1
|
Ai Z, Li D, Lan S, Zhang C. Nanomaterials exert biological effects by influencing the ubiquitin-proteasome system. Eur J Med Chem 2025; 282:116974. [PMID: 39556894 DOI: 10.1016/j.ejmech.2024.116974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
The ubiquitin-proteasome system (UPS) is an important type of protein post-translational modification that affects the quantity and quality of various proteins and influences cellular processes such as the cell cycle, transcription, oxidative stress, and autophagy. Nanomaterials (NMs), which exhibit excellent physicochemical properties, can directly interact with the UPS and act as molecular-targeted drugs to induce changes in biological processes. This review provides an overview of the influence of NMs on the UPS of misfolded proteins and key proteins, which are related to cancer, neurodegenerative diseases and oxidative stress. This review also summarizes the role of modification processes involved in ubiquitination the biological effects of NMs and the mechanism of such effects of NMs through regulation of the UPS. This review deepens our understanding of the influence of NMs on the protein degradation process and provides new potential therapeutic targets for disease.
Collapse
Affiliation(s)
- Zhen Ai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Dan Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Shuquan Lan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
2
|
Moyano P, Sola E, Naval MV, Guerra-Menéndez L, Fernández MDLC, del Pino J. Neurodegenerative Proteinopathies Induced by Environmental Pollutants: Heat Shock Proteins and Proteasome as Promising Therapeutic Tools. Pharmaceutics 2023; 15:2048. [PMID: 37631262 PMCID: PMC10458078 DOI: 10.3390/pharmaceutics15082048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Environmental pollutants' (EPs) amount and diversity have increased in recent years due to anthropogenic activity. Several neurodegenerative diseases (NDs) are theorized to be related to EPs, as their incidence has increased in a similar way to human EPs exposure and they reproduce the main ND hallmarks. EPs induce several neurotoxic effects, including accumulation and gradual deposition of misfolded toxic proteins, producing neuronal malfunction and cell death. Cells possess different mechanisms to eliminate these toxic proteins, including heat shock proteins (HSPs) and the proteasome system. The accumulation and deleterious effects of toxic proteins are induced through HSPs and disruption of proteasome proteins' homeostatic function by exposure to EPs. A therapeutic approach has been proposed to reduce accumulation of toxic proteins through treatment with recombinant HSPs/proteasome or the use of compounds that increase their expression or activity. Our aim is to review the current literature on NDs related to EP exposure and their relationship with the disruption of the proteasome system and HSPs, as well as to discuss the toxic effects of dysfunction of HSPs and proteasome and the contradictory effects described in the literature. Lastly, we cover the therapeutic use of developed drugs and recombinant proteasome/HSPs to eliminate toxic proteins and prevent/treat EP-induced neurodegeneration.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Emma Sola
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Maria De la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Javier del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
3
|
Moyano P, Vicente-Zurdo D, Blázquez-Barbadillo C, Menéndez JC, González JF, Rosales-Conrado N, Pino JD. Neuroprotective mechanisms of multitarget 7-aminophenanthridin-6(5H)-one derivatives against metal-induced amyloid proteins generation and aggregation. Food Chem Toxicol 2022; 167:113264. [PMID: 35781037 DOI: 10.1016/j.fct.2022.113264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Brain's metals accumulation is associated with toxic proteins, like amyloid-proteins (Aβ), formation, accumulation, and aggregation, leading to neurodegeneration. Metals downregulate the correct folding, disaggregation, or degradation mechanisms of toxic proteins, as heat shock proteins (HSPs) and proteasome. The 7-amino-phenanthridin-6(5H)-one derivatives (APH) showed neuroprotective effects against metal-induced cell death through their antioxidant effect, independently of their chelating activity. However, additional neuroprotective mechanisms seem to be involved. We tested the most promising APH compounds (APH1-5, 10-100 μM) chemical ability to prevent metal-induced Aβ proteins aggregation; the APH1-5 effect on HSP70 and proteasome 20S (P20S) expression, the metals effect on Aβ formation and the involvement of HSP70 and P20S in the process, and the APH1-5 neuroprotective effects against Aβ proteins (1 μM) and metals in SN56 cells. Our results show that APH1-5 compounds chemically avoid metal-induced Aβ proteins aggregation and induce HSP70 and P20S expression. Additionally, iron and cadmium induced Aβ proteins formation through downregulation of HSP70 and P20S. Finally, APH1-5 compounds protected against Aβ proteins-induced neuronal cell death, reversing partially or completely this effect. These data may help to provide a new therapeutic approach against the neurotoxic effect induced by metals and other environmental pollutants, especially when mediated by toxic proteins.
Collapse
Affiliation(s)
- Paula Moyano
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | - David Vicente-Zurdo
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain
| | - Cristina Blázquez-Barbadillo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Juan F González
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| | - Noelia Rosales-Conrado
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain.
