1
|
Bubik A, Frangež R, Žužek MC, Gutiérrez-Aguirre I, Lah TT, Sedmak B. Cyanobacterial Cyclic Peptides Can Disrupt Cytoskeleton Organization in Human Astrocytes-A Contribution to the Understanding of the Systemic Toxicity of Cyanotoxins. Toxins (Basel) 2024; 16:374. [PMID: 39330832 PMCID: PMC11436104 DOI: 10.3390/toxins16090374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
The systemic toxicity of cyclic peptides produced by cyanobacteria (CCPs) is not yet completely understood. Apart from the most known damages to the liver and kidneys, symptoms of their neurotoxicity have also been reported. Hepatotoxic CCPs, like microcystins, as well as non-hepatotoxic anabaenopeptins and planktopeptins, all exhibit cytotoxic and cytostatic effects on mammalian cells. However, responses of different cell types to CCPs depend on their specific modes of interaction with cell membranes. This study demonstrates that non-hepatotoxic planktopeptin BL1125 and anabaenopeptins B and F, at concentrations up to 10 µM, affect normal and tumor human astrocytes (NHA and U87-GM) in vitro by their almost immediate insertion into the lipid monolayer. Like microcystin-LR (up to 1 µM), they inhibit Ser/Thr phosphatases and reorganize cytoskeletal elements, with modest effects on their gene expression. Based on the observed effects on intermediate filaments and intermediate filament linkage elements, their direct or indirect influence on tubulin cytoskeletons via post-translational modifications, we conclude that the basic mechanism of CCP toxicities is the induction of inter- and intracellular communication failure. The assessed inhibitory activity on Ser/Thr phosphatases is also crucial since the signal transduction cascades are modulated by phosphorylation/dephosphorylation processes.
Collapse
Affiliation(s)
- Anja Bubik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia
- Faculty of Environmental Protection, Trg mladosti 7, SI-3320 Velenje, Slovenia
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Monika C Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia
| | - Tamara T Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia
| | - Bojan Sedmak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 121, SI-1000 Ljubljana, Slovenia
- Faculty of Environmental Protection, Trg mladosti 7, SI-3320 Velenje, Slovenia
| |
Collapse
|
2
|
Jaeger-Honz S, Klein K, Schreiber F. Systematic analysis, aggregation and visualisation of interaction fingerprints for molecular dynamics simulation data. J Cheminform 2024; 16:28. [PMID: 38475907 DOI: 10.1186/s13321-024-00822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Computational methods such as molecular docking or molecular dynamics (MD) simulations have been developed to simulate and explore the interactions between biomolecules. However, the interactions obtained using these methods are difficult to analyse and evaluate. Interaction fingerprints (IFPs) have been proposed to derive interactions from static 3D coordinates and transform them into 1D bit vectors. More recently, the concept has been applied to derive IFPs from MD simulations, which adds a layer of complexity by adding the temporal motion and dynamics of a system. As a result, many IFPs are obtained from one MD simulation, resulting in a large number of individual IFPs that are difficult to analyse compared to IFPs derived from static 3D structures. Scientific contribution: We introduce a new method to systematically aggregate IFPs derived from MD simulation data. In addition, we propose visualisations to effectively analyse and compare IFPs derived from MD simulation data to account for the temporal evolution of interactions and to compare IFPs across different MD simulations. This has been implemented as a freely available Python library and can therefore be easily adopted by other researchers and to different MD simulation datasets.
Collapse
Affiliation(s)
- Sabrina Jaeger-Honz
- Department of Computer and Information Science, University of Konstanz, Universitätsstrasse 10, 78464, Constance, Germany.
| | - Karsten Klein
- Department of Computer and Information Science, University of Konstanz, Universitätsstrasse 10, 78464, Constance, Germany
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Universitätsstrasse 10, 78464, Constance, Germany
- Faculty of Information Technology, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
3
|
Takumi S, Tomioka M, Yunoki Y, Eto R, Komatsu Y, Shiozaki K, Komatsu M. Microcystin-LR-induced epithelial-mesenchymal transition-like cells acquire resistance to multi-toxins. Toxicon 2024; 238:107592. [PMID: 38163460 DOI: 10.1016/j.toxicon.2023.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The protein phosphatase inhibitor microcystin-LR (MC-LR), a hepatocyte-selective cyanotoxin, induces phenotypic changes in HEK293 OATP1B3-expressing (HEK293-OATP1B3) cells, which include cytoskeletal reorganization (HEK293-OATP1B3-AD) and anoikis resistance (HEK293-OATP1B3-FL) transformed cells, respectively. These cells acquire resistance to MC-LR and partial epithelial-mesenchymal transition (EMT) characteristics. In cancer cells, EMT is generally involved in multi-drug resistance. Here, we focused on the multi-drug resistance of HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells. The MTT assay and immunoblotting were conducted to examine the responses of HEK293-OATP1B3, HEK293-OATP1B3-AD, and HEK293-OATP1B3-FL cells to multiple toxins and drugs that function as substrates for OATP1B3, including MC-LR, nodularin (Nod), okadaic acid (OA), and cisplatin (CDDP). HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells were more resistant to MC-LR, Nod, and OA than HEK293-OATP1B3 cells. Conversely, the three cell types were equivalently sensitive to CDDP. By using protein phosphatase assay, the reduction of the inhibitory effect of MC-LR and Nod on phosphatase activity might be one reason for the resistance to MC-LR and Nod in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells. Furthermore, the parental HEK293-OATP1B3 cells showed enhanced p53 phosphorylation and stabilization after MC-LR exposure, while p53 phosphorylation was attenuated in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells. Moreover, in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells, AKT phosphorylation was higher than that of the parental HEK293-OATP1B3 cell line. These results suggest that the multi-toxin resistance observed in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells is associated with AKT activation and p53 inactivation.
Collapse
Affiliation(s)
- Shota Takumi
- Division of Food and Chemical Biology, Faculty of Fisheries, Kagoshima University, 890-0056, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 890-8580, Kagoshima, Japan
| | - Masaru Tomioka
- Division of Food and Chemical Biology, Faculty of Fisheries, Kagoshima University, 890-0056, Kagoshima, Japan
| | - Yasunari Yunoki
- Division of Food and Chemical Biology, Faculty of Fisheries, Kagoshima University, 890-0056, Kagoshima, Japan
| | - Risa Eto
- Division of Food and Chemical Biology, Faculty of Fisheries, Kagoshima University, 890-0056, Kagoshima, Japan
| | - Yumiko Komatsu
- Department of Domestic Science, Kagoshima Women's College, 890-8565, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- Division of Food and Chemical Biology, Faculty of Fisheries, Kagoshima University, 890-0056, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 890-8580, Kagoshima, Japan
| | - Masaharu Komatsu
- Division of Food and Chemical Biology, Faculty of Fisheries, Kagoshima University, 890-0056, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 890-8580, Kagoshima, Japan.
| |
Collapse
|
4
|
Ling J, Niu Y, Liu D, Li R, Ruan Y, Li X. Inhibition of algal blooms by residual antibiotics in aquatic environments: Design, screening, and validation of antibiotic alternatives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167914. [PMID: 37858809 DOI: 10.1016/j.scitotenv.2023.167914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Water blooms frequently appear in the aquatic environment with global warming. However, traditional methods for treating water bloom usually require the addition of algaecides, which may lead to secondary environmental pollution problems in the water environment. To solve this problem, researchers have initiated efforts to harness pre-existing chemical substances within aquatic environments to regulate algal blooms, thereby pioneering novel avenues for water body management. Therefore, an integrated approach involving molecular docking, molecular dynamics simulations, three-dimensional quantitative structure-activity relationship (3D-QSAR), and toxicokinetics methods were utilized for the molecular modification of fluoroquinolone antibiotics, to design and screen fluoroquinolone substitutes with improved toxicity of cyanobacteria and green algae, functionality, and environmental friendliness. A total of 143 fluoroquinolone alternatives were designed in this study, and lomefloxacin-6 (LOM6) was found as the optimum alternative to lomefloxacin (LOM), with increased toxicity to cyanobacteria and green algae by 31 % and 72 %. Molecular docking of LOM before and after modification with seven other cyanobacterial and green algal photosynthetic proteins revealed that LOM6 exhibited varying degrees of increased toxicity towards 6 of these photosynthetic proteins, of which 2J96 protein increased the most (136.25 %). It shows that the residual LOM6 in the water environment has a certain inhibitory effect on the algae bloom. In addition, results showed that LOM6 had synergistic toxic effects on cyanobacteria and green algae with other pollutants residual in the aqueous environment, such as trichloroethyl phosphate, triethyl phosphate, perfluorononanoic acid, perfluorooctanoic acid. This indicates that LOM6 has better algal removal effectiveness in aqueous environments where organophosphate flame retardants and perfluorinated compounds exist together. In this paper, a novel method was developed to remove cyanobacteria and green algae in water environment and reduce the secondary pollution through theoretical simulation, which provides theoretical support for the control of water blooms.
Collapse
Affiliation(s)
- Jianglong Ling
- School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Yong Niu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Di Liu
- Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rui Li
- Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Xixi Li
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's A1B 3X5, Canada.
| |
Collapse
|
5
|
Mir TUG, Wani AK, Akhtar N, Katoch V, Shukla S, Kadam US, Hong JC. Advancing biological investigations using portable sensors for detection of sensitive samples. Heliyon 2023; 9:e22679. [PMID: 38089995 PMCID: PMC10711145 DOI: 10.1016/j.heliyon.2023.e22679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024] Open
Abstract
Portable biosensors are emerged as powerful diagnostic tools for analyzing intricately complex biological samples. These biosensors offer sensitive detection capabilities by utilizing biomolecules such as proteins, nucleic acids, microbes or microbial products, antibodies, and enzymes. Their speed, accuracy, stability, specificity, and low cost make them indispensable in forensic investigations and criminal cases. Notably, portable biosensors have been developed to rapidly detect toxins, poisons, body fluids, and explosives; they have proven invaluable in forensic examinations of suspected samples, generating efficient results that enable effective and fair trials. One of the key advantages of portable biosensors is their ability to provide sensitive and non-destructive detection of forensic samples without requiring extensive sample preparation, thereby reducing the possibility of false results. This comprehensive review provides an overview of the current advancements in portable biosensors for the detection of sensitive materials, highlighting their significance in advancing investigations and enhancing sensitive sample detection capabilities.
