1
|
Yigit E, Yuksel H, Ulman C, Yilmaz O. Nasal effects of environmental tobacco smoke exposure in children with allergic rhinitis. Respir Med 2025; 236:107886. [PMID: 39613232 DOI: 10.1016/j.rmed.2024.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/01/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVES Tobacco smoke exposure is associated with inflammatory changes in the respiratory system including nasal mucosa. Our aim was to demonstrate nasal mucosal inflammation such as neutrophilic activation and epithelial permeability in patients with allergic rhinitis with exposure to environmental tobacco smoke (ETS) and reveal its effect on allergic rhinitis symptoms. METHODS We enrolled 204 subjects with allergic rhinitis to this cross-sectional study. Sociodemographic and AR clinical characteristics were recorded. Urinary cotinine levels >50 ng/ml were defined as exposure to secondhand tobacco smoke. Club cell 16 (CC16) and myeloperoxidase (MPO) levels were measured in the nasal lavage fluid. Levels of these biomarkers and clinical severity were compared between ETS exposed and non-exposed children with AR. RESULTS Among 204 children enrolled, 53 (26 %) had ETS exposure. Mean age of the ETS exposed group was significantly higher than the unexposed group (12.1 ± 3.5 and 10.7 ± 3.6 years respectively, (p = 0.02). Similarly, T5SS score was significantly higher in ETS exposure group (9.3 vs 8.3, p = 0.03) but this significance was lost when corrected for age. Age and T5SS were inversely correlated with MPO levels (r = -0,24, p < 0.001 and r = -0,14, p = 0.04). Nasal lavage CC-16 and MPO levels were not found to be significantly different among subjects with and without ETS exposure (p = 0.13 and p = 0.26 respectively). CONCLUSION Our results demonstrated that ETS exposure is associated with more persistent AR in children. However, it is not related to severity or nasal lavage MPO or CC16 levels. Rhinitis symptoms beyond allergen period suggests isolated smoke exposure effect.
Collapse
Affiliation(s)
- Ecem Yigit
- Department of Pediatrics, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Hasan Yuksel
- Department of Pediatric Allergy and Pulmonology, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Cevval Ulman
- Department of Biochemistry, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Ozge Yilmaz
- Department of Pediatric Allergy and Pulmonology, Celal Bayar University School of Medicine, Manisa, Turkey.
| |
Collapse
|
2
|
Rohmann N, Stürmer P, Geisler C, Schlicht K, Hartmann K, Türk K, Hollstein T, Tran F, Rosenstiel P, Franke A, Heyckendorf J, Schreiber S, Schulte DM, Laudes M. Brief Research Report: Serum clara cell 16 kDa protein levels are increased in patients hospitalized for severe SARS-CoV-2 or sepsis infection. Front Immunol 2022; 13:1037115. [PMID: 36311771 PMCID: PMC9613110 DOI: 10.3389/fimmu.2022.1037115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Clara cell 16 kDa protein (CC16) is a secretory protein primarily expressed in epithelial cells in the lungs. Previous studies show that CC16 exerts anti-inflammatory and immune-modulatory properties in both acute and chronic pulmonary diseases. However, despite the evidence of CC16’s high biomarker potential, evaluation of its role in infectious diseases is yet very limited. Methods Serum CC16 concentrations were measured by ELISA and assessed in two different types of severe infections. Using a case-control study design, patients treated for either severe SARS-CoV-2 or severe non-pulmonary sepsis infection were compared to age- and sex-matched healthy human subjects. Results Serum CC16 was significantly increased in both types of infection (SARS-CoV-2: 96.22 ± 129.01 ng/ml vs. healthy controls: 14.05 ± 7.48 ng/ml, p = 0.022; sepsis: 35.37 ± 28.10 ng/ml vs. healthy controls: 15.25 ± 7.51 ng/ml, p = 0.032) but there were no distinct differences between infections with and without pulmonary focus (p = 0.089). Furthermore, CC16 serum levels were positively correlated to disease duration and inversely to the platelet count in severe SARS-CoV-2 infection. Conclusions Increased CC16 serum levels in both SARS-CoV-2 and sepsis reinforce the high potential as a biomarker for epithelial cell damage and bronchoalveolar−blood barrier leakage in pulmonary as well as non-pulmonary infectious diseases.
Collapse
Affiliation(s)
- Nathalie Rohmann
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Paula Stürmer
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Corinna Geisler
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Katharina Hartmann
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Kathrin Türk
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Tim Hollstein
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Jan Heyckendorf
- Division of Pneumology, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Dominik M. Schulte
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel, Germany
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
- *Correspondence: Matthias Laudes,
| |
Collapse
|
3
|
Guo C, Lv S, Liu Y, Li Y. Biomarkers for the adverse effects on respiratory system health associated with atmospheric particulate matter exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126760. [PMID: 34396970 DOI: 10.1016/j.jhazmat.2021.126760] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of epidemiological evidence have confirmed the atmospheric particulate matter (PM2.5) exposure was positively correlated with the morbidity and mortality of respiratory diseases. Nevertheless, its pathogenesis remains incompletely understood, probably resulting from the activation of oxidative stress, inflammation, altered genetic and epigenetic modifications in the lung upon PM2.5 exposure. Currently, biomarker investigations have been widely used in epidemiological and toxicological studies, which may help in understanding the biologic mechanisms underlying PM2.5-elicited adverse health outcomes. Here, the emerging biomarkers to indicate PM2.5-respiratory system interactions were summarized, primarily related to oxidative stress (ROS, MDA, GSH, etc.), inflammation (Interleukins, FENO, CC16, etc.), DNA damage (8-OHdG, γH2AX, OGG1) and also epigenetic modulation (DNA methylation, histone modification, microRNAs). The identified biomarkers shed light on PM2.5-elicited inflammation, fibrogenesis and carcinogenesis, thus may favor more precise interventions in public health. It is worth noting that some inconsistent findings may possibly relate to the inter-study differentials in the airborne PM2.5 sample, exposure mode and targeted subjects, as well as methodological issues. Further research, particularly by -omics technique to identify novel, specific biomarkers, is warranted to illuminate the causal relationship between PM2.5 pollution and deleterious lung outcomes.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
Chukowry PS, Spittle DA, Turner AM. Small Airways Disease, Biomarkers and COPD: Where are We? Int J Chron Obstruct Pulmon Dis 2021; 16:351-365. [PMID: 33628018 PMCID: PMC7899307 DOI: 10.2147/copd.s280157] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
The response to treatment and progression of Chronic Obstructive Pulmonary Disease (COPD) varies significantly. Small airways disease (SAD) is being increasingly recognized as a key pathological feature of COPD. Studies have brought forward pathological evidence of small airway damage preceding the development of emphysema and the detection of obstruction using traditional spirometry. In recent years, there has been a renewed interest in the early detection of SAD and this has brought along an increased demand for physiological tests able to identify and quantify SAD. Early detection of SAD allows early targeted therapy and this suggests the potential for altering the course of disease. The aim of this article is to review the evidence available on the physiological testing of small airways. The first half will focus on the role of lung function tests such as maximum mid-expiratory flow, impulse oscillometry and lung clearance index in detecting and quantifying SAD. The role of Computed Tomography (CT) as a radiological biomarker will be discussed as well as the potential of recent CT analysis software to differentiate normal aging of the lungs to pathology. The evidence behind SAD biomarkers sourced from blood as well as biomarkers sourced from sputum and broncho-alveolar lavage (BAL) will be reviewed. This paper focuses on CC-16, sRAGE, PAI-1, MMP-9 and MMP-12.
Collapse
Affiliation(s)
- Priyamvada S Chukowry
- Respiratory Research Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Daniella A Spittle
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alice M Turner
- Institute for Applied Health Research, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
5
|
Milne S, Li X, Hernandez Cordero AI, Yang CX, Cho MH, Beaty TH, Ruczinski I, Hansel NN, Bossé Y, Brandsma CA, Sin DD, Obeidat M. Protective effect of club cell secretory protein (CC-16) on COPD risk and progression: a Mendelian randomisation study. Thorax 2020; 75:934-943. [PMID: 32839289 DOI: 10.1136/thoraxjnl-2019-214487] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The anti-inflammatory pneumoprotein club cell secretory protein-16 (CC-16) is associated with the clinical expression of chronic obstructive pulmonary disease (COPD). We aimed to determine if there is a causal effect of serum CC-16 level on the risk of having COPD and/or its progression using Mendelian randomisation (MR) analysis. METHODS We performed a genome-wide association meta-analysis for serum CC-16 in two COPD cohorts (Lung Health Study (LHS), n=3850 and ECLIPSE, n=1702). We then used the CC-16-associated single-nucleotide polymorphisms (SNPs) as instrumental variables in MR analysis to identify a causal effect of serum CC-16 on 'COPD risk' (ie, case status in the International COPD Genetics Consortium/UK-Biobank dataset; n=35 735 COPD cases, n=222 076 controls) and 'COPD progression' (ie, annual change in forced expiratory volume in 1 s in LHS and ECLIPSE). We also determined the associations between SNPs associated with CC-16 and gene expression using n=1111 lung tissue samples from the Lung Expression Quantitative Trait Locus Study. RESULTS We identified seven SNPs independently associated (p<5×10-8) with serum CC-16 levels; six of these were novel. MR analysis suggested a protective causal effect of increased serum CC-16 on COPD risk (MR estimate (SE) -0.11 (0.04), p=0.008) and progression (LHS only, MR estimate (SE) 7.40 (3.28), p=0.02). Five of the SNPs were also associated with gene expression in lung tissue (at false discovery rate <0.1) of several genes, including the CC-16-encoding gene SCGB1A1. CONCLUSION We have identified several novel genetic variants associated with serum CC-16 level in COPD cohorts. These genetic associations suggest a potential causal effect of serum CC-16 on the risk of having COPD and its progression, the biological basis of which warrants further investigation.
