1
|
Auada AVV, Falla MVA, Lebrun I. Bioactive peptides (cryptides) obtained by Bothrops jararaca serine peptidases action on myoglobin. Toxicon 2024; 247:107835. [PMID: 38942240 DOI: 10.1016/j.toxicon.2024.107835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Serine peptidases and metallopeptidases are the primary toxins found in Bothrops snakes venoms, which act on proteins in the tissues of victims or prey, and release of peptides formed through proteolytic activity. Various studies have indicated that these peptides, released by the proteolytic activity of heterologous enzymes, generate molecules with unidentified functions, referred to as cryptids. To address this, we purified serine peptidases from Bothrops jararaca venom using molecular exclusion chromatography and then incubated them with the endogenous substrate myoglobin. As a control, we also incubated the substrate with trypsin. The resulting proteolytic fragments were analyzed, separated, and collected via HPLC. These fractions were then tested on cell cultures, the active fractions were sequenced (ALELFR and TGHPETLEK) and synthesized. After confirming their activity, the peptides underwent sequencing and synthesis for additional cell tests, including the increase of cell viability, cycle phases, proliferation, signaling, growth kinetics, angiogenesis, and migration. The results revealed that the synthesized peptides exhibited cellular repair properties, suggesting a potential role in tissue repair in the range of 0.05-5 μ M. Additionally, the effects of fragments resulting from myoglobin degradation isolated (ALELFR and TGHPETLEK) revealed a regenerative action on tissue.
Collapse
Affiliation(s)
- A V V Auada
- Hyperimune Plasma Processing Unit - Butantan Institute, São Paulo, SP, Brazil
| | - M V A Falla
- Butantan Institute - Biochemistry and Biophysics Laboratory, São Paulo, SP, Brazil
| | - I Lebrun
- Butantan Institute - Biochemistry and Biophysics Laboratory, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Akhavan-Bahabadi M, Paknejad H, Hedayati A, Habibi-Rezaei M. Fractionation of the Caspian sand goby epidermal exudates using membrane ultrafiltration and reversed-phase chromatography: an investigation on bioactivities. Sci Rep 2024; 14:1716. [PMID: 38242928 PMCID: PMC10799039 DOI: 10.1038/s41598-024-52126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024] Open
Abstract
Bioactive peptide-based drugs have gained exceeding attention as promising treatments for infectious and oxidative-stress-related diseases, are exacerbated by the advent and spread of various multidrug-resistant bacteria and industrial lifestyles. Fish skin mucus has been recognized as a potential source of bioactive peptides, providing the first line of fish defense against invading pathogens which are targeted here to be explored as a new source of biopharmaceutics. Peptide fractions were isolated from the epidermal exudates of Caspian sand goby, Neogobius fluviatilis pallasi, by solid-phase extraction (SPE), ultrafiltration, and reversed-phase chromatography. The resulting fractions were characterized for their antibacterial and antioxidant properties, and results showed that the molecular weight fraction < 5 kDa represented the highest (p < 0.05) bacterial inhibition activity against Staphylococcus aureus and Bacillus subtilis as well as scavenging activity against DPPH and ABTS radicals. Overall, these results introduce the epidermal mucus of Caspian sand goby as a valuable source of bioactive compounds that can be considered new and efficient biopharmaceutics.
Collapse
Affiliation(s)
- Mohammad Akhavan-Bahabadi
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgān, Iran.
- Protein Biotechnology Research Lab (PBRL), School of Biology, College of Science, University of Tehran, Tehran, Iran.
- National Research Center of Saline Water Aquatics, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bafq, Yazd, Iran.
| | - Hamed Paknejad
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgān, Iran
| | - Aliakbar Hedayati
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgān, Iran
| | - Mehran Habibi-Rezaei
- Protein Biotechnology Research Lab (PBRL), School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Karuppusamy I, Surendiran M, Al-Humaid LA, Aldawsari M. Understanding the effective breakdown of PAH s in water through the use of g-C 3N 4-Ag-Cu-Ni nanocomposites. CHEMOSPHERE 2023; 344:140125. [PMID: 37742759 DOI: 10.1016/j.chemosphere.2023.140125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
The research work aimed to explore the suitability of using a novel g- C3N4-Ag-Cu-Ni nanocomposite for the simultaneous degradation of pyrene in wastewater. The outcome revealed that the g- C3N4 phase was successfully fabricated on the g-C3N4-based compound, and the existence of the g- C3N4-based compound beneficially stabilized the Ag-Cu-Ni particles. The g- C3N4-Ag-Cu-Ni nanocomposite demonstrated excellent performance in pyrene degradation under various conditions. The degradation of pyrene increased with a rise in the dosage of g- C3N4-Ag-Cu-Ni. These findings indicate that the g- C3N4-Ag-Cu-Ni nanocomposite could be a promising material for water purification, especially for the simultaneous photocatalytic and antimicrobial treatment of contaminated water bodies. The study provides a helpful guide for future research in this field.