Collapse
Affiliation(s)
- Tahir ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- State Forensic Science Laboratory, Srinagar, Jammu and Kashmir, 190001, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vaidehi Katoch
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Saurabh Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
6
|
Zhu L, Cao P, Yang S, Lin F, Wang J. Prolonged exposure to environmental levels of microcystin-LR triggers ferroptosis in brain via the activation of Erk/MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115651. [PMID: 37913581 DOI: 10.1016/j.ecoenv.2023.115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
While existing research has illuminated the environmental dangers and neurotoxic effects of MC-LR exposure, the molecular underpinnings of brain damage from environmentally-relevant MC-LR exposure remain elusive. Employing a comprehensive approach involving RNA sequencing, histopathological examination, and biochemical analyses, we discovered genes differentially expressed and enriched in the ferroptosis pathway. This finding was associated with mitochondrial structural impairment and downregulation of Gpx4 and Slc7a11 in mice brains subjected to low-dose MC-LR over 180 days. Mirroring these findings, we noted reduced cell viability and GSH/GSSH ratio, along with an increased ROS level, in HT-22, BV-2, and bEnd.3 cells following MC-LR exposure. Intriguingly, MC-LR also amplified phospho-Erk levels in both in vivo and in vitro settings, and the effects were mitigated by treatment with PD98059, an Erk inhibitor. Taken together, our findings implicate the activation of the Erk/MAPK signaling pathway in MC-LR-induced ferroptosis, shedding valuable light on the neurotoxic mechanisms of MC-LR. These insights could guide future strategies to prevent MC-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingyun Zhu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pingping Cao
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Suisui Yang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Lin
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Cunningham BR, Wharton RE, Lee C, Mojica MA, Krajewski LC, Gordon SC, Schaefer AM, Johnson RC, Hamelin EI. Measurement of Microcystin Activity in Human Plasma Using Immunocapture and Protein Phosphatase Inhibition Assay. Toxins (Basel) 2022; 14:toxins14110813. [PMID: 36422987 PMCID: PMC9697287 DOI: 10.3390/toxins14110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Microcystins are toxic chemicals generated by certain freshwater cyanobacteria. These chemicals can accumulate to dangerous levels during harmful algal blooms. When exposed to microcystins, humans are at risk of hepatic injury, including liver failure. Here, we describe a method to detect microcystins in human plasma by using immunocapture followed by a protein phosphatase inhibition assay. At least 279 microcystins have been identified, and most of these compounds share a common amino acid, the Adda side chain. We targeted this Adda side chain using a commercial antibody and extracted microcystins from human samples for screening and analysis. To quantitate the extracted microcystins, we fortified plasma with microcystin-LR, one of the most well-studied, commonly detected, and toxic microcystin congeners. The quantitation range for the detection of microcystin in human plasma using this method is 0.030-0.50 ng/mL microcystin-LR equivalents. This method detects unconjugated and conjugated forms (cysteine and glutathione) of microcystins. Quality control sample accuracies varied between 98.9% and 114%, with a precision of 7.18-15.8%. Finally, we evaluated plasma samples from a community health surveillance project of Florida residents living or working near harmful algae blooms.
Collapse
Affiliation(s)
- Brady R. Cunningham
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Rebekah E. Wharton
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Christine Lee
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Mike A. Mojica
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Logan C. Krajewski
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Shirley C. Gordon
- Christine E. Lynn College of Nursing, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | - Rudolph C. Johnson
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Elizabeth I. Hamelin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
- Correspondence:
| |
Collapse
|
8
|
Bouteiller P, Lance E, Guérin T, Biré R. Analysis of Total-Forms of Cyanotoxins Microcystins in Biological Matrices: A Methodological Review. Toxins (Basel) 2022; 14:toxins14080550. [PMID: 36006212 PMCID: PMC9416067 DOI: 10.3390/toxins14080550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Microcystins (MCs) are cyclic heptapeptidic toxins produced by many cyanobacteria. Microcystins can be accumulated in various matrices in two forms: a free cellular fraction and a covalently protein-bound form. To detect and quantify the concentration of microcystins, a panel of techniques on various matrices (water, sediments, and animal tissues) is available. The analysis of MCs can concern the free or the total (free plus covalently bound) fractions. Free-form analyses of MCs are the most common and easiest to detect, whereas total-form analyses are much less frequent and more complex to achieve. The objective of this review is to summarize the different methods of extraction and analysis that have been developed for total forms. Four extraction methods were identified: MMPB (2-methyl-3-methoxy-4-phenylbutyric acid) method, deconjugation at basic pH, ozonolysis, and laser irradiation desorption. The study of the bibliography on the methods of extraction and analysis of the total forms of MCs showed that the reference method for the subject remains the MMPB method even if alternative methods and, in particular, deconjugation at basic pH, showed results encouraging the continuation of the methodological development on different matrices and on naturally-contaminated samples.
Collapse
Affiliation(s)
- Pierre Bouteiller
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039, CEDEX 2, F-51687 Reims, France
- Laboratory for Food Safety, ANSES, F-94701 Maisons-Alfort, France
| | - Emilie Lance
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039, CEDEX 2, F-51687 Reims, France
- UMR MNHN/CNRS MCAM, Muséum National d’Histoire Naturelle, F-75005 Paris, France
- Correspondence:
| | - Thierry Guérin
- Strategy and Programs Department, ANSES, F-94701 Maisons-Alfort, France
| | - Ronel Biré
- Laboratory for Food Safety, ANSES, F-94701 Maisons-Alfort, France
| |
Collapse
|
9
|
Perceived Intensification in Harmful Algal Blooms Is a Wave of Cumulative Threat to the Aquatic Ecosystems. BIOLOGY 2022; 11:biology11060852. [PMID: 35741373 PMCID: PMC9220063 DOI: 10.3390/biology11060852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary Harmful algal blooms (HABs) are a serious threat to aquatic environments. The intensive expansion of HABs across the world is a warning signal of environmental deterioration. Global climatic change enforced variations in environmental factors causing stressed environments in aquatic ecosystems that favor the occurrence, distribution, and persistence of HABs. Perceived intensification in HABs increases toxin production, affecting the ecological quality as well as serious consequences on organisms including humans. This review outlines the causes and impacts of harmful algal blooms, including algal toxicity, grazing defense, management, control measures, emerging technologies, and their limitations for controlling HABs in aquatic ecosystems. Abstract Aquatic pollution is considered a major threat to sustainable development across the world, and deterioration of aquatic ecosystems is caused usually by harmful algal blooms (HABs). In recent times, HABs have gained attention from scientists to better understand these phenomena given that these blooms are increasing in intensity and distribution with considerable impacts on aquatic ecosystems. Many exogenous factors such as variations in climatic patterns, eutrophication, wind blowing, dust storms, and upwelling of water currents form these blooms. Globally, the HAB formation is increasing the toxicity in the natural water sources, ultimately leading the deleterious and hazardous effects on the aquatic fauna and flora. This review summarizes the types of HABs with their potential effects, toxicity, grazing defense, human health impacts, management, and control of these harmful entities. This review offers a systematic approach towards the understanding of HABs, eliciting to rethink the increasing threat caused by HABs in aquatic ecosystems across the world. Therefore, to mitigate this increasing threat to aquatic environments, advanced scientific research in ecology and environmental sciences should be prioritized.
Collapse
|
10
|
Sundaravadivelu D, Sanan TT, Venkatapathy R, Mash H, Tettenhorst D, DAnglada L, Frey S, Tatters AO, Lazorchak J. Determination of Cyanotoxins and Prymnesins in Water, Fish Tissue, and Other Matrices: A Review. Toxins (Basel) 2022; 14:toxins14030213. [PMID: 35324710 PMCID: PMC8949488 DOI: 10.3390/toxins14030213] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
Harmful algal blooms (HABs) and their toxins are a significant and continuing threat to aquatic life in freshwater, estuarine, and coastal water ecosystems. Scientific understanding of the impacts of HABs on aquatic ecosystems has been hampered, in part, by limitations in the methodologies to measure cyanotoxins in complex matrices. This literature review discusses the methodologies currently used to measure the most commonly found freshwater cyanotoxins and prymnesins in various matrices and to assess their advantages and limitations. Identifying and quantifying cyanotoxins in surface waters, fish tissue, organs, and other matrices are crucial for risk assessment and for ensuring quality of food and water for consumption and recreational uses. This paper also summarizes currently available tissue extraction, preparation, and detection methods mentioned in previous studies that have quantified toxins in complex matrices. The structural diversity and complexity of many cyanobacterial and algal metabolites further impede accurate quantitation and structural confirmation for various cyanotoxins. Liquid chromatography–triple quadrupole mass spectrometer (LC–MS/MS) to enhance the sensitivity and selectivity of toxin analysis has become an essential tool for cyanotoxin detection and can potentially be used for the concurrent analysis of multiple toxins.
Collapse
Affiliation(s)
| | - Toby T. Sanan
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, U.S. EPA, Cincinnati, OH 45268, USA; (H.M.); (D.T.)