Collapse
Affiliation(s)
- Stephen Milne
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada .,Division of Respiratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Xuan Li
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ana I Hernandez Cordero
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Chen Xi Yang
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Terri H Beaty
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nadia N Hansel
- Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec City, Québec, Canada
| | - Corry-Anke Brandsma
- University of Groningen Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Don D Sin
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Maen Obeidat
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Li W, Xiao L, Zhou Y, Wang D, Ma J, Xie L, Yang M, Zhu C, Wang B, Chen W. Plasma CC16 mediates the associations between urinary metals and fractional exhaled nitric oxide: A cross-sectional study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113713. [PMID: 31818622 DOI: 10.1016/j.envpol.2019.113713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/14/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Exposure to environmental metals has been reported to be associated with airway inflammation. Fractional exhaled nitric oxide (FeNO) is an important inflammatory biomarker of the airway. However, the associations between metal exposures and FeNO change and the underlying mechanisms remain unclear. To investigate the associations between urinary metals and FeNO, and the potential role of Club cell secretory protein (CC16), a lung epithelial biomarker, in these associations. We conducted a cross-sectional study from the Wuhan-Zhuhai cohort and measured eight urinary metals, plasma CC16 and FeNO among 3067 subjects by using inductively coupled plasma-mass spectrometry, enzyme-linked immunosorbent assay kit and Nano Coulomb Nitric Oxide Analyzer, respectively. Mixed linear models were used to quantify dose-relationships between urinary metals and FeNO, as well as urinary metals and plasma CC16. The potential role of plasma CC16 in the associations between urinary metals and FeNO was estimated using mediationanalyses. After adjusting for covariates, one percent increase in urinary vanadium, nickel or antimony was associated with a respective 6.60% (95% CI: 3.52%, 9.68%), 2.18% (0.45%, 3.91%), 4.87% (1.47%, 8.27%) increase in FeNO level. The adverse associations were much stronger among participants with low concentration of plasma CC16 than those with high CC16 level. Moreover, plasma CC16 decreased monotonically with increasing quartiles of urinary vanadium, nickel or antimony. Mediation analyses found that CC16 mediated the associations between urinary metals and FeNO by 5.64%, 39.06% and 25.18% for vanadium, nickel and antimony respectively. CC16 plays an important role in airway inflammation. General population with lower plasma CC16 concentration is more likely to suffer from airway inflammation when exposed to high levels of vanadium, nickel or antimony.
Collapse
Affiliation(s)
- Wei Li
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lili Xiao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Li Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Meng Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chunmei Zhu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
Pneumoproteins are associated with pulmonary function in HIV-infected persons. PLoS One 2019; 14:e0223263. [PMID: 31574118 PMCID: PMC6772133 DOI: 10.1371/journal.pone.0223263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND COPD is a common HIV comorbidity, and HIV-infected individuals have a higher incidence and earlier onset of COPD compared to HIV-uninfected individuals. While the pathogenesis of HIV-associated COPD is largely unknown, chronic inflammation may contribute. Four pneumoproteins known to be markers of lung injury and inflammation have been associated with COPD in HIV-uninfected individuals: PARC/CCL-18, SP-D, CC-16, and sRAGE. OBJECTIVE To determine whether these pneumoproteins are also associated with pulmonary function and COPD Assessment Test (CAT) scores in HIV-infected individuals. METHODS Associations between plasma pneumoprotein levels and pulmonary function were determined in a cross-sectional study of otherwise healthy HIV-infected individuals enrolled between September 2016 and June 2017. Covariates included HIV-associated (antiretroviral therapy, CD4 count, and viral load) and COPD-associated (smoking and BMI) covariates. RESULTS Among 65 participants, 78.5% were male, 50.8% had undetectable viral load, and 76.9% were ever-smokers. Mean post-bronchodilator FEV1/FVC was 0.71, and mean DLco%predicted was 61%. Higher PARC/CCL-18 was associated with lower DLco%predicted and higher CAT score. Higher CC-16 was associated with lower DLco%predicted and lower FVC%predicted. CONCLUSIONS This exploratory analysis is the first to characterize associations between these four pneumoproteins and pulmonary function in an HIV-infected cohort. Our findings suggest the pathogenesis of HIV-associated COPD may differ from that of non-HIV-associated COPD due to HIV-specific inflammatory changes affecting DLco. PARC/CCL-18 is associated with structural and functional pulmonary abnormalities and may be an important COPD biomarker candidate in HIV infection. Our study is a preliminary step toward finding clinically relevant COPD biomarkers in high-risk populations.
Collapse
|
8
|
Chaumont M, van de Borne P, Bernard A, Van Muylem A, Deprez G, Ullmo J, Starczewska E, Briki R, de Hemptinne Q, Zaher W, Debbas N. Fourth generation e-cigarette vaping induces transient lung inflammation and gas exchange disturbances: results from two randomized clinical trials. Am J Physiol Lung Cell Mol Physiol 2019; 316:L705-L719. [PMID: 30724099 PMCID: PMC6589591 DOI: 10.1152/ajplung.00492.2018] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
When heated by an electronic cigarette, propylene glycol and glycerol produce a nicotine-carrying-aerosol. This hygroscopic/hyperosmolar aerosol can deposit deep within the lung. Whether these deposits trigger local inflammation and disturb pulmonary gas exchanges is not known. The aim of this study was to assess the acute effects of high-wattage electronic cigarette vaping with or without nicotine on lung inflammation biomarkers, transcutaneous gas tensions, and pulmonary function tests in young and healthy tobacco smokers. Acute effects of vaping without nicotine on arterial blood gas tensions were also assessed in heavy smokers suspected of coronary artery disease. Using a single-blind within-subjects study design, 25 young tobacco smokers underwent three experimental sessions in random order: sham-vaping and vaping with and without nicotine at 60 W. Twenty heavy smokers were also exposed to sham-vaping (n = 10) or vaping without nicotine (n = 10) in an open-label, randomized parallel study. In the young tobacco smokers, compared with sham-vaping: 1) serum club cell protein-16 increased after vaping without nicotine (mean ± SE, −0.5 ± 0.2 vs. +1.1 ± 0.3 µg/l, P = 0.013) and vaping with nicotine (+1.2 ± 0.3 µg/l, P = 0.009); 2) transcutaneous oxygen tension decreased for 60 min after vaping without nicotine (nadir, −0.3 ± 1 vs. −15.3 ± 2.3 mmHg, P < 0.001) and for 80-min after vaping with nicotine (nadir, −19.6 ± 2.8 mmHg, P < 0.001). Compared with sham vaping, vaping without nicotine decreased arterial oxygen tension for 5 min in heavy-smoking patients (+5.4 ± 3.3 vs. −5.4 ± 1.9 mmHg, P = 0.012). Acute vaping of propylene glycol/glycerol aerosol at high wattage with or without nicotine induces airway epithelial injury and sustained decrement in transcutaneous oxygen tension in young tobacco smokers. Intense vaping conditions also transiently impair arterial oxygen tension in heavy smokers.