Collapse
Affiliation(s)
- Indira Karuppusamy
- Research Center for Strategic Materials, Corrosion Resistant Steel Group, National Institute for Materials Science (NIMS), Tsukuba, Japan.
| | - M Surendiran
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission's Research Foundation - Aarupadai Veedu (VMRF-AV) Campus, Paiyanoor, Chennai, 603104, Tamil Nadu, India
| | - Latifah A Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Majdoleen Aldawsari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Kerr EN, Papudeshi B, Haggerty M, Wild N, Goodman AZ, Lima LFO, Hesse RD, Skye A, Mallawaarachchi V, Johri S, Parker S, Dinsdale EA. Stingray epidermal microbiomes are species-specific with local adaptations. Front Microbiol 2023; 14:1031711. [PMID: 36937279 PMCID: PMC10017458 DOI: 10.3389/fmicb.2023.1031711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Marine host-associated microbiomes are affected by a combination of species-specific (e.g., host ancestry, genotype) and habitat-specific features (e.g., environmental physiochemistry and microbial biogeography). The stingray epidermis provides a gradient of characteristics from high dermal denticles coverage with low mucus to reduce dermal denticles and high levels of mucus. Here we investigate the effects of host phylogeny and habitat by comparing the epidermal microbiomes of Myliobatis californica (bat rays) with a mucus rich epidermis, and Urobatis halleri (round rays) with a mucus reduced epidermis from two locations, Los Angeles and San Diego, California (a 150 km distance). We found that host microbiomes are species-specific and distinct from the water column, however composition of M. californica microbiomes showed more variability between individuals compared to U. halleri. The variability in the microbiome of M. californica caused the microbial taxa to be similar across locations, while U. halleri microbiomes were distinct across locations. Despite taxonomic differences, Shannon diversity is the same across the two locations in U. halleri microbiomes suggesting the taxonomic composition are locally adapted, but diversity is maintained by the host. Myliobatis californica and U. halleri microbiomes maintain functional similarity across Los Angeles and San Diego and each ray showed several unique functional genes. Myliobatis californica has a greater relative abundance of RNA Polymerase III-like genes in the microbiome than U. halleri, suggesting specific adaptations to a heavy mucus environment. Construction of Metagenome Assembled Genomes (MAGs) identified novel microbial species within Rhodobacteraceae, Moraxellaceae, Caulobacteraceae, Alcanivoracaceae and Gammaproteobacteria. All MAGs had a high abundance of active RNA processing genes, heavy metal, and antibiotic resistant genes, suggesting the stingray mucus supports high microbial growth rates, which may drive high levels of competition within the microbiomes increasing the antimicrobial properties of the microbes.