- Correspondence: (T.T.S.); (J.L.); Tel.: +1-513-569-7076 (J.L.)
| | | | - Heath Mash
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, U.S. EPA, Cincinnati, OH 45268, USA; (H.M.); (D.T.)
| | - Dan Tettenhorst
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, U.S. EPA, Cincinnati, OH 45268, USA; (H.M.); (D.T.)
| | - Lesley DAnglada
- Office of Water, Science and Technology, U.S. EPA, Washington, DC 20004, USA; (L.D.); (S.F.)
| | - Sharon Frey
- Office of Water, Science and Technology, U.S. EPA, Washington, DC 20004, USA; (L.D.); (S.F.)
| | - Avery O. Tatters
- Center for Environmental Measurement and Modeling, U.S. EPA, Gulf Breeze, FL 32561, USA;
| | - James Lazorchak
- Center for Environmental Measurement and Modeling, U.S. EPA, Cincinnati, OH 45268, USA
- Correspondence: (T.T.S.); (J.L.); Tel.: +1-513-569-7076 (J.L.)
| |
Collapse
|
11
|
Jaeger-Honz S, Nitschke J, Altaner S, Klein K, Dietrich DR, Schreiber F. Investigation of microcystin conformation and binding towards PPP1 by molecular dynamics simulation. Chem Biol Interact 2022; 351:109766. [PMID: 34861245 DOI: 10.1016/j.cbi.2021.109766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022]
Abstract
Microcystins (MC) are a group of structurally similar cyanotoxins with currently 279 described structural variants. Human exposure is frequent by consumption of contaminated water, food or food supplements. MC can result in serious intoxications, commensurate with ensuing pathology in various organs or in rare cases even mortality. The current WHO risk assessment primarily considers MC-LR, while all other structural variants are treated as equivalent to MC-LR, despite that current data strongly suggest that MC-LR is not the most toxic MC, and toxicity can be very different for MC congeners. To investigate and analyse binding and conformation of different MC congeners, we applied for the first time Molecular Dynamics (MD) simulation to four MC congeners (MC-LR, MC-LF, [Enantio-Adda5]MC-LF, [β-D-Asp3,Dhb7]MC-RR). We could show that ser/thr protein phosphatase 1 is stable in all MD simulations and that MC-LR backbone adopts to a second conformation in solvent MD simulation, which was previously unknown. We could also show that MC congeners can adopt to different backbone conformation when simulated in solvent or in complex with ser/thr protein phosphatase 1 and differ in their binding behaviour. Our findings suggest that MD Simulation of different MC congeners aid in understanding structural differences and binding of this group of structurally similar cyanotoxins.
Collapse
Affiliation(s)
- Sabrina Jaeger-Honz
- Department of Computer and Information Science, University of Konstanz, Germany
| | - Jahn Nitschke
- Department of Biology, University of Konstanz, Germany
| | | | - Karsten Klein
- Department of Computer and Information Science, University of Konstanz, Germany
| | | | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Germany; Faculty of Information Technology, Monash University, Australia.
| |
Collapse
|
12
|
Madany P, Xia C, Bhattacharjee L, Khan N, Li R, Liu J. Antibacterial activity of γFe 2 O 3 /TiO 2 nanoparticles on toxic cyanobacteria from a lake in Southern Illinois. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2807-2818. [PMID: 34520086 DOI: 10.1002/wer.1640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Frequent outbreaks of harmful algal blooms (HABs) have brought adverse impacts on human health, economic viability, and recreational activities in many communities in the United States. Cyanobacteria (or blue-green algae) blooms are the most common type of HABs in surface water. Current bactericides for controlling the blooms are disadvantageous due to the recycling difficulty. In this study, an innovative magnetic nanomaterial-γFe2 O3 /TiO2 nanoparticle-was used to inactivate toxic cyanobacteria species found in a lake in Southern Illinois that frequently experienced HABs. Cyanotoxin genes of mcy, nda, cyr, and sxt were used for targeting microcystin-, nodularin-, cylindrospermopsin-, and saxitoxin-producing cyanobacteria, respectively, by quantitative polymerase chain reaction (PCR) method. It was found that the concentration of chlorophyll a presents a strong correlation (R2 = 0.6024) with the gene copy obtained from 16S rRNA targeted for all cyanobacteria, but not with that from individual toxigenic cyanobacteria. The inactivation efficiencies of the nanomaterials under visible light were as high as 5-log and 1-log for cyanobacteria species containing mcyE/ndaF and sxtA genes, respectively, an improvement over the treatment under darkness. These nanomaterials can be recycled by their magnetic properties for reuse. Communities susceptible to HAB outbreaks are expected to benefit from the developed method for mitigating the blooms. PRACTITIONER POINTS: Lab-made γFe2 O3 /TiO2 nanoparticles can be used to inactivate microcystin/nodularin- and saxitoxin-producing cyanobacteria species. qPCR method can be used for targeting toxic cyanobacteria; Chl a cannot be used as a standalone indicator for HABs. Better inactivation efficiency under visible light indicated possible application of the technology under sunlight for HAB mitigation from surface water.
Collapse
Affiliation(s)
- Peerzada Madany
- School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Chunjie Xia
- School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Linkon Bhattacharjee
- School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Nafeesa Khan
- School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Ruopu Li
- School of Earth Systems and Sustainability, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Jia Liu
- School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University Carbondale, Carbondale, Illinois, USA
- Materials Technology Center, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| |
Collapse
|
13
|
Rout PR, Shahid MK, Dash RR, Bhunia P, Liu D, Varjani S, Zhang TC, Surampalli RY. Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113246. [PMID: 34271353 DOI: 10.1016/j.jenvman.2021.113246] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/13/2021] [Accepted: 07/07/2021] [Indexed: 05/06/2023]
Abstract
Nitrogen and phosphorous are indispensable for growth and vitality of living beings, hence termed as nutrients. However, discharge of nutrient rich waste streams to aquatic ecosystems results in eutrophication. Therefore, nutrient removal from wastewater is crucial to meet the strict nutrient discharge standards. Similarly, nutrient recovery from waste streams is vital for the realization of a circular economy by avoiding the depletion of finite resources. This manuscript presents analysis of existing information on different conventional as well as advanced treatment technologies that are commonly practiced for the removal of nutrient from domestic wastewater. First, the information pertaining to the biological nutrient removal technologies are discussed. Second, onsite passive nutrient removal technologies are reviewed comprehensively. Third, advanced nutrient removal technologies are summarized briefly. The mechanisms, advantages, and disadvantages of these technologies along with their efficiencies and limitations are discussed. An integrated approach for simultaneous nutrient removal and recovery is recommended. The fifth section of the review highlights bottlenecks and potential solutions for successful implementation of the nutrient removal technologies. It is anticipated that the review will offer an instructive overview of the progress in nutrient removal and recovery technologies and will illustrate necessity of further investigations for development of efficient nutrient removal and recovery processes.
Collapse
Affiliation(s)
- Prangya Ranjan Rout
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Muhammad Kashif Shahid
- Department of Environmental Engineering, Chungnam National University, Republic of Korea
| | - Rajesh Roshan Dash
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, India
| | - Puspendu Bhunia
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, India
| | - Dezhao Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India.
| | - Tian C Zhang
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Omaha, NE, 68182, USA
| | - Rao Y Surampalli
- Global Institute for Energy, Environment and Sustainability, Kansas, USA
| |
Collapse
|
14
|
Saleh N, Al-Jassabi S, Eid AH, Nau WM. Cucurbituril Ameliorates Liver Damage Induced by Microcystis aeruginosa in a Mouse Model. Front Chem 2021; 9:660927. [PMID: 33937198 PMCID: PMC8079933 DOI: 10.3389/fchem.2021.660927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Microcystis aeruginosa is a cyanobacterium that produces a variety of cyclic heptapeptide toxins in freshwater. The protective effects of the macromolecular container cucurbit[7]uril (CB7) were evaluated using mouse models of cyanotoxin-induced liver damage. Biochemical analysis of liver function was performed to gauge the extent of liver damage after exposure to cyanobacterial crude extract [CCE; LD50 = 35 mg/kg body weight; intraperitoneal (i.p.)] in the absence or presence of CB7 (35 mg/kg body weight, i.p.). CCE injection resulted in liver enlargement, potentiated the activities of alanine aminotransferase (ALT) and glutathione S-transferase (GST), increased lipid peroxidation (LPO), and reduced protein phosphatase 1 (PP1) activity. CCE-induced liver enlargement, ALT and GST activities, and LPO were significantly reduced when CB7 was coadministered. Moreover, the CCE-induced decline of PP1 activity was also ameliorated in the presence of CB7. Treatment with CB7 alone did not affect liver function, which exhibited a dose tolerance of 100 mg/kg body wt. Overall, our results illustrated that the addition of CB7 significantly reduced CCE-induced hepatotoxicity (P < 0.05).
Collapse
Affiliation(s)
- Na'il Saleh
- Department of Chemistry, College of Science, United Arab Emirates (UAE) University, Al Ain, United Arab Emirates
| | - Saad Al-Jassabi
- Faculty of Medicine, Unishams University, Kuala Ketil, Malaysia
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Werner M Nau
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
15
|
MYONECROSIS AND DEATH DUE TO PRESUMED MICROCYSTIN TOXICOSIS IN AMERICAN WHITE PELICANS ( PELECANUS ERYTHRORHYNCOS). J Zoo Wildl Med 2020; 51:407-415. [PMID: 32549572 DOI: 10.1638/2019-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2020] [Indexed: 11/21/2022] Open
Abstract
Over a period of 5 mo, seven out of eight American white pelicans (Pelecanus erythrorhynchos) housed on a spring-fed pond at a zoo died or were euthanized. Clinical signs included inability to stand, anorexia, and weight loss. Clinicopathologic findings included heterophilic leukocytosis and elevated creatine kinase and aspartate aminotransferase. Histopathologic findings on all pelicans demonstrated severe, chronic, diffuse rhabdomyofiber degeneration and necrosis, making vitamin E deficiency a differential diagnosis despite routine supplementation. Based on tissue and pond water assays for the cyanobacterial toxin, microcystin, toxicosis is suspected as the inciting cause of death in these cases. We hypothesize that vitamin E exhaustion and resultant rhabdomyodegeneration and cardiomyopathy were sequelae to this toxicosis.
Collapse
|
16
|
Tamele IJ, Vasconcelos V. Microcystin Incidence in the Drinking Water of Mozambique: Challenges for Public Health Protection. Toxins (Basel) 2020; 12:E368. [PMID: 32498435 PMCID: PMC7354522 DOI: 10.3390/toxins12060368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 11/28/2022] Open
Abstract
Microcystins (MCs) are cyanotoxins produced mainly by freshwater cyanobacteria, which constitute a threat to public health due to their negative effects on humans, such as gastroenteritis and related diseases, including death. In Mozambique, where only 50% of the people have access to safe drinking water, this hepatotoxin is not monitored, and consequently, the population may be exposed to MCs. The few studies done in Maputo and Gaza provinces indicated the occurrence of MC-LR, -YR, and -RR at a concentration ranging from 6.83 to 7.78 µg·L-1, which are very high, around 7 times above than the maximum limit (1 µg·L-1) recommended by WHO. The potential MCs-producing in the studied sites are mainly Microcystis species. These data from Mozambique and from surrounding countries (South Africa, Lesotho, Botswana, Malawi, Zambia, and Tanzania) evidence the need to implement an operational monitoring program of MCs in order to reduce or avoid the possible cases of intoxications since the drinking water quality control tests recommended by the Ministry of Health do not include an MC test. To date, no data of water poisoning episodes recorded were associated with MCs presence in the water. However, this might be underestimated due to a lack of monitoring facilities and/or a lack of public health staff trained for recognizing symptoms of MCs intoxication since the presence of high MCs concentration was reported in Maputo and Gaza provinces.
