1
|
Alymbaeva D, Szabo C, Jocsak G, Bartha T, Zsarnovszky A, Kovago C, Ondrasovicova S, Kiss DS. Analysis of arsenic-modulated expression of hypothalamic estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptor gamma mRNA and simultaneous mitochondrial morphology and respiration rates in the mouse. PLoS One 2024; 19:e0303528. [PMID: 38753618 PMCID: PMC11098319 DOI: 10.1371/journal.pone.0303528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Arsenic has been identified as an environmental toxicant acting through various mechanisms, including the disruption of endocrine pathways. The present study assessed the ability of a single intraperitoneal injection of arsenic, to modify the mRNA expression levels of estrogen- and thyroid hormone receptors (ERα,β; TRα,β) and peroxisome proliferator-activated receptor gamma (PPARγ) in hypothalamic tissue homogenates of prepubertal mice in vivo. Mitochondrial respiration (MRR) was also measured, and the corresponding mitochondrial ultrastructure was analyzed. Results show that ERα,β, and TRα expression was significantly increased by arsenic, in all concentrations examined. In contrast, TRβ and PPARγ remained unaffected after arsenic injection. Arsenic-induced dose-dependent changes in state 4 mitochondrial respiration (St4). Mitochondrial morphology was affected by arsenic in that the 5 mg dose increased the size but decreased the number of mitochondria in agouti-related protein- (AgRP), while increasing the size without affecting the number of mitochondria in pro-opiomelanocortin (POMC) neurons. Arsenic also increased the size of the mitochondrial matrix per host mitochondrion. Complex analysis of dose-dependent response patterns between receptor mRNA, mitochondrial morphology, and mitochondrial respiration in the neuroendocrine hypothalamus suggests that instant arsenic effects on receptor mRNAs may not be directly reflected in St3-4 values, however, mitochondrial dynamics is affected, which predicts more pronounced effects in hypothalamus-regulated homeostatic processes after long-term arsenic exposure.
Collapse
Affiliation(s)
- Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Csaba Szabo
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Physiology and Health, Institute of Physiology and Nutrition, Hungarian University of Agricultural and Life Sciences, Kaposvar, Hungary
| | - Csaba Kovago
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Silvia Ondrasovicova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
2
|
Tian X, Wang M, Ying X, Dong N, Li M, Feng J, Zhao Y, Zhao Q, Tian F, Li B, Zhang W, Qiu Y, Yan X. Co-exposure to arsenic and fluoride to explore the interactive effect on oxidative stress and autophagy in myocardial tissue and cell. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114647. [PMID: 36801539 DOI: 10.1016/j.ecoenv.2023.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Co-contamination of arsenic and fluoride is widely distributed in groundwater. However, little is known about the interactively influence of arsenic and fluoride, especially the combined mechanism in cardiotoxicity. Cellular and animal models exposure to arsenic and fluoride were established to assess the oxidative stress and autophagy mechanism of cardiotoxic damage using the factorial design, a widely used statistical method for assessing two factor interventions. In vivo, combined exposure to high arsenic (50 mg/L) and high fluoride (100 mg/L) induced myocardial injury. The damage is accompanied by accumulation of myocardial enzyme, mitochondrial disorder, and excessive oxidative stress. Further experiment identified that arsenic and fluoride induced the accumulation of autophagosome and increased expression level of autophagy related genes during the cardiotoxicity process. These findings were further demonstrated through the in vitro model of arsenic and fluoride-treated the H9c2 cells. Additionally, combined of arsenic-fluoride exposure possesses the interactively influence on oxidative stress and autophagy, contributing to the myocardial cell toxicity. In conclusion, our data suggest that oxidative stress and autophagy are involved in the process of cardiotoxic injury, and that these indicators showed interaction effect in response to the combined exposure of arsenic and fluoride.
Collapse
Affiliation(s)
- Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Nisha Dong
- Heping Hospital Affiliated To Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jing Feng
- Laboratory of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wenping Zhang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
3
|
Zhao Q, Pan W, Li J, Yu S, Liu Y, Zhang X, Qu R, Zhang Q, Li B, Yan X, Ren X, Qiu Y. Effects of neuron autophagy induced by arsenic and fluoride on spatial learning and memory in offspring rats. CHEMOSPHERE 2022; 308:136341. [PMID: 36087721 DOI: 10.1016/j.chemosphere.2022.136341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
There are numerous studies showing that exposure to arsenic (As) or fluoride (F) damages the nervous system, but there is no literature investigating the effects of combined As and F exposure to induce autophagy on neurotoxicity in the offspring. In this study, we developed a rat model of As and/or F exposure through drinking water from before pregnancy to 90 days postnatal. The offspring rats were randomly divided into nine groups. Sodium arsenite (NaAsO2) (0, 35, 70 mg/L) and Sodium fluoride (NaF) (0, 50, 100 mg/L) were designed according to 3 × 3 factorial design. Our results suggested that the presence of F might antagonize the excretion of total As in urine, and As-F co-exposure led to severe pathological damage in brain tissue and reduced spatial learning and memory ability. At the same time, the experiments showed that As and F increased Beclin1 expression and LC3B ratio to activate autophagy; both P62 and Lamp2 expression were increased, suggesting that autophagy lysosomal degradation was blocked; SYN and JIP1 expression were significantly decreased, disrupting synaptic structure and function. Axonal autophagosome reverse transport regulation might be affected by combined As-F exposure, exacerbating neuronal synaptic damage and inducing neurotoxicity. Further analysis showed that there was an interaction between As and F exposure-induced changes in autolysosome-related proteins in the hippocampus, which showed antagonism, and the antagonism of the high As combined exposure groups were stronger than that of the low As combined exposure groups. In conclusion, our study showed that combined As and F exposure might induce reverse transport impairment of autophagy on axons, leading to autophagy defects, which in turn led to disruption of synaptic morphology and function, induced neurotoxicity, and there was an interaction between As and F, the type of its combined effect was antagonism.
Collapse
Affiliation(s)
- Qiuyi Zhao
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Weizhe Pan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Jia Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Shengnan Yu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Yan Liu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Xiaoli Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China; Department of Microbiology Laboratory, Linfen Central Hospital, Linfen, China.
| | - Ruodi Qu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Qian Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Ben Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Xiaoyan Yan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Xuefeng Ren
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Yulan Qiu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
4
|
Orta Yilmaz B, Aydin Y. Disruption of Leydig cell steroidogenic function by sodium arsenite and/or sodium fluoride. Theriogenology 2022; 193:146-156. [PMID: 36182826 DOI: 10.1016/j.theriogenology.2022.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
Arsenite (As) and fluoride (F), both of which are linked to a variety of human ailments, are regularly found in underground drinking water. Numerous studies have shown that As and/or F have negative impacts on testicular function and fertility. For this purpose, mouse Leydig cells, the main cells responsible for the generation and regulation of steroid hormones such as testosterone, were used to reveal the effects of individual and combined exposure of As and F on the steroidogenic pathway in the male reproductive system. Leydig cells were treated with 0.39 μM (50 ppb) As and 0.0476 mM (2 ppm) F alone and in combination for 24 h. The findings revealed that As and/or F exposure induced oxidative stress and apoptosis in Leydig cells and altered antioxidant equilibrium of the cells by reducing superoxide dismutase, catalase, glutathione peroxidase. Additionally, individual and combined administration of As and/or F significantly supressed the expression of both steroidogenic enzymes and the genes encoding these enzymes. In conclusion, this study showed that exposure to As and F at environmentally relevant concentrations dispersed by water decreased testosterone production in Leydig cells, an important cell of the male reproductive system. The deleterious effects of even the lowest concentrations of As and F elements that can reach humans from the environment on the Leydig cell, and therefore on male infertility, emphasize necessity new safe limits for these elements.