Collapse
Affiliation(s)
- Emma N. Kerr
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- *Correspondence: Emma N. Kerr,
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Miranda Haggerty
- California Department of Fish and Wildlife, San Diego, CA, United States
| | - Natasha Wild
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Asha Z. Goodman
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Lais F. O. Lima
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Ryan D. Hesse
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Amber Skye
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Shaili Johri
- Hopkins Maine Station, Stanford University, Stanford, CA, United States
| | - Sophia Parker
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Elizabeth A. Dinsdale,
| |
Collapse
|
5
|
Ribeiro-Neto DG, Spadacci-Morena DD, Marques EE, Silva KLF, Seibert CS. Study of the integument that covering back and stinger of the freshwater stingray Potamotrygon rex (Chondricthyes, Potamotrygonidae). BRAZ J BIOL 2022; 82:e264933. [DOI: 10.1590/1519-6984.264933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract The objective of this study was to describe the histology and histochemistry of the integument covering the back and stinger of the freshwater stingray Potamotrygon rex, endemic to the Middle Upper Tocantins River. The species has a dark back and yellowish circular spots that extend to the tail, which has one to two stings located in the median portion of the tail. Through histological study it was observed that the epithelia of the back and stinger are composed of non-keratinized stratified pavement epithelial tissue, and are organized in three layers: basal, intermediate and superficial. The differences between the tissues are related to the cell types that compose them. The back is organized with epithelial cells, mucus cells, granulocyte cells and chromatophores. The mucus cells are distributed in different layers along the animal's back, influencing the thickness of the tissue. The tissue that covers the stinger is composed of epithelial cells, chromatophores and specialized cells in protein synthesis. In the histochemistry, the stinger epithelial cells were stained with Bromophenol Blue, especially those of the intermediate layer, which were called specialized cells. In the back the epithelial cells were stained with Bromophenol Blue, Alcian Blue and PAS, and the mucous cells with PAS. In both tissues the presence of protein reserves was detected, areas so called because they are stained strongly with Bromophenol Blue. The results show that the stinger presents activity directed to the production of proteins, and that the back is organized to produce different components, which constitute the cuticle that covers the animal's body.
Collapse
|
6
|
Mori M, Ito T, Washio R, Shibasaki Y, Namba A, Yabu T, Iwazaki D, Wada N, Anzai H, Shiba H, Nakanishi T, Mano N. Enhancement of immune proteins expression in skin mucus of Japanese flounder Paralicthys olivaceus upon feeding a diet supplemented with high concentration of ascorbic acid. FISH & SHELLFISH IMMUNOLOGY 2021; 114:20-27. [PMID: 33857621 DOI: 10.1016/j.fsi.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
To search immune defense proteins in skin mucus of Japanese flounder fed with a diet containing high concentration of ascorbic acid, we carried out 2D-PAGE and compared the resolved pattern of proteins between control group that fed commercial diet and ascorbic acid supplemented group (AsA group) fed a diet supplemented with high concentration of ascorbic acid (2,000 mg/kg) for 7 days. The results revealed that there were many proteins exhibited distinct increase in AsA group. Among them, 6 regions that showed a dramatic elevation were chosen for protein identification using LC-MS/MS analysis and Mascot database search. Six proteins were identified, i.e. serotransferrin (Sero), transferrin (Trans), warm temperature acclimation-related 65 kDa protein (Wap65), complement component c3 (C3), hemoglobin beta-A chain (Hbß) and apolipoprotein A-1 (Apo). Quantitative RT-PCR analysis showed that the mRNA level of Hbß in epidermis of AsA group gave much higher increase (11.6 folds) than control group; the levels of Sero/Trans, Wap65, C3 and Apo showed no apparent difference between the two groups. The mRNA levels of wap65 and c3 in the liver and Apo in the kidney of AsA group exhibited significant increase in comparison to control group. In the case of secreted immunoglobulin M (IgM) and lysozyme (lyz), no difference of the mRNA levels of IgM in epidermis, gill, kidney, spleen and intestine, and lyz in epidermis, gill, spleen and intestine, was observed. The results of in situ hybridization confirmed the elevation of Hbß mRNA level in the epidermis tissue of AsA group. Our present study provided additional evidence showing the effectiveness of AsA in activating innate immune defense system in skin mucosal tissue of fish.
Collapse
Affiliation(s)
- Misato Mori
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tasuku Ito
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryota Washio
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yasuhiro Shibasaki
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Aki Namba
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takeshi Yabu
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Dai Iwazaki
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Noriko Wada
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hirosi Anzai
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hajime Shiba
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Teruyuki Nakanishi
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
| | - Nobuhiro Mano
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
7
|
Ohtsuka S, Nishida Y, Hirano K, Fuji T, Kaji T, Kondo Y, Komeda S, Tasumi S, Koike K, Boxshall GA. The cephalothoracic sucker of sea lice (Crustacea: Copepoda: Caligidae): The functional importance of cuticular membrane ultrastructure. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 62:101046. [PMID: 33813213 DOI: 10.1016/j.asd.2021.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Sea lice adhere to the body surface of host fish with a cephalothoracic sucker. Caligus adheres to this substrate using legs 2 and 3, and the action of cephalothoracic muscles. Lunules, small, paired, anterior sucker-like structures, have a vital function in the initial step of adhering and contain a unique endocuticule containing elements that may behave like active matter and serve as the actuating mechanism. Cuticular membranes bordering the cephalothorax have a unique endocuticule with an undulating dorsal surface and a smooth ventral surface. A high-speed camera revealed that this undulation likely facilitates rapid automatic application of the sucker to the substrate. The cuticular membranes on the posterior margin of the first exopodal segment of leg 2 have a specialized endocuticle with tubules each surrounded by fine fibers. This reinforcement helps them to generate a posteriorly-directed jet of water. Opening-closing of these membranes is controlled by postero-anterior motion of the distal exopodal segments of leg 2. The outer cuticular membrane of leg 3 is simple, presumably effected by powerful extrinsic muscles. The consistency of sucker morphology within Caligus implies a highly stereotyped attachment behavior that is effective across a remarkable variety of fishes.