| | - Javier Del Pino
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Chargui A, Belaid A, Ndiaye PD, Imbert V, Samson M, Guigonis JM, Tauc M, Peyron JF, Poujeol P, Brest P, Hofman P, Mograbi B. The Carcinogen Cadmium Activates Lysine 63 (K63)-Linked Ubiquitin-Dependent Signaling and Inhibits Selective Autophagy. Cancers (Basel) 2021; 13:2490. [PMID: 34065348 PMCID: PMC8161291 DOI: 10.3390/cancers13102490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 01/18/2023] Open
Abstract
Signaling, proliferation, and inflammation are dependent on K63-linked ubiquitination-conjugation of a chain of ubiquitin molecules linked via lysine 63. However, very little information is currently available about how K63-linked ubiquitination is subverted in cancer. The present study provides, for the first time, evidence that cadmium (Cd), a widespread environmental carcinogen, is a potent activator of K63-linked ubiquitination, independently of oxidative damage, activation of ubiquitin ligase, or proteasome impairment. We show that Cd induces the formation of protein aggregates that sequester and inactivate cylindromatosis (CYLD) and selective autophagy, two tumor suppressors that deubiquitinate and degrade K63-ubiquitinated proteins, respectively. The aggregates are constituted of substrates of selective autophagy-SQSTM1, K63-ubiquitinated proteins, and mitochondria. These protein aggregates also cluster double-membrane remnants, which suggests an impairment in autophagosome maturation. However, failure to eliminate these selective cargos is not due to alterations in the general autophagy process, as degradation of long-lived proteins occurs normally. We propose that the simultaneous disruption of CYLD and selective autophagy by Cd feeds a vicious cycle that further amplifies K63-linked ubiquitination and downstream activation of the NF-κB pathway, processes that support cancer progression. These novel findings link together impairment of selective autophagy, K63-linked ubiquitination, and carcinogenesis.
Collapse
Affiliation(s)
- Abderrahman Chargui
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
- Higher School of Agriculture of Kef, University Jendouba, Le Kef and Laboratory of Histology, Embryology and Cell Biology, Faculty of Medicine Tunis, 7110 Le Kef, Tunisia
| | - Amine Belaid
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| | - Papa Diogop Ndiaye
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| | - Véronique Imbert
- Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Institut National de la Santé et de la Recherche Médicale (INSERM), F-06204 Nice, France; (V.I.); (J.-F.P.)
| | - Michel Samson
- Université Côte d’Azur, Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l’Energie Atomique et aux énergies alternatives (CEA), F-06107 Nice, France; (M.S.); (J.-M.G.)
| | - Jean-Marie Guigonis
- Université Côte d’Azur, Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l’Energie Atomique et aux énergies alternatives (CEA), F-06107 Nice, France; (M.S.); (J.-M.G.)
| | - Michel Tauc
- Université Côte d’Azur, Laboratoire de Physiomédecine Moléculaire, LP2M, Labex ICST, Centre National de la Recherche Scientifique (CNRS), F-06107 Nice, France; (M.T.); (P.P.)
| | - Jean-François Peyron
- Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Institut National de la Santé et de la Recherche Médicale (INSERM), F-06204 Nice, France; (V.I.); (J.-F.P.)
| | - Philippe Poujeol
- Université Côte d’Azur, Laboratoire de Physiomédecine Moléculaire, LP2M, Labex ICST, Centre National de la Recherche Scientifique (CNRS), F-06107 Nice, France; (M.T.); (P.P.)
| | - Patrick Brest
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| | - Paul Hofman
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
- Université Côte d’Azur, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Centre Hospitalier Universitaire (CHU) de Nice, F-06001 Nice, France
| | - Baharia Mograbi
- Université Côte d’Azur, Institute of Research on Cancer and Aging in Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire (FHU) OncoAge, Centre Antoine Lacassagne, F-06189 Nice, France; (A.C.); (A.B.); (P.D.N.); (P.B.); (P.H.)
| |
Collapse
|
5
|
Devi S, Kim JJ, Singh AP, Kumar S, Dubey AK, Singh SK, Singh RS, Kumar V. Proteotoxicity: A Fatal Consequence of Environmental Pollutants-Induced Impairments in Protein Clearance Machinery. J Pers Med 2021; 11:69. [PMID: 33503824 PMCID: PMC7912547 DOI: 10.3390/jpm11020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
A tightly regulated protein quality control (PQC) system maintains a healthy balance between correctly folded and misfolded protein species. This PQC system work with the help of a complex network comprised of molecular chaperones and proteostasis. Any intruder, especially environmental pollutants, disrupt the PQC network and lead to PQCs disruption, thus generating damaged and infectious protein. These misfolded/unfolded proteins are linked to several diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and cataracts. Numerous studies on proteins misfolding and disruption of PQCs by environmental pollutants highlight the necessity of detailed knowledge. This review represents the PQCs network and environmental pollutants' impact on the PQC network, especially through the protein clearance system.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Anand Prakash Singh
- Division of Cardiovascular Disease, The University of Alabama at Birmingham (UAB), 1720 2nd Ave South, Birmingham, AL 35294-1913, USA;
| | - Surendra Kumar
- Cytogenetics Lab, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | | | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Room 4D40, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| |
Collapse
|
6
|
