1
|
Li H, Zhou L, Zhou W, Zhang X, Shang J, Feng X, Yu L, Fan J, Ren J, Zhang R, Duan X. Decoding the mitochondrial connection: development and validation of biomarkers for classifying and treating systemic lupus erythematosus through bioinformatics and machine learning. BMC Rheumatol 2023; 7:44. [PMID: 38044432 PMCID: PMC10694981 DOI: 10.1186/s41927-023-00369-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disease characterized by clinical and pathological diversity. Mitochondrial dysfunction has been identified as a critical pathogenetic factor in SLE. However, the specific molecular aspects and regulatory roles of this dysfunction in SLE are not fully understood. Our study aims to explore the molecular characteristics of mitochondria-related genes (MRGs) in SLE, with a focus on identifying reliable biomarkers for classification and therapeutic purposes. METHODS We sourced six SLE-related microarray datasets (GSE61635, GSE50772, GSE30153, GSE99967, GSE81622, and GSE49454) from the Gene Expression Omnibus (GEO) database. Three of these datasets (GSE61635, GSE50772, GSE30153) were integrated into a training set for differential analysis. The intersection of differentially expressed genes with MRGs yielded a set of differentially expressed MRGs (DE-MRGs). We employed machine learning algorithms-random forest (RF), support vector machine (SVM), and least absolute shrinkage and selection operator (LASSO) logistic regression-to select key hub genes. These genes' classifying potential was validated in the training set and three other validation sets (GSE99967, GSE81622, and GSE49454). Further analyses included differential expression, co-expression, protein-protein interaction (PPI), gene set enrichment analysis (GSEA), and immune infiltration, centered on these hub genes. We also constructed TF-mRNA, miRNA-mRNA, and drug-target networks based on these hub genes using the ChEA3, miRcode, and PubChem databases. RESULTS Our investigation identified 761 differentially expressed genes (DEGs), mainly related to viral infection, inflammatory, and immune-related signaling pathways. The interaction between these DEGs and MRGs led to the identification of 27 distinct DE-MRGs. Key among these were FAM210B, MSRB2, LYRM7, IFI27, and SCO2, designated as hub genes through machine learning analysis. Their significant role in SLE classification was confirmed in both the training and validation sets. Additional analyses included differential expression, co-expression, PPI, GSEA, immune infiltration, and the construction of TF-mRNA, miRNA-mRNA, and drug-target networks. CONCLUSIONS This research represents a novel exploration into the MRGs of SLE, identifying FAM210B, MSRB2, LYRM7, IFI27, and SCO2 as significant candidates for classifying and therapeutic targeting.
Collapse
Affiliation(s)
- Haoguang Li
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lu Zhou
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Wei Zhou
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiuling Zhang
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jingjing Shang
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xueqin Feng
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Le Yu
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jie Fan
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jie Ren
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Rongwei Zhang
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xinwang Duan
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
2
|
Riaz F, Pan F, Wei P. Aryl hydrocarbon receptor: The master regulator of immune responses in allergic diseases. Front Immunol 2022; 13:1057555. [PMID: 36601108 PMCID: PMC9806217 DOI: 10.3389/fimmu.2022.1057555] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a widely studied ligand-activated cytosolic transcriptional factor that has been associated with the initiation and progression of various diseases, including autoimmune diseases, cancers, metabolic syndromes, and allergies. Generally, AhR responds and binds to environmental toxins/ligands, dietary ligands, and allergens to regulate toxicological, biological, cellular responses. In a canonical signaling manner, activation of AhR is responsible for the increase in cytochrome P450 enzymes which help individuals to degrade and metabolize these environmental toxins and ligands. However, canonical signaling cannot be applied to all the effects mediated by AhR. Recent findings indicate that activation of AhR signaling also interacts with some non-canonical factors like Kruppel-like-factor-6 (KLF6) or estrogen-receptor-alpha (Erα) to affect the expression of downstream genes. Meanwhile, enormous research has been conducted to evaluate the effect of AhR signaling on innate and adaptive immunity. It has been shown that AhR exerts numerous effects on mast cells, B cells, macrophages, antigen-presenting cells (APCs), Th1/Th2 cell balance, Th17, and regulatory T cells, thus, playing a significant role in allergens-induced diseases. This review discussed how AhR mediates immune responses in allergic diseases. Meanwhile, we believe that understanding the role of AhR in immune responses will enhance our knowledge of AhR-mediated immune regulation in allergic diseases. Also, it will help researchers to understand the role of AhR in regulating immune responses in autoimmune diseases, cancers, metabolic syndromes, and infectious diseases.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Fan Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China,*Correspondence: Ping Wei, ; Fan Pan,