Collapse
Affiliation(s)
- Banu Orta Yilmaz
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey.
| | - Yasemin Aydin
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
5
|
Aydin Y, Orta-Yilmaz B. Synergistic effects of arsenic and fluoride on oxidative stress and apoptotic pathway in Leydig and Sertoli cells. Toxicology 2022; 475:153241. [PMID: 35714946 DOI: 10.1016/j.tox.2022.153241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/15/2022]
Abstract
Excessive intake of arsenic (As) and fluoride (F), which are present in underground drinking water, have adverse effects on human health, and especially on the male reproductive system. In this regard, it's critical to figure out how As and F affect Leydig and Sertoli cells, which are key cells in the male reproductive system. The goal of this study was to determine the synergistic effects of co-exposure of As and F, via drinking water, on Leydig and Sertoli cells, which are models for the male reproductive system, as well as the mechanisms underlying these effects in terms of oxidative damage and apoptosis. Leydig and Sertoli cells were exposed to concentrations of 7.7 µM (0.57 ppm) As and 0.4 mM (7.24 ppm) F based on the highest daily intake of drinking water for 24 h. The present results revealed that As and/or F treatment reduced cell viability and proliferation in Leydig and Sertoli cells, elevated lactate dehydrogenase, a cytotoxicity marker, and triggered oxidative stress and apoptosis. Furthermore, it has been proven that when As and F are exposed in combination, they have a synergistic effect. In conclusion, by revealing the harmful effects of As and F on Leydig and Sertoli cells, and thus on male infertility, it is possible to reduce As and F exposure to prevent infertility after exposure to these molecules not only separately but also together. It will be considered to determine new action and action plans to reduce As and F exposure.
Collapse
Affiliation(s)
- Yasemin Aydin
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey.
| | - Banu Orta-Yilmaz
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Zhao F, Wang Z, Liao Y, Wang G, Jin Y. Alterations of NMDA and AMPA receptors and their signaling apparatus in the hippocampus of mouse offspring induced by developmental arsenite exposure. J Toxicol Sci 2020; 44:777-788. [PMID: 31708534 DOI: 10.2131/jts.44.777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Loss of cognitive function due to arsenic exposure is a serious health concern in many parts of the world, including China. The present study aims to determine the molecular mechanism of arsenic-induced neurotoxicity and its consequent effect on downstream signaling pathways of mouse N-methyl-D-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Drinking water containing 0, 25, 50 or 100 mg/L arsenite was provided each day to mother mice throughout gestation period until postnatal day (PND) 35 to expose the newborn mice to arsenite during early developmental period. The effect of arsenite in the expressions of different components of NMDAR (NR1, NR2A, NR2B) and AMPAR (GluR1, GluR2, GluR3), including calcium/calmodulin-dependent protein kinase II (CaMKII) and phosphorylated-CaMKII (p-CaMKII), at PND 7, 14, 21 and 35 was estimated and analyzed from the hippocampus of mice. A significant inhibition in the protein and mRNA expressions of NR1, NR2A, NR2B and GluR1 was observed in mice exposed to 50 mg/L arsenite since PND 7. Down regulation of GluR2 and GluR3 both at mRNA and protein levels was observed in mice exposed to 50 mg/L arsenite till PND 14. Moreover, both CaMKII as well as p-CaMKII expressions were significantly limited since PND 7 in 50 mg/L arsenite exposed mice group. Findings form this study suggested that the previously reported impairment in learning and memorizing abilities in later stage due to early life arsenite exposure is associated with the alterations of NMDARs, AMPARs, CaMKII and p-CaMKII expressions.
Collapse
Affiliation(s)
- Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Zijiang Wang
- Liaoning Provincial Center for Disease Control and Prevention, China
| | - Yingjun Liao
- Department of Physiology, China Medical University
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, China
| |
Collapse
|
7
|
Deregulation of autophagy is involved in nephrotoxicity of arsenite and fluoride exposure during gestation to puberty in rat offspring. Arch Toxicol 2019; 94:749-760. [PMID: 31844926 DOI: 10.1007/s00204-019-02651-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/12/2019] [Indexed: 01/06/2023]
Abstract
Exposure to fluoride (F) or arsenite (As) through contaminated drinking water has been associated with chronic nephrotoxicity in humans. Autophagy is a regulated mechanism ubiquitous for the body in a toxic environment with F and As, but the underlying mechanisms of autophagy in the single or combined nephrotoxicity of F and As are unclear. In the present study, we established a rat model of prenatal and postnatal exposure to F and As with the aim of investigating the mechanism underlying nephrotoxicity of these pollutants in offspring. Rats were randomly divided into four groups that received NaF (100 mg/L), NaAsO2 (50 mg/L), or NaF (100 mg/L) with NaAsO2 (50 mg/L) in drinking water or clean water during pregnancy and lactation; after weaning, pups were exposed to the same treatment as their mothers until puberty. The results revealed that F and As exposure (alone or combined) led to significant increases of arsenic and fluoride levels in blood and bone, respectively. In this context, F and/or As disrupted histopathology and ultrastructure in the kidney, and also altered creatinine (CRE), urea nitrogen (BUN) and uric acid (UA) levels. Intriguingly, F and/or As uptake induced the formation of autophagosomes in kidney tissue and resulted in the upregulation of genes encoding autophagy-related proteins. Collectively, these results suggest that nephrotoxicity of F and As for offspring exposed to the pollutants from in utero to puberty is associated with deregulation of autophagy and there is an antagonism between F and As in the toxicity autophagy process.
Collapse
|
8
|
Masjosthusmann S, Siebert C, Hübenthal U, Bendt F, Baumann J, Fritsche E. Arsenite interrupts neurodevelopmental processes of human and rat neural progenitor cells: The role of reactive oxygen species and species-specific antioxidative defense. CHEMOSPHERE 2019; 235:447-456. [PMID: 31272005 DOI: 10.1016/j.chemosphere.2019.06.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 05/10/2023]
Abstract
Arsenic exposure disturbs brain development in humans. Although developmental neurotoxicity (DNT) of arsenic has been studied in vivo and in vitro, its mode-of-action (MoA) is not completely understood. Here, we characterize the adverse neurodevelopmental effects of sodium arsenite on developing human and rat neural progenitor cells (hNPC, rNPC). Moreover, we analyze the involvement of reactive oxygen species (ROS) and the role of the glutathione (GSH)-dependent antioxidative defense for arsenite-induced DNT in a species-specific manner. We determined IC50 values for sodium arsenite-dependent (0.1-10 μM) inhibition of hNPC and rNPC migration (6.0 μM; >10 μM), neuronal (2.7 μM; 4.4 μM) and oligodendrocyte (1.1 μM; 2.0 μM) differentiation. ROS involvement was studied by quantifying the expression of ROS-regulated genes, measuring glutathione (GSH) levels, inhibiting GSH synthesis and co-exposing cells to the antioxidant N-acetylcysteine. Arsenite reduces NPC migration, neurogenesis and oligodendrogenesis of differentiating hNPC and rNPC at sub-cytotoxic concentrations. Species-specific arsenite cytotoxicity and induction of antioxidative gene expression is inversely related to GSH levels with rNPC possessing >3-fold the amount of GSH than hNPC. Inhibition of GSH synthesis increased the sensitivity towards arsenite in rNPC > hNPC. N-acetylcysteine antagonized arsenite-mediated induction of HMOX1 expression as well as reduction of neuronal and oligodendrocyte differentiation in hNPC suggesting involvement of oxidative stress in arsenite DNT. hNPC are more sensitive towards arsenite-induced neurodevelopmental toxicity than rNPC, probably due to their lower antioxidative defense capacities. This species-specific MoA data might be useful for adverse outcome pathway generation and future integrated risk assessment strategies concerning DNT.