Collapse
Affiliation(s)
- Isidro José Tamele
- CIIMAR/CIMAR—Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal;
- Institute of Biomedical Science Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Department of Chemistry, Faculty of Sciences, Eduardo Mondlane University, Av. Julius Nyerere, n 3453, Campus Principal, Maputo 257, Mozambique
| | - Vitor Vasconcelos
- CIIMAR/CIMAR—Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal;
- Faculty of Science, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
| |
Collapse
|
17
|
Bolotaolo M, Kurobe T, Puschner B, Hammock BG, Hengel MJ, Lesmeister S, Teh SJ. Analysis of Covalently Bound Microcystins in Sediments and Clam Tissue in the Sacramento-San Joaquin River Delta, California, USA. Toxins (Basel) 2020; 12:E178. [PMID: 32183091 PMCID: PMC7150880 DOI: 10.3390/toxins12030178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 11/25/2022] Open
Abstract
Harmful cyanobacterial blooms compromise human and environmental health, mainly due to the cyanotoxins they often produce. Microcystins (MCs) are the most commonly measured group of cyanotoxins and are hepatotoxic, neurotoxic, and cytotoxic. Due to MCs ability to covalently bind to proteins, quantification in complex matrices is difficult. To analyze bound and unbound MCs, analytical methods were optimized for analysis in sediment and clam tissues. A clean up step was incorporated to remove lipids, improving percent yield. This method was then applied to sediment and clam samples collected from the Sacramento-San Joaquin River Delta (Delta) in the spring and fall of 2017. Water samples were also tested for intracellular and extracellular MCs. These analyses were used to quantify the partitioning of MCs among sediment, clams, and water, and to examine whether MCs persist during non-summer months. Toxin analysis revealed that multiple sediment samples collected in the Delta were positive for MCs, with a majority of the positive samples from sites in the San Joaquin River, even while water samples from the same location were below detection limit. These data highlight the importance of analyzing MCs in complex matrices to accurately evaluate environmental risk.
Collapse
Affiliation(s)
- Melissa Bolotaolo
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA; (T.K.); (B.G.H.); (S.J.T.)
| | - Tomofumi Kurobe
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA; (T.K.); (B.G.H.); (S.J.T.)
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA;
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Bruce G Hammock
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA; (T.K.); (B.G.H.); (S.J.T.)
| | - Matt J. Hengel
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA;
| | - Sarah Lesmeister
- California Department of Water Resources, West Sacramento, CA 95814, USA;
| | - Swee J. Teh
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA; (T.K.); (B.G.H.); (S.J.T.)
| |
Collapse
|
18
|
Birbeck JA, Peraino NJ, O’Neill GM, Coady J, Westrick JA. Dhb Microcystins Discovered in USA Using an Online Concentration LC-MS/MS Platform. Toxins (Basel) 2019; 11:E653. [PMID: 31717642 PMCID: PMC6891738 DOI: 10.3390/toxins11110653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 11/16/2022] Open
Abstract
Based on current structural and statistical calculations, thousands of microcystins (MCs) can exist; yet, to date, only 246 MCs were identified and only 12 commercial MC standards are available. Standard mass spectrometry workflows for known and unknown MCs need to be developed and validated for basic and applied harmful algal bloom research to advance. Our investigation focuses on samples taken in the spring of 2018 from an impoundment fed by Oser and Bischoff Reservoirs, Indiana, United States of America (USA). The dominant cyanobacterium found during sampling was Planktothrix agardhii. The goal of our study was to identify and quantify the MCs in the impoundment sample using chemical derivatization and mass spectrometry. Modifying these techniques to use online concentration liquid chromatography tandem mass spectrometry (LC-MS/MS), two untargeted MCs have been identified, [d-Asp3, Dhb7]-MC-LR and [Dhb7]-MC-YR. [Dhb7]-MC-YR is not yet reported in the literature to date, and this was the first reported incidence of Dhb MCs in the United States. Furthermore, it was discovered that the commercially available [d-Asp3]-MC-RR standard was [d-Asp3, Dhb7]-MC-RR. This study highlights a workflow utilizing online concentration LC-MS/MS, high-resolution MS (HRMS), and chemical derivatization to identify isobaric MCs.
Collapse
Affiliation(s)
| | | | | | | | - Judy A. Westrick
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; (J.A.B.); (N.J.P.); (G.M.O.); (J.C.)
| |
Collapse
|
19
|
Loise de Morais Calado S, Esterhuizen-Londt M, Cristina Silva de Assis H, Pflugmacher S. Phytoremediation: green technology for the removal of mixed contaminants of a water supply reservoir. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:372-379. [PMID: 30656959 DOI: 10.1080/15226514.2018.1524843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Iraí Reservoir, a water supply in Brazil, is constantly impacted by anthropogenic activities such as waste inputs from agriculture, hospitals and urbanization, resulting toxic cyanobacterial blooms causing economic, social and environmental problems. This study assessed the concentration of some common contaminants of the Iraí Reservoir, namely paracetamol, diclofenac and microcystin-LR and tested whether a laboratory scale Green Liver System® would serve as a suitable technology to remove these contaminants. Further, the study investigated whether the pollutants caused adverse effects to the macrophytes using catalase as a biomarker for oxidative stress and investigated whether biotransformation (glutathione S-transferase) was a main route for detoxification. Egeria densa, Ceratophyllum demersum and Myriophyllum aquaticum were exposed to a mixture of the three contaminants for 14 days in a concentration range similar to those detected in the reservoir. The plants removed 93% of diclofenac and 100% of MC-LR after 14 days. Paracetamol could not be detected. Catalase and glutathione S-transferase enzyme activities remained unaltered after the 14-day exposure, indicating that the mixture did not cause oxidative stress. The study showed that the aquatic macrophytes used are suitable tools to apply in a Green Liver System® for the remediation of mixed pollutants.
Collapse
Affiliation(s)
| | - Maranda Esterhuizen-Londt
- b Ecotoxicology in an Urban Environment, Ecosystems and Environmental Research Programme, Faculty of Biological and Environmental Sciences , University of Helsinki , Lahti , Finland
| | | | - Stephan Pflugmacher
- b Ecotoxicology in an Urban Environment, Ecosystems and Environmental Research Programme, Faculty of Biological and Environmental Sciences , University of Helsinki , Lahti , Finland
- c Joint Laboratory of Applied Ecotoxicology , Korea Institute of Science and Technology Europe (KIST) , Saarbrücken , Germany
| |
Collapse
|
20
|
Palagama DSW, Baliu-Rodriguez D, Lad A, Levison BS, Kennedy DJ, Haller ST, Westrick J, Hensley K, Isailovic D. Development and applications of solid-phase extraction and liquid chromatography-mass spectrometry methods for quantification of microcystins in urine, plasma, and serum. J Chromatogr A 2018; 1573:66-77. [PMID: 30201162 DOI: 10.1016/j.chroma.2018.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022]
Abstract
The protocols for solid-phase extraction (SPE) of six microcystins (MCs; MC-LR, MC-RR, MC-LA, MC-LF, MC-LW, and MC-YR) from mouse urine, mouse plasma, and human serum are reported. The quantification of those MCs in biofluids was achieved using HPLC-orbitrap-MS in selected-ion monitoring (SIM) mode, and MCs in urine samples were also quantified by ultra-HPLC-triple quadrupole-tandem mass spectrometry (UHPLC-QqQ-MS/MS) in multiple reaction monitoring (MRM) mode. Under optimal conditions, the extraction recoveries of MCs from samples spiked at two different concentrations (1 μg/L and 10 μg/L) ranged from 90.4% to 104.3% with relative standard deviations (RSDs) ≤ 4.7% for mouse urine, 90.4-106.9% with RSDs ≤ 6.3% for mouse plasma, and 90.0-104.8% with RSDs ≤ 5.0% for human serum. Matrix-matched internal standard calibration curves were linear with R2 ≥ 0.9950 for MC-LR, MC-RR and MC-YR, and R2 ≥ 0.9883 for MC-LA, MC-LF, and MC-LW. The limits of quantification (LOQs) in spiked urine samples were ∼0.13 μg/L for MC-LR, MC-RR, and MC-YR, and ∼0.50 μg/L for MC-LA, MC-LF, and MC-LW, while the LOQs in spiked plasma and serum were ∼0.25 μg/L for MC-LR, MC-RR, and MC-YR, and ∼1.00 μg/L for MC-LA, MC-LF, and MC-LW. The developed methods were applied in a proof-of-concept study to quantify urinary and blood concentrations of MC-LR after oral administration to mice. The urine of mice administered 50 μg of MC-LR per kg bodyweight contained on average 1.30 μg/L of MC-LR (n = 8), while mice administered 100 μg of MC-LR per kg bodyweight had average MC-LR concentration of 2.82 μg/L (n = 8). MC-LR was also quantified in the plasma of the same mice. The results showed that increased MC-LR dosage led to larger urinary and plasma MC-LR concentrations and the developed methods were effective for the quantification of MCs in mouse biofluids.