| | - Ping Wei
- Department of Otolaryngology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China,*Correspondence: Ping Wei, ; Fan Pan,
| |
Collapse
|
3
|
Cannon AS, Holloman BL, Wilson K, Miranda K, Dopkins N, Nagarkatti P, Nagarkatti M. AhR Activation Leads to Attenuation of Murine Autoimmune Hepatitis: Single-Cell RNA-Seq Analysis Reveals Unique Immune Cell Phenotypes and Gene Expression Changes in the Liver. Front Immunol 2022; 13:899609. [PMID: 35720411 PMCID: PMC9204231 DOI: 10.3389/fimmu.2022.899609] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ubiquitously expressed ligand-activated transcription factor. While initially identified as an environmental sensor, this receptor has been shown more recently to regulate a variety of immune functions. AhR ligands vary in structure and source from environmental chemicals such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and indoles found in cruciferous vegetables to endogenous ligands derived from tryptophan metabolism. In the current study, we used TCDD, a high affinity AhR ligand to study the impact of AhR activation in the murine model of autoimmune hepatitis (AIH). Primarily, we used single-cell RNA-sequencing (scRNA-seq) technology to study the nature of changes occurring in the immune cells in the liver at the cellular and molecular level. We found that AhR activation attenuated concanavalin A (ConA)-induced AIH by limiting chemotaxis of pro-inflammatory immune cell subsets, promoting anti-inflammatory cytokine production, and suppressing pro-inflammatory cytokine production. scRNA-seq analysis showed some unusual events upon ConA injection such as increased presence of mature B cells, natural killer (NK) T cells, CD4+ or CD8+ T cells, Kupffer cells, memory CD8+ T cells, and activated T cells while TCDD treatment led to the reversal of most of these events. Additionally, the immune cells showed significant alterations in the gene expression profiles. Specifically, we observed downregulation of inflammation-associated genes including Ptma, Hspe1, and CD52 in TCDD-treated AIH mice as well as alterations in the expression of migratory markers such as CXCR2. Together, the current study characterizes the nature of inflammatory changes occurring in the liver during AIH, and sheds light on how AhR activation during AIH attenuates liver inflammation by inducing phenotypic and genotypic changes in immune cells found in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
4
|
Current Therapeutic Landscape and Safety Roadmap for Targeting the Aryl Hydrocarbon Receptor in Inflammatory Gastrointestinal Indications. Cells 2022; 11:cells11101708. [PMID: 35626744 PMCID: PMC9139855 DOI: 10.3390/cells11101708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Target modulation of the AhR for inflammatory gastrointestinal (GI) conditions holds great promise but also the potential for safety liabilities both within and beyond the GI tract. The ubiquitous expression of the AhR across mammalian tissues coupled with its role in diverse signaling pathways makes development of a “clean” AhR therapeutically challenging. Ligand promiscuity and diversity in context-specific AhR activation further complicates targeting the AhR for drug development due to limitations surrounding clinical translatability. Despite these concerns, several approaches to target the AhR have been explored such as small molecules, microbials, PROTACs, and oligonucleotide-based approaches. These various chemical modalities are not without safety liabilities and require unique de-risking strategies to parse out toxicities. Collectively, these programs can benefit from in silico and in vitro methodologies that investigate specific AhR pathway activation and have the potential to implement thresholding parameters to categorize AhR ligands as “high” or “low” risk for sustained AhR activation. Exploration into transcriptomic signatures for AhR safety assessment, incorporation of physiologically-relevant in vitro model systems, and investigation into chronic activation of the AhR by structurally diverse ligands will help address gaps in our understanding regarding AhR-dependent toxicities. Here, we review the role of the AhR within the GI tract, novel therapeutic modality approaches to target the AhR, key AhR-dependent safety liabilities, and relevant strategies that can be implemented to address drug safety concerns. Together, this review discusses the emerging therapeutic landscape of modalities targeting the AhR for inflammatory GI indications and offers a safety roadmap for AhR drug development.