Moyano P, García JM, García J, Anadon MJ, Naval MV, Frejo MT, Sola E, Pelayo A, Pino JD. Manganese increases Aβ and Tau protein levels through proteasome 20S and heat shock proteins 90 and 70 alteration, leading to SN56 cholinergic cell death following single and repeated treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110975. [PMID: 32678756 DOI: 10.1016/j.ecoenv.2020.110975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Manganese (Mn) produces cholinergic neuronal loss in basal forebrain (BF) region that was related to cognitive dysfunction induced after single and repeated Mn treatment. All processes that generate cholinergic neuronal loss in BF remain to be understood. Mn exposure may produce the reduction of BF cholinergic neurons by increasing amyloid beta (Aβ) and phosphorylated Tau (pTau) protein levels, altering heat shock proteins' (HSPs) expression, disrupting proteasome P20S activity and generating oxidative stress. These mechanisms, described to be altered by Mn in regions different than BF, could lead to the memory and learning process alteration produced after Mn exposure. The research performed shows that single and repeated Mn treatment of SN56 cholinergic neurons from BF induces P20S inhibition, increases Aβ and pTau protein levels, produces HSP90 and HSP70 proteins expression alteration, and oxidative stress generation, being the last two effects mediated by NRF2 pathway alteration. The increment of Aβ and pTau protein levels was mediated by HSPs and proteasome dysfunction. All these mechanisms mediated the cell decline observed after Mn treatment. Our results are relevant because they may assist to reveal the processes leading to the neurotoxicity and cognitive alterations observed after Mn exposure.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacolgy, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Botany, Pharmacy School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Emma Sola
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
7
|
Hernández RB, Carrascal M, Abian J, Michalke B, Farina M, Gonzalez YR, Iyirhiaro GO, Moteshareie H, Burnside D, Golshani A, Suñol C. Manganese-induced neurotoxicity in cerebellar granule neurons due to perturbation of cell network pathways with potential implications for neurodegenerative disorders. Metallomics 2020; 12:1656-1678. [PMID: 33206086 DOI: 10.1039/d0mt00085j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Manganese (Mn) is essential for living organisms, playing an important role in nervous system function. Nevertheless, chronic and/or acute exposure to this metal, especially during early life stages, can lead to neurotoxicity and dementia by unclear mechanisms. Thus, based on previous works of our group with yeast and zebrafish, we hypothesized that the mechanisms mediating manganese-induced neurotoxicity can be associated with the alteration of protein metabolism. These mechanisms may also depend on the chemical speciation of manganese. Therefore, the current study aimed at investigating the mechanisms mediating the toxic effects of manganese in primary cultures of cerebellar granule neurons (CGNs). By exposing cultured CGNs to different chemical species of manganese ([[2-[(dithiocarboxy)amino]ethyl]carbamodithioato]](2-)-kS,kS']manganese, named maneb (MB), and [[1,2-ethanediylbis[carbamodithioato]](2-)]manganese mixture with [[1,2-ethanediylbis[carbamodithioato]](2-)]zinc, named mancozeb (MZ), and manganese chloride (MnCl2)), and using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, we observed that both MB and MZ induced similar cytotoxicity (LC50∼ 7-9 μM), which was higher than that of MnCl2 (LC50∼ 27 μM). Subsequently, we applied systems biology approaches, including metallomics, proteomics, gene expression and bioinformatics, and revealed that independent of chemical speciation, for non-cytotoxic concentrations (0.3-3 μM), Mn-induced neurotoxicity in CGNs is associated with metal dyshomeostasis and impaired protein metabolism. In this way, we verified that MB induced more post-translational alterations than MnCl2, which can be a plausible explanation for cytotoxic differences between both chemical species. The metabolism of proteins is one of the most energy consuming cellular processes and its impairment appears to be a key event of some cellular stress processes reported separately in other studies such as cell cycle arrest, energy impairment, cell signaling, excitotoxicity, immune response, potential protein accumulation and apoptosis. Interestingly, we verified that Mn-induced neurotoxicity shares pathways associated with the development of Alzheimer's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, and Parkinson's disease. This has been observed in baker's yeast and zebrafish suggesting that the mode of action of Mn may be evolutionarily conserved.
Collapse
Affiliation(s)
- Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology - LABITA, Department of Exact and Earth Sciences, Federal University of São Paulo, Rua Prof. Artur Riedel, 275, CEP 09972-270, Diadema, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kaur A, Jaiswal N, Raj R, Kumar B, Kapur S, Kumar D, Gahlay GK, Mithu VS. Characterization of Cu2+ and Zn2+ binding sites in SUMO1 and its impact on protein stability. Int J Biol Macromol 2020; 151:204-211. [DOI: 10.1016/j.ijbiomac.2020.02.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
|
9
|
Harischandra DS, Rokad D, Ghaisas S, Verma S, Robertson A, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Enhanced differentiation of human dopaminergic neuronal cell model for preclinical translational research in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165533. [PMID: 31442530 PMCID: PMC7010568 DOI: 10.1016/j.bbadis.2019.165533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022]
Abstract
Human-derived neuronal cell lines are progressively being utilized in understanding neurobiology and preclinical translational research as they are biologically more relevant than rodent-derived cells lines. The Lund human mesencephalic (LUHMES) cell line comprises human neuronal cells that can be differentiated to post-mitotic neurons and is increasingly being used as an in vitro model for various neurodegenerative diseases. A previously published 2-step differentiation procedure leads to the generation of post-mitotic neurons within 5-days, but only a small proportion (10%) of the total cell population tests positive for tyrosine hydroxylase (TH). Here we report on a novel differentiation protocol that we optimized by using a cocktail of neurotrophic factors, pleiotropic cytokines, and antioxidants to effectively generate proportionately more dopaminergic neurons within the same time period. Visualization and quantification of TH-positive cells revealed that under our new protocol, 25% of the total cell population expressed markers of dopaminergic neurons with the TH-positive neuron count peaking on day 5. These neurons showed spontaneous electrical activity and responded to known Parkinsonian toxins as expected by showing decreased cell viability and dopamine uptake and a concomitant increase in apoptotic cell death. Together, our results outline an improved method for generating a higher proportion of dopaminergic neurons, thus making these cells an ideal neuronal culture model of Parkinson's disease (PD) for translational research.