Collapse
Affiliation(s)
- Dilrukshika S W Palagama
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606, United States
| | - David Baliu-Rodriguez
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606, United States
| | - Apurva Lad
- Department of Medicine, Health Science Campus, University of Toledo Medical Center, Toledo, OH 43614, United States
| | - Bruce S Levison
- Department of Physiology and Pharmacology, Health Science Campus, University of Toledo Medical Center, Toledo, OH 43614, United States
| | - David J Kennedy
- Department of Medicine, Health Science Campus, University of Toledo Medical Center, Toledo, OH 43614, United States
| | - Steven T Haller
- Department of Medicine, Health Science Campus, University of Toledo Medical Center, Toledo, OH 43614, United States
| | - Judy Westrick
- Department of Chemistry, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Kenneth Hensley
- Department of Biochemistry, Cellular and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, United States
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606, United States.
| |
Collapse
|
21
|
Labine M, Gong Y, Minuk GY. Long-Term, Low-Dose Exposure to Microcystin-LR Does not Cause or Increase the Severity of Liver Disease in Rodents. Ann Hepatol 2017; 16:959-965. [PMID: 29055933 DOI: 10.5604/01.3001.0010.5288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Acute exposure to high concentrations of microcystin-LR (MC-LR) can cause significant hepatocyte injury. AIM To document the effects of long-term, low-dose MC-LR exposure on hepatic inflammation and fibrosis in mice with healthy and diseased livers. MATERIAL AND METHODS Male CD1 mice (N = 20/group) were exposed to 1.0 μg/L of MC-LR in drinking water; 1.0 μg/L MC-LR plus 300 mg/L of the hepatotoxin thioacetamide (MC-LR/TAA); or 300 mg/L TAA alone for 28 weeks. Liver biochemistry and histology were documented at the end of the study period. In addition, hepatic stellate cells (HSCs), were exposed in vitro to MC-LR (0.1-10,000 μg/L) and monitored for changes in cell metabolism, proliferation and activation. RESULTS Liver biochemistry and histology were essentially normal in MC-LR alone exposed mice. MC-LR/TAA and TAA alone exposed mice had significant hepatic inflammation and fibrosis but the extent of the changes were similar in the two groups. In vitro, MC-LR had no effect on HSC metabolism, proliferation or activation. CONCLUSION Long-term, low-dose exposure to MC-LR is unlikely to lead to chronic liver disease in the setting of a normal liver or exacerbate existing liver disease in the setting of ongoing hepatitis.
Collapse
Affiliation(s)
- Meaghan Labine
- Department of Pharmacology and Therapeutics, Faculties of Medicine. University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yuewen Gong
- Pharmacy. University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gerald Y Minuk
- Department of Pharmacology and Therapeutics, Faculties of Medicine. University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
22
|
Ortiz X, Korenkova E, Jobst KJ, MacPherson KA, Reiner EJ. A high throughput targeted and non-targeted method for the analysis of microcystins and anatoxin-A using on-line solid phase extraction coupled to liquid chromatography-quadrupole time-of-flight high resolution mass spectrometry. Anal Bioanal Chem 2017. [PMID: 28634756 DOI: 10.1007/s00216-017-0437-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microcystins are cyclic heptapeptide hepatotoxins produced by cyanobacteria in freshwater. Sample preparation for the analysis of these cyanotoxins in water from algal blooms can take up to several days due to the matrix complexity and the low detection limits required to comply with current legislation. Moreover, there is a large number of unknown microcystins that could potentially exist in the environment resulting from different amino acid substitutions into the microcystin skeletal structure. To tackle these problems, the present study involved the development of a high throughput method based on on-line solid phase extraction coupled to liquid chromatography that could provide quantitative results for 12 microcystin variants (LR, YR, RR, HtyR, HilR, WR, LW, LA, LF, LY, Dha7-LR, and Dha7-RR) and anatoxin-A in less than 3 h with detection limits between 0.004 and 0.01 μg L-1 and expanded uncertainty between 4 and 14%. Data-dependent acquisition was employed for the non-targeted analysis of these cyanotoxins. Filtering the data based on structure diagnostic fragments, two unknown microcystin variants not previously reported in the literature were detected. The structures Leu1-microcystin-Met(O)R and Leu1-microcystin-LY were fully characterized by accurate mass measurement, collision-induced dissociation, and fragmentation prediction software.
Collapse
Affiliation(s)
- Xavier Ortiz
- Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, ON, M9P 3V6, Canada.
| | - Eva Korenkova
- Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, ON, M9P 3V6, Canada
| | - Karl J Jobst
- Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, ON, M9P 3V6, Canada
| | - Karen A MacPherson
- Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, ON, M9P 3V6, Canada
| | - Eric J Reiner
- Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, ON, M9P 3V6, Canada
| |
Collapse
|
23
|
Wu L, Wang S, Tao M, Xie P, Chen J. Quantitative analysis of glutathione and cysteine S-conjugates of microcystin-LR in the liver, kidney and muscle of common carp (Cyprinus carpio) in Lake Taihu. JOURNAL OF WATER AND HEALTH 2017; 15:300-307. [PMID: 28362311 DOI: 10.2166/wh.2016.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tissue distribution of microcystin (MC)-LR-GSH, MC-LR-Cys and MC-LR of omnivorous fish in Lake Taihu was investigated. MC-LR and MC-LR-Cys were detected in liver, kidney and muscle. The concentration of MC-LR in liver and kidney was 0.052 μg g-1 DW and 0.067 μg g-1 DW, respectively. MC-LR-Cys appeared to be an important metabolite with average contents of 1.104 μg g-1 DW and 0.724 μg g-1 DW in liver and kidney, and the MC-LR-Cys/MC-LR ratio in liver and kidney reaching as high as 21.4 and 10.8. High MC-LR-Cys/MC-LR ratio and a significant correlation between MC-LR-Cys and MC-LR concentration in liver, suggest that liver is more active in detoxification of MC-LR by formation of MC-LR-Cys for omnivorous fish. Furthermore, there might be a balance between the accumulation and depuration/metabolism of MC-LR-Cys in kidney. The MC-LR-Cys can be formed in kidney directly, or transported from liver or other tissues, while the MC-LR-Cys in kidney might be dissociated to MC-LR or excreted. Although MC-LR and its metabolites were scarcely detected in muscle, it is necessary to investigate the distribution of toxic metabolites in edible muscle.
Collapse
Affiliation(s)
- Laiyan Wu
- Key Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Songbo Wang
- Key Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Min Tao
- Life Sciences college of Neijiang Normal University, Neijiang 641000, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China E-mail:
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China E-mail:
| |
Collapse
|
24
|
Yang S, Jin P, Wang XC, Zhang Q, Chen X. Phosphorus removal from aqueous solution using a novel granular material developed from building waste. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:1500-1511. [PMID: 28333066 DOI: 10.2166/wst.2017.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, a granular material (GM) developed from building waste was used for phosphate removal from phosphorus-containing wastewater. Batch experiments were executed to investigate the phosphate removal capacity of this material. The mechanism of removal proved to be a chemical precipitation process. The characteristics of the material and resulting precipitates, the kinetics of the precipitation and Ca2+ liberation processes, and the effects of dosage and pH were investigated. The phosphate precipitation and Ca2+ liberation processes were both well described by a pseudo-second-order kinetic model. A maximum precipitation capacity of 0.51 ± 0.06 mg g-1 and a liberation capacity of 6.79 ± 0.77 mg g-1 were measured under the experimental conditions. The processes reached equilibrium in 60 min. The initial solution pH strongly affected phosphate removal under extreme conditions (pH <4 and pH >10). The precipitates comprised hydroxyapatite and brushite. This novel GM can be considered a promising material for phosphate removal from wastewater.
Collapse
Affiliation(s)
- Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, Shaanxi 710055, China E-mail: ; State Key Laboratory of Architecture and Technology in Western China (XAUAT), No. 13 Yanta Road, Xi'an, Shaanxi 710055, China
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, Shaanxi 710055, China E-mail:
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, Shaanxi 710055, China E-mail:
| | - Qionghua Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, Shaanxi 710055, China E-mail:
| | - Xiaotian Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, Shaanxi 710055, China E-mail:
| |
Collapse
|
25
|
Svirčev Z, Drobac D, Tokodi N, Mijović B, Codd GA, Meriluoto J. Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Arch Toxicol 2017; 91:621-650. [DOI: 10.1007/s00204-016-1921-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
|
26
|
Deng H, Chen Y, Cao Y, Chen W. Enhanced phosphate and fluoride removal from aqueous solution by ferric-modified chromium (Ⅲ)-fibrous protein. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Ma J, Feng Y, Liu Y, Li X. PUMA and survivin are involved in the apoptosis of HepG2 cells induced by microcystin-LR via mitochondria-mediated pathway. CHEMOSPHERE 2016; 157:241-249. [PMID: 27235693 DOI: 10.1016/j.chemosphere.2016.05.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/04/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
The present study aimed to determine the cytotoxicity of microcystin-LR (MC-LR) on the human hepatocellular carcinoma (HepG2) cells in order to elucidate the mechanism of apoptosis induced by MC-LR. Morphological evaluation results showed that MC-LR induced time- and concentration-dependent apoptosis in HepG2 cells. The biochemical assays revealed that MC-LR-exposure caused overproduction of reactive oxygen species (ROS), cyclooxygenase-2 activity alteration, cytochrome c release, and remarkable activation of caspase-3 and caspase-9 in HepG2 cells, indicating that MC-LR-induced apoptosis is mediated by mitochondrial pathway. Moreover, we also found that p53 and Bax might play an important role in MC-LR-induced apoptosis in HepG2 cells in which PUMA and survivin were involved. However, further studies are necessary to elucidate the possible functions of PUMA and survivin in MC-LR-induced apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yiyi Feng
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
28
|
Yuan J, Gu Z, Zheng Y, Zhang Y, Gao J, Chen S, Wang Z. Accumulation and detoxification dynamics of microcystin-LR and antioxidant responses in male red swamp crayfish Procambarus clarkii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:8-18. [PMID: 27218425 DOI: 10.1016/j.aquatox.2016.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
MC-LR is one of major microcystin isoforms with potent hepatotoxicity. In the present study, we aim to: 1) explore the dynamics of MC-LR accumulation and elimination in different tissues of male red swamp crayfish Procambarus clarkii; 2) reveal the mechanisms underlying hepatic antioxidation and detoxification. In the semi-static toxicity tests under the water temperature of 25±2°C, P. clarkii were exposed to 0.1, 1, 10 and 100μg/L MC-LR for 7days for accumulation and subsequently relocated to freshwater for another 7days to depurate MC-LR. MC-LR was measured in the hepatopancreas, intestine, abdominal muscle and gill by HPLC. The enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST), content of glutathione (GSH), and transcripts of Mn-sod, cat, gpx1, Mu-gst, heat shock protein90 (hsp90), hsp70 and hsp60 in hepatopancreas were detected. The results showed that P. clarkii accumulated more MC-LR in intestine, and less in abdominal muscle and gill during accumulation period and eliminated the toxin more quickly in gill and abdominal muscle, and comparatively slowly in intestine during depuration period. The fast increase of SOD and CAT activities at early stage, subsequent decrease at later stage of accumulation period and then fast increase during depuration period were partially consistent with the transcriptional changes of their respective genes. GPx was activated by longer MC-LR exposure and gpx1 mRNA expression showed uncoordinated regulation pattern compared with its enzyme. Hsp genes were up-regulated when P. clarkii was exposed to MC-LR.