Collapse
|
5
|
Sabuz Vidal O, Deepika D, Schuhmacher M, Kumar V. EDC-induced mechanisms of immunotoxicity: a systematic review. Crit Rev Toxicol 2022; 51:634-652. [PMID: 35015608 DOI: 10.1080/10408444.2021.2009438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) refer to a group of chemicals that cause adverse effects in human health, impairing hormone production and regulation, resulting in alteration of homeostasis, reproductive, and developmental, and immune system impairments. The immunotoxicity of EDCs involves many mechanisms altering gene expression that depend on the activation of nuclear receptors such as the aryl hydrocarbon receptor (AHR), the estrogen receptor (ER), and the peroxisome proliferator-activated receptor (PPAR), which also results in skin and intestinal disorders, microbiota alterations and inflammatory diseases. This systematic review aims to review different mechanisms of immunotoxicity and immunomodulation of T cells, focusing on T regulatory (Treg) and Th17 subsets, B cells, and dendritic cells (DCs) caused by specific EDCs such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), bisphenols (BPs) and polyfluoroalkyl substances (PFASs). To achieve this objective, a systematic study was conducted searching various databases including PubMed and Scopus to find in-vitro, in-vivo, and biomonitoring studies that examine EDC-dependent mechanisms of immunotoxicity. While doing the systematic review, we found species- and cell-specific outcomes and a translational gap between in-vitro and in-vivo experiments. Finally, an adverse outcome pathway (AOP) framework is proposed, which explains mechanistically toxicity endpoints emerging from different EDCs having similar key events and can help to improve our understanding of EDCs mechanisms of immunotoxicity. In conclusion, this review provides insights into the mechanisms of immunotoxicity mediated by EDCs and will help to improve human health risk assessment.
Collapse
Affiliation(s)
- Oscar Sabuz Vidal
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Deepika Deepika
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain.,IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|
6
|
Cho MK, Park JG, Iwata H, Kim EY. 2,3,7,8-Tetrachlorodibenzo-p-dioxin prompted differentiation to CD4 +CD8 -CD25 + and CD4 +CD8 +CD25 + Tregs and altered expression of immune-related genes in the thymus of chicken embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111947. [PMID: 33503546 DOI: 10.1016/j.ecoenv.2021.111947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The chicken (Gallus gallus), which has three aryl hydrocarbon receptor (AHR) isoforms (ckAHR1, ckAHR2, and ckAHR1β) and two AHR nuclear translocator (ARNT) isoforms (ckARNT1 and ckARNT2), is highly sensitive to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and can serve as an avian model to gain an understanding of the mechanism underlying dioxin toxicity. To elucidate the mechanism of TCDD-induced immunotoxicity in avian species, we treated chicken embryos in ovo with graded concentrations of TCDD (1.5, 2.5, 3.0, 3.3, 3.5, and 4.0 μM). Initially, we measured mRNA expression levels of ckAHR and ckARNT isoforms and analyzed the T cell populations and transcriptome in the thymuses of TCDD-treated chicken embryos. Quantitative polymerase chain reaction analysis revealed that mRNA expressions of ckAHR1 and ckARNT2 were dominant in the thymus. Severe weight loss and thymus atrophy were observed in the TCDD-treated embryos. Immunophenotyping analyses demonstrated significant increases in CD4+CD8-CD25+ and CD4+CD8+CD25+ regulatory T cells (Tregs) populations following TCDD exposure, suggesting that TCDD suppresses T cell-mediated immune responses in chicken embryos. In addition, thymic transcriptome analyses intimated that alteration of the signaling pathways related to erb-b2 receptor tyrosine kinase 4 (ERBB4) and wnt family member 5A (WNT5A), and bone morphogenetic protein (BMP) may be associated with the TCDD-induced thymus atrophy. We also observed significantly altered expression levels of genes including interleukine 13 receptor subunit alpha 2 (IL13RA2), transforming growth factor beta 1 (TGFβ1), collagen type III alpha 1 chain (COL3A1), and collagen type IX alpha 3 chain (COL9A3), implying immunosuppression, fibrosis development, and collagen deposition. Collectively, these findings suggest that TCDD exposure activates the ckAHR1-ckARNT2 signaling pathway and suppresses immune responses through the prompted differentiation to CD4+CD8-CD25+ and CD4+CD8+CD25+ Tregs and altered expressions of immune-related genes in the thymus of chicken embryos.
Collapse
Affiliation(s)
- Min-Kyung Cho
- Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | - Jae-Gon Park
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama 790-8577, Japan
| | - Eun-Young Kim
- Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea; Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
7
|
Cheng M, Zhou Y, Wang B, Mu G, Ma J, Zhou M, Wang D, Yang M, Cao L, Xie L, Wang X, Nie X, Yu L, Yuan J, Chen W. IL-22: A potential mediator of associations between urinary polycyclic aromatic hydrocarbon metabolites with fasting plasma glucose and type 2 diabetes. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123278. [PMID: 32634658 DOI: 10.1016/j.jhazmat.2020.123278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Previous studies found that exposure to polycyclic aromatic hydrocarbons (PAHs) was associated with type 2 diabetes (T2D) prevalence. However, the potential mechanism is still unclear. In this study, we investigated 3031 Chinese urban adults to discover the relationship between PAH exposure and plasma Interleukin-22 (IL-22) and potential role of IL-22 in the association between PAH and fasting plasma glucose (FPG) or risk of T2D. After adjustment for potential confounders, significant dose-response relationships were observed between several urinary PAH metabolites with FPG and the prevalence of T2D. Each 1-U increase in ln-transformed value of 2-hydroxynaphthalene (2-OHNa), 2-hydroxyphenanthrene (2-OHPh), 3-hydroxyphenanthrene (3-OHPh), 4-hydroxyphenanthrene (4-OHPh), 9-hydroxyphenanthrene (9-OHPh), 1-hydroxypyrene (1-OHP) or total PAH metabolites was significantly associated with a 0.053, 0.026, 0.037, 0.045, 0.051, 0.041 or 0.047 unit decrease in IL-22 level, respectively. In addition, plasma IL-22 level was negatively associated with FPG and prevalence of T2D in a dose-dependent manner. Mediation analysis showed that IL-22 mediated 8.48 %, 3.87 %, 6.64 %, 6.47 %, and 8.67 % of the associations between urinary 2-OHNa, 1-OHPh, 3-OHPh, 4-OHPh, and 9-OHPh with the prevalence of T2D, respectively. These results indicated that urinary PAHs metabolites were inversely associated with plasma levels of IL-22, but positively related to FPG and the T2D prevalence. Downregulation of IL-22 might play a significant role in mediating PAHs exposure-associated risk increasement of T2D.
