1
|
Rangaraj VM, Mabrook G, Hathi Z, Mettu S, Banat F, Taher H. Lacticaseibacillus rhamnosus encapsulated cross-linked Keratin-Chitosan hydrogel for removal of patulin from apple juice. Food Chem 2024; 454:139619. [PMID: 38811285 DOI: 10.1016/j.foodchem.2024.139619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
In this study, we developed a hydrogel from cross-linked keratin and chitosan (KC) to remove patulin (PAT) from apple juice. We explored the potential of incorporating Lactobacillus rhamnoses into the KC hydrogel (KC-LR) and tested its effectiveness in removing PAT from simulated juice solutions and real apple juice. The KC hydrogel was developed through a dynamic disulfide cross-linking reaction. This cross-linked hydrogel network provided excellent stability for the probiotic cells, achieving 99.9 % immobilization efficiency. In simulated juice with 25 mg/L PAT, the KC and KC-LR hydrogels showed removal efficiencies of 85.2 % and 97.68 %, respectively, using 15 mg mL-1 of the prepared hydrogel at a temperature of 25 °C for 6 h. The KC and KC-LR hydrogels achieved 76.3 % and 83.6 % removal efficiencies in real apple juice systems, respectively. Notably, the encapsulated probiotics did not negatively impact the juice quality and demonstrated reusability for up to five cycles of the PAT removal process.
Collapse
Affiliation(s)
- Vengatesan M Rangaraj
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Ghanim Mabrook
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Zubeen Hathi
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Srinivas Mettu
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Hanifa Taher
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Wang X, Sahibzada KI, Du R, Lei Y, Wei S, Li N, Hu Y, Lv Y. Rhein Inhibits Cell Development and Aflatoxin Biosynthesis via Energy Supply Disruption and ROS Accumulation in Aspergillus flavus. Toxins (Basel) 2024; 16:285. [PMID: 39057925 PMCID: PMC11280830 DOI: 10.3390/toxins16070285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Aspergillus flavus and its carcinogenic secondary metabolites, aflatoxins, not only cause serious losses in the agricultural economy, but also endanger human health. Rhein, a compound extracted from the Chinese herbal medicine Rheum palmatum L. (Dahuang), exhibits good anti-inflammatory, anti-tumor, and anti-oxidative effects. However, its effect and underlying mechanisms against Aspergillus flavus have not yet been fully illustrated. In this study, we characterized the inhibition effect of rhein on A. flavus mycelial growth, sporulation, and aflatoxin B1 (AFB1) biosynthesis and the potential mechanism using RNA-seq analysis. The results indicate that A. flavus mycelial growth and AFB1 biosynthesis were significantly inhibited by 50 μM rhein, with a 43.83% reduction in colony diameter and 87.2% reduction in AFB1 production. The RNA-seq findings demonstrated that the differentially expressed genes primarily participated in processes such as spore formation and development, the maintenance of cell wall and membrane integrity, management of oxidative stress, the regulation of the citric acid cycle, and the biosynthesis of aflatoxin. Biochemical verification experiments further confirmed that 50 μM rhein effectively disrupted cell wall and membrane integrity and caused mitochondrial dysfunction through disrupting energy metabolism pathways, leading to decreased ATP synthesis and ROS accumulation, resulting in impaired aflatoxin biosynthesis. In addition, a pathogenicity test showed that 50 μM rhein inhibited A. flavus spore growth in peanut and maize seeds by 34.1% and 90.4%, while AFB1 biosynthesis was inhibited by 60.52% and 99.43%, respectively. In conclusion, this research expands the knowledge regarding the antifungal activity of rhein and provides a new strategy to mitigate A. flavus contamination.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Kashif Iqbal Sahibzada
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
- Department of Health Professional Technologies, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54570, Pakistan
| | - Ruibo Du
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Yang Lei
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Na Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| |
Collapse
|
3
|
Hu K, Guo K, Wang X, Wang S, Li J, Li Q, Zhao N, Liu A, He L, Hu X, Yang Y, Zou L, Chen S, Liu S. Occurrence of ochratoxin A in Sichuan bacon from different geographical regions and characterization and biocontrol of ochratoxigenic Aspergillus westerdijkiae strain 21G2-1A. Food Res Int 2024; 184:114272. [PMID: 38609249 DOI: 10.1016/j.foodres.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Sichuan bacon represents the most prevalent dry-cured meat product across Southwest China, but it is vulnerable to fungal spoilage. In the present study, a total of 47 Sichuan bacons were obtained from different regions of the Sichuan Province and analyzed for the presence of ochratoxin A (OTA), yielding a positive rate of 23.4 % (11/47). All the observed OTA concentrations exceeded the maximum admissible dose in meat products (1 μg/kg) established by some EU countries, with the highest OTA concentration being 250.75 μg/kg, which raises a food safety concern and reveals the need for a standardized scientific processing protocol. Then, an OTA-producing fungus named 21G2-1A was isolated from positive samples and found to be Aspergillus westerdijkiae. Further characterization suggested a positive correlation between fungal growth and OTA production. The optimal temperature for the former was 25 °C, while it was 20 °C for the latter. Although the A. westerdijkiae strain 21G2-1A demonstrated greater mycelium growth in the presence of NaCl, OTA production was significantly dismissed when the salinity was greater than 5 %. Four lactic acid bacteria (LAB) were screened out as antagonists against the ochratoxigenic fungus. In vitro evaluation of the antagonists revealed that live cells inhibited fungal growth, and adsorption also contributed to OTA removal at different levels. This study sheds some light on OTA control in Sichuan bacon through a biological approach.
Collapse
Affiliation(s)
- Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Keyu Guo
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xingjie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Song Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Ning Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| |
Collapse
|
4
|
Rodríguez CL, Strub C, Fontana A, Verheecke-Vaessen C, Durand N, Beugré C, Guehi T, Medina A, Schorr-Galindo S. Biocontrol activities of yeasts or lactic acid bacteria isolated from Robusta coffee against Aspergillus carbonarius growth and ochratoxin A production in vitro. Int J Food Microbiol 2024; 415:110638. [PMID: 38430685 DOI: 10.1016/j.ijfoodmicro.2024.110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Biocontrol Agents (BCAs) can be an eco-friendly alternative to fungicides to reduce the contamination with mycotoxigenic fungi on coffee. In the present study, different strains of bacteria and yeasts were isolated from Ivorian Robusta coffee. Their ability to reduce fungal growth and Ochratoxin A (OTA) production during their confrontation against Aspergillus carbonarius was screened on solid media. Some strains were able to reduce growth and OTA production by 85 % and 90 % and were molecularly identified as two yeasts, Rhodosporidiobolus ruineniae and Meyerozyma caribbica. Subsequent tests on liquid media with A. carbonarius or solely with OTA revealed adhesion of R. ruineniae to the mycelium of A. carbonarius through Scanning Electron Microscopy, and an OTA adsorption efficiency of 50 %. For M. caribbica potential degradation of OTA after 24 h incubation was observed. Both yeasts could be potential BCAs good candidates for Ivorian Robusta coffee protection against A. carbonarius and OTA contamination.