Collapse
Affiliation(s)
- Julin Yuan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China; Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang 313001, China
| | - Zhimin Gu
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang 313001, China.
| | - Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Shu Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
29
|
Wang W, Ma C, Zhang Y, Yang S, Shao Y, Wang X. Phosphate adsorption performance of a novel filter substrate made from drinking water treatment residuals. J Environ Sci (China) 2016; 45:191-199. [PMID: 27372133 DOI: 10.1016/j.jes.2016.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 06/06/2023]
Abstract
Phosphate is one of the most predominant pollutants in natural waters. Laboratory experiments were conducted to investigate the phosphate adsorption performance of a (NFS) made from drinking water treatment residuals. The adsorption of phosphate on the NFS fitted well with the Freundlich isotherm and pseudo second-order kinetic models. At pH7.0, the maximum adsorption capacity of 1.03mg/g was achieved at 15°C corresponding to the wastewater temperature in cold months, and increased notably to 1.31mg/g at 35°C. Under both acidic conditions (part of the adsorption sites was consumed) and basic conditions (negative charges formed on the surface of NFS, which led to a static repulsion of PO4(3-) and HPO4(2-)), the adsorption of phosphate was slightly inhibited. Further study showed that part of the adsorption sites could be recovered by 0.25mol/L NaOH. The activation energy was calculated to be above 8.0kJ/mol, indicating that the adsorption of phosphate on NFS was probably a chemical process. Considering the strong phosphate adsorption capacity and recoverability, NFS showed great promise on enhancing phosphate removal from the secondary treated wastewater in the filtration process.
Collapse
Affiliation(s)
- Wendong Wang
- Department of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.; Zhejiang Provincial Key Laboratory of Water Science and Technology, Zhejiang 314006, China.
| | - Cui Ma
- Department of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yinting Zhang
- Department of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengjiong Yang
- Department of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Shao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston 77005, USA
| | - Xiaochang Wang
- Department of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
30
|
Loftin KA, Graham JL, Hilborn ED, Lehmann SC, Meyer MT, Dietze JE, Griffith CB. Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. HARMFUL ALGAE 2016; 56:77-90. [PMID: 28073498 DOI: 10.1016/j.hal.2016.04.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 05/03/2023]
Abstract
A large nation-wide survey of cyanotoxins (1161 lakes) in the United States (U.S.) was conducted during the EPA National Lakes Assessment 2007. Cyanotoxin data were compared with cyanobacteria abundance- and chlorophyll-based World Health Organization (WHO) thresholds and mouse toxicity data to evaluate potential recreational risks. Cylindrospermopsins, microcystins, and saxitoxins were detected (ELISA) in 4.0, 32, and 7.7% of samples with mean concentrations of 0.56, 3.0, and 0.061μg/L, respectively (detections only). Co-occurrence of the three cyanotoxin classes was rare (0.32%) when at least one toxin was detected. Cyanobacteria were present and dominant in 98 and 76% of samples, respectively. Potential anatoxin-, cylindrospermopsin-, microcystin-, and saxitoxin-producing cyanobacteria occurred in 81, 67, 95, and 79% of samples, respectively. Anatoxin-a and nodularin-R were detected (LC/MS/MS) in 15 and 3.7% samples (n=27). The WHO moderate and high risk thresholds for microcystins, cyanobacteria abundance, and total chlorophyll were exceeded in 1.1, 27, and 44% of samples, respectively. Complete agreement by all three WHO microcystin metrics occurred in 27% of samples. This suggests that WHO microcystin metrics based on total chlorophyll and cyanobacterial abundance can overestimate microcystin risk when compared to WHO microcystin thresholds. The lack of parity among the WHO thresholds was expected since chlorophyll is common amongst all phytoplankton and not all cyanobacteria produce microcystins.
Collapse
Affiliation(s)
- Keith A Loftin
- U.S. Geological Survey, Organic Geochemistry Research Laboratory, Kansas Water Science Center, Lawrence, KS 66049, USA.
| | - Jennifer L Graham
- U.S. Geological Survey, Kansas Water Science Center, Lawrence, KS 66049, USA.
| | - Elizabeth D Hilborn
- U.S. Environmental Protection Agency, Office of Research and Development, NHEERL, Chapel Hill, NC 27599, USA.
| | - Sarah C Lehmann
- U.S. Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Ariel Rios Bldg., 1200 Pennsylvania Ave., N.W., Mail Code 4503T, Washington, DC 20460, USA.
| | - Michael T Meyer
- U.S. Geological Survey, Organic Geochemistry Research Laboratory, Kansas Water Science Center, Lawrence, KS 66049, USA.
| | - Julie E Dietze
- U.S. Geological Survey, Organic Geochemistry Research Laboratory, Kansas Water Science Center, Lawrence, KS 66049, USA.
| | - Christopher B Griffith
- U.S. Geological Survey, Organic Geochemistry Research Laboratory, Kansas Water Science Center, Lawrence, KS 66049, USA.
| |
Collapse
|
31
|
Mash H, Wittkorn A. Effect of chlorination on the protein phosphatase inhibition activity for several microcystins. WATER RESEARCH 2016; 95:230-239. [PMID: 26999255 DOI: 10.1016/j.watres.2016.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Microcystins are of particular concern due to their toxicity to both humans and animals and may be the most prominent cyanotoxin observed in freshwater. Although a number of studies have investigated the fate of microcystins and other algal toxins through drinking water treatment facilities, measurement of their potential for toxic activity after chlorination, a popular form of treatment in the United States, has not been investigated. In this study, six microcystin variants are subjected to chlorine oxidation. The degradation of each microcystin variant is measured by liquid chromatography/mass spectrometry simultaneously with protein phosphatase inhibition (PPI) response over reaction time with chlorine. Results show that inhibition is dependent on the incorporated amino acid residues, their placement within the microcystin structure, as well as pH. This pH dependence may have practical implications to such activities such as drinking water treatment when the pH is usually adjusted to around 8. Namely, at this pH, even with chlorine addition for disinfection, PPI activity may not be totally eliminated even when the initial MYCs are eliminated.
Collapse
Affiliation(s)
- H Mash
- Office of Research and Development, National Risk Management Research Laboratory, Water Supply and Water Resources Division, Treatment Technology Evaluation Branch, United State Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - A Wittkorn
- University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH 45220, USA
| |
Collapse
|
32
|
Pastich EA, Gavazza S, Casé MCC, Florencio L, Kato MT. Structure and dynamics of the phytoplankton community within a maturation pond in a semiarid region. BRAZ J BIOL 2016; 76:144-53. [DOI: 10.1590/1519-6984.15214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/25/2014] [Indexed: 11/22/2022] Open
Abstract
Abstract In northeastern Brazil, stabilization ponds are very suitable for wastewater treatment because of the relative great land availability and environmental conditions (e.g., high temperature) favorable for microorganism optimal development. However, blooms of potentially toxic cyanobacteria may affect the use of these treatment ponds due to resulting effluent poor quality. The objective of this study was to evaluate the dynamics of phytoplankton communities and the occurrence of cyanobacteria in a maturation pond located immediately after a series of two ponds. Temperature, dissolved oxygen, pH, BOD, N, and P were measured during a period of four months when samples were collected from the surface and the bottom of 7 sampling points distributed inside the pond. The phytoplankton of collected samples was also identified and classified using a conventional optical microscopy. Analysis of variance and Tukey test were used to evaluate the results. The three phytoplankton divisions found (Cyanophyta, Chlorophyta, and Euglenophyta) did not change considerably through surface and bottom. However, they changed greatly over the sampled months; great dominance of Cyanophyta was found at April and October, while Chlorophyta dominated the lagoon in September. Low superficial organic loads (between 78 and 109 kg BOD.ha–1.d–1) and N:P ≤ 10 were the determinant factors that favored the predominance of Cyanophyta. The presence of two potentially toxic species of Cyanophyta, Oscillatoria sp. and Microcystis aeruginosa, indicates that caution is required when considering the final destination of treated effluent and suggests a need to assess the risks and benefits associated with the use of the treatment technology.
Collapse
Affiliation(s)
| | - S. Gavazza
- Universidade Federal de Pernambuco, Brazil
| | | | | | - M. T. Kato
- Universidade Federal de Pernambuco, Brazil
| |
Collapse
|
33
|
Rout PR, Dash RR, Bhunia P. Development of an integrated system for the treatment of rural domestic wastewater: emphasis on nutrient removal. RSC Adv 2016. [DOI: 10.1039/c6ra08519a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel, integrated treatment system consisting of a multi-stage bio-filter and a post positioned denitrifying bio-reactor was designed and developed in this study for the treatment of rural domestic wastewater emphasizing on nutrient removal.