Collapse
Affiliation(s)
- Dilshan S Harischandra
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Dharmin Rokad
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Shivani Ghaisas
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Saurabh Verma
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Alan Robertson
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Huajun Jin
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
10
|
Rokad D, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Exosomes as Mediators of Chemical-Induced Toxicity. Curr Environ Health Rep 2020; 6:73-79. [PMID: 31102182 DOI: 10.1007/s40572-019-00233-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This review provides information regarding how exosomes may contribute to environmental chemical-induced pathogenesis of chronic diseases. In connecting exosome biology to environmental toxicology and disease pathogenesis, we address vital questions regarding what constitutes exosomal cargo, how toxicants influence exosomal cargo, and how environmental stimuli influence exosomal physiological and pathological functions. RECENT FINDINGS Recent studies in the field demonstrate that exosomal cargo changes depending on external stimuli, which has consequences for the microenvironment of recipient cells. Based on recent findings, it is evident that exosomal cargo comprises various biological molecules including proteins, nucleic acids, and lipid molecules. Misfolded proteins and miRNA are examples of exosomal cargo molecules that can be altered by toxicants, ultimately changing the microenvironment of recipient cells in ways that are conducive to pathological processes. It will be crucial to map out the key signaling pathways that toxicants target to modulate exosomal cargo and their release.
Collapse
Affiliation(s)
- Dharmin Rokad
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, 1222 Veterinary Medicine Building, Ames, IA, 50011, USA
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, 1222 Veterinary Medicine Building, Ames, IA, 50011, USA
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, 1222 Veterinary Medicine Building, Ames, IA, 50011, USA
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, 1222 Veterinary Medicine Building, Ames, IA, 50011, USA
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, 1222 Veterinary Medicine Building, Ames, IA, 50011, USA.
| |
Collapse
|
11
|
Luo J, Padhi P, Jin H, Anantharam V, Zenitsky G, Wang Q, Willette AA, Kanthasamy A, Kanthasamy AG. Utilization of the CRISPR-Cas9 Gene Editing System to Dissect Neuroinflammatory and Neuropharmacological Mechanisms in Parkinson's Disease. J Neuroimmune Pharmacol 2019; 14:595-607. [PMID: 30879240 PMCID: PMC6746615 DOI: 10.1007/s11481-019-09844-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
Chronic and debilitating neurodegenerative diseases, such as Parkinson's disease (PD), impose an immense medical, emotional, and economic burden on patients and society. Due to a complex interaction between genetic and environmental risk factors, the etiology of PD remains elusive. However, the cumulative evidence emerging from clinical and experimental research over the last several decades has identified mitochondrial dysfunction, oxidative stress, neuroinflammation, and dysregulated protein degradation as the main drivers of PD neurodegeneration. The genome-editing system CRISPR (clustered regularly interspaced short palindromic repeats) has recently transformed the field of biotechnology and biomedical discovery and is poised to accelerate neurodegenerative disease research. It has been leveraged to generate PD animal models, such as Parkin, DJ-1, and PINK1 triple knockout miniature pigs. CRISPR has also allowed the deeper understanding of various PD gene interactions, as well as the identification of novel apoptotic pathways associated with neurodegenerative processes in PD. Furthermore, its application has been used to dissect neuroinflammatory pathways involved in PD pathogenesis, such as the PKCδ signaling pathway, as well as the roles of novel compensatory or protective pathways, such as Prokineticin-2 signaling. This review aims to highlight the historical milestones in the evolution of this technology and attempts to illustrate its transformative potential in unraveling disease mechanisms as well as in the development of innovative treatment strategies for PD. Graphical Abstract.
Collapse
Affiliation(s)
- Jie Luo
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Piyush Padhi
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Huajun Jin
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Vellareddy Anantharam
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Gary Zenitsky
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Qian Wang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, USA
| | - Auriel A Willette
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
12
|
Harischandra DS, Ghaisas S, Zenitsky G, Jin H, Kanthasamy A, Anantharam V, Kanthasamy AG. Manganese-Induced Neurotoxicity: New Insights Into the Triad of Protein Misfolding, Mitochondrial Impairment, and Neuroinflammation. Front Neurosci 2019; 13:654. [PMID: 31293375 PMCID: PMC6606738 DOI: 10.3389/fnins.2019.00654] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Occupational or environmental exposure to manganese (Mn) can lead to the development of "Manganism," a neurological condition showing certain motor symptoms similar to Parkinson's disease (PD). Like PD, Mn toxicity is seen in the central nervous system mainly affecting nigrostriatal neuronal circuitry and subsequent behavioral and motor impairments. Since the first report of Mn-induced toxicity in 1837, various experimental and epidemiological studies have been conducted to understand this disorder. While early investigations focused on the impact of high concentrations of Mn on the mitochondria and subsequent oxidative stress, current studies have attempted to elucidate the cellular and molecular pathways involved in Mn toxicity. In fact, recent reports suggest the involvement of Mn in the misfolding of proteins such as α-synuclein and amyloid, thus providing credence to the theory that environmental exposure to toxicants can either initiate or propagate neurodegenerative processes by interfering with disease-specific proteins. Besides manganism and PD, Mn has also been implicated in other neurological diseases such as Huntington's and prion diseases. While many reviews have focused on Mn homeostasis, the aim of this review is to concisely synthesize what we know about its effect primarily on the nervous system with respect to its role in protein misfolding, mitochondrial dysfunction, and consequently, neuroinflammation and neurodegeneration. Based on the current evidence, we propose a 'Mn Mechanistic Neurotoxic Triad' comprising (1) mitochondrial dysfunction and oxidative stress, (2) protein trafficking and misfolding, and (3) neuroinflammation.