Collapse
Affiliation(s)
- Claudia López Rodríguez
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France; Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| | - Caroline Strub
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France.
| | - Angélique Fontana
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France
| | | | - Noël Durand
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France; CIRAD, UMR Qualisud, F-34398 Montpellier, France
| | - Corinne Beugré
- Laboratory of Microbiology and Molecular Biology, Department of Food Science and Technology, University of Nangui Abrogoua, Abidjan, Cote d'Ivoire
| | - Tagro Guehi
- Laboratory of Microbiology and Molecular Biology, Department of Food Science and Technology, University of Nangui Abrogoua, Abidjan, Cote d'Ivoire
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| | - Sabine Schorr-Galindo
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France
| |
Collapse
|
5
|
Zahija Jazbec I, Demšar L, Jeršek B, Polak T. Meat Starter Culture Reduces Aspergillus parasiticus Production of Aflatoxins on Meat-Based and Salami Model Media. Toxins (Basel) 2024; 16:173. [PMID: 38668598 PMCID: PMC11053754 DOI: 10.3390/toxins16040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024] Open
Abstract
There is great concern about the risk posed by the consumption of food contaminated with aflatoxins (AF), produced mostly by Aspergillus strains, that can also be found in dry-fermented meat products (DFMPs). The aim of this study was to investigate the inhibitory effect of meat starter culture (SC), frequently used for fermentation in the meat industry, on A. parasiticus growth and the production of aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), and sterigmatocystin (STE) on different meat-based (CMA) and salami model (SM-G) media. Incubation was carried out under optimal conditions for fungal growth and under typical conditions for ripening of DFMPs for 21 days. Reversed-phase UPLC-MS/MS analysis was performed to determine mycotoxin production. SC reduced A. parasiticus growth more on CMA than on SM-G media. AFB1 formation was inhibited on both types of SC-containing media, although SC generally had a stronger inhibitory effect on AFB1 production on CMA than on SM-G. AFB1 and AFB2 were produced on CMA, while AFB1 dominated in SM-G, AFG1, and AFG2 were not detected in any media. The results show that SC inhibited AFB1 formation of A. parasiticus on SM-G media after 21 days of incubation under typical conditions for the production of DFMPs. These results indicate the necessity to investigate AF on natural matrices in an environment that is as similar as possible to real conditions in the production of DFMPs.
Collapse
Affiliation(s)
- Iva Zahija Jazbec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.D.); (B.J.); (T.P.)
| | | | | | | |
Collapse
|
6
|
Divyashree S, Shruthi B, Vanitha P, Sreenivasa M. Probiotics and their postbiotics for the control of opportunistic fungal pathogens: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00800. [PMID: 37215743 PMCID: PMC10196798 DOI: 10.1016/j.btre.2023.e00800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
During past twenty years the opportunistic fungal infections have been emerging, causing morbidity and mortality. The fungi belonging to Aspergillus, Mucor, Rhizopus, Candida, Fusarium, Penicillium, Dermatophytes and others cause severe opportunistic fungal infections. Among these Aspergillus and Candida spp cause majority of the diseases. The continuum of fungal infections will prolong to progress in the surroundings of the growing inhabitants of immunocompromised individuals. Presently many chemical-based drugs were used as prophylactic and therapeutic agents. Prolonged usage of antibiotics may lead to some severe effect on the human health. Also, one of the major threats is that the fungal pathogens are becoming the drug resistant. There are many physical, chemical, and mechanical methods to prevent the contamination or to control the disease. Owing to the limitations that are observed in such methods, biological methods are gaining more interest because of the use of natural products which have comparatively less side effects and environment friendly. In recent years, research on the possible use of natural products such as probiotics for clinical use is gaining importance. Probiotics, one of the well studied biological products, are safe upon consumption and are explored to treat various fungal infections. The antifungal potency of major groups of probiotic cultures such as Lactobacillus spp, Leuconostoc spp, Saccharomyces etc. and their metabolic byproducts which act as postbiotics like organic acids, short chain fatty acids, bacteriocin like metabolites, Hydrogen peroxide, cyclic dipeptides etc. to inhibit these opportunistic fungal pathogens have been discussed here.
Collapse
|
7
|
Mateo EM, Tarazona A, Jiménez M, Mateo F. Lactic Acid Bacteria as Potential Agents for Biocontrol of Aflatoxigenic and Ochratoxigenic Fungi. Toxins (Basel) 2022; 14:807. [PMID: 36422981 PMCID: PMC9699002 DOI: 10.3390/toxins14110807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Aflatoxins (AF) and ochratoxin A (OTA) are fungal metabolites that have carcinogenic, teratogenic, embryotoxic, genotoxic, neurotoxic, and immunosuppressive effects in humans and animals. The increased consumption of plant-based foods and environmental conditions associated with climate change have intensified the risk of mycotoxin intoxication. This study aimed to investigate the abilities of eleven selected LAB strains to reduce/inhibit the growth of Aspergillus flavus, Aspergillus parasiticus, Aspergillus carbonarius, Aspergillus niger, Aspergillus welwitschiae, Aspergillus steynii, Aspergillus westerdijkiae, and Penicillium verrucosum and AF and OTA production under different temperature regiments. Data were treated by ANOVA, and machine learning (ML) models able to predict the growth inhibition percentage were built, and their performance was compared. All factors LAB strain, fungal species, and temperature significantly affected fungal growth and mycotoxin production. The fungal growth inhibition range was 0-100%. Overall, the most sensitive fungi to LAB treatments were P. verrucosum and A. steynii, while the least sensitive were A. niger and A. welwitschiae. The LAB strains with the highest antifungal activity were Pediococcus pentosaceus (strains S11sMM and M9MM5b). The reduction range for AF was 19.0% (aflatoxin B1)-60.8% (aflatoxin B2) and for OTA, 7.3-100%, depending on the bacterial and fungal strains and temperatures. The LAB strains with the highest anti-AF activity were the three strains of P. pentosaceus and Leuconostoc mesenteroides ssp. dextranicum (T2MM3), and those with the highest anti-OTA activity were Leuconostoc paracasei ssp. paracasei (3T3R1) and L. mesenteroides ssp. dextranicum (T2MM3). The best ML methods in predicting fungal growth inhibition were multilayer perceptron neural networks, followed by random forest. Due to anti-fungal and anti-mycotoxin capacity, the LABs strains used in this study could be good candidates as biocontrol agents against aflatoxigenic and ochratoxigenic fungi and AFL and OTA accumulation.