Collapse
Affiliation(s)
- Stefan Masjosthusmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Clara Siebert
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Ulrike Hübenthal
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Farina Bendt
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Jenny Baumann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany; Heinrich-Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
9
|
Heidari F, Bahari A, Amarlou A, Fakheri BA. Fumaric acids as a novel antagonist of TLR-4 pathway mitigates arsenic-exposed inflammation in human monocyte-derived dendritic cells. Immunopharmacol Immunotoxicol 2019; 41:513-520. [PMID: 31397191 DOI: 10.1080/08923973.2019.1645166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Exposure to environmentally relevant doses of arsenic has several harmful effects on the human immune system. In traditional Eastern medicines, nettle has been used as an anti-inflammatory agent to treat rheumatism and osteoarthritis. Fumaric acid (FA) as a major effective compound in nettle was chosen based on very accurate virtual screening to find antagonist for TLR4/MD structure. In this study, the in vitro therapeutic effects of FA on arsenic-exposed monocytes-derived dendritic cells (MDDCs) were evaluated. All the canonical functions of dendritic cells in bridging innate and adaptive immune system including phagocytosis and antigen-presenting capacity, and also cytokines secretion, were evaluated after exposure to arsenic/FA. FA profoundly over-expressed antigen-presenting capacity of MDDCs after exposure to arsenic through the upregulation of MHCιι. However, phagocytosis capacity of arsenic-exposed MDDCs is not compensated for, by treatment with FA. Arsenic up-regulates pro-inflammatory cytokines independents of TLR4 pathway. FA surprisingly mitigates the up-regulation of IL-1β and TNF-α but not TLR4 and NF-kB. Moreover, FA increases the viability of MDDCs even at a high dose of arsenic. Totally, FA reduced inflammatory factors induced by arsenic. This finding confirmed that nettle and other medicinal plants containing similar structures with FA could be further analyzed as valuable candidates for the reduction of drastic effects of arsenic in human immune systems.
Collapse
Affiliation(s)
- Forouzan Heidari
- Faculty of Agriculture, Department of Plant Breeding and Biotechnology, University of Zabol , Zabol , Iran
| | - Abbas Bahari
- Research Institute of Modern Biological Techniques, University of Zanjan , Zanjan , Iran
| | - Ali Amarlou
- Research Institute of Modern Biological Techniques, University of Zanjan , Zanjan , Iran
| | - Barat Ali Fakheri
- Faculty of Agriculture, Department of Plant Breeding and Biotechnology, University of Zabol , Zabol , Iran
| |
Collapse
|
10
|
Zhou Y, Fu Y, Bai Z, Li P, Zhao B, Han Y, Xu T, Zhang N, Lin L, Cheng J, Zhang J, Zhang J. Neural Differentiation of Mouse Neural Stem Cells as a Tool to Assess Developmental Neurotoxicity of Drinking Water in Taihu Lake. Biol Trace Elem Res 2019; 190:172-186. [PMID: 30465171 DOI: 10.1007/s12011-018-1533-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/24/2018] [Indexed: 10/27/2022]
Abstract
In this study, we used neural stem cells (NSCs) as a toxicology tool to assess the potential developmental neurotoxicity of drinking water from Taihu Lake. We found that the condensed drinking water could inhibit the proliferation and differentiation of NSCs, especially the tap water. Inductively coupled plasma mass spectrometry and high-performance liquid chromatography analysis showed that nickel was detected in the tap water with a high concentration. Our study revealed that nickel could inhibit NSCs proliferation and differentiation, which is induced not only by the intracellular reactive oxygen species generation, but also by the protein levels upregulation of p-c-Raf, p-MEK1/2 and p-Erk1/2 through the axon guidance signal pathways. These findings will provide a new way of research insight for investigation of nickel-induced neurotoxicity. Meanwhile, our test method confirmed the feasibility and reliability of stem cell assays for developmental neurotoxicity testing.
Collapse
Affiliation(s)
- Yang Zhou
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Yu Fu
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Zhendong Bai
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Peixin Li
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Bo Zhao
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Yuehua Han
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Ting Xu
- College of Environmental Science and Engineering, Tongji University, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai, 200092, People's Republic of China
| | - Ningyan Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Lin Lin
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Jian Cheng
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Jun Zhang
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| | - Jing Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China.
- Tongji Hospital, School of Life Science and Technology, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China.
| |
Collapse
|
11
|
Saritha S, Davuljigari CB, Kumar KP, Reddy GR. Effects of combined arsenic and lead exposure on the brain monoaminergic system and behavioral functions in rats: Reversal effect of MiADMSA. Toxicol Ind Health 2018; 35:89-108. [DOI: 10.1177/0748233718814990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we evaluated the therapeutic efficacy of monoisoamyldimercaptosuccinic acid (MiADMSA) against individual and combined effects of arsenic (As) and lead (Pb) on the monoaminergic system and behavioral functions in rats. Pregnant rats were exposed to sodium metaarsenite (50 ppm) and lead acetate (0.2%) individually and in combination (As = 25 ppm + Pb = 0.1%) via drinking water from gestation day (GD) 6 to postnatal day (PND) 21. MiADMSA (50 mg/kg body weight) was given orally through gavage for 3 consecutive days to pups from PND 18 to PND 20. The results showed increases in synaptosomal epinephrine, dopamine, and norepinephrine levels with individual metal exposures and decreases with combined exposure to As and Pb in the cortex, cerebellum, and hippocampus in PND 21, PND 28, and 3 months age-group rats. We found decreased activity of mitochondrial monoamine oxidase in the selected brain regions following individual and combined exposures to Pb and As. In addition, rats treated with Pb and As alone or in combination showed significant deficits in open-field behavior, grip strength, locomotor activity, and exploratory behavior at PND 28 and 3 months of age. However, MiADMSA administration showed reversal effects against the As- and/or Pb-induced impairments in the monoaminergic system as well as in behavioral functions of rats. Our data demonstrated that the mixture of Pb and As induced synergistic toxicity to developing brain leading to impairments in neurobehavioral functions and also suggest therapeutic efficacy of MiADMSA against Pb- and/or As-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- S Saritha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | | - K Praveen Kumar
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - G Rajrami Reddy
- Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
12
|
Effect of subchronic exposure to inorganic arsenic on the structure and function of the intestinal epithelium. Toxicol Lett 2018; 286:80-88. [DOI: 10.1016/j.toxlet.2018.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 02/08/2023]
|
13
|
Legradi JB, Di Paolo C, Kraak MHS, van der Geest HG, Schymanski EL, Williams AJ, Dingemans MML, Massei R, Brack W, Cousin X, Begout ML, van der Oost R, Carion A, Suarez-Ulloa V, Silvestre F, Escher BI, Engwall M, Nilén G, Keiter SH, Pollet D, Waldmann P, Kienle C, Werner I, Haigis AC, Knapen D, Vergauwen L, Spehr M, Schulz W, Busch W, Leuthold D, Scholz S, vom Berg CM, Basu N, Murphy CA, Lampert A, Kuckelkorn J, Grummt T, Hollert H. An ecotoxicological view on neurotoxicity assessment. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:46. [PMID: 30595996 PMCID: PMC6292971 DOI: 10.1186/s12302-018-0173-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/31/2018] [Indexed: 05/04/2023]
Abstract
The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. Despite an increasing number of reports of species showing altered behaviour, neurotoxicity assessment for species in the environment is not required and therefore mostly not performed. Considering the increasing numbers of environmental contaminants with potential neurotoxic potential, eco-neurotoxicity should be also considered in risk assessment. In order to do so novel test systems are needed that can cope with species differences within ecosystems. In the field, online-biomonitoring systems using behavioural information could be used to detect neurotoxic effects and effect-directed analyses could be applied to identify the neurotoxicants causing the effect. Additionally, toxic pressure calculations in combination with mixture modelling could use environmental chemical monitoring data to predict adverse effects and prioritize pollutants for laboratory testing. Cheminformatics based on computational toxicological data from in vitro and in vivo studies could help to identify potential neurotoxicants. An array of in vitro assays covering different modes of action could be applied to screen compounds for neurotoxicity. The selection of in vitro assays could be guided by AOPs relevant for eco-neurotoxicity. In order to be able to perform risk assessment for eco-neurotoxicity, methods need to focus on the most sensitive species in an ecosystem. A test battery using species from different trophic levels might be the best approach. To implement eco-neurotoxicity assessment into European risk assessment, cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants. In a second step, a small species test battery could be applied to assess the risks of ecosystems.