Collapse
Affiliation(s)
- Martin Chaumont
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles , Brussels , Belgium
| | - Philippe van de Borne
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles , Brussels , Belgium
| | - Alfred Bernard
- Laboratory of Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université Catholique de Louvain , Brussels , Belgium
| | - Alain Van Muylem
- Department of Respiratory Medicine, Erasme University Hospital, Université Libre de Bruxelles , Brussels , Belgium
| | - Guillaume Deprez
- Department of Clinical Chemistry, Erasme University Hospital, Université Libre de Bruxelles , Brussels , Belgium
| | - Julien Ullmo
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles , Brussels , Belgium
| | - Eliza Starczewska
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles , Brussels , Belgium
| | - Rachid Briki
- Department of Cardiology, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles , Brussels , Belgium
| | - Quentin de Hemptinne
- Department of Cardiology, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles , Brussels , Belgium
| | - Wael Zaher
- Department of Cardiology, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles , Brussels , Belgium
| | - Nadia Debbas
- Department of Cardiology, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles , Brussels , Belgium
| |
Collapse
|
9
|
Leite MR, Zanetta DMT, Antonangelo L, Marçal LJ, Ramos D, Almeida Burdmann E, Paula Santos U. Burnt sugarcane harvesting work: effects on pulmonary and systemic inflammatory markers. Inhal Toxicol 2018; 30:205-212. [PMID: 30328727 DOI: 10.1080/08958378.2018.1494765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective: To evaluate the effects of burnt sugarcane harvesting on the plasmatic and urinary concentrations of the club cell secretory protein (CC16) and inflammatory systemic biomarkers in a group of sugarcane cutters. Methods: Seventy-eight sugar cane workers were evaluated. The plasmatic and urinary concentrations of CC16, a pulmonary damage marker and inflammatory systemic biomarkers were collected at three time points: before, three months after and six months after the onset of the burnt sugarcane harvesting period. All evaluations were performed at ∼7 am, before the daily work shift. In the three-month evaluation, a post-work shift assessment (acute effect) was also performed. Results: The age of the workers was 37.9 ± 11.0 years. The PM2.5 concentrations were 27.0 (23.0-33.0) and 101.0 (31.0-139.5) µg/m3 in the pre harvest and harvest periods, respectively (p < .001). Burnt sugarcane harvesting was associated with a reduction, throughout the work during burnt sugarcane harvesting (subchronic effect), in plasmatic and urinary CC16 concentrations. Acutely, there was a decrease in plasmatic concentrations. There were acute and subchronic increases in inflammatory markers (neutrophils, monocytes) and muscle damage markers (CK and LDH) and a decrease in red blood cells. Conclusions: Harvesting of burnt sugarcane was associated with acute and subchronic reductions in the plasmatic and urinary concentrations of CC16 protein and changes in systemic inflammatory markers.
Collapse
Affiliation(s)
- Marceli Rocha Leite
- a Divisao de Pneumologia , Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo , São Paulo , Brazil
| | | | - Leila Antonangelo
- c Laboratório de Investigação Médica 03 (LIM-03) - Departamento de Patologia, da Faculdade de Medicina FMUSP , Universidade de São Paulo , São Paulo , Brazil
| | - Lia Junqueira Marçal
- c Laboratório de Investigação Médica 03 (LIM-03) - Departamento de Patologia, da Faculdade de Medicina FMUSP , Universidade de São Paulo , São Paulo , Brazil
| | - Dionei Ramos
- d Department of Physiotherapy , Universidade Estadual Paulista "Júlio de Mesquita Filho" Campus de Presidente Prudente , São Paulo , Brazil
| | - Emmanuel Almeida Burdmann
- e Laboratório de Investigação Médica 12 (LIM-12), Divisão de Nefrologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina , Universidade de São Paulo , São Paulo , Brazil
| | - Ubiratan Paula Santos
- f Divisão de Pneumologia , Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo , São Paulo , Brazil
| |
Collapse
|
10
|
Wang Y, Duan H, Meng T, Shen M, Ji Q, Xing J, Wang Q, Wang T, Niu Y, Yu T, Liu Z, Jia H, Zhan Y, Chen W, Zhang Z, Su W, Dai Y, Zhang X, Zheng Y. Reduced serum club cell protein as a pulmonary damage marker for chronic fine particulate matter exposure in Chinese population. ENVIRONMENT INTERNATIONAL 2018; 112:207-217. [PMID: 29277064 DOI: 10.1016/j.envint.2017.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Exposure to fine particulate matter (PM2.5) pollution is associated with increased morbidity and mortality from respiratory diseases. However, few population-based studies have been conducted to assess the alterations in circulating pulmonary proteins due to long-term PM2.5 exposure. METHODS We designed a two-stage study. In the first stage (training set), we assessed the associations between PM2.5 exposure and levels of pulmonary damage markers (CC16, SP-A and SP-D) and lung function in a coke oven emission (COE) cohort with 558 coke plant workers and 210 controls. In the second stage (validation set), significant initial findings were validated by an independent diesel engine exhaust (DEE) cohort with 50 DEE exposed workers and 50 controls. RESULTS Serum CC16 levels decreased in a dose response manner in association with both external and internal PM2.5 exposures in the two cohorts. In the training set, serum CC16 levels decreased with increasing duration of occupational PM2.5 exposure history. An interquartile range (IQR) (122.0μg/m3) increase in PM2.5 was associated with a 5.76% decrease in serum CC16 levels, whereas an IQR (1.06μmol/mol creatinine) increase in urinary 1-hydroxypyrene (1-OHP) concentration was associated with a 5.36% decrease in serum CC16 levels in the COE cohort. In the validation set, the concentration of serum CC16 in the PM2.5 exposed group was 22.42% lower than that of the controls and an IQR (1.24μmol/mol creatinine) increase in urinary 1-OHP concentration was associated with a 12.24% decrease in serum CC16 levels in the DEE cohort. CONCLUSIONS Serum CC16 levels may be a sensitive marker for pulmonary damage in populations with high PM2.5 exposure.
Collapse
Affiliation(s)
- Yanhua Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Tao Meng
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meili Shen
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qianpeng Ji
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; Faculty of Public Health, Weifang Medical University, Weifang, China
| | - Jie Xing
- Faculty of Public Health, Weifang Medical University, Weifang, China
| | - Qingrong Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; Faculty of Public Health, Weifang Medical University, Weifang, China
| | - Ting Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Yu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhong Liu
- Jinan Municipal Center for Disease Control and Prevention, Jinan, China
| | | | | | - Wen Chen
- Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhihu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, China
| | - Wenge Su
- Laigang Hospital attached to Taishan Medical University, Laiwu, China
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuchun Zhang
- Laigang Hospital attached to Taishan Medical University, Laiwu, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Jones B, Donovan C, Liu G, Gomez HM, Chimankar V, Harrison CL, Wiegman CH, Adcock IM, Knight DA, Hirota JA, Hansbro PM. Animal models of COPD: What do they tell us? Respirology 2016; 22:21-32. [DOI: 10.1111/resp.12908] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Bernadette Jones
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Gang Liu
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Henry M. Gomez
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Vrushali Chimankar
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Celeste L. Harrison
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Cornelis H. Wiegman
- The Airways Disease Section, National Heart and Lung Institute; Imperial College London; London UK
| | - Ian M. Adcock
- The Airways Disease Section, National Heart and Lung Institute; Imperial College London; London UK
| | - Darryl A. Knight
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| | - Jeremy A. Hirota
- James Hogg Research Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs; Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia; London UK
| |
Collapse
|
12
|
Calderón-Garcidueñas L, Reynoso-Robles R, Vargas-Martínez J, Gómez-Maqueo-Chew A, Pérez-Guillé B, Mukherjee PS, Torres-Jardón R, Perry G, Gónzalez-Maciel A. Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer's disease. ENVIRONMENTAL RESEARCH 2016; 146:404-17. [PMID: 26829765 DOI: 10.1016/j.envres.2015.12.031] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/30/2015] [Accepted: 12/27/2015] [Indexed: 05/20/2023]
Abstract
Millions of urban children are chronically exposed to high concentrations of air pollutants, i.e., fine particulate matter (PM2.5) and ozone, associated with increased risk for Alzheimer's disease. Compared with children living with clear air those in Mexico City (MC) exhibit systemic, brain and intrathecal inflammation, low CSF Aβ42, breakdown of the BBB, attention and short-term memory deficits, prefrontal white matter hyperintensities, damage to epithelial and endothelial barriers, tight junction and neural autoantibodies, and Alzheimer and Parkinson's hallmarks. The prefrontal white matter is a target of air pollution. We examined by light and electron microscopy the prefrontal white matter of MC dogs (n: 15, age 3.17±0.74 years), children and teens (n: 34, age: 12.64±4.2 years) versus controls. Major findings in MC residents included leaking capillaries and small arterioles with extravascular lipids and erythrocytes, lipofuscin in pericytes, smooth muscle and endothelial cells (EC), thickening of cerebrovascular basement membranes with small deposits of amyloid, patchy absence of the perivascular glial sheet, enlarged Virchow-Robin spaces and nanosize particles (20-48nm) in EC, basement membranes, axons and dendrites. Tight junctions, a key component of the neurovascular unit (NVU) were abnormal in MC versus control dogs (χ(2)<0.0001), and white matter perivascular damage was significantly worse in MC dogs (p=0.002). The integrity of the NVU, an interactive network of vascular, glial and neuronal cells is compromised in MC young residents. Characterizing the early NVU damage and identifying biomarkers of neurovascular dysfunction may provide a fresh insight into Alzheimer pathogenesis and open opportunities for pediatric neuroprotection.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT 59812, USA; Universidad del Valle de México, Mexico City 04850, México.
| | | | | | | | | | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City 04310, México
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | | |
Collapse
|
13
|
Laucho-Contreras ME, Polverino F, Tesfaigzi Y, Pilon A, Celli BR, Owen CA. Club Cell Protein 16 (CC16) Augmentation: A Potential Disease-modifying Approach for Chronic Obstructive Pulmonary Disease (COPD). Expert Opin Ther Targets 2016; 20:869-83. [PMID: 26781659 DOI: 10.1517/14728222.2016.1139084] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Club cell protein 16 (CC16) is the most abundant protein in bronchoalveolar lavage fluid. CC16 has anti-inflammatory properties in smoke-exposed lungs, and chronic obstructive pulmonary disease (COPD) is associated with CC16 deficiency. Herein, we explored whether CC16 is a therapeutic target for COPD. AREAS COVERED We reviewed the literature on the factors that regulate airway CC16 expression, its biologic functions and its protective activities in smoke-exposed lungs using PUBMED searches. We generated hypotheses on the mechanisms by which CC16 limits COPD development, and discuss its potential as a new therapeutic approach for COPD. EXPERT OPINION CC16 plasma and lung levels are reduced in smokers without airflow obstruction and COPD patients. In COPD patients, airway CC16 expression is inversely correlated with severity of airflow obstruction. CC16 deficiency increases smoke-induced lung pathologies in mice by its effects on epithelial cells, leukocytes, and fibroblasts. Experimental augmentation of CC16 levels using recombinant CC16 in cell culture systems, plasmid and adenoviral-mediated over-expression of CC16 in epithelial cells or smoke-exposed murine airways reduces inflammation and cellular injury. Additional studies are necessary to assess the efficacy of therapies aimed at restoring airway CC16 levels as a new disease-modifying therapy for COPD patients.
Collapse
Affiliation(s)
- Maria E Laucho-Contreras
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA
| | - Francesca Polverino
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA.,b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA.,c Department of Medicine , University of Parma , Parma , Italy
| | - Yohannes Tesfaigzi
- b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Aprile Pilon
- d Therabron Therapeutics Inc. , Rockville , MD , USA
| | - Bartolome R Celli
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA.,b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Caroline A Owen
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA.,b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| |
Collapse
|
14
|
Ma YN, Qian Z, Wang J, Rodemich E, Lee YL, Lv XF, Liu YQ, Zhao Y, Huang MM, Liu Y, Sun J, He QC, Dong GH. Environmental tobacco smoke exposure, urine CC-16 levels, and asthma outcomes among Chinese children. Allergy 2015; 70:295-301. [PMID: 25495571 DOI: 10.1111/all.12559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Previous studies have shown the relationship between club cell secretory protein (Clara) (CC-16) and respiratory diseases. However, few studies have explored the associations between urine CC-16 levels and environmental tobacco smoke (ETS) exposure in children. The objective of this study was to evaluate whether ETS exposure is associated with CC-16 when stratified by asthma status. METHODS In our study, CC-16 was measured on 537 children aged 9-15 from northeast China in 2011-2012 using the Human Clara Cell Protein ELISA kits. Doctor-diagnosed asthma was defined as having ever been diagnosed with asthma by a physician. The relationship between ETS exposure and urine CC-16 level was assessed using linear regression. RESULTS When stratified by asthma status, a negative association between ETS exposure and urine CC-16 was observed after adjusting for the effects of the related covariates, with an adjusted β coefficient [P value] = -0.31 [0.006] in the first 2 years of life and with an adjusted β coefficient [P value] = -0.68 [0.004] in the first 2 years of life and current. CONCLUSIONS Our study shows long-term exposure to ETS was associated with urinary CC-16 among children without asthma.
Collapse
Affiliation(s)
- Y.-N. Ma
- Department of Biostatistics and Epidemiology; School of Public Health; China Medical University; Shenyang Liaoning China
| | - Z. Qian
- Department of Epidemiology; College for Public Health and Social Justice; Saint Louis University; Saint Louis MO USA
| | - J. Wang
- Department of Biostatistics; College for Public Health and Social Justice; Saint Louis University; Saint Louis MO USA
| | - E. Rodemich
- Department of Epidemiology; College for Public Health and Social Justice; Saint Louis University; Saint Louis MO USA
| | - Y. L. Lee
- Institute of Epidemiology and Preventive Medicine; College of Public Health; National Taiwan University; Taipei Taiwan
| | - X.-F. Lv
- Atmosphere pollution control center of Liaoning province; Shenyang Liaoning China
| | - Y.-Q. Liu
- Department of Biostatistics and Epidemiology; School of Public Health; China Medical University; Shenyang Liaoning China
| | - Y. Zhao
- Department of Biostatistics and Epidemiology; School of Public Health; China Medical University; Shenyang Liaoning China
| | - M.-M. Huang
- Department of Biostatistics and Epidemiology; School of Public Health; China Medical University; Shenyang Liaoning China
| | - Y. Liu
- Department of Biostatistics and Epidemiology; School of Public Health; China Medical University; Shenyang Liaoning China
| | - J. Sun
- Department of Biostatistics and Epidemiology; School of Public Health; China Medical University; Shenyang Liaoning China
| | - Q.-C. He
- Department of Biostatistics and Epidemiology; School of Public Health; China Medical University; Shenyang Liaoning China
| | - G.-H. Dong
- Department of Preventive Medicine; School of Public Health; Sun Yat-sen University; Guangzhou Guangdong China
| |
Collapse
|
15
|
Franciosi L, Postma DS, van den Berge M, Govorukhina N, Horvatovich PL, Fusetti F, Poolman B, Lodewijk ME, Timens W, Bischoff R, ten Hacken NHT. Susceptibility to COPD: differential proteomic profiling after acute smoking. PLoS One 2014; 9:e102037. [PMID: 25036363 PMCID: PMC4103835 DOI: 10.1371/journal.pone.0102037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/13/2014] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoking is the main risk factor for COPD (Chronic Obstructive Pulmonary Disease), yet only a subset of smokers develops COPD. Family members of patients with severe early-onset COPD have an increased risk to develop COPD and are therefore defined as “susceptible individuals”. Here we perform unbiased analyses of proteomic profiles to assess how “susceptible individuals” differ from age-matched “non-susceptible individuals” in response to cigarette smoking. Epithelial lining fluid (ELF) was collected at baseline and 24 hours after smoking 3 cigarettes in young individuals susceptible or non-susceptible to develop COPD and older subjects with established COPD. Controls at baseline were older healthy smoking and non-smoking individuals. Five samples per group were pooled and analysed by stable isotope labelling (iTRAQ) in duplicate. Six proteins were selected and validated by ELISA or immunohistochemistry. After smoking, 23 proteins increased or decreased in young susceptible individuals, 7 in young non-susceptible individuals, and 13 in COPD in the first experiment; 23 proteins increased or decreased in young susceptible individuals, 32 in young non-susceptible individuals, and 11 in COPD in the second experiment. SerpinB3 and Uteroglobin decreased after acute smoke exposure in young non-susceptible individuals exclusively, whereas Peroxiredoxin I, S100A9, S100A8, ALDH3A1 (Aldehyde dehydrogenase 3A1) decreased both in young susceptible and non-susceptible individuals, changes being significantly different between groups for Uteroglobin with iTRAQ and for Serpin B3 with iTRAQ and ELISA measures. Peroxiredoxin I, SerpinB3 and ALDH3A1 increased in COPD patients after smoking. We conclude that smoking induces a differential protein response in ELF of susceptible and non-susceptible young individuals, which differs from patients with established COPD. This is the first study applying unbiased proteomic profiling to unravel the underlying mechanisms that induce COPD. Our data suggest that SerpinB3 and Uteroglobin could be interesting proteins in understanding the processes leading to COPD.