Collapse
Affiliation(s)
- Susumu Ohtsuka
- Takehara Station, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, 5-8-1 Minato-machi, Takehara City, Hiroshima Prefecture 725-0024, Japan.
| | - Yusuke Nishida
- School of Applied Biological Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima City, Hiroshima Prefecture 739-8528, Japan
| | - Katsushi Hirano
- Takehara Station, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, 5-8-1 Minato-machi, Takehara City, Hiroshima Prefecture 725-0024, Japan
| | - Taiki Fuji
- Takehara Station, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, 5-8-1 Minato-machi, Takehara City, Hiroshima Prefecture 725-0024, Japan
| | - Tomonari Kaji
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G, 2E9, Canada
| | - Yusuke Kondo
- Takehara Station, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, 5-8-1 Minato-machi, Takehara City, Hiroshima Prefecture 725-0024, Japan
| | - Sota Komeda
- Takehara Station, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, 5-8-1 Minato-machi, Takehara City, Hiroshima Prefecture 725-0024, Japan
| | - Satoshi Tasumi
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima Prefecture 890-0056, Japan
| | - Kanae Koike
- Natural Science Center for Basic Research and Development, 1-4-2 Kagamiyama, Higashi-Hiroshima City, Hiroshima Prefecture 739-8526, Japan
| | - Geoffrey A Boxshall
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| |
Collapse
|
8
|
Gonçalves E Silva F, Dos Santos HF, de Assis Leite DC, Lutfi DS, Vianna M, Rosado AS. Skin and stinger bacterial communities in two critically endangered rays from the South Atlantic in natural and aquarium settings. Microbiologyopen 2020; 9:e1141. [PMID: 33226191 PMCID: PMC7755814 DOI: 10.1002/mbo3.1141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 01/04/2023] Open
Abstract
Bacterial communities of two critically endangered rays from the South Atlantic, the butterfly ray (Gymnura altavela) and the groovebelly ray (Dasyatis hypostigma), were described using 16S rRNA gene metabarcoding. The study characterized the bacterial communities associated with (i) G. altavela in natural (in situ) and aquarium (ex situ) settings, (ii) skin and stinger of G. altavela, and D. hypostigma in aquaria, and (iii) newborns and adults of D. hypostigma. The results revealed potentially antibiotic‐producing bacterial groups on the skin of rays from the natural environment, and some taxa with the potential to benefit ray health, mainly in rays from the natural environment, as well as possible pathogens to other animals, including fish and humans. Differences were observed between the G. altavela and D. hypostigma bacteria composition, as well as between the skin and stinger bacterial composition. The bacterial community associated with D. hypostigma changed with the age of the ray. The aquarium environment severely impacted the G. altavela bacteria composition, which changed from a complex bacterial community to one dominated almost exclusively by two taxa, Oceanimonas sp. and Sediminibacterium sp. on the skin and stinger, respectively.