Collapse
Affiliation(s)
- Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ge Mu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Limin Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiuquan Nie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - LingLing Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Merrheim J, Villegas J, Van Wassenhove J, Khansa R, Berrih-Aknin S, le Panse R, Dragin N. Estrogen, estrogen-like molecules and autoimmune diseases. Autoimmun Rev 2020; 19:102468. [PMID: 31927086 DOI: 10.1016/j.autrev.2020.102468] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
In western countries, the slope of autoimmune disease (AD) incidence is increasing and affects 5-8% of the population. Mainly prevalent in women, these pathologies are due to thymic tolerance processes breakdown. The female sex hormone, estrogen, is involved in this AD female susceptibility. However, predisposition factors have to act in concert with unknown triggering environmental factors (virus, microbiota, pollution) to initiate AD. Individuals are exposed to various environmental compounds that display endocrine disruption abilities. The cellular effects of some of these molecules may be mediated through the aryl hydrocarbon receptor (AhR). Here, we review the effects of these molecules on the homeostasis of the thymic cells, the immune tolerance intrinsic factors (transcription factors, epigenetic marks) and on the immune tolerance extrinsic factors (microbiota, virus sensibility). This review highlights the contribution of estrogen and endocrine disruptors on the dysregulation of mechanisms sustaining AD development.
Collapse
Affiliation(s)
- Judith Merrheim
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - José Villegas
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Jérôme Van Wassenhove
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Rémi Khansa
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Rozen le Panse
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Nadine Dragin
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; Inovarion, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France.
| |
Collapse
|
9
|
Wang XS, Cao F, Zhang Y, Pan HF. Therapeutic potential of aryl hydrocarbon receptor in autoimmunity. Inflammopharmacology 2019; 28:63-81. [PMID: 31617124 DOI: 10.1007/s10787-019-00651-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Aryl hydrocarbon receptor (AhR), a type of transcriptional factor, is widely expressed in immune cells. The activation of AhR signaling pathway depends on its ligands, which exist in environment and can also be produced by metabolism. Normal expressions of AhR and AhR-mediated signaling may be essential for immune responses, and effects of AhR signaling on the development and function of innate and adaptive immune cells have also been revealed in previous studies. Recent studies also indicate that aberrant AhR signaling may be related to autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), autoimmune uveitis (AU), autoimmune diabetes, Behcet's disease (BD) and myasthenia gravis (MG). Moreover, administration of AhR ligands or drugs has been proven effective for improving pathological outcomes in some autoimmune diseases or models. In this review, we summarize the effects of AhR on several innate and adaptive immune cells associated with autoimmunity, and the mechanism on how AhR participates in autoimmune diseases. In addition, we also discuss therapeutic potential and application prospect of AhR in autoimmune diseases, so as to provide valuable information for exploring novel and effective approaches to autoimmune disease treatments.