Collapse
Affiliation(s)
- Lorenza Franciosi
- University of Groningen, Department of Pharmacy, Analytical Biochemistry, Groningen, The Netherlands
| | - Dirkje S. Postma
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases, Groningen Research Institute of Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases, Groningen Research Institute of Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Natalia Govorukhina
- University of Groningen, Department of Pharmacy, Analytical Biochemistry, Groningen, The Netherlands
| | - Peter L. Horvatovich
- University of Groningen, Department of Pharmacy, Analytical Biochemistry, Groningen, The Netherlands
| | - Fabrizia Fusetti
- Department of Biochemistry, University of Groningen, Netherlands Proteomics Centre, Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Netherlands Proteomics Centre, Groningen, The Netherlands
| | - Monique E. Lodewijk
- University of Groningen, University Medical Centre Groningen, Department of Pathology, Groningen Research Institute of Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Wim Timens
- University of Groningen, University Medical Centre Groningen, Department of Pathology, Groningen Research Institute of Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Rainer Bischoff
- University of Groningen, Department of Pharmacy, Analytical Biochemistry, Groningen, The Netherlands
| | - Nick H. T. ten Hacken
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases, Groningen Research Institute of Asthma and COPD (GRIAC), Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Aggarwal NR, Chau E, Garibaldi BT, Mock JR, Sussan T, Rao K, Rao K, Menon AG, D'Alessio FR, Damarla M, Biswal S, King LS, Sidhaye VK. Aquaporin 5 regulates cigarette smoke induced emphysema by modulating barrier and immune properties of the epithelium. Tissue Barriers 2013; 1:e25248. [PMID: 24665410 PMCID: PMC3783223 DOI: 10.4161/tisb.25248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/22/2013] [Accepted: 06/01/2013] [Indexed: 01/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) causes significant morbidity and mortality. Cigarette smoke, the most common risk factor for COPD, induces airway and alveolar epithelial barrier permeability and initiates an innate immune response. Changes in abundance of aquaporin 5 (AQP5), a water channel, can affect epithelial permeability and immune response after cigarette smoke exposure. To determine how AQP5-derived epithelial barrier modulation affects epithelial immune response to cigarette smoke and development of emphysema, WT and AQP5−/− mice were exposed to cigarette smoke (CS). We measured alveolar cell counts and differentials, and assessed histology, mean-linear intercept (MLI), and surface-to-volume ratio (S/V) to determine severity of emphysema. We quantified epithelial-derived signaling proteins for neutrophil trafficking, and manipulated AQP5 levels in an alveolar epithelial cell line to determine specific effects on neutrophil transmigration after CS exposure. We assessed paracellular permeability and epithelial turnover in response to CS. In contrast to WT mice, AQP5−/− mice exposed to 6 months of CS did not demonstrate a significant increase in MLI or a significant decrease in S/V compared with air-exposed mice, conferring protection against emphysema. After sub-acute (4 weeks) and chronic (6 mo) CS exposure, AQP5−/− mice had fewer alveolar neutrophil but similar lung neutrophil numbers as WT mice. The presence of AQP5 in A549 cells, an alveolar epithelial cell line, was associated with increase neutrophil migration after CS exposure. Compared with CS-exposed WT mice, neutrophil ligand (CD11b) and epithelial receptor (ICAM-1) expression were reduced in CS-exposed AQP5−/− mice, as was secreted LPS-induced chemokine (LIX), an epithelial-derived neutrophil chemoattractant. CS-exposed AQP5−/− mice demonstrated decreased type I pneumocytes and increased type II pneumocytes compared with CS-exposed WT mice suggestive of enhanced epithelial repair. Absence of AQP5 protected against CS-induced emphysema with reduced epithelial permeability, neutrophil migration, and altered epithelial cell turnover which may enhance repair.
Collapse
Affiliation(s)
- Neil R Aggarwal
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Eric Chau
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Brian T Garibaldi
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Jason R Mock
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Thomas Sussan
- School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Keshav Rao
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Kaavya Rao
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Anil G Menon
- Department of Molecular Genetics; Biochemistry and Microbiology; University of Cincinnati; Cincinnati OH, USA
| | - Franco R D'Alessio
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Shyam Biswal
- School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Landon S King
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Venkataramana K Sidhaye
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| |
Collapse
|
17
|
Vattanasit U, Navasumrit P, Khadka MB, Kanitwithayanun J, Promvijit J, Autrup H, Ruchirawat M. Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles. Int J Hyg Environ Health 2013; 217:23-33. [PMID: 23567252 DOI: 10.1016/j.ijheh.2013.03.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 01/24/2023]
Abstract
Particulate pollution is a major public health concern because epidemiological studies have demonstrated that exposure to particles is associated with respiratory diseases and lung cancer. Diesel exhaust particles (DEP), which is classified as a human carcinogen (IARC, 2012), are considered a major contributor to traffic-related particulate matter (PM) in urban areas. DEP consists of various compounds, including PAHs and metals which are the principal components that contribute to the toxicity of PM. The present study aimed to investigate effects of PM on induction of oxidative DNA damage and inflammation by using lymphocytes in vitro and in human exposed to PM in the environment. Human lymphoblasts (RPMI 1788) were treated with DEP (SRM 2975) at various concentrations (25-100 μg/ml) to compare the extent of responses with alveolar epithelial cells (A549). ROS generation was determined in each cell cycle phase of DEP-treated cells in order to investigate the influence of the cell cycle stage on induction of oxidative stress. The oxidative DNA damage was determined by measurement of 8-hydroxy-deoxyguanosine (8-OHdG) whereas the inflammatory responses were determined by mRNA expression of interleukin-6 and -8 (IL-6 and IL-8), Clara cell protein (CC16), and lung surfactant protein-A (SP-A). The results showed that RPMI 1788 and A549 cells had a similar pattern of dose-dependent responses to DEP in terms of particle uptake, ROS generation with highest level found in G2/M phase, 8-OHdG formation, and induction of IL-6 and IL-8 expression. The human study was conducted in 51 healthy subjects residing in traffic-congested areas. The effects of exposure to PM2.5 and particle-bound PAHs and toxic metals on the levels of 8-OHdG in lymphocyte DNA, IL-8 expression in lymphocytes, and serum CC16 were evaluated. 8-OHdG levels correlated with the exposure levels of PM2.5 (P<0.01) and PAHs (P<0.05), but this was not the case with IL-8. Serum CC16 showed significantly negative correlations with B[a]P equivalent (P<0.05) levels, but positive correlation with Pb (P<0.05). In conclusion, a similar pattern of the dose-dependent responses to DEP in the lymphoblasts and lung cells suggests that circulating lymphocytes could be used as a surrogate for assessing PM-induced oxidative DNA damage and inflammatory responses in the lung. Human exposure to PM leads to oxidative DNA damage whereas PM-induced inflammation was not conclusive and should be further investigated.
Collapse
Affiliation(s)
- Udomratana Vattanasit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Lak si, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Thailand; Inter-University Program in Environmental Toxicology, Technology and Management (Chulabhorn Research Institute, Asian Institute of Technology, Mahidol University), Thailand
| | | | | | | | | | | | | |
Collapse
|
18
|
St.Helen G, Holland NT, Balmes JR, Hall DB, Bernert JT, Vena JE, Wang JS, Naeher LP. Utility of urinary Clara cell protein (CC16) to demonstrate increased lung epithelial permeability in non-smokers exposed to outdoor secondhand smoke. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2013; 23:183-189. [PMID: 22805990 PMCID: PMC3507333 DOI: 10.1038/jes.2012.68] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 04/19/2012] [Indexed: 05/30/2023]
Abstract
The objective of this study was to assess the utility of urinary Clara cell protein (CC16) as a biomarker of increased lung epithelial permeability in non-smokers exposed to outdoor secondhand smoke. Twenty-eight healthy non-smoking adults visited outdoor patios of a restaurant and a bar where non-participants smoked and an open-air control with no smokers on three weekend days in a crossover study; subjects visited each site once for 3 h. Urine samples were collected at baseline, immediately post exposure and next morning, and analyzed for CC16. Changes in CC16 across location types or with cigarette count were analyzed using mixed-effect models, which included all subjects and stratified by gender. Urinary CC16 was higher in males (n=9) compared with females (n=18) at all measurement occasions (P<0.002), possibly reflecting prostatic contamination. Urinary CC16 from pre-exposure to post-exposure was higher following visits to restaurant and bar sites compared with the control among females but this increase did not reach statistical significance. Post-exposure to pre-exposure urinary CC16 ratios among females increased with cigarette count (P=0.048). Exposure-related increases in urinary CC16 were not seen among males. In conclusion, urinary CC16 may be a useful biomarker of increased lung epithelial permeability among female non-smokers; further work will be required to evaluate its applicability to males.