Collapse
Affiliation(s)
- Prangya Ranjan Rout
- School of Infrastructure
- Indian Institute of Technology Bhubaneswar
- India 751 013
| | - Rajesh Roshan Dash
- School of Infrastructure
- Indian Institute of Technology Bhubaneswar
- India 751 013
| | - Puspendu Bhunia
- School of Infrastructure
- Indian Institute of Technology Bhubaneswar
- India 751 013
| |
Collapse
|
34
|
Pekar H, Westerberg E, Bruno O, Lääne A, Persson KM, Sundström L, Thim AM. Fast, rugged and sensitive ultra high pressure liquid chromatography tandem mass spectrometry method for analysis of cyanotoxins in raw water and drinking water—First findings of anatoxins, cylindrospermopsins and microcystin variants in Swedish source waters and infiltration ponds. J Chromatogr A 2016; 1429:265-76. [DOI: 10.1016/j.chroma.2015.12.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022]
|
35
|
Guo X, Chen L, Chen J, Xie P, Li S, He J, Li W, Fan H, Yu D, Zeng C. Quantitatively evaluating detoxification of the hepatotoxic microcystin-LR through the glutathione (GSH) pathway in SD rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19273-19284. [PMID: 26490924 DOI: 10.1007/s11356-015-5531-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Glutathione (GSH) plays crucial roles in antioxidant defense and detoxification metabolism of microcystin-LR (MC-LR). However, the detoxification process of MC-LR in mammals remains largely unknown. This paper, for the first time, quantitatively analyzes MC-LR and its GSH pathway metabolites (MC-LR-GSH and MC-LR-Cys) in the liver of Sprague-Dawley (SD) rat after MC-LR exposure. Rats received intraperitoneal (i.p.) injection of 0.25 and 0.5 lethal dose 50 (LD50) of MC-LR with or without pretreatment of buthionine-(S,R)-sulfoximine (BSO), an inhibitor of GSH synthesis. The contents of MC-LR-GSH were relatively low during the experiment; however, the ratio of MC-LR-Cys to MC-LR reached as high as 6.65 in 0.5 LD50 group. These results demonstrated that MC-LR-GSH could be converted to MC-LR-Cys efficiently, and this metabolic rule was in agreement with the data of aquatic animals previously reported. MC-LR contents were much higher in BSO + MC-LR-treated groups than in the single MC-LR-treated groups. Moreover, the ratio of MC-LR-Cys to MC-LR decreased significantly after BSO pretreatment, suggesting that the depletion of GSH induced by BSO reduced the detoxification of MCs. Moreover, MC-LR remarkably induced liver damage, and the effects were more pronounced in BSO pretreatment groups. In conclusion, this study verifies the role of GSH in the detoxification of MC-LR and furthers our understanding of the biochemical mechanism for SD rats to counteract toxic cyanobacteria.
Collapse
Affiliation(s)
- Xiaochun Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| | - Ping Xie
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| | - Shangchun Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Wei Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huihui Fan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Dezhao Yu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| |
Collapse
|
36
|
Bittencourt-Oliveira MC, Hereman TC, Macedo-Silva I, Cordeiro-Araújo MK, Sasaki FFC, Dias CTS. Sensitivity of salad greens (Lactuca sativa L. and Eruca sativa Mill.) exposed to crude extracts of toxic and non-toxic cyanobacteria. BRAZ J BIOL 2015; 75:273-8. [PMID: 26132007 DOI: 10.1590/1519-6984.08113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 03/12/2014] [Indexed: 11/22/2022] Open
Abstract
We evaluated the effect of crude extracts of the microcystin-producing (MC+) cyanobacteria Microcystis aeruginosa on seed germination and initial development of lettuce and arugula, at concentrations between 0.5 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent, and compared it to crude extracts of the same species without the toxin (MC-). Crude extracts of the cyanobacteria with MC (+) and without MC (-) caused different effects on seed germination and initial development of the salad green seedlings, lettuce being more sensitive to both extracts when compared to arugula. Crude extracts of M. aeruginosa (MC+) caused more evident effects on seed germination and initial development of both species of salad greens than MC-. Concentrations of 75 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent induced a greater occurrence of abnormal seedlings in lettuce, due to necrosis of the radicle and shortening of this organ in normal seedlings, as well as the reduction in total chlorophyll content and increase in the activity of the antioxidant enzyme peroxidase (POD). The MC- extract caused no harmful effects to seed germination and initial development of seedlings of arugula. However, in lettuce, it caused elevation of POD enzyme activity, decrease in seed germination at concentrations of 75 μg.L(-1) (MC-75) and 100 μg.L(-1) (MC-100), and shortening of the radicle length, suggesting that other compounds present in the cyanobacteria extracts contributed to this result. Crude extracts of M. aeruginosa (MC-) may contain other compounds, besides the cyanotoxins, capable of causing inhibitory or stimulatory effects on seed germination and initial development of salad green seedlings. Arugula was more sensitive to the crude extracts of M. aeruginosa (MC+) and (MC-) and to other possible compounds produced by the cyanobacteria.
Collapse
Affiliation(s)
- M C Bittencourt-Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - T C Hereman
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - I Macedo-Silva
- Graduating Program on Biological Sciences, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, SP, Brazil
| | - M K Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - F F C Sasaki
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - C T S Dias
- Department of Exact Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
37
|
Takumi S, Ikema S, Hanyu T, Shima Y, Kurimoto T, Shiozaki K, Sugiyama Y, Park HD, Ando S, Furukawa T, Komatsu M. Naringin attenuates the cytotoxicity of hepatotoxin microcystin-LR by the curious mechanisms to OATP1B1- and OATP1B3-expressing cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:974-981. [PMID: 25818985 DOI: 10.1016/j.etap.2015.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 06/04/2023]
Abstract
Microcystin-LR, which is an inhibitor of serine/threonine protein phosphatase (PP)1 and PP2A, induces liver injury by its selective uptake system into the hepatocyte. It is also thought that microcystin-LR induces reactive oxygen species (ROS). We tried to establish the chemical prevention of microcystin-LR poisoning. We investigated the effect of grapefruit flavanone glycoside naringin on cytotoxicity of microcystin-LR using human hepatocyte uptake transporter OATP1B3-expressing HEK293-OATP1B3 cells. We found cytotoxicity of microcystin-LR was attenuated by naringin in a dose dependent manner. The inhibition magnitude of total cellular serine/threonine protein phosphatase activity induced by microcystin-LR was suppressed by naringin. In addition, uptake of microcystin-LR into HEK293-OATP1B3 cells was inhibited by naringin. Furthermore, microcystin-LR induced phosphorylation of p53 was inhibited by naringin. Regardless of the difference in the exposure pattern of pre-processing and post-processing of naringin, the toxicity of microcystin-LR was comparable. These results suggested that naringin is promising remedy as well as preventive medicine for liver damage with microcystin-LR. In addition, involvement of ROS production after exposure to the sublethal concentrations of microcystin-LR in the onset of cytotoxicity was negligible. Therefore, inhibition of microcystin-LR uptake and the pathway other than ROS production would be involved in the effect of naringin on the attenuation of microcystin-LR toxicity.
Collapse
Affiliation(s)
- Shota Takumi
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Satoshi Ikema
- Division of Food and Chemical Biology, Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Tamami Hanyu
- Division of Food and Chemical Biology, Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan; Department of Environmental Sciences, Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan
| | - Yusuke Shima
- Division of Food and Chemical Biology, Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Takashi Kurimoto
- Division of Food and Chemical Biology, Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Kazuhiro Shiozaki
- Division of Food and Chemical Biology, Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Yasumasa Sugiyama
- Division of Food and Chemical Biology, Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Ho-Dong Park
- Department of Environmental Sciences, Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan
| | - Seiichi Ando
- Department of Nutritional Sciences, Faculty of Health and Welfare Science, Nayoro City University, Nayoro, Hokkaido 096-8641, Japan
| | - Tatsuhiko Furukawa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan; Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Masaharu Komatsu
- Division of Food and Chemical Biology, Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan.
| |
Collapse
|
38
|
Effective utilization of a sponge iron industry by-product for phosphate removal from aqueous solution: A statistical and kinetic modelling approach. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2014.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Microcystin-LR induces anoikis resistance to the hepatocyte uptake transporter OATP1B3-expressing cell lines. Toxicology 2014; 326:53-61. [DOI: 10.1016/j.tox.2014.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 11/22/2022]
|
40
|
Comparison of two ELISA-based methods for the detection of microcystins in blood serum. Chem Biol Interact 2014; 223:10-7. [DOI: 10.1016/j.cbi.2014.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 11/24/2022]
|
41
|
Xiang A, Lei X, Ren F, Zang L, Wang Q, Zhang J, Lu Z, Guo Y. An aptamer-based immunoassay in microchannels of a portable analyzer for detection of microcystin-leucine-arginine. Talanta 2014; 130:363-9. [PMID: 25159422 DOI: 10.1016/j.talanta.2014.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/29/2014] [Accepted: 07/02/2014] [Indexed: 12/22/2022]
Abstract
The rapid detection of microcystin-leucine-arginine (MC-LR), the most highly toxic among MCs, is significantly important to environmental and human health protection and prevention of MC-LR from being used as a bioweapon. Although aptamers offer higher affinity, specificity, and stability with MC-LR than antibodies in the immunodetection of MC-LR due to steric hindrance between two antibodies and limited epitopes of MC-LR for use in a sandwich immunoassay, no sandwich immunoassay using an aptmer has been developed for MC-LR detection. This study is aimed at developing an aptamer-antibody immunoassay (AAIA) to detect MC-LR using a portable analyzer. The aptamers were immobilized onto the glass surface of a microchamber to capture MC-LR. MC-LR and horseradish peroxidase (HRP)-labeled antibody were pulled into the microchamber to react with the immobilized aptamer. The chemiluminescence (CL) catalyzed by HRP was tested by a photodiode-based portable analyzer. MC-LR at 0.5-4.0 μg/L was detected quantitatively by the AAIA, with a CL signal sensitivity of 0.3 μg/L. The assay took less than 35 min for a single sample and demonstrated a high specificity, detecting only MC-LR, but not MC-LA, MC-YR, or nodularin-R. The recovery of two spiked real environmental samples calculated as 94.5-112.7%. Therefore, this AAIA was proved to be a rapid and simple method to detect MC-LR in the field by a single analyst.