Collapse
Affiliation(s)
- Xiao-Song Wang
- The First Affiliated Hospital of Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Fan Cao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Yi Zhang
- Reproductive Medicine Center, Anhui Women and Child Health Care Hospital, 15 Yimin Street, Hefei, Anhui, 230011, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China. .,Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
10
|
Advances in the role of the aryl hydrocarbon receptor to regulate early hematopoietic development. Curr Opin Hematol 2019; 25:273-278. [PMID: 29697485 DOI: 10.1097/moh.0000000000000432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW We summarize current advances to define the role the aryl hydrocarbon receptor (AHR) plays in mammalian hematopoiesis. We emphasize approaches to modulate AHR throughout human hematopoietic development in vitro to support the production of clinically relevant blood products suitable for patient care. RECENT FINDINGS Initial data demonstrate that both pharmacologic AHR inhibition and genetic deletion from human pluripotent stem cells provide useful strategies to enhance the yield of hematopoietic stem and progenitor cells. AHR hyperactivation following the induction of CD34 megakaryocyte-erythroid progenitors skews developed toward erythroid lineages, whereas AHR inhibition supports platelet production. At the level of lymphoid specification, AHR inhibition enhances the proliferation and differentiation of functional human natural killer cells, whereas hyperactivation leads to production of Group 3 innate lymphoid cells and provides a novel platform for studying human innate lymphoid cell development. SUMMARY Modulation of AHR in human hematopoietic cells in vitro is a promising tool to mediate development of terminal hematopoietic cell populations with significant clinical implications to generate cells suitable for antitumor immunotherapy and bone marrow transplantation.
Collapse
|
11
|
Chitrala KN, Yang X, Nagarkatti P, Nagarkatti M. Comparative analysis of interactions between aryl hydrocarbon receptor ligand binding domain with its ligands: a computational study. BMC STRUCTURAL BIOLOGY 2018; 18:15. [PMID: 30522477 PMCID: PMC6282305 DOI: 10.1186/s12900-018-0095-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Aryl hydrocarbon receptor (AhR) ligands may act as potential carcinogens or anti-tumor agents. Understanding how some of the residues in AhR ligand binding domain (AhRLBD) modulate their interactions with ligands would be useful in assessing their divergent roles including toxic and beneficial effects. To this end, we have analysed the nature of AhRLBD interactions with 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), 6-formylindolo[3,2-b]carbazole (FICZ), indole-3-carbinol (I3C) and its degradation product, 3,3'-diindolylmethane (DIM), Resveratrol (RES) and its analogue, Piceatannol (PTL) using molecular modeling approach followed by molecular dynamic simulations. RESULTS Results showed that each of the AhR ligands, TCDD, FICZ, I3C, DIM, RES and PTL affect the local and global conformations of AhRLBD. CONCLUSION The data presented in this study provide a structural understanding of AhR with its ligands and set the basis for its functions in several pathways and their related diseases.
Collapse
Affiliation(s)
- Kumaraswamy Naidu Chitrala
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29208 USA
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29208 USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29208 USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29208 USA
| |
Collapse
|
12
|
Baicalein induces CD4(+)Foxp3(+) T cells and enhances intestinal barrier function in a mouse model of food allergy. Sci Rep 2016; 6:32225. [PMID: 27561877 PMCID: PMC4999817 DOI: 10.1038/srep32225] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/26/2016] [Indexed: 12/01/2022] Open
Abstract
The incidence of food allergy, which is triggered by allergen permeation of the gastrointestinal tract followed by a T-helper (Th) 2-mediated immune response, has been increasing annually worldwide. We examined the effects of baicalein (5,6,7-trihydroxyflavone), a flavonoid from Scutellaria baicalensis used in oriental herbal medicine, on regulatory T (Treg) cell induction and intestinal barrier function through the regulation of tight junctions in a mouse model of food allergy. An allergic response was induced by oral challenge with ovalbumin, and the incidence of allergic symptoms and T cell-related activity in the mesenteric lymph nodes were analyzed with and without the presence of baicalein. Our results demonstrated that the administration of baicalein ameliorated the symptoms of food allergy and attenuated serum IgE and effector T cells. However, Treg-related factors were up-regulated by baicalein. Furthermore, baicalein was shown to enhance intestinal barrier function through the regulation of tight junctions. We also found that baicalein treatment induced the differentiation of Treg cells via aryl hydrocarbon receptors (AhRs). Thus, the action of baicalein as an agonist of AhR can induce Treg differentiation and enhance barrier function, suggesting that baicalein might serve as an effective immune regulator derived from foods for the treatment of food allergy.
Collapse
|
13
|
Regulatory T Cell Induced by Poria cocos Bark Exert Therapeutic Effects in Murine Models of Atopic Dermatitis and Food Allergy. Mediators Inflamm 2016; 2016:3472608. [PMID: 27445434 PMCID: PMC4942653 DOI: 10.1155/2016/3472608] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/17/2022] Open
Abstract
The prevalence of allergic disorders including atopic dermatitis (AD) and food allergy (FA) has increased dramatically in pediatric populations, but there is no effective drug available for their management. Therefore, trials are required for the development of safe therapeutic agents such as herbal medicines. We determined whether orally administered Poria cocos bark (PCB) extract could exert immunosuppressive effects on allergic and inflammatory symptoms of AD and FA. For both AD, which was induced using house dust mite extract, and FA, which was induced by exposure to ovalbumin, model mice were orally treated with PCB extract for 62 days and 18 days, respectively. We also investigated the inductive effect of PCB extract on the generation and maintenance of Foxp3+CD4+ regulatory T cells (Tregs). The symptoms of AD and FA were ameliorated by the administration of PCB extract. Furthermore, PCB extract inhibited the Th2-related cytokines and increased the population of Foxp3+CD4+ Tregs in both AD and FA models. In ex vivo experiments, PCB extract promoted the functional differentiation of Foxp3+CD4+ Tregs, which is dependent on aryl hydrocarbon receptor activation. Thus, PCB extract has potential as an oral immune suppressor for the treatment of AD and FA through the generation of Tregs.