Collapse
Affiliation(s)
- Dilshan S Harischandra
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Shivani Ghaisas
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Gary Zenitsky
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Huajun Jin
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Laboratory, Iowa State University, Ames, IA, United States
| |
Collapse
|
13
|
Harischandra DS, Ghaisas S, Rokad D, Kanthasamy AG. Exosomes in Toxicology: Relevance to Chemical Exposure and Pathogenesis of Environmentally Linked Diseases. Toxicol Sci 2018; 158:3-13. [PMID: 28505322 DOI: 10.1093/toxsci/kfx074] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic exposure to environmental toxins has been known to initiate or aggravate various neurological disorders, carcinomas and other adverse health effects. Uptake by naïve cells of pathogenic factors such as danger-associated molecules, mRNAs, miRNAs or aggregated proteins leads to disruption in cellular homeostasis further resulting in inflammation and disease propagation. Although early research tended to focus solely on exosomal removal of unwanted cellular contents, more recent reports indicate that these nano-vesicles play an active role in intercellular signaling. Not only is the exosomal cargo cell type-specific, but it also differs between healthy and dying cells. Moreover, following exosome uptake by naïve cells, the contents from these vesicles can alter the fate of recipient cells. Since exosomes can traverse long distances, they can influence distantly located cells and tissues. This review briefly explores the role played by environmental toxins in stimulating exosome release in the context of progressive neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, as well as certain cancers such as lung, liver, ovarian, and tracheal carcinomas.
Collapse
Affiliation(s)
- Dilshan S Harischandra
- Parkinson Disorders Research Program, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Shivani Ghaisas
- Parkinson Disorders Research Program, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Dharmin Rokad
- Parkinson Disorders Research Program, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
14
|
Sarkar S, Malovic E, Harischandra DS, Ngwa HA, Ghosh A, Hogan C, Rokad D, Zenitsky G, Jin H, Anantharam V, Kanthasamy AG, Kanthasamy A. Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. Neurotoxicology 2017; 64:204-218. [PMID: 28539244 DOI: 10.1016/j.neuro.2017.05.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 12/21/2022]
Abstract
Chronic manganese (Mn) exposure induces neurotoxicity, which is characterized by Parkinsonian symptoms resulting from impairment in the extrapyramidal motor system of the basal ganglia. Mitochondrial dysfunction and oxidative stress are considered key pathophysiological features of Mn neurotoxicity. Recent evidence suggests astrocytes as a major target of Mn neurotoxicity since Mn accumulates predominantly in astrocytes. However, the primary mechanisms underlying Mn-induced astroglial dysfunction and its role in metal neurotoxicity are not completely understood. In this study, we examined the interrelationship between mitochondrial dysfunction and astrocytic inflammation in Mn neurotoxicity. We first evaluated whether Mn exposure alters mitochondrial bioenergetics in cultured astrocytes. Metabolic activity assessed by MTS assay revealed an IC50 of 92.68μM Mn at 24h in primary mouse astrocytes (PMAs) and 50.46μM in the human astrocytic U373 cell line. Mn treatment reduced mitochondrial mass, indicative of impaired mitochondrial function and biogenesis, which was substantiated by the significant reduction in mRNA of mitofusin-2, a protein that serves as a ubiquitination target for mitophagy. Furthermore, Mn increased mitochondrial circularity indicating augmented mitochondrial fission. Seahorse analysis of bioenergetics status in Mn-treated astrocytes revealed that Mn significantly impaired the basal mitochondrial oxygen consumption rate as well as the ATP-linked respiration rate. The effect of Mn on mitochondrial energy deficits was further supported by a reduction in ATP production. Mn-exposed primary astrocytes also exhibited a severely quiescent energy phenotype, which was substantiated by the inability of oligomycin to increase the extracellular acidification rate. Since astrocytes regulate immune functions in the CNS, we also evaluated whether Mn modulates astrocytic inflammation. Mn exposure in astrocytes not only stimulated the release of proinflammatory cytokines, but also exacerbated the inflammatory response induced by aggregated α-synuclein. The novel mitochondria-targeted antioxidant, mito-apocynin, significantly attenuated Mn-induced inflammatory gene expression, further supporting the role of mitochondria dysfunction and oxidative stress in mediating astrogliosis. Lastly, intranasal delivery of Mn in vivo elevated GFAP and depressed TH levels in the olfactory bulbs, clearly supporting the involvement of astrocytes in Mn-induced dopaminergic neurotoxicity. Collectively, our study demonstrates that Mn drives proinflammatory events in astrocytes by impairing mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Emir Malovic
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Dilshan S Harischandra
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Hilary A Ngwa
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Anamitra Ghosh
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Colleen Hogan
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Dharmin Rokad
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Gary Zenitsky
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Huajun Jin
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Vellareddy Anantharam
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Arthi Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
15
|
Yen CF, Harischandra DS, Kanthasamy A, Sivasankar S. Copper-induced structural conversion templates prion protein oligomerization and neurotoxicity. SCIENCE ADVANCES 2016; 2:e1600014. [PMID: 27419232 PMCID: PMC4942324 DOI: 10.1126/sciadv.1600014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/27/2016] [Indexed: 05/26/2023]
Abstract
Prion protein (PrP) misfolding and oligomerization are key pathogenic events in prion disease. Copper exposure has been linked to prion pathogenesis; however, its mechanistic basis is unknown. We resolve, with single-molecule precision, the molecular mechanism of Cu(2+)-induced misfolding of PrP under physiological conditions. We also demonstrate that misfolded PrPs serve as seeds for templated formation of aggregates, which mediate inflammation and degeneration of neuronal tissue. Using a single-molecule fluorescence assay, we demonstrate that Cu(2+) induces PrP monomers to misfold before oligomer assembly; the disordered amino-terminal region mediates this structural change. Single-molecule force spectroscopy measurements show that the misfolded monomers have a 900-fold higher binding affinity compared to the native isoform, which promotes their oligomerization. Real-time quaking-induced conversion demonstrates that misfolded PrPs serve as seeds that template amyloid formation. Finally, organotypic slice cultures show that misfolded PrPs mediate inflammation and degeneration of neuronal tissue. Our study establishes a direct link, at the molecular level, between copper exposure and PrP neurotoxicity.