Collapse
Affiliation(s)
- Eva María Mateo
- Departamento de Microbiología y Ecología, Facultad de Medicina y Odontología, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| | - Andrea Tarazona
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| | - Misericordia Jiménez
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| | - Fernando Mateo
- Departamento de Ingeniería Electrónica, ETSE, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| |
Collapse
|
8
|
Antifungal activity of lactic acid bacteria and their application in food biopreservation. ADVANCES IN APPLIED MICROBIOLOGY 2022; 120:33-77. [PMID: 36243452 DOI: 10.1016/bs.aambs.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lactic acid bacteria (LAB) are ubiquitous bacteria associated with spontaneous lactic fermentation of vegetables, dairy and meat products. They are generally recognized as safe (GRAS), and they are involved in transformation of probiotic lacto-fermented foods, highly desired for their nutraceutical properties. The antifungal activity is one of the exciting properties of LAB, because of its possible application in food bio-preservation, as alternative to chemical preservatives. Many recent research works have been developed on antifungal activity of LAB, and they demonstrate their capacity to produce various antifungal compounds, (i.e. organic acids, PLA, proteinaceous compounds, peptides, cyclic dipeptides, fatty acids, and other compounds), of different properties (hydrophilic, hydrophobic and amphiphilic). The effectiveness of LAB in controlling spoilage and pathogenic fungi, demonstrated in different agricultural and food products, can be due to the synergistic effect between their antifungal compounds of different properties; where the amphiphilic-compounds allow the contact between the target microbial cell (hydrophilic compartment) and antifungal hydrophobic-compounds. Further studies on the interaction between compounds of these three properties are to de be developed, in order to highlight more their mechanism of action, and make LAB more profitable in improving shelf life and nutraceutical properties of foods.
Collapse
|
9
|
Maher A, Nowak A. Chemical Contamination in Bread from Food Processing and Its Environmental Origin. Molecules 2022; 27:5406. [PMID: 36080171 PMCID: PMC9457569 DOI: 10.3390/molecules27175406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 12/03/2022] Open
Abstract
Acrylamide (AA), furan and furan derivatives, polycyclic aromatic amines (PAHs), monochloropropanediols (MCPDs), glycidol, and their esters are carcinogens that are being formed in starchy and high-protein foodstuffs, including bread, through baking, roasting, steaming, and frying due to the Maillard reaction. The Maillard reaction mechanism has also been described as the source of food processing contaminants. The above-mentioned carcinogens, especially AA and furan compounds, are crucial substances responsible for the aroma of bread. The other groups of bread contaminants are mycotoxins (MTs), toxic metals (TMs), and pesticides. All these contaminants can be differentiated depending on many factors such as source, the concentration of toxicant in the different wheat types, formation mechanism, metabolism in the human body, and hazardous exposure effects to humans. The following paper characterizes the most often occurring contaminants in the bread from each group. The human exposure to bread contaminants and their safe ranges, along with the International Agency for Research on Cancer (IARC) classification (if available), also have been analyzed.
Collapse
Affiliation(s)
- Agnieszka Maher
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| |
Collapse
|
10
|
Ben Farhat L, Aissaoui N, Torrijos R, Luz C, Meca G, Abidi F. Correlation between metabolites of lactic acid bacteria isolated from dairy traditional fermented Tunisian products and antifungal and antioxidant activities. J Appl Microbiol 2022; 133:3069-3082. [PMID: 35924966 DOI: 10.1111/jam.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
Abstract
AIMS The objective of this study is to identify and investigate the antifungal and antioxidant potential of lactic acid bacteria (LAB) isolated from traditional fermented products. METHODS AND RESULTS In this work, a collection of LAB was isolated from traditional fermented products collected in four Tunisian regions. After first screening using the overlay method, seven bacterial strains were retained due to their high antifungal effect. Four strains of Limosilactobacillus fermentum were identified, one strain of Lacticaseibacillus paracasei, one strain of Lacticaseibacillus rhamnosus and one strain of Enterococcus faecium. The antifungal as well as the antioxidant potential of these bacteria were then evaluated. Bacterial strains were effective against six fungal strains with a minimum inhibitory concentrations ranging from 25 to 100 mg/mL and a minimum fungicidal concentrations ranging from 50 to 200 mg/mL. Cell free supernatants of LAB were analyzed by HPLC-DAD and LC-MS-qTOF-MS analysis. Results showed significant production of organic acids as well as several phenolic compounds. Correlation analysis confirmed that PLA and 1,2-Dihydroxybenzene were positively correlated with antifungal potential. The results of the antioxidant activity highlighted an ABTS radical cation scavenging activity ranging from 49% to 57% and a DPPH trapping percentage ranging from 80% to 97%. CONCLUSIONS Therefore, due to these characteristics, identified lactic acid bacteria strains have shown their effectiveness to perform as antifungal and antioxidant agents. SIGNIFICANCE AND IMPACT OF THE STUDY Since microbial contamination is at the root of extensive losses in the food sector, the identified strains or their metabolites can potentially be used as additives to limit microorganism spoilage in food products and increase their shelf life.
Collapse
Affiliation(s)
- Leila Ben Farhat
- University of Carthage, INSAT, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), BP 676, 1080 Cedex, Tunisia.,University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Neyssene Aissaoui
- University of Carthage, INSAT, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), BP 676, 1080 Cedex, Tunisia
| | - Raquel Torrijos
- University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Carlos Luz
- University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Giuseppe Meca
- University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Ferid Abidi
- University of Carthage, INSAT, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), BP 676, 1080 Cedex, Tunisia
| |
Collapse
|
11
|
Salman M, Javed MR, Ali H, Mustafa G, Tariq A, Sahar T, Naheed S, Gill I, Abid M, Tawab A. Bioprotection of Zea mays L. from aflatoxigenic Aspergillus flavus by Loigolactobacillus coryniformis BCH-4. PLoS One 2022; 17:e0271269. [PMID: 35917314 PMCID: PMC9345345 DOI: 10.1371/journal.pone.0271269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Fungal infection causes deterioration, discoloration, and loss of nutritional values of food products. The use of lactic acid bacteria has diverse applications in agriculture to combat pathogens and to improve the nutritional values of cereal grains. The current research evaluated the potential of Loigolactobacillus coryniformis BCH-4 against aflatoxins producing toxigenic Aspergillus flavus strain. The cell free supernatant (CFS) of Loig. coryniformis was used for the protection of Zea mays L. treated with A. flavus. No fungal growth was observed even after seven days. The FT-IR spectrum of untreated (T1: without any treatment) and treated maize grains (T2: MRS broth + A. flavus; T3: CFS + A. flavus) showed variations in peak intensities of functional group regions of lipids, proteins, and carbohydrates. Total phenolics, flavonoid contents, and antioxidant activity of T3 were significantly improved in comparison with T1 and T2. Aflatoxins were not found in T3 while observed in T2 (AFB1 and AFB2 = 487 and 16 ng/g each). HPLC analysis of CFS showed the presence of chlorogenic acid, p-coumaric acid, 4-hydroxybenzoic acid, caffeic acid, sinapic acid, salicylic acid, and benzoic acid. The presence of these acids in the CFS of Loig. coryniformis cumulatively increased the antioxidant contents and activity of T3 treated maize grains. Besides, CFS of Loig. coryniformis was passed through various treatments (heat, neutral pH, proteolytic enzymes and catalase), to observe its stability. It suggested that the inhibitory potential of CFS against A. flavus was due to the presence of organic acids, proteinaceous compounds and hydrogen peroxide. Conclusively, Loig. coryniformis BCH-4 could be used as a good bioprotecting agent for Zea mays L. by improving its nutritional and antioxidant contents.