Collapse
|
14
|
Norisoboldine, an isoquinoline alkaloid, acts as an aryl hydrocarbon receptor ligand to induce intestinal Treg cells and thereby attenuate arthritis. Int J Biochem Cell Biol 2016; 75:63-73. [DOI: 10.1016/j.biocel.2016.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/23/2022]
|
15
|
Ehrlich AK, Pennington JM, Wang X, Rohlman D, Punj S, Löhr CV, Newman MT, Kolluri SK, Kerkvliet NI. Activation of the Aryl Hydrocarbon Receptor by 10-Cl-BBQ Prevents Insulitis and Effector T Cell Development Independently of Foxp3+ Regulatory T Cells in Nonobese Diabetic Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:264-73. [PMID: 26573835 PMCID: PMC4684970 DOI: 10.4049/jimmunol.1501789] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022]
Abstract
Aryl hydrocarbon receptor (AhR) activation by high-affinity ligands mediates immunosuppression in association with increased regulatory T cells (Tregs), making this transcription factor an attractive therapeutic target for autoimmune diseases. We recently discovered 10-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (10-Cl-BBQ), a nanomolar affinity AhR ligand with immunosuppressive activity and favorable pharmacologic properties. In this study, we tested the consequences of AhR activation in the NOD model. Oral 10-Cl-BBQ treatment prevented islet infiltration without clinical toxicity, whereas AhR-deficient NOD mice were not protected. Suppression of insulitis was associated with an increased frequency, but not total number, of Foxp3(+) Tregs in the pancreas and pancreatic lymph nodes. The requirement for Foxp3(+) cells in AhR-induced suppression of insulitis was tested using NOD.Foxp3(DTR) mice, which show extensive islet infiltration upon treatment with diphtheria toxin. AhR activation prevented the development of insulitis caused by the depletion of Foxp3(+) cells, demonstrating that Foxp3(+) cells are not required for AhR-mediated suppression and furthermore that the AhR pathway is able to compensate for the absence of Foxp3(+) Tregs, countering current dogma. Concurrently, the development of disease-associated CD4(+)Nrp1(+)Foxp3(-)RORγt(+) cells was inhibited by AhR activation. Taken together, 10-Cl-BBQ is an effective, nontoxic AhR ligand for the intervention of immune-mediated diseases that functions independently of Foxp3(+) Tregs to suppress pathogenic T cell development.
Collapse
Affiliation(s)
- Allison K Ehrlich
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331; and
| | - Jamie M Pennington
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331; and
| | - Xisheng Wang
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331; and
| | - Diana Rohlman
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331; and
| | - Sumit Punj
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331; and
| | - Christiane V Löhr
- College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Matthew T Newman
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331; and
| | - Siva K Kolluri
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331; and
| | - Nancy I Kerkvliet
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331; and
| |
Collapse
|
16
|
Tian J, Feng Y, Fu H, Xie HQ, Jiang JX, Zhao B. The Aryl Hydrocarbon Receptor: A Key Bridging Molecule of External and Internal Chemical Signals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9518-31. [PMID: 26079192 PMCID: PMC4696777 DOI: 10.1021/acs.est.5b00385] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a highly evolutionary conserved, ligand-activated transcription factor that is best known to mediate the toxicities of dioxins and dioxin-like compounds. Phenotype of AhR-null mice, together with the recent discovery of a variety of endogenous and plant-derived ligands, point to the integral roles of AhR in normal cell physiology, in addition to its roles in sensing the environmental chemicals. Here, we summarize the current knowledge about AhR signaling pathways, its ligands and AhR-mediated effects on cell specialization, host defense and detoxification. AhR-mediated health effects particularly in liver, immune, and nervous systems, as well as in tumorgenesis are discussed. Dioxin-initiated embryotoxicity and immunosuppressive effects in fish and birds are reviewed. Recent data demonstrate that AhR is a convergence point of multiple signaling pathways that inform the cell of its external and internal environments. As such, AhR pathway is a promising potential target for therapeutics targeting nervous, liver, and autoimmune diseases through AhR ligand-mediated interventions and other perturbations of AhR signaling. Additionally, using available laboratory data obtained on animal models, AhR-centered adverse outcome pathway analysis is useful in reexamining known and potential adverse outcomes of specific or mixed compounds on wildlife.