Collapse
Affiliation(s)
- Chi-Fu Yen
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
| | - Dilshan S. Harischandra
- Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Anumantha Kanthasamy
- Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sanjeevi Sivasankar
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
16
|
Adam P, Křížková S, Heger Z, Babula P, Pekařík V, Vaculovičoá M, Gomes CM, Kizek R, Adam V. Metallothioneins in Prion- and Amyloid-Related Diseases. J Alzheimers Dis 2016; 51:637-56. [DOI: 10.3233/jad-150984] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pavlína Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Soňa Křížková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice, Brno, Czech Republic
| | - Vladimír Pekařík
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Markéta Vaculovičoá
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Cláudio M. Gomes
- Faculdade de Ciências Universidade de Lisboa, Biosystems and Integrative Sciences Institute and Department of Chemistry and Biochemistry, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - René Kizek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka, Brno, Czech Republic
| |
Collapse
|
17
|
Ghaisas S, Maher J, Kanthasamy A. Gut microbiome in health and disease: Linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther 2015; 158:52-62. [PMID: 26627987 DOI: 10.1016/j.pharmthera.2015.11.012] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gut microbiome comprises the collective genome of the trillions of microorganisms residing in our gastrointestinal ecosystem. The interaction between the host and its gut microbiome is a complex relationship whose manipulation could prove critical to preventing or treating not only various gut disorders, like irritable bowel syndrome (IBS) and ulcerative colitis (UC), but also central nervous system (CNS) disorders, such as Alzheimer's and Parkinson's diseases. The purpose of this review is to summarize what is known about the gut microbiome, how it is connected to the development of disease and to identify the bacterial and biochemical targets that should be the focus of future research. Understanding the mechanisms behind the activity and proliferation of the gut microbiome will provide us new insights that may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Shivani Ghaisas
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Joshua Maher
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anumantha Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
18
|
Harischandra DS, Kondru N, Martin DP, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG. Role of proteolytic activation of protein kinase Cδ in the pathogenesis of prion disease. Prion 2015; 8:143-53. [PMID: 24576946 DOI: 10.4161/pri.28369] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prion diseases are infectious and inevitably fatal neurodegenerative diseases characterized by prion replication, widespread protein aggregation and spongiform degeneration of major brain regions controlling motor function. Oxidative stress has been implicated in prion-related neuronal degeneration, but the molecular mechanisms underlying prion-induced oxidative damage are not well understood. In this study, we evaluated the role of oxidative stress-sensitive, pro-apoptotic protein kinase Cδ (PKCδ) in prion-induced neuronal cell death using cerebellar organotypic slice cultures (COSC) and mouse models of prion diseases. We found a significant upregulation of PKCδ in RML scrapie-infected COSC, as evidenced by increased levels of both PKCδ protein and its mRNA. We also found an enhanced regulatory phosphorylation of PKCδ at its two regulatory sites, Thr505 in the activation loop and Tyr311 at the caspase-3 cleavage site. The prion infection also induced proteolytic activation of PKCδ in our COSC model. Immunohistochemical analysis of scrapie-infected COSC revealed loss of PKCδ positive Purkinje cells and enhanced astrocyte proliferation. Further examination of PKCδ signaling in the RML scrapie adopted in vivo mouse model showed increased proteolytic cleavage and Tyr 311 phosphorylation of the kinase. Notably, we observed a delayed onset of scrapie-induced motor symptoms in PKCδ knockout (PKCδ(-/-)) mice as compared with wild-type (PKCδ(+/+)) mice, further substantiating the role of PKCδ in prion disease. Collectively, these data suggest that PKCδ signaling likely plays a role in the neurodegenerative processes associated with prion diseases.
Collapse
|
19
|
Harischandra DS, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. α-Synuclein protects against manganese neurotoxic insult during the early stages of exposure in a dopaminergic cell model of Parkinson's disease. Toxicol Sci 2014; 143:454-68. [PMID: 25416158 DOI: 10.1093/toxsci/kfu247] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pathological role of α-synuclein (α-Syn) aggregation in neurodegeneration is well recognized, but the physiological function of normal α-Syn remains unknown. As α-Syn protein contains multiple divalent metal binding sites, herein we conducted a comprehensive characterization of the role of α-Syn in manganese-induced dopaminergic neurotoxicity. We established transgenic N27 dopaminergic neuronal cells by stably expressing human wild-type α-Syn at normal physiological levels. α-Syn-expressing dopaminergic cells significantly attenuated Mn-induced neurotoxicity for 24-h exposures relative to vector control cells. To further explore cellular mechanisms, we studied the mitochondria-dependent apoptotic pathway. Analysis of a key mitochondrial apoptotic initiator, cytochrome c, revealed that α-Syn significantly reduces the Mn-induced cytochrome c release into cytosol. The downstream caspase cascade, involving caspase-9 and caspase-3 activation, during Mn exposure was also largely attenuated in Mn-treated α-Syn cells in a time-dependent manner. α-Syn cells also showed a dramatic reduction in the Mn-induced proteolytic activation of the pro-apoptotic kinase PKCδ. The generation of Mn-induced reactive oxygen species (ROS) did not differ between α-Syn and vector control cells, indicating that α-Syn exerts its protective effect independent of altering ROS generation. Inductively coupled plasma-mass spectrometry (ICP-MS) revealed no significant differences in intracellular Mn levels between treated vector and α-Syn cells. Notably, the expression of wild-type α-Syn in primary mesencephalic cells also rescued cells from Mn-induced neurotoxicity. However, prolonged exposure to Mn promoted protein aggregation in α-Syn-expressing cells. Collectively, these results demonstrate that wild-type α-Syn exhibits neuroprotective effects against Mn-induced neurotoxicity during the early stages of exposure in a dopaminergic neuronal model of PD.
