in the respiratory system, most notably the lowering of surface tension to facilitate breathing mechanics. LS inhibition can be caused by metabolic deficiencies or the intrusion of endogenous or exogenous substances. While LS has been sourced from animals or synthesized for clinical therapeutics, the biofluid mixture has also gained recent interest as a biophysical model for inhalation toxicity. Various methods can be used to evaluate LS function quantitatively or qualitatively after exposure to potential toxicants. A narrative review of the recent literature was conducted. Studies focused whether LS was inhibited by various environmental contaminants, nanoparticles, or manufactured products. A review is also conducted on synthetic lung surfactants (SLS), which have emerged as a promising alternative to conventional animal-sourced LS. The intrinsic advantages and recent advances of SLS make a strong case for more widespread usage in LS-based toxicological assays.
Collapse
Affiliation(s)
- James Y. Liu
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Christie M. Sayes
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
28
|
Adedara IA, Mohammed KA, Da-Silva OF, Salaudeen FA, Gonçalves FL, Rosemberg DB, Aschner M, Rocha JBT, Farombi EO. Utility of cockroach as a model organism in the assessment of toxicological impacts of environmental pollutants. ENVIRONMENTAL ADVANCES 2022; 8:100195. [PMID: 35992224 PMCID: PMC9390120 DOI: 10.1016/j.envadv.2022.100195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Environmental pollution is a global concern because of its associated risks to human health and ecosystem. The bio-monitoring of environmental health has attracted much attention in recent years and efforts to minimize environmental contamination as well as to delineate toxicological mechanisms related to toxic exposure are essential to improve the health conditions of both humans and animals. This review aims to substantiate the need and advantages in utilizing cockroaches as a complementary, non-mammalian model to further understand the noxious impact of environmental contaminants on humans and animals. We discuss recent advances in neurotoxicology, immunotoxicology, reproductive and developmental toxicology, environmental forensic entomotoxicology, and environmental toxicology that corroborate the utility of the cockroach (Periplaneta americana, Blaptica dubia, Blattella germanica and Nauphoeta cinerea) in addressing toxicological mechanisms as well as a sensor of environmental pollution. Indeed, recent improvements in behavioural assessment and the detection of potential biomarkers allow for the recognition of phenotypic alterations in cockroaches following exposure to toxic chemicals namely saxitoxin, methylmercury, polychlorinated biphenyls, electromagnetic fields, pharmaceuticals, polycyclic aromatic hydrocarbon, chemical warfare agents and nanoparticles. The review provides a state-of-the-art update on the current utility of cockroach models in various aspects of toxicology as well as discusses the potential limitations and future perspectives.
Collapse
Affiliation(s)
- Isaac A. Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
- Corresponding author. (I.A. Adedara)
| | - Khadija A. Mohammed
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwatobiloba F. Da-Silva
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Faoziyat A. Salaudeen
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Falco L.S. Gonçalves
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Denis B. Rosemberg
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology; Albert Einstein College of Medicine Forchheimer 209; 1300 Morris Park Avenue, Bronx, NY 10461, U.S.A
| | - Joao B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|