Collapse
Affiliation(s)
- Mahwish Salman
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
- * E-mail: (MS); (AT)
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Hazrat Ali
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Anam Tariq
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Tanzila Sahar
- Department of Biochemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Shazia Naheed
- Department of Chemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Iqra Gill
- Department of Biochemistry, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Abid
- Department of Statistics, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Abdul Tawab
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- * E-mail: (MS); (AT)
| |
Collapse
|
12
|
Păcularu-Burada B, Ceoromila (Cantaragiu) AM, Vasile MA, Bahrim GE. Novel insights into different kefir grains usefulness as valuable multiple starter cultures to achieve bioactive gluten-free sourdoughs. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Massoud R, Zoghi A. Potential probiotic strains with heavy metals and mycotoxins bioremoval capacity for application in foodstuffs. J Appl Microbiol 2022; 133:1288-1307. [PMID: 35751476 DOI: 10.1111/jam.15685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Heavy metals and mycotoxins in foodstuffs are one of the major concerns of our world nowadays. Food decontamination with the help of microbial biomass is a cheap, easy, efficient, and green method known as bioremoval. Probiotics are able to reduce the availability of heavy metals and toxins in food products. The purpose of this review is to summarize the probiotics and potential probiotics' interesting role in food bio-decontamination. After a brief glance at the definition of potential probiotic strains with bioremoval ability, LABs (lactic acid bacteria) are described as they are the most important groups of probiotics. After that, the role of the main probiotic and potential probiotic strains (Bacillus, Lactobacillus, Lactococcus, Enterococcus, Bifidobacterium, Pediococcus, Propionibacterium, Streptococcus, and Saccharomyces cerevisiae) for heavy metals and mycotoxins bioremoval are described. Additionally, the bioremoval mechanism and the effect of some factors in bioremoval efficiency are explained. Finally, the investigations about probiotic and contaminant stability are mentioned. It is worth mentioning that this review article can be exerted in different food and beverage industries to eliminate the heavy metals and mycotoxins in foodstuffs.
Collapse
Affiliation(s)
- Ramona Massoud
- Department of Food and Technology, Standard Organization, Tehran, Iran
| | - Alaleh Zoghi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Biodetoxification and Protective Properties of Probiotics. Microorganisms 2022; 10:microorganisms10071278. [PMID: 35888997 PMCID: PMC9319832 DOI: 10.3390/microorganisms10071278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Probiotic consumption is recognized as being generally safe and correlates with multiple and valuable health benefits. However, the mechanism by which it helps detoxify the body and its anti-carcinogenic and antimutagenic potential is less discussed. A widely known fact is that globalization and mass food production/cultivation make it impossible to keep all possible risks under control. Scientists associate the multitude of diseases in the days when we live with these risks that threaten the population’s safety in terms of food. This review aims to explore whether the use of probiotics may be a safe, economically viable, and versatile tool in biodetoxification despite the numerous risks associated with food and the limited possibility to evaluate the contaminants. Based on scientific data, this paper focuses on the aspects mentioned above and demonstrates the probiotics’ possible risks, as well as their anti-carcinogenic and antimutagenic potential. After reviewing the probiotic capacity to react with pathogens, fungi infection, mycotoxins, acrylamide toxicity, benzopyrene, and heavy metals, we can conclude that the specific probiotic strain and probiotic combinations bring significant health outcomes. Furthermore, the biodetoxification maximization process can be performed using probiotic-bioactive compound association.
Collapse
|
15
|
Liu A, Xu R, Zhang S, Wang Y, Hu B, Ao X, Li Q, Li J, Hu K, Yang Y, Liu S. Antifungal Mechanisms and Application of Lactic Acid Bacteria in Bakery Products: A Review. Front Microbiol 2022; 13:924398. [PMID: 35783382 PMCID: PMC9244174 DOI: 10.3389/fmicb.2022.924398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bakery products are nutritious, but they are susceptible to fungal contamination, which leads to a decline in quality and safety. Chemical preservatives are often used to extend the shelf-life of bakery products, but long-term consumption of these preservatives may increase the risk of chronic diseases. Consumers increasingly demand food with fewer chemical preservatives. The application of lactic acid bacteria (LAB) as a novel biological preservative not only prolongs the shelf-life of bakery products but also improves the baking properties of bakery products. This review summarizes different types and action mechanisms of antifungal compounds produced by LAB, factors affecting the production of antifungal compounds, and the effects of antifungal LAB on bakery products, providing a reference for future applications of antifungal LAB in bakery products.
Collapse
|
16
|
Galván AI, Hernández A, Córdoba MDG, Martín A, Serradilla MJ, López-Corrales M, Rodríguez A. Control of toxigenic Aspergillus spp. in dried figs by volatile organic compounds (VOCs) from antagonistic yeasts. Int J Food Microbiol 2022; 376:109772. [PMID: 35667262 DOI: 10.1016/j.ijfoodmicro.2022.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Aspergillus flavus and Aspergillus niger are fungi which can contaminate dried figs before and after harvest and consequently produce aflatoxins (AFs) and ochratoxin A (OTA). Many approaches have been applied to minimise the growth of these filamentous fungi, mainly involving the use of synthetic fungicides which are limited due to their negative impact on human health and the environment. In this context, biocontrol is a recent approach that needs to be explored. This study evaluated the potential of three volatile organic compounds (VOCs), octanoic acid (OA), 2-phenylethyl acetate (2PEA) and furfuryl acetate (FA), produced by Hanseniaspora uvarum and Hanseniaspora opuntiae yeasts on the growth, germination, gene expression and production of AFs and OTA by A. flavus M144 and A. niger M185 on dried fig-based agar and the incidence rates in dried figs. Two of the three VOCs evaluated (2PEA and FA) effectively controlled A. flavus M144 and A. niger M185 by using at least amounts of 50 μL (715 μL/L in the headspace) for FA and 100 μL (1430 μL/L in the headspace) for 2PEA in dried figs. One of the mode of actions of both compounds consists in early repressing the expression of genes involved in the biosynthesis of AFs (aflR) and OTA (pks) of A. flavus and A. niger, respectively. The results of this study support the application of 2PEA and FA at the early post-harvest stages of dried figs to control mycotoxin accumulation.