Collapse
Affiliation(s)
- Fernanda Gonçalves E Silva
- BioTecPesca-Laboratory of Biology and Fisheries Technology-Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,The Oceanography Graduate Program of University of Rio de Janeiro State (PPG-OCN/UERJ), Rio de Janeiro, Brazil
| | | | | | | | - Marcelo Vianna
- BioTecPesca-Laboratory of Biology and Fisheries Technology-Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,The Oceanography Graduate Program of University of Rio de Janeiro State (PPG-OCN/UERJ), Rio de Janeiro, Brazil.,IMAM-AquaRio-Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| | - Alexandre Soares Rosado
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,IMAM-AquaRio-Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Conceição K, de Cena GL, da Silva VA, de Oliveira Neto XA, de Andrade VM, Tada DB, Richardson M, de Andrade SA, Dias SA, Castanho MARB, Lopes-Ferreira M. Design of bioactive peptides derived from CART sequence isolated from the toadfish Thalassophryne nattereri. 3 Biotech 2020; 10:162. [PMID: 32206496 PMCID: PMC7060301 DOI: 10.1007/s13205-020-2151-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/18/2020] [Indexed: 10/24/2022] Open
Abstract
The emergence of bacterial resistance due to the indiscriminate use of antibiotics warrants the need for developing new bioactive agents. In this context, antimicrobial peptides are highly useful for managing resistant microbial strains. In this study, we report the isolation and characterization of peptides obtained from the venom of the toadfish Thalassophryne nattereri. These peptides were active against Gram-positive and Gram-negative bacteria and fungi. The primary amino acid sequences showed similarity to Cocaine and Amphetamine Regulated Transcript peptides, and two peptide analogs-Tn CRT2 and Tn CRT3-were designed using the AMPA algorithm based on these sequences. The analogs were subjected to physicochemical analysis and antimicrobial screening and were biologically active at concentrations ranging from 2.1 to 13 µM. Zeta potential analysis showed that the peptide analogs increased the positive charge on the cell surface of Gram-positive and Gram-negative bacteria. The toxicity of Tn CRT2 and Tn CRT3 were analyzed in vitro using a hemolytic assay and tetrazolium salt reduction in fibroblasts and was found to be significant only at high concentrations (up to 40 µM). These results suggest that this methodological approach is appropriate to design novel antimicrobial peptides to fight bacterial infections and represents a new and promising discovery in fish venom.
Collapse
Affiliation(s)
- Katia Conceição
- Laboratório de Bioquímica de Peptídeos, Universidade Federal de São Paulo-UNIFESP, Rua Talim, 330, São José dos Campos, Brazil
| | - Gabrielle L. de Cena
- Laboratório de Bioquímica de Peptídeos, Universidade Federal de São Paulo-UNIFESP, Rua Talim, 330, São José dos Campos, Brazil
| | - Verônica A. da Silva
- Laboratório de Bioquímica de Peptídeos, Universidade Federal de São Paulo-UNIFESP, Rua Talim, 330, São José dos Campos, Brazil
| | - Xisto Antonio de Oliveira Neto
- Laboratório de Bioquímica de Peptídeos, Universidade Federal de São Paulo-UNIFESP, Rua Talim, 330, São José dos Campos, Brazil
| | - Vitor Martins de Andrade
- Laboratório de Bioquímica de Peptídeos, Universidade Federal de São Paulo-UNIFESP, Rua Talim, 330, São José dos Campos, Brazil
| | - Dayane Batista Tada
- Laboratório de Nanomateriais e Nanotoxicologia, Universidade Federal de São Paulo-UNIFESP, Rua Talim, 330, São José dos Campos, Brazil
| | - Michael Richardson
- Centro de Pesquisa e Desenvolvimento Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Rua Conde Pereira Carneiro 80, Belo Horizonte, MG Brazil
| | - Sonia A. de Andrade
- Laboratório Especial de Toxicologia Aplicada, Instituto Butantan, Av. Vital Brasil, São Paulo, 1500 Brazil
| | - Susana A. Dias
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649‐028 Lisboa, Portugal
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649‐028 Lisboa, Portugal
| | - Mônica Lopes-Ferreira
- Laboratório Especial de Toxicologia Aplicada, Instituto Butantan, Av. Vital Brasil, São Paulo, 1500 Brazil
| |
Collapse
|
10
|
Coelho GR, Neto PP, Barbosa FC, Dos Santos RS, Brigatte P, Spencer PJ, Sampaio SC, D'Amélio F, Pimenta DC, Sciani JM. Biochemical and biological characterization of the Hypanus americanus mucus: A perspective on stingray immunity and toxins. FISH & SHELLFISH IMMUNOLOGY 2019; 93:832-840. [PMID: 31425832 DOI: 10.1016/j.fsi.2019.08.