Collapse
Affiliation(s)
- Dilshan S Harischandra
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
20
|
Götze S, Bose A, Sokolova IM, Abele D, Saborowski R. The proteasomes of two marine decapod crustaceans, European lobster (Homarus gammarus) and Edible crab (Cancer pagurus), are differently impaired by heavy metals. Comp Biochem Physiol C Toxicol Pharmacol 2014; 162:62-9. [PMID: 24721378 DOI: 10.1016/j.cbpc.2014.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/23/2014] [Accepted: 03/31/2014] [Indexed: 01/19/2023]
Abstract
The intracellular ubiquitin-proteasome system is a key regulator of cellular processes involved in the controlled degradation of short-living or malfunctioning proteins. Certain diseases and cellular dysfunctions are known to arise from the disruption of proteasome pathways. Trace metals are recognized stressors of the proteasome system in vertebrates and plants, but their effects on the proteasome of invertebrates are not well understood. Since marine invertebrates, and particularly benthic crustaceans, can be exposed to high metal levels, we studied the effects of in vitro exposure to Hg(2+), Zn(2+), Cu(2+), and Cd(2+) on the activities of the proteasome from the claw muscles of lobsters (Homarus gammarus) and crabs (Cancer pagurus). The chymotrypsin like activity of the proteasome of these two species showed different sensitivity to metals. In lobsters the activity was significantly inhibited by all metals to a similar extent. In crabs the activities were severely suppressed only by Hg(2+) and Cu(2+) while Zn(2+) had only a moderate effect and Cd(2+) caused almost no inhibition of the crab proteasome. This indicates that the proteasomes of both species possess structural characteristics that determine different susceptibility to metals. Consequently, the proteasome-mediated protein degradation in crab C. pagurus may be less affected by metal pollution than that of the lobster H. gammarus.
Collapse
Affiliation(s)
- Sandra Götze
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Functional Ecology, 27570 Bremerhaven, Germany
| | - Aneesh Bose
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Functional Ecology, 27570 Bremerhaven, Germany
| | - Inna M Sokolova
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Doris Abele
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Functional Ecology, 27570 Bremerhaven, Germany
| | - Reinhard Saborowski
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Functional Ecology, 27570 Bremerhaven, Germany.
| |
Collapse
|
21
|
Ivanina AV, Hawkins C, Sokolova IM. Immunomodulation by the interactive effects of cadmium and hypercapnia in marine bivalves Crassostrea virginica and Mercenaria mercenaria. FISH & SHELLFISH IMMUNOLOGY 2014; 37:299-312. [PMID: 24594010 DOI: 10.1016/j.fsi.2014.02.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
Estuarine organisms are exposed to multiple stressors including large fluctuations in partial pressure of carbon dioxide (P2CO) and concentrations of trace metals such as cadmium (Cd) that can affect their survival and fitness. Ocean acidification due to the increasing atmospheric (P2CO) leads to a decrease in pH and shifts in the carbonate chemistry of seawater which can change bioavailability and toxicity of metals. We studied the interactive effects of (P2CO) and Cd exposure on metal levels, metabolism and immune-related functions in hemocytes of two ecologically and economically important bivalve species, Mercenaria mercenaria (hard shell clam) and Crassostrea virginica (Eastern oyster). Clams and oysters were exposed to combinations of three (P2CO) levels (∼400, 800 and 2000 μatm (P2CO), corresponding to the present day conditions and the projections for the years 2100 and 2250, respectively) and two Cd concentrations (0 and 50 μg l(-1)) in seawater. Following four weeks of exposure to Cd, hemolymph of both species contained similar Cd levels (50-70 μg l(-1)), whereas hemocytes accumulated intracellular Cd burdens up to 15-42 mg l(-1), regardless of the exposure P2CO. Clam hemocytes had considerably lower Cd burdens than those of oysters (0.7-1 ng 10(-6) cells vs. 4-6 ng 10(-6) cells, respectively). Cd exposure suppressed hemocyte metabolism and increased the rates of mitochondrial proton leak in normocapnia indicating partial mitochondrial uncoupling. This Cd-induced mitochondrial uncoupling was alleviated in hypercapnia. Cd exposure suppressed immune-related functions in hemocytes of clams and oysters, and these effects were exacerbated at elevated (P2CO). Thus, elevated (P2CO) combined with Cd exposure resulted in decrease in phagocytic activity and adhesion capacity as well as lower expression of mRNA for lectin and heat shock protein (HSP70) in clam and oyster hemocytes. In oysters, combined exposure to elevated (P2CO) and Cd also led to reduced activity of lysozyme in hemocytes and hemolymph. Overall, our study shows that moderately elevated (P2CO) (∼800-2000 μatm P2CO) potentiates the negative effects of Cd on immunity and thus may sensitize clams and oysters to pathogens and diseases during seasonal hypercapnia and/or ocean acidification in polluted estuaries.