Collapse
Affiliation(s)
- Gideon St.Helen
- The University of Georgia, College of Public Health, Department of Environmental Health Science, Athens, GA, USA
| | - Nina T. Holland
- The University of California, Berkeley, Division of Environmental Health Sciences, School of Public Health, Berkeley, CA, USA
| | - John R. Balmes
- The University of California, Berkeley, Division of Environmental Health Sciences, School of Public Health, Berkeley, CA, USA
- University of California, Department of Medicine, Division of Occupational and Environmental Medicine, San Francisco, CA, USA
| | - Daniel B. Hall
- The University of Georgia, Department of Statistics, Athens, GA, USA
| | - J. Thomas Bernert
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John E. Vena
- The University of Georgia, College of Public Health, Department of Epidemiology and Biostatistics, Athens, GA, USA
| | - Jia-Sheng Wang
- The University of Georgia, College of Public Health, Department of Environmental Health Science, Athens, GA, USA
| | - Luke P. Naeher
- The University of Georgia, College of Public Health, Department of Environmental Health Science, Athens, GA, USA
| |
Collapse
|
19
|
Kadoya C, Ogami A, Morimoto Y, Myojo T, Oyabu T, Nishi K, Yamamoto M, Todoroki M, Tanaka I. Analysis of bronchoalveolar lavage fluid adhering to lung surfactant. Experiment on intratracheal instillation of nickel oxide with different diameters. INDUSTRIAL HEALTH 2011; 50:31-36. [PMID: 22146143 DOI: 10.2486/indhealth.ms1253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nickel oxide with two different particle sizes, micron size (NiO) and submicron size (nNiOm), as well as crystalline silica as a positive control and titanium dioxide as a negative control, were intratracheally instilled in rats and the phospholipid concentration and the protein concentration and surface tension of bronchoalveolar lavage fluid (BALF), which are used in surfactant assessment, were measured to see if they could be effective biomarkers in toxicity assessment. The results showed that the NiO instilled group showed no significant difference compared to the control group throughout the observation period. In contrast, a significant difference was found in the nNiOm instilled group compared to the control group throughout the observation period. Moreover, a significant difference was found in the crystalline silica instilled group for each measurement compared to the control group while for the titanium dioxide group, almost no significant difference was found. These results indicate that submicronsized particles of nickel oxide with smaller median diameters potentially have a stronger biological effect than micron size particles. They also indicate that screening can be done by measuring the phospholipid concentration and the protein concentration and surface tension of BALF.
Collapse
Affiliation(s)
- Chikara Kadoya
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sun T, Wang X, Liu Z, Liu S, Zhang J. Patterns of cytokine release and evolution of remote organs from proximal femur fracture in COPD rats. Injury 2011; 42:825-32. [PMID: 21531414 DOI: 10.1016/j.injury.2011.03.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 03/21/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is at increased risk for developing osteoporosis (OP) with subsequent proximal femur fracture. The presence of COPD is suggested to be a strong risk factor for proximal femur fracture or hip fracture. However, what happen behind it is not clearly understood. OBJECTIVE To investigate the pattern of cytokine (TNF-a, IL-6, and IL-10) releases in pulmonary and hepatic in rats with COPD suffering from proximal femur fracture, and its possible adverse effect on pulmonary and hepatic. METHODS AND SUBJECTIVE This paper has two parts. In the first part, we describe the procedure of COPD model in detail. In the second part, we study the influences of fracture on the COPD rats. 5 months WISTAR rats with 37 weeks cigarette smoking exposure (CS group) were dynamically determined for pulmonary function, inflammatory response in bronchoalveolar lavage fluid (BALF), histological changes in pulmonary in the first part. When the COPD model is proved to be successful, we begin the second part. COPD rats were euthanized at 2, 24, 48, 72, and 96h after proximal femur fracture (fracture group) or anaesthesia (control group). Cytokines (TNF-a, IL-6, and IL-10) and myeloperoxidase activity of pulmonary and hepatic (MPO) were measured with enzyme-liked immunosorbent assay technique. Permeability changes of the lung were assessed via bronchoalveolar lavage, and those of the liver via assessment of oedema formation. Tissues were further examined microscopically. RESULTS The current sidestream cigarette smoke induced rat COPD model has been proved an adequate animal model with several advantages as assessed by dynamically monitored lung mechanics and pathological changes for 37 weeks. In the second part, TNF-a, IL-6, and IL-10 levels of pulmonary tissue were significantly increased after proximal femur fracture compared to control rats. TNF-a, and IL-6 levels in pulmonary peaked at 2h, 24h in fracture group, whereas IL-10 level peaked at 24h and 96h. Pulmonary myeloperoxidase activity, permeability and histological score in fracture group were remarkably elevated, and peaked at 24h. In addition to TNF-a, all above parameters did not return to normal through our study. Hepatic in COPD rats showed notable increase of cytokines (TNF-a, IL-6, and IL-10), myeloperoxidase activity, histological score, and permeability in fracture group compared to control rats, and severity of these changes were much lower than in pulmonary. Apart from TNF-a, the peak of these parameters was at 24h after fracture. Changes of cytokines, MPO activity, permeability and histological score in pulmonary and hepatic in control rat were little changed. CONCLUSION COPD rats produced a remarkably increase of inflammatory response (TNF-a, IL-6, IL-10) in lung (liver) after proximal femur fracture, which lead to lung (liver) injury, as evidence by changes of MPO, permeability, and histological scores in local organs.
Collapse
Affiliation(s)
- Tiansheng Sun
- Department of Orthopedic, Beijing Army General Hospital, Dongcheng District, Nanmencang No. 5, Beijing, China. suntiansheng-@163.com
| | | | | | | | | |
Collapse
|
21
|
Bourdin A, Kotsimbos T, Nguyen K, Vachier I, Mainprice B, Farce M, Paganin F, Marty-Ané C, Vernhet H, Godard P, Chanez P. Non-invasive assessment of small airway remodelling in smokers. COPD 2010; 7:102-10. [PMID: 20397810 DOI: 10.3109/15412551003631709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Smoking associated COPD progression is likely to be directly linked to differential injury and repair dynamics in small airways (SA). Although IL8 is a well-accepted marker for injured airway epithelium, Clara cells [the predominant proliferating cells in SA] and SCGB1A1 protein [their major secretory product] have only recently emerged as potential SA repair markers. We therefore postulate that the SCGB1A1/IL8 ratio in the airways of smokers would be inversely associated with physiological, radiological and clinical measures of COPD. A cross-sectional cohort of 28 smokers undergoing surgery for peripheral nodule was recruited (24M/4F, age 61 +/- 11 y, FEV1s 76 +/- 20%, smoking 40 +/- 12 p.y). SCGB1A1 and IL8 were measured by ELISA in the induced sputum (IS) 3 to 5 days prior to surgery as well as by immunohistochemistry from lung tissue (also assessed morphometrically) obtained distant to the cancer surgery site. COPD was assessed using standard clinical, functional and radiological parameters. Log-transformed IS-SCGB1A1 was linearly correlated with SCGB1A1-positive epithelial cells detected via immunohistochemistry (r = .533, p = .001), while IS-IL8 was positively related to SA infiltrating neutrophils (Elastase-positive cells). There was a striking negative correlation between IS-SCGB1A1/IL8 levels and whole airway thickness [SA < 2 mm] at morphometry (r = -0.83, p < 0.0001). IS-SCGB1A1/IL8 levels were also inversely associated with nitrogen slope [r = -0.52, p < 0.001] and HRCT SA score [r = -0.51, p < 0.001]. In a multivariate analysis the IS-SCGB1A1/IL8 ratio was a stronger predictor than both the physiological and radiological measures of SA disease assessed. The SCGB1A1/IL8 ratio measured in sputum is a potentially valuable biomarker for non-invasive assessment of SA remodelling in smokers.
Collapse
|
22
|
Jacquemin B, Lanki T, Yli-Tuomi T, Vallius M, Hoek G, Heinrich J, Timonen K, Pekkanen J. Source category-specific PM2.5 and urinary levels of Clara cell protein CC16. The ULTRA study. Inhal Toxicol 2010; 21:1068-76. [PMID: 19852548 DOI: 10.3109/08958370902725292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION We have previously reported that outdoor levels of fine particles (PM(2.5), diameter <2.5 microm) are associated with urinary CC16, a marker for lung damage, in Helsinki, Finland, but not in the other two ULTRA cities (Amsterdam, The Netherlands, and Erfurt, Germany). We here evaluated whether PM(2.5) from specific source categories would be more strongly associated with CC16 than (total) PM(2.5). In addition, we compared two source apportionment methods. METHODS We collected biweekly spot urinary samples over 6 months from 121 subjects with coronary heart disease for the determination of CC16 (n = 1251). Principal component analysis (PCA) was used to apportion daily outdoor PM(2.5) between different source categories. In addition, the multilinear engine (ME) was used for the source apportionment in Amsterdam and Helsinki. We analyzed associations of source category-specific PM(2.5) and PM(2.5) absorbance, an indicator for combustion originating particles, with logarithmized values of CC16 adjusting for urinary creatinine using multivariate mixed models in STATA. RESULTS In the pooled analyses, CC16 was increased by 0.6% (standard error 0.3%) per 1 x 10(-5) m(-1) increase in the same-day levels of PM(2.5) absorbance. Source category-specific PM(2.5) concentrations were not consistently associated with the levels of CC16 in the three cities. Correlations between source category-specific PM(2.5) determined using either PCA or ME were in general high. Associations of source category-specific PM(2.5) with CC16 in Amsterdam and Helsinki were statistically less significant when ME was used. CONCLUSIONS The present results suggest that PM(2.5) from combustion sources increases epithelial barrier permeability in lungs.