Collapse
Affiliation(s)
- Ana Isabel Galván
- Área de Fruticultura, Centro de Investigaciones Finca La Orden-Valdesequera (CICYTEX), Autovía Madrid-Lisboa, s/n, 06187 Guadajira, Spain
| | - Alejandro Hernández
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain.
| | - María de Guía Córdoba
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - Alberto Martín
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - Manuel Joaquín Serradilla
- Área de Postcosecha, Instituto Tecnológico Agroalimentario de Extremadura (INTAEX), Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Avenida Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - Margarita López-Corrales
- Área de Fruticultura, Centro de Investigaciones Finca La Orden-Valdesequera (CICYTEX), Autovía Madrid-Lisboa, s/n, 06187 Guadajira, Spain
| | - Alicia Rodríguez
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| |
Collapse
|
17
|
Inhibitory Capacity of Chitosan Films Containing Lactic Acid Bacteria Cell-Free Supernatants against Colletotrichum gloeosporioides. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
|
19
|
Lactic acid fermentation as a useful strategy to recover antimicrobial and antioxidant compounds from food and by-products. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Torrijos R, de Melo Nazareth T, Vila-Donat P, Mañes J, Meca G. Use of Mustard Extracts Fermented by Lactic Acid Bacteria to Mitigate the Production of Fumonisin B1 and B2 by Fusarium verticillioides in Corn Ears. Toxins (Basel) 2022; 14:toxins14020080. [PMID: 35202108 PMCID: PMC8880755 DOI: 10.3390/toxins14020080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
Corn (Zea mays) is a worldwide crop subjected to infection by toxigenic fungi such as Fusarium verticillioides during the pre-harvest stage. Fusarium contamination can lead to the synthesis of highly toxic mycotoxins, such as Fumonisin B1 (FB1) and Fumonisin B2 (FB2), which compromises human and animal health. The work aimed to study the antifungal properties of fermented yellow and oriental mustard extracts using nine lactic acid bacteria (LAB) in vitro. Moreover, a chemical characterization of the main phenolic compounds and organic acids were carried out in the extracts. The results highlighted that the yellow mustard, fermented by Lactiplantibacillus plantarum strains, avoided the growth of Fusarium spp. in vitro, showing Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) values, ranging from 7.8 to 15.6 g/L and 15.6 to 31.3 g/L, respectively. Then, the lyophilized yellow mustard fermented extract by L. plantarum TR71 was applied through spray-on corn ears contaminated with F. verticillioides to study the antimycotoxigenic activity. After 14 days of incubation, the control contained 14.71 mg/kg of FB1, while the treatment reduced the content to 1.09 mg/kg (92.6% reduction). Moreover, no FB2 was observed in the treated samples. The chemical characterization showed that lactic acid, 3-phenyllactic acid, and benzoic acid were the antifungal metabolites quantified in higher concentrations in the yellow mustard fermented extract with L. plantarum TR71. The results obtained confirmed the potential application of fermented mustard extracts as a solution to reduce the incidence of mycotoxins in corn ears.
Collapse
|
21
|
Carrizo NI, Carabajal Torrez JA, Molina FRE, Fornaguera MJ, Martos GI, Bustos AY, Gerez CL. Selection and Performance of Antifungal Lactic Acid Bacteria in Corn Mini-Silos. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Carasi P, Malamud M, Serradell MA. Potentiality of Food-Isolated Lentilactobacillus kefiri Strains as Probiotics: State-of-Art and Perspectives. Curr Microbiol 2021; 79:21. [PMID: 34905095 DOI: 10.1007/s00284-021-02728-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
Lentilactobacillus kefiri is one of the main lactic acid bacteria species in kefir and it was also isolated from other fermented foods. Numerous strains have been isolated and characterized regarding its potential as probiotics for the development of novel functional foods. To our knowledge this is the first review focused on highlighting safety aspects and health beneficial effects reported for L. kefiri strains. Several L. kefiri strains lack of transmissible antibiotic resistance genes, are tolerant to the harsh conditions of the gastrointestinal environment, and could resist different preservation procedures. Moreover, many of the isolated strains have shown antimicrobial activity against pathogens and their toxins, exhibited immunomodulatory activity as well as induced some beneficial effects at metabolic level. Regarding all the scientific evidence, certain L. kefiri strains emerge as excellent candidates to be applied to the development of both food supplements and new fermented foods with health-promoting properties. However, the availability of genomic information is still very limited, so much more work must be done in order to explore the potentiality of L. kefiri as a probiotic and a source of bioactive metabolites.
Collapse
Affiliation(s)
- P Carasi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, UNLP, CONICET, Asociado CIC PBA, La Plata, Argentina
| | - M Malamud
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Cátedra de Microbiología, UNLP, La Plata, Argentina.,Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - M A Serradell
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Cátedra de Microbiología, UNLP, La Plata, Argentina.
| |
Collapse
|
23
|
Bangar SP, Sharma N, Kumar M, Ozogul F, Purewal SS, Trif M. Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Efficacy of lactic acid bacteria supplementation against Fusarium graminearum growth in vitro and inhibition of Zearalenone causing inflammation and oxidative stress in vivo. Toxicon 2021; 202:115-122. [PMID: 34562499 DOI: 10.1016/j.toxicon.2021.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022]
Abstract
Fusarium graminearum invasion and Zearalenone (ZEN)-mycotoxin contamination are considered the most global threat to food and feed. This study investigates the effect Lactobacillus plantarum MON03 viable cells (LPVC) and LP free cells supernatant (LPFCS) against Fusarium graminearum growth and ZEN production in vitro and evaluates if treatment with LP viable cells can counteract the negative effect of ZEN on inflammation and oxidative stress in mesenteric lymph nodes and serum biochemical parameters in mice. For the in vitro study, 7 days of LPVC, LPFCS and F. graminearum co-incubation at different concentrations was done in order to determine the antifungal activity and ZEN- production inhibition. Regarding the in vivo study, Balb/c mice were treated as following: Control, ZEN group, LP group and ZEN + LP group for 30 days. In vitro, LPVC showed an excellent antifungal activity after 7 days of co-incubation (103 CFU/ml). LPVC was succeeded also to inhibit ZEN production by the fungi. In vivo, ZEN has shown an important oxidative damage. As a result of the exposure to ZEN, an increase cytokines, as effectors of an inflammatory response, were observed in the mesenteric lymph nodes (MLN) of intoxicated mice. In parallel, a serum biochemical change was also observed. LPVC induced a reduction of ZEN-induced oxidative stress and counteracts also the biochemical parameters damage and the inflammatory markers increased by ZEN. LPVC can be valorized as an anti-cating agent in the vitro and in the gastro-intestinal tract to decrease ZEN-toxic effects.