Collapse
Affiliation(s)
- J. B. Legradi
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Environment and Health, VU University, 1081 HV Amsterdam, The Netherlands
| | - C. Di Paolo
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - M. H. S. Kraak
- FAME-Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - H. G. van der Geest
- FAME-Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - E. L. Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
| | - A. J. Williams
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA
| | - M. M. L. Dingemans
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - R. Massei
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, Germany
| | - W. Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig, Germany
| | - X. Cousin
- Ifremer, UMR MARBEC, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, Route de Maguelone, 34250 Palavas-les-Flots, France
- INRA, UMR GABI, INRA, AgroParisTech, Domaine de Vilvert, Batiment 231, 78350 Jouy-en-Josas, France
| | - M.-L. Begout
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, 17137 L’Houmeau, France
| | - R. van der Oost
- Department of Technology, Research and Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, The Netherlands
| | - A. Carion
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - V. Suarez-Ulloa
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - F. Silvestre
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 5000 Namur, Belgium
| | - B. I. Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, 72074 Tübingen, Germany
| | - M. Engwall
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - G. Nilén
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - S. H. Keiter
- MTM Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - D. Pollet
- Faculty of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany
| | - P. Waldmann
- Faculty of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany
| | - C. Kienle
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - I. Werner
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - A.-C. Haigis
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - D. Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - L. Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - M. Spehr
- Institute for Biology II, Department of Chemosensation, RWTH Aachen University, Aachen, Germany
| | - W. Schulz
- Zweckverband Landeswasserversorgung, Langenau, Germany
| | - W. Busch
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - D. Leuthold
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - S. Scholz
- Department of Bioanalytical Ecotoxicology, UFZ–Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - C. M. vom Berg
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, 8600 Switzerland
| | - N. Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - C. A. Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, USA
| | - A. Lampert
- Institute of Physiology (Neurophysiology), Aachen, Germany
| | - J. Kuckelkorn
- Section Toxicology of Drinking Water and Swimming Pool Water, Federal Environment Agency (UBA), Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - T. Grummt
- Section Toxicology of Drinking Water and Swimming Pool Water, Federal Environment Agency (UBA), Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - H. Hollert
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt–Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
14
|
Attoff K, Gliga A, Lundqvist J, Norinder U, Forsby A. Whole genome microarray analysis of neural progenitor C17.2 cells during differentiation and validation of 30 neural mRNA biomarkers for estimation of developmental neurotoxicity. PLoS One 2017; 12:e0190066. [PMID: 29261810 PMCID: PMC5738075 DOI: 10.1371/journal.pone.0190066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023] Open
Abstract
Despite its high relevance, developmental neurotoxicity (DNT) is one of the least studied forms of toxicity. Current guidelines for DNT testing are based on in vivo testing and they require extensive resources. Transcriptomic approaches using relevant in vitro models have been suggested as a useful tool for identifying possible DNT-generating compounds. In this study, we performed whole genome microarray analysis on the murine progenitor cell line C17.2 following 5 and 10 days of differentiation. We identified 30 genes that are strongly associated with neural differentiation. The C17.2 cell line can be differentiated into a co-culture of both neurons and neuroglial cells, giving a more relevant picture of the brain than using neuronal cells alone. Among the most highly upregulated genes were genes involved in neurogenesis (CHRDL1), axonal guidance (BMP4), neuronal connectivity (PLXDC2), axonogenesis (RTN4R) and astrocyte differentiation (S100B). The 30 biomarkers were further validated by exposure to non-cytotoxic concentrations of two DNT-inducing compounds (valproic acid and methylmercury) and one neurotoxic chemical possessing a possible DNT activity (acrylamide). Twenty-eight of the 30 biomarkers were altered by at least one of the neurotoxic substances, proving the importance of these biomarkers during differentiation. These results suggest that gene expression profiling using a predefined set of biomarkers could be used as a sensitive tool for initial DNT screening of chemicals. Using a predefined set of mRNA biomarkers, instead of the whole genome, makes this model affordable and high-throughput. The use of such models could help speed up the initial screening of substances, possibly indicating alerts that need to be further studied in more sophisticated models.
Collapse
Affiliation(s)
- Kristina Attoff
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
- * E-mail:
| | - Anda Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Lundqvist
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden
| | - Ulf Norinder
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden
| | - Anna Forsby
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden
| |
Collapse
|
15
|
Zhang X, Su R, Cheng Z, Zhu W, Li Y, Wang Y, Du J, Cai Y, Luo Q, Shen J, Yu L. A mechanistic study of Toxoplasma gondii ROP18 inhibiting differentiation of C17.2 neural stem cells. Parasit Vectors 2017; 10:585. [PMID: 29169404 PMCID: PMC5701453 DOI: 10.1186/s13071-017-2529-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
Background Congenital infection of Toxoplasma gondii is an important factor causing birth defects. The neural stem cells (NSCs) are found to be one of the target cells for the parasite during development of the brain. As a key virulence factor of the parasite that hijacks host cellular functions, ROP18 has been demonstrated to mediate the inhibition of host innate and adaptive immune responses through specific binding different host immunity related molecules. However, its pathogenic actions in NSCs remain elusive. Results In the present study, ROP18 recombinant adenovirus (Ad-ROP18) was constructed and used to infect C17.2 NSCs. After 3d- or 5d–culture in differentiation medium, the differentiation of C17.2 NSCs and the activity of the Wnt/β-catenin signaling pathway were detected. The results showed that the protein level of βIII-tubulin, a marker of neurons, in the Ad-ROP18-transfected C17.2 NSCs was significantly decreased, indicating that the differentiation of C17.2 NSCs was inhibited by the ROP18. The β-catenin level in the Ad-ROP18-transfected C17.2 NSCs was found to be lower than that in the Ad group. Also, neurogenin1 (Ngn1) and neurogenin2 (Ngn2) were downregulated significantly (P < 0.05) in the Ad-ROP18-transfected C17.2 NSCs compared to the Ad group. Accordingly, the TOP flash/FOP flash dual-luciferase report system showed that the transfection of Ad-ROP18 decreased the Wnt/β-catenin pathway activity in the C17.2 NSCs. Conclusions The inhibition effect of the ROP18 from T. gondii (TgROP18) on the neuronal differentiation of C17.2 NSCs was at least partly mediated through inhibiting the activity of the Wnt/β-catenin signaling pathway, eventually resulting in the downregulation of Ngn1 and Ngn2. The findings help to better understand potential mechanisms of brain pathology induced by TgROP18.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Microbiology and Parasitology; Anhui Provincial Laboratory of Microbiology and Parasitology; Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Rui Su
- Department of Microbiology and Parasitology; Anhui Provincial Laboratory of Microbiology and Parasitology; Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Zhengyang Cheng
- Department of Microbiology and Parasitology; Anhui Provincial Laboratory of Microbiology and Parasitology; Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wanbo Zhu
- Department of Microbiology and Parasitology; Anhui Provincial Laboratory of Microbiology and Parasitology; Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yelin Li
- Department of Microbiology and Parasitology; Anhui Provincial Laboratory of Microbiology and Parasitology; Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yongzhong Wang
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei, 230039, People's Republic of China
| | - Jian Du
- Department of Biochemistry, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yihong Cai
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China
| | - Qingli Luo
- Department of Microbiology and Parasitology; Anhui Provincial Laboratory of Microbiology and Parasitology; Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jilong Shen
- Department of Microbiology and Parasitology; Anhui Provincial Laboratory of Microbiology and Parasitology; Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Li Yu
- Department of Microbiology and Parasitology; Anhui Provincial Laboratory of Microbiology and Parasitology; Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
16
|
Madhyastha H, Madhyastha R, Nakajima Y, Maruyama M. Deciphering the molecular events during arsenic induced transcription signal cascade activation in cellular milieu. Biometals 2017; 31:7-15. [PMID: 29143154 DOI: 10.1007/s10534-017-0065-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
Anthropogenic sources of arsenic poses and creates unintentional toxico-pathological concerns to humans in many parts of the world. The understanding of toxicity of this metalloid, which shares properties of both metal and non-metal is principally structured on speciation types and holy grail of toxicity prevention. Visible symptoms of arsenic toxicity include nausea, vomiting, diarrhea and abdominal pain. In this review, we focused on the dermal cell stress caused by trivalent arsenic trioxide and pentavalent arsanilic acid. Deciphering the molecular events involved during arsenic toxicity and signaling cascade interaction is key in arsenicosis prevention. FoxO1 and FoxO2 transcription factors, members of the Forkhead/Fox family, play important roles in this aspect. Like Foxo family proteins, ATM/CHK signaling junction also plays important role in DNA nuclear factor guided cellular development. This review will summarize and discuss current knowledge about the interplay of these pathways in arsenic induced dermal pathogenesis.