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Stingrays skin secretions are largely studied due to the human envenoming medical relevance of the sting puncture that evolves to inflammatory events, including necrosis. Such toxic effects can be correlated to the biochemical composition of the sting mucus, according to the literature. Fish skin plays important biological roles, such as the control of the osmotic pressure gradient, protection against mechanical forces and microorganism infections. The mucus, on the other hand, is a rich and complex fluid, acting on swimming, nutrition and the innate immune system. The elasmobranch's epidermis is a tissue composed mainly by mucus secretory cells, and marine stingrays have already been described to present secretory glands spread throughout the body. Little is known about the biochemical composition of the stingray mucus, but recent studies have corroborated the importance of mucus in the envenomation process. Aiming to assess the mucus composition, a new non-invasive mucus collection method was developed that focused on peptides and proteins, and biological assays were performed to analyze the toxic and immune activities of the Hypanus americanus mucus. Pathophysiological characterization showed the presence of peptidases on the mucus, as well as the induction of edema and leukocyte recruitment in mice. The fractionated mucus improved phagocytosis on macrophages and showed antimicrobial activity against T. rubrumç. neoformans and C. albicans in vitro. The proteomic analyses showed the presence of immune-related proteins like actin, histones, hemoglobin, and ribosomal proteins. This protein pattern is similar to those reported for other fish mucus and stingray venoms. This is the first report depicting the Hypanus stingray mucus composition, highlighting its biochemical composition and importance for the stingray immune system and the possible role on the envenomation process.
Collapse
Affiliation(s)
| | | | | | | | - Patrícia Brigatte
- Faculdade de Medicina, Universidade Cidade de São Paulo-UNICID, Brazil
| | | | | | | | | | - Juliana Mozer Sciani
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Brazil; Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Brazil.
| |
Collapse
|
11
|
Lameiras JLV, Costa OTFD, Dos-Santos MC. Neotropical freshwater stingrays (Chondrichthyes – Potamotrygoninae): biology, general features and envenomation. TOXIN REV 2019. [DOI: 10.1080/15569543.2018.1542406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Juliana Luiza Varjão Lameiras
- Programa Multi-institucional de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas, Avenida Rodrigo Octávio Jordão Ramos, Manaus, Amazonas, Brasil
- Laboratório de Imunoquímica, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brasil
| | - Oscar Tadeu Ferreira da Costa
- Laboratório de Microscopia Quantitativa, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brasil
| | - Maria Cristina Dos-Santos
- Laboratório de Imunoquímica, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brasil
| |
Collapse
|
12
|
Abstract
Fish mucus layers are the main surface of exchange between fish and the environment, and they possess important biological and ecological functions. Fish mucus research is increasing rapidly, along with the development of high-throughput techniques, which allow the simultaneous study of numerous genes and molecules, enabling a deeper understanding of the fish mucus composition and its functions. Fish mucus plays a major role against fish infections, and research has mostly focused on the study of fish mucus bioactive molecules (e.g., antimicrobial peptides and immune-related molecules) and associated microbiota due to their potential in aquaculture and human medicine. However, external fish mucus surfaces also play important roles in social relationships between conspecifics (fish shoaling, spawning synchronisation, suitable habitat finding, or alarm signals) and in interspecific interactions such as prey-predator relationships, parasite–host interactions, and symbiosis. This article reviews the biological and ecological roles of external (gills and skin) fish mucus, discussing its importance in fish protection against pathogens and in intra and interspecific interactions. We also discuss the advances that “omics” sciences are bringing into the fish mucus research and their importance in studying the fish mucus composition and functions.
Collapse
|
13
|
Ritchie KB, Schwarz M, Mueller J, Lapacek VA, Merselis D, Walsh CJ, Luer CA. Survey of Antibiotic-producing Bacteria Associated with the Epidermal Mucus Layers of Rays and Skates. Front Microbiol 2017; 8:1050. [PMID: 28725216 PMCID: PMC5496964 DOI: 10.3389/fmicb.2017.01050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/26/2017] [Indexed: 02/02/2023] Open
Abstract
Elasmobranchs represent a distinct group of cartilaginous fishes that harbor a remarkable ability to heal wounds rapidly and without infection. To date very little work has addressed this phenomenon although it is suggested that antibiotic capabilities associated with epidermal surfaces may be a factor. The study of benefits derived from mutualistic interactions between unicellular and multicellular organisms is a rapidly growing area of research. Here we survey and identify bacterial associates of three ray and one skate species in order to assess the potential for antibiotic production from elasmobranch associated bacteria as a novel source for new antibiotics.