Collapse
Affiliation(s)
- Bénédicte Jacquemin
- Centre for Research in Environmental Epidemiology, Municipal Institute of Medical Research, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Alessandrini F, Weichenmeier I, van Miert E, Takenaka S, Karg E, Blume C, Mempel M, Schulz H, Bernard A, Behrendt H. Effects of ultrafine particles-induced oxidative stress on Clara cells in allergic lung inflammation. Part Fibre Toxicol 2010; 7:11. [PMID: 20420656 PMCID: PMC2880284 DOI: 10.1186/1743-8977-7-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 04/26/2010] [Indexed: 12/31/2022] Open
Abstract
Background Clara cell protein (CC16), the main secretory product of bronchiolar Clara cells, plays an important protective role in the respiratory tract against oxidative stress and inflammation. The purpose of the study was to investigate the role of elemental carbon ultrafine particles (EC-UFP)-induced oxidative stress on Clara cells and CC16 in a mouse model of allergic lung inflammation. Methods Ovalbumin (OVA)-sensitized mice were exposed to EC-UFP (507 μg/m3 for 24 h) or filtered air immediately prior to allergen challenge and systemically treated with N-acetylcysteine (NAC) or vehicle prior and during EC-UFP inhalation. CC16 was measured up to one week after allergen challenge in bronchoalveolar lavage fluid (BALF) and in serum. The relative expression of CC16 and TNF-α mRNA were measured in lung homogenates. A morphometrical analysis of mucus hypersecretion and electron microscopy served to investigate goblet cell metaplasia and Clara cell morphological alterations. Results In non sensitized mice EC-UFP inhalation caused alterations in CC16 concentration, both at protein and mRNA level, and induced Clara cell hyperplasia. In sensitized mice, inhalation of EC-UFP prior to OVA challenge caused most significant alterations of BALF and serum CC16 concentration, BALF total protein and TNF-α relative expression compared to relevant controls; their Clara cells displayed the strongest morphological alterations and strongest goblet cell metaplasia occurred in the small airways. NAC strongly reduced both functional and morphological alterations of Clara cells. Conclusion Our findings demonstrate that oxidative stress plays an important role in EC-UFP-induced augmentation of functional and morphological alterations of Clara cells in allergic lung inflammation.
Collapse
Affiliation(s)
- Francesca Alessandrini
- Division of Environmental Dermatology and Allergy, Helmholtz Zentrum/Technische Universität München, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bolton SJ, Pinnion K, Oreffo V, Foster M, Pinkerton KE. Characterisation of the proximal airway squamous metaplasia induced by chronic tobacco smoke exposure in spontaneously hypertensive rats. Respir Res 2009; 10:118. [PMID: 19930705 PMCID: PMC2789729 DOI: 10.1186/1465-9921-10-118] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 11/24/2009] [Indexed: 12/26/2022] Open
Abstract
Background Continuous exposure to tobacco smoke (TS) is a key cause of chronic obstructive pulmonary disease (COPD), a complex multifactorial disease that is difficult to model in rodents. The spontaneously hypertensive (SH) rat exhibits several COPD-associated co-morbidities such as hypertension and increased coagulation. We have investigated whether SH rats are a more appropriate animal paradigm of COPD. Methods SH rats were exposed to TS for 6 hours/day, 3 days/week for 14 weeks, and the lung tissues examined by immunohistochemistry. Results TS induced a CK13-positive squamous metaplasia in proximal airways, which also stained for Ki67 and p63. We hypothesise that this lesion arises by basal cell proliferation, which differentiates to a squamous cell phenotype. Differences in staining profiles for the functional markers CC10 and surfactant D, but not phospho-p38, indicated loss of ability to function appropriately as secretory cells. Within the parenchyma, there were also differences in the staining profiles for CC10 and surfactant D, indicating a possible attempt to compensate for losses in proximal airways. In human COPD sections, areas of CK13-positive squamous metaplasia showed sporadic p63 staining, suggesting that unlike the rat, this is not a basal cell-driven lesion. Conclusion This study demonstrates that although proximal airway metaplasia in rat and human are both CK13+ and therefore squamous, they potentially arise by different mechanisms.
Collapse
Affiliation(s)
- Sarah J Bolton
- Safety Assessment UK, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire, LE11 5RH, UK.
| | | | | | | | | |
Collapse
|
25
|
Zheng H, Liu Y, Huang T, Fang Z, Li G, He S. Development and characterization of a rat model of chronic obstructive pulmonary disease (COPD) induced by sidestream cigarette smoke. Toxicol Lett 2009; 189:225-34. [PMID: 19524650 DOI: 10.1016/j.toxlet.2009.06.850] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 05/31/2009] [Accepted: 06/04/2009] [Indexed: 02/05/2023]
Abstract
Cigarette smoke (CS) induced chronic obstructive pulmonary disease (COPD) has been emerging as a great health problem in China. However, lack of appropriate animal model slows down the progress in understanding pathogenesis of the disease. The aim of current study is to establish and evaluate a more adequate rat model of COPD. Study was performed with rats exposed to sidestream cigarette smoke 2h/d and 7d/wk for 2, 4, 6, 8, 10, 12, 24 and 36 wk in a CS chamber (carbon monoxide concentration was 231+/-11ppm). The lung function was determined by using the forced oscillation technique. Pathologic changes were determined by using histological analyses and mucin measurement. Following 36-wk exposure, airway resistance (Raw) and respiratory system elastance (Ers) in CS group rats was elevated by 28.5% and 37.5%, respectively. Up to 4.1-, 2.3- and 1.4-fold increase in the number of neutrophils, macrophages and lymphocytes was observed in the BALF of CS rats. Using quantitative histomorphology techniques, it was found that mean linear intercept (MLI) and mean alveolar airspace (MAA) of CS rats increased by 44.8% and 43.7%, respectively, indicating the occurrence of emphysema. The characteristics of chronic bronchitis including hyperplasia of bronchial epithelial cells, hypersecretion of mucus and development of peribronchial fibrosis were also found in rat lungs. CS group rats showed 43% body weight gain reduction. To conclude, a more adequate sidestream cigarette smoke rat COPD model was established, which will be beneficial for understanding the pathogenesis of the disease and for evaluation of drug effectiveness.
Collapse
Affiliation(s)
- Hongao Zheng
- Allergy and Inflammation Research Institute, the Key Inmunopathology Laboratory of Guangdong Province, Shantou University Medical College, 22 Xin-ling Road, Shantou, Guangdong, PR China
| | | | | | | | | | | |
Collapse
|
26
|
Bhalla DK, Hirata F, Rishi AK, Gairola CG. Cigarette smoke, inflammation, and lung injury: a mechanistic perspective. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2009; 12:45-64. [PMID: 19117209 DOI: 10.1080/10937400802545094] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Inflammation is a common feature in the pathogenesis of cigarette smoke-associated diseases. The recruitment of inflammatory cells into the lung following cigarette smoke exposure presents a risk of tissue damage through the release of toxic mediators, including proteolytic enzymes and reactive oxygen species. This review represents a toxicological approach to investigation of cigarette smoke-induced lung injury, with a focus on laboratory studies and an emphasis on inflammatory mechanisms. The studies discussed in this review analyze the role of inflammation and inflammatory mediators in the development of injury. In cases where information relating to cigarette smoke is limited, examples are taken from other models of lung injury applicable to cigarette smoke. The primary aim of the review is to summarize published work so as to permit (1) an evaluation of chronic lung injury and inflammatory responses in animal models, (2) a discussion of inflammatory mediators in the development of chronic injury, and (3) identification of immunological mechanisms of injury. These studies discuss the currently understood roles of cytokines, cell adhesion molecules, and oxidative stress in inflammatory reactions and lung injury. A role for lipocortin 1 (annexin 1), a naturally occurring defense factor against inflammation, is discussed because of the possibility that impaired synthesis and degradation of lipocortin 1 will influence immune responses in animals exposed to cigarette smoke either by augmenting T helper cell Th1 response or by shifting Th1 to Th2 response. While Th1 augmentation will increase the risk for development of emphysema, Th1 to Th2 shift will favor development of asthma.