Collapse
Affiliation(s)
- Harishkumar Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 8891692, Japan
| | - Radha Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 8891692, Japan
| | - Yuichi Nakajima
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 8891692, Japan
| | - Masugi Maruyama
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 8891692, Japan.
| |
Collapse
|
17
|
Domínguez-González MR, Chiocchetti GM, Herbello-Hermelo P, Vélez D, Devesa V, Bermejo-Barrera P. Evaluation of Iodine Bioavailability in Seaweed Using in Vitro Methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8435-8442. [PMID: 28853868 DOI: 10.1021/acs.jafc.7b02151] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to the high levels of iodine present in seaweed, the ingestion of a large amount of this type of food can produce excessive intake of iodine. However, the food after ingestion undergoes different chemistry and physical processes that can modify the amount of iodine that reaches the systemic circulation (bioavailability). Studies on the bioavailability of iodine from food are scarce and indicate that the bioavailable amount is generally lower than ingested. Iodine in vitro bioavailability estimation from different commercialized seaweed has been studied using different in vitro approaches (solubility, dialyzability, and transport and uptake by intestinal cells). Results indicate that iodine is available after gastrointestinal digestion for absorption (bioaccessibility: 49-82%), kombu being the seaweed with the highest bioaccessibility. The incorporation of dialysis cell cultures to elucidate bioavailability modifies the estimation of the amount of iodine that may reach the systemic circulation (dialysis, 5-28%; cell culture, ≤3%). The paper discusses advantages and drawbacks of these methodologies for iodine bioavailability in seaweed.
Collapse
Affiliation(s)
- M Raquel Domínguez-González
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Gabriela M Chiocchetti
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Paloma Herbello-Hermelo
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Pilar Bermejo-Barrera
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| |
Collapse
|
18
|
Zhang G, Zeng X, Zhang R, Liu J, Zhang W, Zhao Y, Zhang X, Wu Z, Tan Y, Wu Y, Du B. Dioscin suppresses hepatocellular carcinoma tumor growth by inducing apoptosis and regulation of TP53, BAX, BCL2 and cleaved CASP3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1329-1336. [PMID: 27765352 DOI: 10.1016/j.phymed.2016.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/28/2016] [Accepted: 07/03/2016] [Indexed: 05/16/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most commonly diagnosed malignancy of the liver, occurs frequently in the setting of chronic liver injury. Although multiple therapeutic approaches are available, the prognosis of patients with HCC remains poor. Dioscin is a natural steroid saponin that presents in various plants. The anti-cancer and anti-fibrotic effects have been extensively reported. However, the effect of dioscin on HCC remains unclear. We aimed to investigate the anti-HCC properties of dioscin in vitro and in vivo. METHODS MTT (3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-tetrazolium bromide) assay was used to analyze the growth inhibition activity of Dioscin in human cell lines, Bel-7402, HepG2, Lovo, and EAhy926. Antitumor activity through induction of apoptosis was evaluated by flow cytometry using Annexin-V and propidium iodide (PI) staining, laser scanning confocal microscopy (LSCM) analysis with Hochest33342 and PI labeling, and DNA fragmentation analysis. The expression of apoptosis-related proteins tumor protein p53 (TP53), BCL2-associated X protein (BAX), B-Cell CLL/Lymphoma 2 (BCL2) and Caspase 3 (CASP3) was measured by Western blot. Nude mice bearing Bel-7402 were administered intraperitoneally at different doses of dioscin and 5-FU (5-Fluorouracil) treatment was used as a control. Tumor volume and tumor weight of each mouse were then measured. RESULTS We demonstrated that Dioscin inhibited proliferation of HCC cell lines in a dose-dependent manner. Dioscin also significantly induced morphological changes during death by apoptosis and increased DNA damage of Bel-7402 cells. Moreover, we demonstrated that Dioscin displayed anticancer activity via up-regulating expression of TP53, BAX and CASP3 protein, as well as down-regulating BCL2 in Bel-7402 cells. Notably, the in vivo anticancer activity of Dioscin was further assessed and achieved greater inhibition efficiency at the concentration increased to 24mg/kg/day than 5-FU at dose of 10mg/kg/day in nude mice bearing Bel-7402 cells. CONCLUSIONS Dioscin inhibited tumor growth via inducing apoptosis, which was accompanied by altered expression of apoptotic pathway proteins, such as TP53, BAX, BCL2 and CASP3. Our findings indicate that further evaluation of dioscin as a novel therapeutic approach for HCC is warranted.
Collapse
Affiliation(s)
- Guangxian Zhang
- School of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiancheng Zeng
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Guangzhou 510317, China
| | - Ren Zhang
- School of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Juan Liu
- School of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Weici Zhang
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA 95616, USA
| | - Yujun Zhao
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Guangzhou 510317, China
| | - Xiaoyuan Zhang
- School of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhixue Wu
- School of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuhui Tan
- School of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yingya Wu
- School of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Biaoyan Du
- School of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
19
|
Fan XY, Chen XY, Liu YJ, Zhong HM, Jiang FL, Liu Y. Oxidative stress-mediated intrinsic apoptosis in human promyelocytic leukemia HL-60 cells induced by organic arsenicals. Sci Rep 2016; 6:29865. [PMID: 27432798 PMCID: PMC4949440 DOI: 10.1038/srep29865] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/27/2016] [Indexed: 01/09/2023] Open
Abstract
Arsenic trioxide has shown the excellent therapeutic efficiency for acute promyelocytic leukemia. Nowadays, more and more research focuses on the design of the arsenic drugs, especially organic arsenicals, and on the mechanism of the inducing cell death. Here we have synthesized some organic arsenicals with Schiff base structure, which showed a better antitumor activity for three different kinds of cancer cell lines, namely HL-60, SGC 7901 and MCF-7. Compound 2a (2-(((4-(oxoarsanyl)phenyl)imino)methyl)phenol) and 2b (2-methoxy-4-(((4-(oxoarsanyl)phenyl)imino)methyl)phenol) were chosen for further mechanism study due to their best inhibitory activities for HL-60 cells, of which the half inhibitory concentration (IC50) were 0.77 μM and 0.51 μM, respectively. It was illustrated that 2a or 2b primarily induced the elevation of reactive oxygen species, decrease of glutathione level, collapse of mitochondrial membrane potential, release of cytochrome c, activation of Caspase-3 and apoptosis, whereas all of the phenomena can be eliminated by the addition of antioxidants. Therefore, we concluded that compound 2a and 2b can induce the oxidative stress-mediated intrinsic apoptosis in HL-60 cells. Both the simplicity of structure with Schiff base group and the better anticancer efficiency demonstrate that organic arsenicals are worthy of further exploration as a class of potent antitumor drugs.