Collapse
|
25
|
Qiao N, Yu L, Zhang C, Wei C, Zhao J, Zhang H, Tian F, Zhai Q, Chen W. A comparison of the inhibitory activities of Lactobacillus and Bifidobacterium against Penicillium expansum and an analysis of potential antifungal metabolites. FEMS Microbiol Lett 2021; 367:5897356. [PMID: 32845333 DOI: 10.1093/femsle/fnaa130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/24/2020] [Indexed: 01/26/2023] Open
Abstract
The infection of fruits by Penicillium expansum (P. expansum) do not only cause economic loss but also potentially endanger human health, especially because few biocontrol agents against this fungus have been well studied yet. In this work, to verity the antifungal activity against P. expansum of 22 Bifidobacterium and 44 Lactobacillus, dual-culture overlay assay, microtiter plate well assay and agar spot assay were successively performed. One of the strain, Bifidobacterium adolescentis (B. adolescentis) CCFM1108 exhibited the most potent inhibition ability among all tested strains. Additionally, we showed that multiple antifungal compounds produced by tested strain synergistically inhibit the growth of P. expansum, including lactic acid, acetic acid, 3-phenyllactic acid and p-hydroxyphenyllactic acid. Those active compounds mentioned were detected in the cell-free supernatant and characterized by metabolomics analysis using GC-MS. Correspondingly, B. adolescentis CCFM1108 supernatant disrupted plasma membrane integrity of the P. expansum mycelial and drastically reduced patulin production in P. expansum. The inhibitive effects of B. adolescentis CCFM1108 were also confirmed with three other P. expansum strains. The active inhibitory properties of Bifidobacterium strains, especially B. adolescentis CCFM1108, indicate that B. adolescentis can be potentially used as a novel bioagent to prevent or delay fungal spoilage on fruit.
Collapse
Affiliation(s)
- Nanzhen Qiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chaozhi Wei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| |
Collapse
|
26
|
Cardinali F, Ferrocino I, Milanović V, Belleggia L, Corvaglia MR, Garofalo C, Foligni R, Mannozzi C, Mozzon M, Cocolin L, Osimani A, Aquilanti L. Microbial communities and volatile profile of Queijo de Azeitão PDO cheese, a traditional Mediterranean thistle-curdled cheese from Portugal. Food Res Int 2021; 147:110537. [PMID: 34399514 DOI: 10.1016/j.foodres.2021.110537] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
The production of ovine or caprine milk cheeses with thistle rennet is a common practice in the Mediterranean basin. The aim of the present study was to obtain information on bacteria and yeast communities harboured by Queijo de Azeitão PDO cheese through viable counting and, for the first time, via metataxonomic analysis. Moreover, solid phase microextraction (SPME) technique was applied to characterize Queijo de Azeitão PDO cheese volatile compounds. Nine cheese samples were collected from three different artisan producers located in Portugal. The results of physico-chemical analyses showed significant differences between producers, with mean values ranging from 5.40 ± 0.25 (Producer 1) to 6.00 ± 0.22 (Producer 2). As for TTA, Producer 1 showed the highest mean value attesting at 18.04 ± 6.57 mL of 0.1 M NaOH used to reach pH 8.3. Regarding lactic acid concentration, Producer 1 showed the highest mean value attesting at 0.488 ± 0.106 g 100 g-1, whereas, for acetic acid, no significant differences were evidenced among producers with values comprised between 0.141 ± 0.021 g 100 g-1 and 0.245 ± 0.016 g 100 g-1. No significant differences were observed between overall mean values of the three producers for viable counts of presumptive lactococci, thermophilic cocci, presumptive lactobacilli, thermophilic lactobacilli and total mesophilic aerobes with values in the order of 7-8 log cfu g-1. Moreover, no significant differences were evidenced for viable counts of coagulase-negative cocci, enterococci, Enterobacteriaceae and Pseudomonadaceae. As for eumycetes, cheeses from Producer 1 showed the lowest mean value (2.78 ± 2.42 log cfu g-1) in respect with values detected in cheeses from Producer 2 and 3. Concerning microbiota and mycobiota of the analyzed cheeses, the alpha diversity index did not show any significant difference between the three producers in terms of composition and complexity of the microbial population. A simple composition was apparently shared by the three producers, whose cheese manufactures were dominated by the presence of Leuconostoc mesenteroides (37% of the relative frequency in average), Lactococcus lactis (29%), Lacticaseibacillus zeae (4.7%), Lentilactobacillus kefiri (4.4%), Serratia spp. (3.5%), Lactiplantibacillus plantarum (2.7%), and Latilactobacillus sakei (2.5%). The mycobiota composition showed the neat dominance of Yarrowia lipolytica (46.7% of the relative frequency in average), followed by Candida ethanolica (13.6%), Kurtzmaniella zeylanoides (9.4%), Geotrichum candidum (8.8%), Galactomyces geotrichum (8.7%), Kluyveromyces lactis (3.5%), and Geotrichum silvicola (2.7%). The volatile profile analysis allowed 24 different compounds to be identified: 7 acids, 7 esters, 4 alcohols, 3 ketones, 2 aromatic hydrocarbons, and 1 aldehyde. The most represented volatile organic compounds (VOCs) were 2-butanone, butanoic acid and hexanoic acid. A positive correlation between Len. kefiri and hexanoic acid and isopentyl isobutyrate was observed (P < 0.05), whereas Y. lipolytica displayed the highest number of positive correlations with 3-methyl-butanal, 2-pentanone and 2-pentanol (P < 0.05). To the authors' knowledge, this is the very first detection of Len. kefiri in a raw ewe's milk cheese coagulated with vegetable rennet.
Collapse
Affiliation(s)
- Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Torino, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Luca Belleggia
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Maria Rita Corvaglia
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Torino, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Roberta Foligni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Cinzia Mannozzi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Massimo Mozzon
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Luca Cocolin
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Torino, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy.