Collapse
Affiliation(s)
- Kim B. Ritchie
- Department of Natural Sciences, University of South Carolina Beaufort, BeaufortSC, United States
- Mote Marine Laboratory, SarasotaFL, United States
| | - Melbert Schwarz
- Mote Marine Laboratory, SarasotaFL, United States
- Department of Biological Sciences, University of Quebec at Montreal, MontrealQC, Canada
| | | | | | - Daniel Merselis
- Mote Marine Laboratory, SarasotaFL, United States
- Department of Biological Sciences, Florida International University, MiamiFL, United States
| | | | - Carl A. Luer
- Mote Marine Laboratory, SarasotaFL, United States
| |
Collapse
|
14
|
Immunological properties of oxygen-transport proteins: hemoglobin, hemocyanin and hemerythrin. Cell Mol Life Sci 2016; 74:293-317. [PMID: 27518203 PMCID: PMC5219038 DOI: 10.1007/s00018-016-2326-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/17/2016] [Accepted: 08/03/2016] [Indexed: 01/22/2023]
Abstract
It is now well documented that peptides with enhanced or alternative functionality (termed cryptides) can be liberated from larger, and sometimes inactive, proteins. A primary example of this phenomenon is the oxygen-transport protein hemoglobin. Aside from respiration, hemoglobin and hemoglobin-derived peptides have been associated with immune modulation, hematopoiesis, signal transduction and microbicidal activities in metazoans. Likewise, the functional equivalents to hemoglobin in invertebrates, namely hemocyanin and hemerythrin, act as potent immune effectors under certain physiological conditions. The purpose of this review is to evaluate the true extent of oxygen-transport protein dynamics in innate immunity, and to impress upon the reader the multi-functionality of these ancient proteins on the basis of their structures. In this context, erythrocyte-pathogen antibiosis and the immune competences of various erythroid cells are compared across diverse taxa.
Collapse
|
15
|
Lopes-Ferreira M, Sosa-Rosales I, Bruni FM, Ramos AD, Vieira Portaro FC, Conceição K, Lima C. Analysis of the intersexual variation in Thalassophryne maculosa fish venoms. Toxicon 2016; 115:70-80. [DOI: 10.1016/j.toxicon.2016.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/02/2016] [Accepted: 02/24/2016] [Indexed: 01/20/2023]
|
16
|
A Severe Accident Caused by an Ocellate River Stingray (Potamotrygon motoro) in Central Brazil: How Well Do We Really Understand Stingray Venom Chemistry, Envenomation, and Therapeutics? Toxins (Basel) 2015; 7:2272-88. [PMID: 26094699 PMCID: PMC4488702 DOI: 10.3390/toxins7062272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/29/2015] [Accepted: 05/30/2015] [Indexed: 12/15/2022] Open
Abstract
Freshwater stingrays cause many serious human injuries, but identification of the offending species is uncommon. The present case involved a large freshwater stingray, Potamotrygon motoro (Chondrichthyes: Potamotrygonidae), in the Araguaia River in Tocantins, Brazil. Appropriate first aid was administered within ~15 min, except that an ice pack was applied. Analgesics provided no pain relief, although hot compresses did. Ciprofloxacin therapy commenced after ~18 h and continued seven days. Then antibiotic was suspended; however, after two more days and additional tests, cephalosporin therapy was initiated, and proved successful. Pain worsened despite increasingly powerful analgesics, until debridement of the wound was performed after one month. The wound finally closed ~70 days after the accident, but the patient continued to have problems wearing shoes even eight months later. Chemistry and pharmacology of Potamotrygon venom and mucus, and clinical management of freshwater stingray envenomations are reviewed in light of the present case. Bacterial infections of stingray puncture wounds may account for more long-term morbidity than stingray venom. Simultaneous prophylactic use of multiple antibiotics is recommended for all but the most superficial stingray wounds. Distinguishing relative contributions of venom, mucus, and bacteria will require careful genomic and transcriptomic investigations of stingray tissues and contaminating bacteria.
Collapse
|