Collapse
Affiliation(s)
- Xiao-Yang Fan
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xin-You Chen
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, P. R. China
| | - Yu-Jiao Liu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hui-Min Zhong
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, P. R. China
| |
Collapse
|
20
|
Gan X, Zhang X, Cheng Z, Chen L, Ding X, Du J, Cai Y, Luo Q, Shen J, Wang Y, Yu L. Toxoplasma gondii inhibits differentiation of C17.2 neural stem cells through Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2016; 473:187-193. [PMID: 27012204 DOI: 10.1016/j.bbrc.2016.03.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022]
Abstract
Toxoplasma gondii is a major cause of congenital brain disease. T. gondii infection in the developing fetus frequently results in major neural developmental damage; however, the effects of the parasite infection on the neural stem cells, the key players in fetal brain development, still remain elusive. This study is aiming to explore the role of T. gondii infection on differentiation of neural stem cells (NSCs) and elucidate the underlying molecular mechanisms that regulate the inhibited differentiation of NSCs induced by the infection. Using a differentiation medium, i.e. , DMEM: F12 (1:1 mixture) supplemented with 2% N2, C17.2 neural stem cells (NSCs) were able to differentiate to neurons and astrocytes, respectively evidenced by immunofluorescence staining of differentiation markers including βIII-tubulin and glial fibrillary acidic protein (GFAP). After 5-day culture in the differentiation medium, the excreted-secreted antigens of T. gondii (Tg-ESAs) significantly down-regulated the protein levels of βIII-tubulin and GFAP in C17.2 NSCs in a dose-dependent manner. The protein level of β-catenin in the nucleus of C17.2 cells treated with both wnt3a (a key activator for Wnt/β-catenin signaling pathway) and Tg-ESAs was significantly lower than that in the cells treated with only wnt3a, but significantly higher than that in the cells treated with only Tg-ESAs. In conclusion, the ESAs of T. gondii RH blocked the differentiation of C17.2 NCSs and downregulated the expression of β-catenin, an essential component of Wnt/β-catenin signaling pathway. The findings suggest a new mechanism underlying the neuropathogenesis induced by T. gondii infection, i.e. inhibition of the differentiation of NSCs via blockade of Wnt/β-catenin signaling pathway, such as downregulation of β-catenin expression by the parasite ESAs.
Collapse
Affiliation(s)
- Xiaofeng Gan
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China
| | - Xian Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China
| | - Zhengyang Cheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China
| | - Lingzhi Chen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China
| | - Xiaojuan Ding
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China
| | - Jian Du
- Department of Biochemistry, Anhui Medical University, Hefei 230032, PR China
| | - Yihong Cai
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, PR China
| | - Qingli Luo
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China
| | - Jilong Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, PR China.
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
21
|
Singh S, Srivastava A, Kumar V, Pandey A, Kumar D, Rajpurohit CS, Khanna VK, Yadav S, Pant AB. Stem Cells in Neurotoxicology/Developmental Neurotoxicology: Current Scenario and Future Prospects. Mol Neurobiol 2015; 53:6938-6949. [DOI: 10.1007/s12035-015-9615-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/03/2015] [Indexed: 12/26/2022]
|
22
|
Prakash C, Soni M, Kumar V. Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: A review. J Appl Toxicol 2015; 36:179-88. [DOI: 10.1002/jat.3256] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/01/2015] [Accepted: 09/28/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Chandra Prakash
- Department of Biochemistry; Maharshi Dayanand University; Rohtak 124001 Haryana India
| | - Manisha Soni
- Department of Biochemistry; Maharshi Dayanand University; Rohtak 124001 Haryana India
| | - Vijay Kumar
- Department of Biochemistry; Maharshi Dayanand University; Rohtak 124001 Haryana India
| |
Collapse
|
23
|
von Stackelberg K, Guzy E, Chu T, Henn BC. Exposure to Mixtures of Metals and Neurodevelopmental Outcomes: A Multidisciplinary Review Using an Adverse Outcome Pathway Framework. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2015; 35:971-1016. [PMID: 26096925 PMCID: PMC5108657 DOI: 10.1111/risa.12425] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Current risk assessment guidance calls for an individual chemical-by-chemical approach that fails to capture potential interactive effects of exposure to environmental mixtures and genetic variability. We conducted a review of the literature on relationships between prenatal and early life exposure to mixtures of lead (Pb), arsenic (As), cadmium (Cd), and manganese (Mn) with neurodevelopmental outcomes. We then used an adverse outcome pathway (AOP) framework to integrate lines of evidence from multiple disciplines based on evolving guidance developed by the Organization for Economic Cooperation and Development (OECD). Toxicological evidence suggests a greater than additive effect of combined exposures to As-Pb-Cd and to Mn with any other metal, and several epidemiologic studies also suggest synergistic effects from binary combinations of Pb-As, Pb-Cd, and Pb-Mn. The exposure levels reported in these epidemiologic studies largely fall at the high-end (e.g., 95th percentile) of biomonitoring data from the National Health and Nutrition Examination Survey (NHANES), suggesting a small but significant potential for high-end exposures. This review integrates multiple data sources using an AOP framework and provides an initial application of the OECD guidance in the context of potential neurodevelopmental toxicity of several metals, recognizing the evolving nature of regulatory interpretation and acceptance.
Collapse
Affiliation(s)
- Katherine von Stackelberg
- Harvard Center for Risk Analysis, Boston, MA 02215;
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215
| | - Elizabeth Guzy
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215
| | - Tian Chu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215
| | - Birgit Claus Henn
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215
- Now at the Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118
| |
Collapse
|
24
|
Zhou J, Gan X, Wang Y, Zhang X, Ding X, Chen L, Du J, Luo Q, Wang T, Shen J, Yu L. Toxoplasma gondii prevalent in China induce weaker apoptosis of neural stem cells C17.2 via endoplasmic reticulum stress (ERS) signaling pathways. Parasit Vectors 2015; 8:73. [PMID: 25649541 PMCID: PMC4322664 DOI: 10.1186/s13071-015-0670-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 01/18/2015] [Indexed: 11/10/2022] Open
Abstract
Background Toxoplasma gondii, an obligate intracellular pathogen, has a strong affinity for the nervous system. TgCtwh3, a representative Chinese 1 Toxoplasma strain prevalent in China, has the polymorphic features of the effectors ROP16I/III with type I and GRA15II with type II Toxoplasma strains. The interaction of this atypical strain with host cells remains extremely elusive. Methods Using a transwell system, neural stem cells C17.2 were co-cultured with the tachyzoites of TgCtwh3 or standard type I RH strain. The apoptosis levels of C17.2 cells and the expression levels of related proteins in the endoplasmic reticulum stress (ERS)-mediated pathway were detected by flow cytometry and Western blotting. Results The apoptosis level of C17.2 cells co-cultured with TgCtwh3 had a significant increase compared to the negative control group; however, the apoptosis level in the TgCtwh3 group was significantly lower than that in the RH co-culture group. Western blotting analyses reveal that, after the C17.2 cells were co-cultured with TgCtwh3 and RH tachyzoites, the expression levels of caspase-12, CHOP and p-JNK in the cells increased significantly when compared to the control groups. After the pretreatment of Z-ATAD-FMK, an inhibitor of caspase-12, the apoptosis level of the C17.2 cells co-cultured with TgCtwh3 or RH tachyzoites had an apparent decline, and correspondingly, the expression levels of those related proteins were notably decreased. Conclusions Our findings suggest that TgCtwh3 may induce the apoptosis of the C17.2 cells by up-regulation of caspase-12, CHOP, and p-JNK, which are associated with ERS signaling pathways. This work contributes to better understanding the possible mechanism of brain pathology induced by T. gondii Chinese 1 isolates prevalent in China, and also reveals the potential value of ERS inhibitors to treat such related diseases in the future.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, 230032, PR China. .,Clinical Laboratory, People's Hospital of Huaibei, Huaibei, 235000, PR China.