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| |
Collapse
|
27
|
Statistical Approach to Potentially Enhance the Postbiotication of Gluten-Free Sourdough. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fermented products are permanently under the attention of scientists and consumers, both due to nutritional importance and health promoting effects. The fermented functional foods contribute to a more balanced diet and increase the immune responses (among many other health effects) with positive implications for quality of life. In this sense, improving the sourdough’s fermentation to boost the biotic (postbiotic and paraprobiotic) properties of the sourdough-based products has positive impacts on the nutritional and functional properties of the final baked products. These enhanced sourdoughs can be obtained in controlled fermentation conditions and used as sourdough bread improvers or novel bioingredients. In this context, our work aimed to optimize, using statistical tools, a gluten-free sourdough based on chickpea, quinoa, and buckwheat fermentation with selected lactic acid bacteria (LAB) to enhance its postbiotic properties. The most important biotechnological parameters were selected by Plackett–Burman Design (PBD) and then Response Surface Methodology (RSM) was applied to evaluate the interactions between the selected factors to maximize the gluten-free sourdough’s properties. As a result, the optimized fermented sourdough had antimicrobial activity with inhibition ratios between 71 and 100% against the Aspergillus niger, Aspergillus flavus, Penicillium spp. molds and against the Bacillus spp endospore-forming Gram-positive rods. The optimized variant showed a total titratable acidity (TTA) of 40.2 mL NaOH 0.1N. Finally, the high-performance liquid chromatography (HPLC) analysis highlighted a heterofermentative profile for the organic acids from the optimized sourdough. Among flavonoids and polyphenols, the level of caffeic and vanillic acids increased after lactic acid fermentation. The comparison between the optimized sourdough and the control evidenced significant differences in the metabolite profiles, thus highlighting its potential postbiotication effect.
Collapse
|
28
|
Xu R, Sa R, Jia J, Li L, Wang X, Liu G. Screening of Antifungal Lactic Acid Bacteria as Bioprotective Cultures in Yogurt and a Whey Beverage. J Food Prot 2021; 84:953-961. [PMID: 33411924 DOI: 10.4315/jfp-20-441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/27/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT The demand for preservative-free food products is rising, and biopreservation is a potential alternative to replace or reduce the use of chemical preservatives. The objectives of this study were to assess the antifungal activity of lactic acid bacteria (LAB; n = 98) and the efficacy and applicability of the chosen bioprotective cultures against fungal spoilers in dairy products. First, 14 antifungal strains were preliminarily screened by in vitro tests against Pichia pastoris D3, Aspergillus niger D1, Geotrichum candidum N1, Kluyveromyces marxianus W1, and Penicillium chrysogenum B1 and validated by challenge tests in yogurt, indicating that the fungal-inhibiting activity of LAB was species specific and yogurt fermented with antifungal LAB cultures was more effective in extending shelf life. Second, the chosen 14 LAB strains were identified by the 16S rDNA sequence analysis and carbohydrate fermentation test. The results were as follows: nine strains were Lactobacillus plantarum, three were Lactobacillus paracasei, one was Enterococus faecium, and one was Lactobacillus rhamnosus. Among them, active L. plantarum N7 was the chosen and studied factor affecting antifungal activity by using the response surface methodology. Finally, in situ tests were conducted to validate the activity of L. plantarum N7 in actual dairy products (whey beverages). Physicochemical and microbial indices of whey beverages during storage indicated that antifungal L. plantarum N7 could slow yeast growth and be candidates of interest for industrial applications. HIGHLIGHTS
Collapse
Affiliation(s)
- Rihua Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, People's Republic of China 010070; and
| | - Ren Sa
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, People's Republic of China 010070; and
| | - Junwei Jia
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, People's Republic of China 010070; and
| | - Lanlan Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, People's Republic of China 010070; and
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, People's Republic of China 010070; and
| | - Guorong Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, People's Republic of China 100048
| |
Collapse
|
29
|
Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J, Bai X, Xie J, Wang Y, Geng W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front Bioeng Biotechnol 2021; 9:612285. [PMID: 34055755 PMCID: PMC8149962 DOI: 10.3389/fbioe.2021.612285] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Lactic acid bacteria are a kind of microorganisms that can ferment carbohydrates to produce lactic acid, and are currently widely used in the fermented food industry. In recent years, with the excellent role of lactic acid bacteria in the food industry and probiotic functions, their microbial metabolic characteristics have also attracted more attention. Lactic acid bacteria can decompose macromolecular substances in food, including degradation of indigestible polysaccharides and transformation of undesirable flavor substances. Meanwhile, they can also produce a variety of products including short-chain fatty acids, amines, bacteriocins, vitamins and exopolysaccharides during metabolism. Based on the above-mentioned metabolic characteristics, lactic acid bacteria have shown a variety of expanded applications in the food industry. On the one hand, they are used to improve the flavor of fermented foods, increase the nutrition of foods, reduce harmful substances, increase shelf life, and so on. On the other hand, they can be used as probiotics to promote health in the body. This article reviews and prospects the important metabolites in the expanded application of lactic acid bacteria from the perspective of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Yaqi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jiangtao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxin Lv
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen Shao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Meluleki Hungwe
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jinju Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojia Bai
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanping Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Weitao Geng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
30
|
Møller CODA, Freire L, Rosim RE, Margalho LP, Balthazar CF, Franco LT, Sant’Ana ADS, Corassin CH, Rattray FP, de Oliveira CAF. Effect of Lactic Acid Bacteria Strains on the Growth and Aflatoxin Production Potential of Aspergillus parasiticus, and Their Ability to Bind Aflatoxin B 1, Ochratoxin A, and Zearalenone in vitro. Front Microbiol 2021; 12:655386. [PMID: 33967993 PMCID: PMC8100588 DOI: 10.3389/fmicb.2021.655386] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The increased consumption of plant-based foods has intensified the concern related to mycotoxin intoxication. This study aimed to investigate the effect of selected lactic acid bacteria (LAB) strains on the growth of Aspergillus parasiticus NRRL 2999 and its production of aflatoxin (AF). The ability of the heat-killed (100°C for 1 h) LAB strains to bind aflatoxin M1 (AFM1) in milk and aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN) in potassium phosphate buffer (PPB) was also evaluated in vitro. Ten LAB strains were tested individually, by inoculating them simultaneously with the fungus or after incubation of the fungus for 24 or 48 h at 25°C. Double layer yeast extract sucrose (YES) agar, de Man Rogosa and Sharpe (MRS) agar, and YES broth were incubated for 7 days at 25°C to follow the development of the fungus. Levilactobacillus spp. 3QB398 and Levilactobacillus brevis 2QB422 strains were able to delay the growth of A. parasiticus in YES broth, even when these strains were inoculated 24 h after the fungus. The inhibitory effect of these LAB strains was confirmed by the reduction of fungus colony size, suggesting dominance of LAB by competition (a Lotka-Voltera effect). The production of AFB1 by A. parasiticus was inhibited when the fungus was inoculated simultaneously with Lactiplantibacillus plantarum 3QB361 or L. plantarum 3QB350. No AFB1 was found when Levilactobacillus spp. 2QB383 was present, even when the LAB was inoculated 48 h after the fungus. In binding studies, seven inactivated LAB strains were able to promote a reduction of at least 50% the level of AFB1, OTA, and ZEN. This reduction varied depending on the pH of the PPB. In milk, however, only two inactivated LAB strains were able to reduce AFM1, with a reduction of 33 and 45% for Levilactobacillus spp. 3QB398 (Levilactobacillus spp.) and L. brevis 2QB422, respectively. Nevertheless, these results clearly indicate the potential of using LAB for mycotoxin reduction.