Collapse
Affiliation(s)
- Jijing Tian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Internal Medicine, Gastroenterology and Hepatology, University of California, Davis, Sacramento, California 95817, United States
| | - Yu Feng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hualing Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Heidi Qunhui Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Joy Xiaosong Jiang
- Department of Internal Medicine, Gastroenterology and Hepatology, University of California, Davis, Sacramento, California 95817, United States
- Corresponding Authors: (J.X.J) Phone: 1-916-7340329; fax: 1-916-7347908; . (B.Z.) Phone: 86-010-62842867; fax: 86-010-62842867;
| | - Bin Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Corresponding Authors: (J.X.J) Phone: 1-916-7340329; fax: 1-916-7347908; . (B.Z.) Phone: 86-010-62842867; fax: 86-010-62842867;
| |
Collapse
|
17
|
Tsuji M, Kawamoto T, Koriyama C, Yamamoto M, Tsuchiya T, Matsumura F. Association of PCBs and allergies in children. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 120:21-26. [PMID: 25987216 DOI: 10.1016/j.pestbp.2014.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
Recently, the incidence rates of childhood allergies have been rising around the world. The presence of persistent chemical pollutants in the environment and exposure to air pollutants are often cited as potential causes of childhood allergies. Accordingly, epidemiological studies of the associations between exposure to low levels of pollutants and adverse health effects are essential. However, at present no useful biomarkers for evaluating such associations have been developed. Thus, using a molecular epidemiological approach we planned to identify candidate biomarkers of pollutant-induced adverse health effects that can be used in children. In asthmatic children, we found that the serum levels of several polychlorinated biphenyl (PCB) congener sub-types were significantly positively correlated with interleukin (IL)-8 mRNA expression, whereas in a sub-group of children who displayed positive immunoglobulin E (IgE) responses to milk or egg proteins IL-22 mRNA expression was demonstrated to be useful for detecting the adverse health effects of environmental pollutants, particularly PCB congeners. In conclusion, the mRNA expression levels of IL-8 and IL-22 can be used to detect children who are at particular risk of adverse health events caused by environmental pollutants, especially PCBs.
Collapse
Affiliation(s)
- Mayumi Tsuji
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA; Department of Environmental Health, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Japan.
| | - Toshihiro Kawamoto
- Department of Environmental Health, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Japan
| | - Chihaya Koriyama
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Megumi Yamamoto
- Integrated Physiology Section, Department of Basic Medical Science, National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008, Japan
| | - Takuto Tsuchiya
- Department of Environmental Health, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Japan
| | - Fumio Matsumura
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| |
Collapse
|
18
|
Kim YS, Sayers TJ, Colburn NH, Milner JA, Young HA. Impact of dietary components on NK and Treg cell function for cancer prevention. Mol Carcinog 2015; 54:669-78. [PMID: 25845339 DOI: 10.1002/mc.22301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/09/2014] [Accepted: 01/21/2015] [Indexed: 01/11/2023]
Abstract
An important characteristic of cancer is that the disease can overcome the surveillance of the immune system. A possible explanation for this resistance arises from the ability of tumor cells to block the tumoricidal activity of host immune cells such as natural killer (NK) cells by inducing the localized accumulation of regulatory T (Treg) cells. Evidence exists that components in commonly consumed foods including vitamins A, D, and E, water-soluble constituents of mushrooms, polyphenolics in fruits and vegetables, and n-3 fatty acids in fish oil can modulate NK cell activities, Treg cell properties, and the interactions between those two cell types. Thus, it is extremely important for cancer prevention to understand the involvement of dietary components with the early stage dynamics of interactions among these immune cells. This review addresses the potential significance of diet in supporting the function of NK cells, Treg cells, and the balance between those two cell types, which ultimately results in decreased cancer risk.