| | - Xiaofeng Gan
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, 230032, PR China.
| | - Yongzhong Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China. .,School of Life Sciences, Anhui University, Hefei, 230039, PR China.
| | - Xian Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, 230032, PR China.
| | - Xiaojuan Ding
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, 230032, PR China.
| | - Lingzhi Chen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, 230032, PR China.
| | - Jian Du
- Department of Biochemistry, Anhui Medical University, Hefei, 230032, PR China.
| | - Qingli Luo
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, 230032, PR China.
| | - Teng Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, 230032, PR China. .,HTS & Compound Management, HD Biosciences Corporation, Shanghai, 201201, PR China.
| | - Jilong Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, 230032, PR China.
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
25
|
Wang Y, Zhao F, Liao Y, Jin Y, Sun G. Arsenic exposure and glutamate-induced gliotransmitter release from astrocytes. Neural Regen Res 2014; 7:2439-45. [PMID: 25337094 PMCID: PMC4200718 DOI: 10.3969/j.issn.1673-5374.2012.31.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/28/2012] [Indexed: 01/29/2023] Open
Abstract
The present study used cultures of primary astrocytes, isolated from neonatal rats, to verify the hypothesis that arsenite-induced neurotoxicity can influence neuronal function by altering glutamate-induced gliotransmitter release. Primary astrocytes were exposed to 0, 2.5, 5, 10, 20 or 30 µM arsenite for 24 hours. Cell viability and morphological observations revealed that 5 µM arsenic exposure could induce cytotoxicity. Cells were then cultured in the presence of 0, 2.5, 5, or 10 µM arsenite for 24 hours and stimulated with 25 µM glutamate for 10 minutes. Results showed that [Ca2+]i in astrocytes exposed to 5 and 10 µM arsenite was significantly increased and levels of D-serine, γ-aminobutyric acid and glycine in cultures exposed to 2.5–10 µM arsenite were also increased. However, glutamate levels in the media were significantly increased only after treatment with 10 µM arsenite. In conclusion, our findings suggest that arsenic exposure may affect glutamate-induced gliotransmitter release from astrocytes and further disturb neuronal function.
Collapse
Affiliation(s)
- Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110001, Liaoning Province, China ; Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yingjun Liao
- Department of Physiology, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Guifan Sun
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
26
|
Early life arsenic exposure and brain dopaminergic alterations in rats. Int J Dev Neurosci 2014; 38:91-104. [DOI: 10.1016/j.ijdevneu.2014.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/09/2014] [Accepted: 08/23/2014] [Indexed: 11/21/2022] Open
|
27
|
Human Stem/Progenitor Cell-Based Assays for Neurodevelopmental Toxicity Testing. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Nahar MN, Inaoka T, Fujimura M, Watanabe C, Shimizu H, Tasmin S, Tasnim S, Sultana N. Arsenic contamination in groundwater and its effects on adolescent intelligence and social competence in Bangladesh with special reference to daily drinking/cooking water intake. Environ Health Prev Med 2013; 19:151-8. [PMID: 24254803 DOI: 10.1007/s12199-013-0369-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The present study aims to investigate the relationship between arsenic (As) exposure and intelligence quotient (IQ) or social competence (SC) of Bangladeshi adolescents (aged 14 or 15 years) in Sonargaon thana. METHODS Information about socioeconomic status (SES) was collected as confounding factors. To evaluate the relative contribution of As sources to total As intake, the As concentrations in urine and drinking/cooking water, and the amount of water added in cooking, were assessed on site using a food frequency questionnaire (FFQ). RESULTS The results confirmed that As exposure was essential to lower adolescent IQ or SC because they were negatively associated with As exposure after controlling for SES (particularly household income). Except for cooking water, the amount of drinking water varied with season and appeared to be the major As source because the As concentration in water was generally correlated with the As concentration in urine, and they were related to lower IQ or SC (even after controlling for SES). The FFQ survey revealed that rice was consumed the most frequently (more than once daily), followed by daal (bean) soup and nonleafy vegetables, but fish, meat, and eggs were consumed approximately once a week. Water intake per meal from cooked rice was estimated to be 616 mL/person, followed by bean soup (258 mL/person) and cooked vegetables (82 mL/person). CONCLUSIONS Our results suggest that water used for cooking might be an important source of As, and the cooking process can affect the amount of As in cooked food.
Collapse
Affiliation(s)
- Mst Nasrin Nahar
- The United Graduate School of Agricultural Sciences, Kagoshima University Allied to Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga, 840-8502, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Musatti A, Devesa V, Calatayud M, Vélez D, Manzoni M, Rollini M. Glutathione-enriched baker's yeast: production, bioaccessibility and intestinal transport assays. J Appl Microbiol 2013; 116:304-13. [DOI: 10.1111/jam.12363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/09/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Affiliation(s)
- A. Musatti
- Department of Food, Environmental and Nutritional Sciences (DeFENS); Università degli Studi di Milano; Milano Italy
| | - V. Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC); Paterna Spain
| | - M. Calatayud
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC); Paterna Spain
| | - D. Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC); Paterna Spain
| | - M. Manzoni
- Department of Food, Environmental and Nutritional Sciences (DeFENS); Università degli Studi di Milano; Milano Italy
| | - M. Rollini
- Department of Food, Environmental and Nutritional Sciences (DeFENS); Università degli Studi di Milano; Milano Italy
| |
Collapse
|
30
|
Ivanov VN, Wen G, Hei TK. Sodium arsenite exposure inhibits AKT and Stat3 activation, suppresses self-renewal and induces apoptotic death of embryonic stem cells. Apoptosis 2013; 18:188-200. [PMID: 23143138 DOI: 10.1007/s10495-012-0779-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sodium arsenite exposure at concentration >5 μM may induce embryotoxic and teratogenic effects in animal models. Long-term health effects of sodium arsenite from contaminated drinking water may result in different forms of cancer and neurological abnormalities. As cancer development processes seem to be originated in stem cells, we have chosen to examine the effects of sodium arsenite on signaling pathways and the corresponding transcription factors that regulate cell viability and self-renewal in mouse embryonic stem cells (ESC) and mouse neural stem/precursor cells. We demonstrated that the crucial signaling pathway, which was substantially suppressed by sodium arsenite exposure (4 μM) in ESC, was the PI3K-AKT pathway linked with numerous downstream targets that control cell survival and apoptosis. Furthermore, the whole core transcription factor circuitry that control self-renewal of mouse ESC (Stat3-P-Tyr705, Oct4, Sox2 and Nanog) was strongly down-regulated by sodium arsenite (4 μM) exposure. This was followed by G2/M arrest and induction of the mitochondrial apoptotic pathway that might be suppressed by caspase-9 and caspase-3 inhibitors. In contrast to mouse ESC with very low endogenous IL6, mouse neural stem/precursor cells (C17.2 clone immortalized by v-myc) with high endogenous production of IL6 exhibited a strong resistance to cytotoxic effects of sodium arsenite that could be decreased by inhibitory anti-IL6 antibody or Stat3 inhibition. In summary, our data demonstrated suppression of self-renewal and induction of apoptosis in mouse ESC by sodium arsenite exposure, which was further accelerated due to simultaneous inhibition of the protective PI3K-AKT and Stat3-dependent pathways.