Collapse
Affiliation(s)
| | - Luisa Freire
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Roice Eliana Rosim
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Larissa Pereira Margalho
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Celso Fasura Balthazar
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Larissa Tuanny Franco
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Anderson de Souza Sant’Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Carlos Humberto Corassin
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Fergal Patrick Rattray
- Division of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
31
|
Zhu J, Song S, Sun Z, Lian L, Shi L, Ren A, Zhao M. Regulation of glutamine synthetase activity by transcriptional and posttranslational modifications negatively influences ganoderic acid biosynthesis in Ganoderma lucidum. Environ Microbiol 2021; 23:1286-1297. [PMID: 33438292 DOI: 10.1111/1462-2920.15400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/15/2020] [Accepted: 01/09/2021] [Indexed: 12/01/2022]
Abstract
Glutamine synthetase (GS), a central nitrogen metabolic enzyme, plays important roles in the nitrogen regulation network and secondary metabolism in fungi. However, the mechanisms by which external nitrogen sources regulate fungal GS activity have not been determined. Here, we found that GS activity was inhibited under nitrate conditions in Ganoderma lucidum. By constructing gs-silenced strains and adding 1 mM GS inhibitor to inhibit GS activity, we found that a decrease in GS activity led to a decrease in ganoderic acid biosynthesis. The transcription of gs increased approximately five fold under nitrate conditions compared with that under ammonia. Electrophoretic mobility shift and yeast one-hybrid assay showed that gs was transcriptionally regulated by AreA. Although both gs expression and GS protein content increased under nitrate conditions, the GS activity still decreased. Treatment of recombinant GS with SIN-1 (protein nitration donor) resulted in a strengthened nitration accompanied by a 71% decrease in recombinant GS activity. Furthermore, intracellular GS could be nitrated from mycelia cultivated under nitrate conditions. These results indicated that GS activity could be inhibited by NO-mediated protein nitration. Our findings provide the first insight into the role of transcriptional and posttranslational regulation of GS activity in regulating secondary metabolism in fungi.
Collapse
Affiliation(s)
- Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shuqi Song
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zehua Sun
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lingdan Lian
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
32
|
Wang X, Han Y, Zhang L, Ge Z, Liu M, Zhao G, Zong W. Removal of Alternaria mycotoxins from aqueous solution by inactivated yeast powder. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5182-5190. [PMID: 32519761 DOI: 10.1002/jsfa.10567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Alternariol (AOH) and alternariol monomethyl ether (AME), produced by Alternaria spp., are the two mycotoxins with the highest outbreak rates in food systems. The purpose of this study was to investigate the removal of AOH and AME from aqueous solutions by inactivated yeast cells. The effects of strains, yeast powder amount, temperature, and pH were evaluated. The kinetics of AOH and AME adsorption on inactivated yeast cells was fitted with four models and a release assay was carried out. RESULTS All three tested yeasts could remove AOH and AME. GIM 2.119 was the most effective strain. The reduction rate of both AOH and AME could be as much as 100% with 40 g‧L-1 of yeast powder. For both mycotoxins, pH = 9 was the best environment for toxin removal. The pseudo-second-order kinetic model was the best model, with R2 ranging from 0.989 to 0.999. However, the R2 of the pseudo-first-order and Elovich models was also relatively high. Alternariol and AME could be partially eluted by methanol and acetonitrile. CONCLUSION The inactivated yeast cells could effectively remove AOH and AME. This was best fitted by the pseudo-second-order model. The release assay suggested that the adsorption of Alternaria mycotoxins was partially reversible. The results of this study provide a theoretical basis for the removal of Alternaria mycotoxins from food systems and are useful for the investigation of the mechanisms involved in mycotoxin adsorption by inactivated yeast cells. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| | - Yike Han
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
| | - Lihua Zhang
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| | - Zhenzhen Ge
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| | - Mengpei Liu
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| | - Guangyuan Zhao
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| | - Wei Zong
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| |
Collapse
|
33
|
Păcularu-Burada B, Georgescu LA, Vasile MA, Rocha JM, Bahrim GE. Selection of Wild Lactic Acid Bacteria Strains as Promoters of Postbiotics in Gluten-Free Sourdoughs. Microorganisms 2020; 8:E643. [PMID: 32354104 PMCID: PMC7284720 DOI: 10.3390/microorganisms8050643] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022] Open
Abstract
The occurrence of inflammatory responses in humans is frequently associated with food intolerances and is likely to give rise to irritable bowel disease. The use of conventional or unconventional flours to produce gluten-free baking doughs brings important technological and nutritional challenges, and the use of the sourdough biotechnology has the potential to overcome such limitations. In addition, the typical metabolic transformations carried out by Lactic Acid Bacteria (LAB) can become an important biotechnological process for the nutritional fortification and functionalization of sourdoughs due to the resulting postbiotics. In such a context, this research work aimed at isolating and selecting new LAB strains that resort to a wide range of natural environments and food matrices to be ultimately employed as starter cultures in gluten-free sourdough fermentations. Nineteen LAB strains belonging to the genera of Lactobacillus, Leuconostoc, Pediococcus, and Streptococcus were isolated, and the selection criteria encompassed their acidification capacity in fermentations carried out on chickpea, quinoa, and buckwheat flour extracts; the capacity to produce exopolysaccharides (EPS); and the antimicrobial activity against food spoilage molds and bacteria. Moreover, the stability of the LAB metabolites after the fermentation of the gluten-free flour extracts submitted to thermal and acidic treatments was also assessed.
Collapse
Affiliation(s)
- Bogdan Păcularu-Burada
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - Luminița Anca Georgescu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - Mihaela Aida Vasile
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| | - João Miguel Rocha
- REQUIMTE–Rede de Química e Tecnologia, Laboratório de Química Verde (LAQV), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n. P-4169-007 Porto, Portugal;
| | - Gabriela-Elena Bahrim
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (B.P.-B.); (L.A.G.); (M.A.V.)
| |
Collapse
|