Collapse
Affiliation(s)
- Anna V Ivanina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Chelsea Hawkins
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Inna M Sokolova
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
22
|
Götze S, Matoo OB, Beniash E, Saborowski R, Sokolova IM. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 149:65-82. [PMID: 24572072 DOI: 10.1016/j.aquatox.2014.01.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/22/2013] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Abstract
Increased anthropogenic emission of CO2 changes the carbonate chemistry and decreases the pH of the ocean. This can affect the speciation and the bioavailability of metals in polluted habitats such as estuaries. However, the effects of acidification on metal accumulation and stress response in estuarine organisms including bivalves are poorly understood. We studied the interactive effects of CO2 and two common metal pollutants, copper (Cu) and cadmium (Cd), on metal accumulation, intracellular ATP/ubiquitin-dependent protein degradation, stress response and energy metabolism in two common estuarine bivalves-Crassostrea virginica (eastern oyster) and Mercenaria mercenaria (hard shell clam). Bivalves were exposed for 4-5 weeks to clean seawater (control) and to either 50 μg L(-1) Cu or 50 μg L(-1) Cd at one of three partial pressures of CO2 ( [Formula: see text] ∼ 395, ∼ 800 and ∼ 1500 μatm) representative of the present-day conditions and projections of the Intergovernmental Panel for Climate Change (IPCC) for the years 2100 and 2250, respectively. Clams accumulated lower metal burdens than oysters, and elevated [Formula: see text] enhanced the Cd and Cu accumulation in mantle tissues in both species. Higher Cd and Cu burdens were associated with elevated mRNA expression of metal binding proteins metallothionein and ferritin. In the absence of added metals, proteasome activities of clams and oysters were robust to elevated [Formula: see text] , but [Formula: see text] modulated the proteasome response to metals. Cd exposure stimulated the chymotrypsin-like activity of the oyster proteasome at all CO2 levels. In contrast, trypsin- and caspase-like activities of the oyster proteasome were slightly inhibited by Cd exposure in normocapnia but this inhibition was reversed at elevated [Formula: see text] . Cu exposure inhibited the chymotrypsin-like activity of the oyster proteasome regardless of the exposure [Formula: see text] . The effects of metal exposure on the proteasome activity were less pronounced in clams, likely due to the lower metal accumulation. However, the general trends (i.e. an increase during Cd exposure, inhibition during exposure to Cu, and overall stimulatory effects of elevated [Formula: see text] ) were similar to those found in oysters. Levels of mRNA for ubiquitin and tumor suppressor p53 were suppressed by metal exposures in normocapnia in both species but this effect was alleviated or reversed at elevated [Formula: see text] . Cellular energy status of oysters was maintained at all metal and CO2 exposures, while in clams the simultaneous exposure to Cu and moderate hypercapnia (∼ 800 μatm [Formula: see text] ) led to a decline in glycogen, ATP and ADP levels and an increase in AMP indicating energy deficiency. These data suggest that environmental CO2 levels can modulate accumulation and physiological effects of metals in bivalves in a species-specific manner which can affect their fitness and survival during the global change in estuaries.
Collapse
Affiliation(s)
- Sandra Götze
- Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven, Germany; Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Omera B Matoo
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Elia Beniash
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Reinhard Saborowski
- Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven, Germany
| | - Inna M Sokolova
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
23
|
Kinesin-dependent motility generation as target mechanism of cadmium intoxication. Toxicol Lett 2014; 224:356-61. [DOI: 10.1016/j.toxlet.2013.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 02/01/2023]
|
24
|
Ngwa HA, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG. Vanadium exposure induces olfactory dysfunction in an animal model of metal neurotoxicity. Neurotoxicology 2013; 43:73-81. [PMID: 24362016 DOI: 10.1016/j.neuro.2013.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 01/10/2023]
Abstract
Epidemiological evidence indicates chronic environmental exposure to transition metals may play a role in chronic neurodegenerative conditions such as Parkinson's disease (PD). Chronic inhalation exposure to welding fumes containing metal mixtures may be associated with development of PD. A significant amount of vanadium is present in welding fumes, as vanadium pentoxide (V2O5), and incorporation of vanadium in the production of high strength steel has become more common. Despite the increased vanadium use in recent years, the neurotoxicological effects of this metal are not well characterized. Recently, we demonstrated that V2O5 induces dopaminergic neurotoxicity via protein kinase C delta (PKCδ)-dependent oxidative signaling mechanisms in dopaminergic neuronal cells. Since anosmia (inability to perceive odors) and non-motor deficits are considered to be early symptoms of neurological diseases, in the present study, we examined the effect of V2O5 on the olfactory bulb in animal models. To mimic the inhalation exposure, we intranasally administered C57 black mice a low-dose of 182μg of V2O5 three times a week for one month, and behavioral, neurochemical and biochemical studies were performed. Our results revealed a significant decrease in olfactory bulb weights, tyrosine hydroxylase (TH) levels, levels of dopamine (DA) and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC) and increases in astroglia of the glomerular layer of the olfactory bulb in the treatment groups relative to vehicle controls. Neurochemical changes were accompanied by impaired olfaction and locomotion. These findings suggest that nasal exposure to V2O5 adversely affects olfactory bulbs, resulting in neurobehavioral and neurochemical impairments. These results expand our understanding of vanadium neurotoxicity in environmentally-linked neurological conditions.
Collapse
Affiliation(s)
- Hilary Afeseh Ngwa
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA
| | - Huajun Jin
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA
| | - Vellareddy Anantharam
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA.
| |
Collapse
|