Collapse
Affiliation(s)
- Deepak K Bhalla
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | | | |
Collapse
|
27
|
Madsen C, Durand KL, Nafstad P, Schwarze PE, Rønningen KS, Håheim LL. Associations between environmental exposures and serum concentrations of Clara cell protein among elderly men in Oslo, Norway. ENVIRONMENTAL RESEARCH 2008; 108:354-60. [PMID: 18762291 DOI: 10.1016/j.envres.2008.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Revised: 06/15/2008] [Accepted: 07/23/2008] [Indexed: 05/19/2023]
Abstract
Cardiopulmonary morbidity and mortality is associated with several environmental exposures. Mechanistically, pathophysiological changes in the cardiopulmonary system may lead to the induction of inflammatory responses. In the present study we explored associations between environmental exposures and serum concentrations of lung Clara cell protein 16kDa, a biomarker that has recently been used to assess the integrity of the lung epithelium. Serum Clara cell protein concentrations were associated with both number of cigarettes smoked per day and number of pack-years of smoking. There was no evidence of an association between long-term exposure to ambient air pollution, as assessed at each participant's home address, and serum concentrations of CC16. However, short-term variations in both ambient air pollution and temperature were associated with increases in serum Clara cell concentrations. All findings were robust when other factors were adjusted for. These findings suggest that acute environmental exposures may compromise the integrity of the lung epithelium and lead to increased epithelial barrier permeability in the lungs of elderly men.
Collapse
Affiliation(s)
- Christian Madsen
- Division of Epidemiology, Norwegian Institute of Public Health, PO Box 4404, Nydalen, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
28
|
Alessandrini F, Semmler-Behnke M, Jakob T, Schulz H, Behrendt H, Kreyling W. Total and Regional Deposition of Ultrafine Particles in a Mouse Model of Allergic Inflammation of the Lung. Inhal Toxicol 2008; 20:585-93. [DOI: 10.1080/08958370801949167] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Bolton SJ, Pinnion K, Marshall CV, Wilson E, Barker JE, Oreffo V, Foster ML. Changes in Clara cell 10 kDa protein (CC10)-positive cell distribution in acute lung injury following repeated lipopolysaccharide challenge in the rat. Toxicol Pathol 2008; 36:440-8. [PMID: 18420837 DOI: 10.1177/0192623308315357] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Clara cell 10 kDa protein (CC10) is the major secretory protein of Clara cells and is thought to play a protective role in the lung owing to its anti-inflammatory properties. There is little information on the anatomical distribution of CC10-positive cells in rat lung following lipopolysaccharide (LPS) challenge. We have determined the expression of CC10 along the tracheobronchial tree in saline-treated and LPS-treated rats. Saline-treated rats showed sporadic CC10 staining in central airways and abundant staining in bronchioles. In transitional airways, most cells were positive except for squamous cells. Following LPS challenge, there was a reduction in staining in the upper airways but little change within bronchioles. Squamous epithelia within the transitional airways now showed positive staining. These cells also co-stained for pancytokeratin and appeared to co-localize with surfactant D- and Ki67-positive cells, indicating the presence of a dedifferentiated cell type with both epithelial and pneumocyte phenotypes. These data show that diffuse inflammatory injury results in generalized loss of CC10 in central airways. Conversely, the transitional airways showed evidence of a dedifferentiated population of squamous cells that now stained for CC10. We hypothesize that this is an attempt by peripheral lung to maintain alveolar sac integrity during an inflammatory episode.
Collapse
Affiliation(s)
- S J Bolton
- Department of Pathology, Safety Assessment UK, AstraZeneca R&D Charnwood, Loughborough, Leicestershire LE11 5RH, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
30
|
Betsuyaku T, Hamamura I, Hata J, Takahashi H, Mitsuhashi H, Adair-Kirk TL, Senior RM, Nishimura M. Bronchiolar chemokine expression is different after single versus repeated cigarette smoke exposure. Respir Res 2008; 9:7. [PMID: 18208591 PMCID: PMC2248575 DOI: 10.1186/1465-9921-9-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 01/21/2008] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Bronchioles are critical zones in cigarette smoke (CS)-induced lung inflammation. However, there have been few studies on the in vivo dynamics of cytokine gene expression in bronchiolar epithelial cells in response to CS. METHODS We subjected C57BL/6J mice to CS (whole body exposure, 90 min/day) for various periods, and used laser capture microdissection to isolate bronchiolar epithelial cells for analysis of mRNA by quantitative reverse transcription-polymerase chain reaction. RESULTS We detected enhanced expression of keratinocyte-derived chemokine (KC), macrophage inflammatory protein-2 (MIP-2), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) by bronchial epithelial cells after 10 consecutive days of CS exposure. This was mirrored by increases in neutrophils and KC, MIP-2, TNF-alpha, and IL-1beta proteins in the bronchoalveolar lavage (BAL) fluid. The initial inhalation of CS resulted in rapid and robust upregulation of KC and MIP-2 with concomitant DNA oxidation within 1 hr, followed by a return to control values within 3 hrs. In contrast, after CS exposure for 10 days, this initial surge was not observed. As the CS exposure was extended to 4, 12, 18 and 24 weeks, the bronchiolar KC and MIP-2 expression and their levels in BAL fluid were relatively dampened compared to those at 10 days. However, neutrophils in BAL fluid continuously increased up to 24 weeks, suggesting that neutrophil accumulation as a result of long-term CS exposure became independent of KC and MIP-2. CONCLUSION These findings indicate variable patterns of bronchiolar epithelial cytokine expression depending on the duration of CS exposure, and that complex mechanisms govern bronchiolar molecular dynamics in vivo.
Collapse
Affiliation(s)
- Tomoko Betsuyaku
- First Department of Medicine, Hokkaido University School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8683, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Prozialeck WC, Vaidya VS, Liu J, Waalkes MP, Edwards JR, Lamar PC, Bernard AM, Dumont X, Bonventre JV. Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity. Kidney Int 2007; 72:985-93. [PMID: 17687258 PMCID: PMC2747605 DOI: 10.1038/sj.ki.5002467] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cadmium (Cd) exposure results in injury to the proximal tubule characterized by polyuria and proteinuria. Kidney injury molecule-1 (Kim-1) is a transmembrane glycoprotein not normally detected in the mature kidney, but is upregulated and shed into the urine following nephrotoxic injury. In this study, we determine if Kim-1 might be a useful early biomarker of Cd nephrotoxicity. Male Sprague-Dawley rats were given daily injections of Cd for up to 12 weeks. Weekly urine samples were analyzed for Kim-1, protein, creatinine, metallothionein, and Clara cell protein CC-16. Significant levels of Kim-1 were detected in the urine by 6 weeks and continued to increase throughout the treatment period. This appearance of Kim-1 occurred 4-5 weeks before the onset of proteinuria, and 1-3 weeks before the appearance of metallothionein and CC-16. Higher doses of Cd gave rise to higher Kim-1 excretion. Reverse transcriptase-polymerase chain reaction (RT-PCR) expression analysis showed that Kim-1 transcript levels were increased after 6 weeks at the low dose of Cd. Immunohistochemical analysis showed that Kim-1 was present in proximal tubule cells of the Cd-treated rats. Our results suggest that Kim-1 may be a useful biomarker of early stages of Cd-induced proximal tubule injury.
Collapse
Affiliation(s)
- W C Prozialeck
- Department of Pharmacology, Midwestern University, Downers Grove, Illinois 60515, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lakind JS, Holgate ST, Ownby DR, Mansur AH, Helms PJ, Pyatt D, Hays SM. A critical review of the use of Clara cell secretory protein (CC16) as a biomarker of acute or chronic pulmonary effects. Biomarkers 2007; 12:445-67. [PMID: 17701745 DOI: 10.1080/13547500701359327] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Biomarkers associated with asthma aetiology and exacerbation have been sought to shed light on this multifactorial disease. One candidate is the serum concentration of the Clara cell secretory protein (CC16, sometimes referred to as CC10 or uteroglobin). In this review, we examine serum CC16's relation to asthma aetiology and exacerbation. There is evidence that acute exposures to certain pulmonary irritants can cause a transient increase in serum CC16 levels, and limited evidence also suggests that a transient increase in serum CC16 levels can be caused by a localized pulmonary inflammation. Research also indicates that a transient increase in serum CC16 is not associated with measurable pulmonary damage or impairment of pulmonary function. The biological interpretation of chronic changes in serum CC16 is less clear. Changes in serum CC16 concentrations (either transient or chronic) are not specific to any one agent, disease state, or aetiology. This lack of specificity limits the use of serum CC16 as a biomarker of specific exposures. To date, many of the critical issues that must be understood before serum CC16 levels can have an application as a biomarker of effect or exposure have not been adequately addressed.
Collapse
Affiliation(s)
- J S Lakind
- LaKind Associates, LLC, Catonsville, MD, USA.
| | | | | | | | | | | | | |
Collapse
|