Collapse
Affiliation(s)
- An Xiang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, 169 West Changle Road, Xi׳an 710032, People׳s Republic of China
| | - Xiaoying Lei
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, 169 West Changle Road, Xi׳an 710032, People׳s Republic of China
| | - Fengling Ren
- School of public health, Xi׳an Jiaotong University, Xi׳an 710032, People׳s Republic of China
| | - Liuqin Zang
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi׳an Jiaotong University, Xi׳an 710032, People׳s Republic of China
| | - Qin Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, 169 West Changle Road, Xi׳an 710032, People׳s Republic of China
| | - Ju Zhang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, 169 West Changle Road, Xi׳an 710032, People׳s Republic of China
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, 169 West Changle Road, Xi׳an 710032, People׳s Republic of China.
| | - Yanhai Guo
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, 169 West Changle Road, Xi׳an 710032, People׳s Republic of China.
| |
Collapse
|
42
|
Svirčev ZB, Tokodi N, Drobac D, Codd GA. Cyanobacteria in aquatic ecosystems in Serbia: effects on water quality, human health and biodiversity. SYST BIODIVERS 2014. [DOI: 10.1080/14772000.2014.921254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Kozdęba M, Borowczyk J, Zimoląg E, Wasylewski M, Dziga D, Madeja Z, Drukala J. Microcystin-LR affects properties of human epidermal skin cells crucial for regenerative processes. Toxicon 2014; 80:38-46. [DOI: 10.1016/j.toxicon.2014.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/03/2014] [Accepted: 01/09/2014] [Indexed: 11/29/2022]
|
44
|
Meneely JP, Elliott CT. Microcystins: measuring human exposure and the impact on human health. Biomarkers 2013; 18:639-49. [DOI: 10.3109/1354750x.2013.841756] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Bieczynski F, Bianchi VA, Luquet CM. Accumulation and biochemical effects of microcystin-LR on the Patagonian pejerrey (Odontesthes hatcheri) fed with the toxic cyanobacteria Microcystis aeruginosa. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1309-1321. [PMID: 23504082 DOI: 10.1007/s10695-013-9785-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 03/07/2013] [Indexed: 06/01/2023]
Abstract
We studied accumulation and biochemical effects of microcystin-LR (MCLR) in Odontesthes hatcheri after dietary administration of the cyanobacteria Microcystis aeruginosa (1.3 μg MCLR/g body mass, incorporated in standard fish food). After 12 h, MCLR content in liver did not differ between fish fed with crushed or intact cells, demonstrating O. hatcheri's capacity to digest cyanobacteria and absorb MCLR. In the second experiment, fish received toxic cells, non-toxic cells, or control food; MCLR accumulation was monitored for 48 h. Protein phosphatase 1 (PP1), catalase (CAT), glutathione-S-transferase (GST) activities, and lipid peroxidation (as MDA) were measured in liver and intestine. Methanol-extractable MCLR was determined by PP1 inhibition assay (PPIA); extractable and protein-bound MCLR were measured by Lemieux oxidation-gas chromatography/mass spectrometry (GC/MS). MCLR accumulated rapidly up to 22.9 and 9.4 μg MCLR/g in intestine and liver, respectively, followed by a decreasing tendency. Protein-bound MCLR represented 66 to ca. 100 % of total MCLR in both tissues. PP1 activity remained unchanged in intestine but was increased in liver of MCLR treated fish.CAT and GST activities and MDA content were significantly increased by MCLR only in liver. We conclude that O. hatcheri is able to digest cyanobacteria, accumulating MCLR mostly bound to proteins. Our data suggest that this freshwater fish can be adversely affected by cyanobacterial blooms. However, the rapid decrease of the detectable MCLR in both tissues could imply that sublethal toxin accumulation is rapidly reversed.
Collapse
Affiliation(s)
- Flavia Bieczynski
- Laboratory of Aquatic Ecotoxicology, INIBIOMA (CONICET-UNCo), Epulafquen 30 Casa 2, 8371, Junín de los Andes, Neuquén, Argentina,
| | | | | |
Collapse
|
46
|
Merel S, Walker D, Chicana R, Snyder S, Baurès E, Thomas O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. ENVIRONMENT INTERNATIONAL 2013; 59:303-27. [PMID: 23892224 DOI: 10.1016/j.envint.2013.06.013] [Citation(s) in RCA: 480] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 05/17/2023]
Abstract
Cyanobacteria are ubiquitous microorganisms considered as important contributors to the formation of Earth's atmosphere and nitrogen fixation. However, they are also frequently associated with toxic blooms. Indeed, the wide range of hepatotoxins, neurotoxins and dermatotoxins synthesized by these bacteria is a growing environmental and public health concern. This paper provides a state of the art on the occurrence and management of harmful cyanobacterial blooms in surface and drinking water, including economic impacts and research needs. Cyanobacterial blooms usually occur according to a combination of environmental factors e.g., nutrient concentration, water temperature, light intensity, salinity, water movement, stagnation and residence time, as well as several other variables. These environmental variables, in turn, have promoted the evolution and biosynthesis of strain-specific, gene-controlled metabolites (cyanotoxins) that are often harmful to aquatic and terrestrial life, including humans. Cyanotoxins are primarily produced intracellularly during the exponential growth phase. Release of toxins into water can occur during cell death or senescence but can also be due to evolutionary-derived or environmentally-mediated circumstances such as allelopathy or relatively sudden nutrient limitation. Consequently, when cyanobacterial blooms occur in drinking water resources, treatment has to remove both cyanobacteria (avoiding cell lysis and subsequent toxin release) and aqueous cyanotoxins previously released. Cells are usually removed with limited lysis by physical processes such as clarification or membrane filtration. However, aqueous toxins are usually removed by both physical retention, through adsorption on activated carbon or reverse osmosis, and chemical oxidation, through ozonation or chlorination. While the efficient oxidation of the more common cyanotoxins (microcystin, cylindrospermopsin, anatoxin and saxitoxin) has been extensively reported, the chemical and toxicological characterization of their by-products requires further investigation. In addition, future research should also investigate the removal of poorly considered cyanotoxins (β-methylamino-alanine, lyngbyatoxin or aplysiatoxin) as well as the economic impact of blooms.
Collapse
Affiliation(s)
- Sylvain Merel
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 James E. Rogers Way, Tucson, AZ 85721, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Rankin KA, Alroy KA, Kudela RM, Oates SC, Murray MJ, Miller MA. Treatment of cyanobacterial (microcystin) toxicosis using oral cholestyramine: case report of a dog from Montana. Toxins (Basel) 2013; 5:1051-63. [PMID: 23888515 PMCID: PMC3717769 DOI: 10.3390/toxins5061051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/06/2013] [Accepted: 05/15/2013] [Indexed: 12/15/2022] Open
Abstract
A two and a half year old spayed female Miniature Australian Shepherd presented to a Montana veterinary clinic with acute onset of anorexia, vomiting and depression. Two days prior, the dog was exposed to an algal bloom in a community lake.Within h, the animal became lethargic and anorexic, and progressed to severe depression and vomiting. A complete blood count and serum chemistry panel suggested acute hepatitis, and a severe coagulopathy was noted clinically. Feces from the affected dog were positive for the cyanobacterial biotoxin, microcystin-LA (217 ppb). The dog was hospitalized for eight days. Supportive therapy consisted of fluids, mucosal protectants,vitamins, antibiotics, and nutritional supplements. On day five of hospitalization, a bile acid sequestrant, cholestyramine, was administered orally. Rapid clinical improvement was noted within 48 h of initiating oral cholestyramine therapy. At 17 days post-exposure the dog was clinically normal, and remained clinically normal at re-check, one year post-exposure. To our knowledge, this is the first report of successful treatment of canine cyanobacterial (microcystin) toxicosis. Untreated microcystin intoxication is commonly fatal, and can result in significant liver damage in surviving animals. The clinical success of this case suggests that oral administration of cholestyramine, in combination with supportive therapy, could significantly reduce hospitalization time, cost-of-care and mortality for microcystin-poisoned animals.
Collapse
Affiliation(s)
- Kelly A. Rankin
- Flathead Animal Clinic, 344 1st Ave. W., Kalispell, MT 59901, USA; E-Mail:
| | - Karen A. Alroy
- Friendship Hospital for Animals, 4105 Brandywine St. NW, Washington, DC 20016, USA; E-Mail:
| | - Raphael M. Kudela
- Department of Ocean Sciences, University of California Santa Cruz, A-312 Earth & Marine Sciences Building Santa Cruz, CA 95064, USA; E-Mail:
| | - Stori C. Oates
- Marine Wildlife Veterinary Care and Research Center, Department of Fish and Game, Office of Spill Prevention and Response, 1451 Shaffer Rd, Santa Cruz, CA 95060, USA; E-Mail:
| | - Michael J. Murray
- Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA 93940, USA; E-Mail:
| | - Melissa A. Miller
- Marine Wildlife Veterinary Care and Research Center, Department of Fish and Game, Office of Spill Prevention and Response, 1451 Shaffer Rd, Santa Cruz, CA 95060, USA; E-Mail:
| |
Collapse
|
48
|
Pantelić D, Svirčev Z, Simeunović J, Vidović M, Trajković I. Cyanotoxins: characteristics, production and degradation routes in drinking water treatment with reference to the situation in Serbia. CHEMOSPHERE 2013; 91:421-441. [PMID: 23391374 DOI: 10.1016/j.chemosphere.2013.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 12/26/2012] [Accepted: 01/02/2013] [Indexed: 06/01/2023]
Abstract
Cyanobacteria are members of phytoplankton of the surface freshwaters. The accelerated eutrophication of freshwaters, especially reservoirs for drinking water, by human activity has increased the occurrence and intensity of cyanobacterial blooms. They are of concern due to their ability to produce taste and odors compounds, a wide range of toxins, which have a hepatotoxic, neurotoxic, cytotoxic and dermatotoxic behavior, being dangerous to animal and human health. Therefore, the removal of cyanobacteria, without cell lysis, and releasing of intracellular metabolites, would significantly reduce the concentration of these metabolites in the finished drinking water, as a specific aim of the water treatment processes. This review summarizes the existing data on characteristics of the cyanotoxins, their productions in environment and effective treatment processes to remove these toxins from drinking water.
Collapse
Affiliation(s)
- Dijana Pantelić
- University of Novi Sad, Department of Biology and Ecology, Faculty of Sciences, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia.
| | | | | | | | | |
Collapse
|
49
|
Yang S, Zhao Y, Chen R, Feng C, Zhang Z, Lei Z, Yang Y. A novel tablet porous material developed as adsorbent for phosphate removal and recycling. J Colloid Interface Sci 2013; 396:197-204. [DOI: 10.1016/j.jcis.2012.12.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/21/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
|
50
|
Determination of six microcystins and nodularin in surface and drinking waters by on-line solid phase extraction–ultra high pressure liquid chromatography tandem mass spectrometry. J Chromatogr A 2012; 1266:61-8. [DOI: 10.1016/j.chroma.2012.10.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/27/2012] [Accepted: 10/08/2012] [Indexed: 11/21/2022]
|