Collapse
Affiliation(s)
- Vladimir N Ivanov
- Department of Radiation Oncology, Center for Radiological Research, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
31
|
Nabavi SM, Habtemariam S, Nabavi SF, Moghaddam AH, Latifi AM. Prophylactic effects of methyl-3-O-methyl gallate against sodium fluoride-induced oxidative stress in erythrocytes in vivo. ACTA ACUST UNITED AC 2013; 65:868-73. [PMID: 23647680 DOI: 10.1111/jphp.12048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/29/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The purpose of this study was to demonstrate the effect of methyl-3-O-methyl gallate (M3OMG), a rare polyphenolic natural product with a potent in-vitro antioxidant effect, against sodium fluoride (NaF)-induced oxidative stress in rat erythrocytes in vivo. METHODS Male Wistar rats were treated daily with either M3OMG (10 and 20 mg/kg) obtained through synthesis, vitamin C (10 mg/kg) or vehicle intraperitoneally for 7 days. Oxidative stress was then induced by exposing animals to NaF (600 ppm) through drinking water for 7 days. At the end of intoxication period, rats were killed and erythrocytes isolated. The activity of antioxidant enzymes (catalase and superoxide dismutase) and levels of reduced glutathione and thiobarbituric acid reactive substances were measured in erythrocyte haemolysates. RESULTS NaF intoxication resulted in a 1.9-fold increase in erythrocyte lipid peroxidation associated with significant (P < 0.001) depletion of reduced glutathione level. Superoxide dismutase and catalase activity was suppressed by NaF treatment by 3.069 and 2.3 fold when compared with untreated control groups. Pretreatment of rats with M3OMG or vitamin C afforded protection against NaF-induced oxidative stress as assessed through the measured oxidant/antioxidant markers. CONCLUSION This finding provided in-vivo evidence for the therapeutic potential of M3OMG in combating fluoride-induced oxidative damage in cellular systems.
Collapse
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
32
|
Wang Y, Zhao F, Liao Y, Jin Y, Sun G. Effects of arsenite in astrocytes on neuronal signaling transduction. Toxicology 2013; 303:43-53. [DOI: 10.1016/j.tox.2012.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/17/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
|
33
|
Appearance of neural stem cells around the damaged area following traumatic brain injury in aged rats. J Neural Transm (Vienna) 2012; 120:361-74. [PMID: 22955958 DOI: 10.1007/s00702-012-0895-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/12/2012] [Indexed: 10/27/2022]
Abstract
We have previously reported free radical production after traumatic brain injury (TBI), which induces neural stem cell (NSC) degeneration and death. However, the effects of aging on NSC proliferation around the damaged area following TBI have not been investigated. Therefore, in this study, we used 10-week (young group) and 24-month-old (aged group) rat TBI models to investigate the effects of aging on NSC proliferation around damaged tissue using immunohistochemical and ex vivo techniques. Young and aged rats received TBI. At 1, 3 and 7 days after TBI, immunohistochemical and lipid peroxidation studies were performed. Immunohistochemistry revealed that the number of nestin-positive cells around the damaged area after TBI in the aged group decreased significantly when compared with those in the young group (P < 0.01). However, the number of 8-hydroxy-2'-deoxyguanosine-, 4-hydroxy-2-nonenal- and single-stranded DNA (ssDNA)-positive cells and the level of peroxidation around the damaged area after TBI significantly increased in the aged group, compared with those in the young group (P < 0.01). Furthermore, almost all ssDNA-positive cells in young and aged groups co-localized with NeuN and nestin staining. Ex vivo studies revealed that neurospheres, which differentiated into neurons and glia in culture, could only be isolated from injured brain tissue in young and aged groups at 3 days after TBI. These results indicate that, although there were fewer NSCs that have the potential to differentiate into neurons and glia, these NSCs escaped free radical-induced degeneration around the damaged area after TBI in the aged rat brain.
Collapse
|
34
|
Inflammatory responses induced by fluoride and arsenic at toxic concentration in rabbit aorta. Arch Toxicol 2012; 86:849-56. [PMID: 22422340 DOI: 10.1007/s00204-012-0803-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/12/2012] [Indexed: 12/17/2022]
Abstract
Epidemiological and experimental studies have demonstrated the atherogenic effects of environmental toxicant arsenic and fluoride. Inflammatory mechanism plays an important role in the pathogenesis of atherosclerosis. The aim of the present study is to determine the effect of chronic exposure to arsenic and fluoride alone or combined on inflammatory response in rabbit aorta. We analyzed the expression of genes involved in leukocyte adhesion [P-selectin (P-sel) and vascular cell adhesion molecule-1(VCAM-1)], recruitment and transendothelial migration of leukocyte [interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1)] and those involved in pro-inflammatory cytokines [interleukin-6 (IL-6)]. We found that fluoride and arsenic alone or combined increased the expression of VCAM-1, P-sel, MCP-1, IL-8, and IL-6 at the RNA and protein levels. The gene expressions of inflammatory-related molecules were attenuated when co-exposure to the two toxicants compared with just one of them. We also examined the lipid profile of rabbits exposed to fluoride and (or) arsenic. The results showed that fluoride slightly increased the serum lipids but arsenic decreased serum triglyceride. We showed that inflammatory responses but not lipid metabolic disorder may play a crucial role in the mechanism of the cardiovascular toxicity of arsenic and fluoride.
Collapse
|
35
|
Baek DH, Kim TG, Lim HK, Kang JW, Seong SK, Choi SE, Lim SY, Park SH, Nam BH, Kim EH, Kim MS, Park KL. Embryotoxicity assessment of developmental neurotoxicants using a neuronal endpoint in the embryonic stem cell test. J Appl Toxicol 2011; 32:617-26. [PMID: 22131109 DOI: 10.1002/jat.1747] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 07/27/2011] [Accepted: 08/31/2011] [Indexed: 11/05/2022]
Abstract
The embryonic stem cell test (EST) is a validated in vitro embryotoxicity test; however, as the inhibition of cardiac differentiation alone is used as a differentiation endpoint in the EST, it may not be a useful test to screen embryotoxic chemicals that affect the differentiation of noncardiac tissues. Previously, methylmercury (MeHg), cadmium and arsenic compounds, which are heavy metals that induce developmental neurotoxicity in vivo, were misclassified as nonembryotoxic with the EST. The aim of this study was to improve the EST to correctly screen such developmental neurotoxicants. We developed a neuronal endpoint (Tuj-1 ID₅₀) using flow cytometry analysis of Tuj-1-positive cells to screen developmental neurotoxicants (MeHg, valproic acid, sodium arsenate and sodium arsenite) correctly using an adherent monoculture differentiation method. Using Tuj-1 ID₅₀ in the EST instead of cardiac ID₅₀, all of the tested chemicals were classified as embryotoxic, while the negative controls were correctly classified as nonembryotoxic. To support the validity of Tuj-1 ID₅₀) , we compared the results from two experimenters who independently tested MeHg using our modified EST. An additional neuronal endpoint (MAP2 ID₅₀), obtained by analyzing the relative quantity of MAP2 mRNA, was used to classify the same chemicals. There were no significant differences in the three endpoint values of the two experimenters or in the classification results, except for isoniazid. In conclusion, our results indicate that Tuj-1 ID₅₀ can be used as a surrogate endpoint of the traditional EST to screen developmental neurotoxicants correctly and it can also be applied to other chemicals.
Collapse
Affiliation(s)
- Dae Hyun Baek
- Center for Drug Development Assistance, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration, Cheongwon-gun, Chungcheongbuk-do 363-951, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|