Collapse
Affiliation(s)
- Young S Kim
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland
| | - Thomas J Sayers
- Frederick National Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| | - Nancy H Colburn
- Frederick National Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| | - John A Milner
- Human Nutrition Research Center, USDA/ARS, Beltsville, Maryland
| | - Howard A Young
- Frederick National Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| |
Collapse
|
19
|
Can exposure to environmental chemicals increase the risk of diabetes type 1 development? BIOMED RESEARCH INTERNATIONAL 2015; 2015:208947. [PMID: 25883945 PMCID: PMC4391693 DOI: 10.1155/2015/208947] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/14/2014] [Indexed: 01/09/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease, where destruction of beta-cells causes insulin deficiency. The incidence of T1DM has increased in the last decades and cannot entirely be explained by genetic predisposition. Several environmental factors are suggested to promote T1DM, like early childhood enteroviral infections and nutritional factors, but the evidence is inconclusive. Prenatal and early life exposure to environmental pollutants like phthalates, bisphenol A, perfluorinated compounds, PCBs, dioxins, toxicants, and air pollutants can have negative effects on the developing immune system, resulting in asthma-like symptoms and increased susceptibility to childhood infections. In this review the associations between environmental chemical exposure and T1DM development is summarized. Although information on environmental chemicals as possible triggers for T1DM is sparse, we conclude that it is plausible that environmental chemicals can contribute to T1DM development via impaired pancreatic beta-cell and immune-cell functions and immunomodulation. Several environmental factors and chemicals could act together to trigger T1DM development in genetically susceptible individuals, possibly via hormonal or epigenetic alterations. Further observational T1DM cohort studies and animal exposure experiments are encouraged.
Collapse
|
20
|
Feehley T, Nagler CR. Cellular and molecular pathways through which commensal bacteria modulate sensitization to dietary antigens. Curr Opin Immunol 2014; 31:79-86. [PMID: 25458998 PMCID: PMC4255329 DOI: 10.1016/j.coi.2014.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/25/2014] [Accepted: 10/03/2014] [Indexed: 12/16/2022]
Abstract
Food allergies are a growing public health concern. The rapidly increasing prevalence of allergic disease cannot be explained by genetic variation alone, suggesting a role for gene-by-environment interactions. The bacteria that colonize barrier surfaces, often referred to as the commensal microbiota, are dramatically affected by environmental factors and have a major impact on host health and homeostasis. Increasing evidence suggests that alterations in the composition of the microbiota, caused by factors such as antibiotic use and diet, are contributing to increased sensitization to dietary antigens. This review will discuss the cellular and molecular pathways activated by commensal bacteria to protect against allergic sensitization. By understanding the interplay between the environment, the microbiota, and the host, we may uncover novel therapeutic targets that will allow us to control the allergy epidemic.
Collapse
Affiliation(s)
- Taylor Feehley
- Committee on Immunology, Department of Pathology, The University of Chicago, 924 E. 57th St. JFK R120, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Committee on Immunology, Department of Pathology, The University of Chicago, 924 E. 57th St. JFK R120, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Resveratrol prevents suppression of regulatory T-cell production, oxidative stress, and inflammation of mice prone or resistant to high-fat diet–induced obesity. Nutr Res 2013; 33:971-81. [DOI: 10.1016/j.nutres.2013.07.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 06/28/2013] [Accepted: 07/23/2013] [Indexed: 12/31/2022]
|
22
|
Schulz V, van Roest M, Bol-Schoenmakers M, van Duursen M, van den Berg M, Pieters R, Smit J. Aryl hydrocarbon receptor activation affects the dendritic cell phenotype and function during allergic sensitization. Immunobiology 2013; 218:1055-62. [DOI: 10.1016/j.imbio.2013.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 12/13/2012] [Accepted: 01/23/2013] [Indexed: 12/20/2022]
|
23
|
AhR pathway activation prevents food allergy in mice partly by preserving CD25-positive Tregs in the thymus. Clin Transl Allergy 2013. [PMCID: PMC3723466 DOI: 10.1186/2045-7022-3-s3-p43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
24
|
Schulz VJ, Smit JJ, Pieters RHH. The aryl hydrocarbon receptor and food allergy. Vet Q 2013; 33:94-107. [PMID: 23745732 DOI: 10.1080/01652176.2013.804229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The immune system is important for protection against pathogens and malignant cells. However, malfunction of the immune system can also result in detrimental auto-immune diseases, inflammatory diseases, cancers and allergies. The aryl hydrocarbon receptor (AhR), present in numerous tissues and cell subsets, including cells of the immune system, plays an important role in the functioning of the immune system. Activation of the AhR is for example associated with various effects on dendritic cells (DCs), regulatory T cells and the Th1/Th2 cell balance. These cells play a major role in the development of food allergy. Food allergy is an increasing health problem in both humans and animals. Despite the knowledge in risk factors and cellular mechanisms for food allergy, no approved treatments are available yet. Recently, it has been shown that activation of the AhR by dioxin-like compounds suppresses allergic sensitization by suppressing the absolute number of precursor and effector T cells, by preserving CD4(+)CD25(+)Foxp3(+) Treg cells and by affecting DCs and their interaction with effector T cells. Future research should elucidate whether and how AhR activation can be used to interfere in food allergic responses in humans and in animals. This may lead to new prevention strategies and therapeutic possibilities for food allergy.
Collapse
Affiliation(s)
- V J Schulz
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|
25
|
Curran CS, Keely PJ. Breast tumor and stromal cell responses to TGF-β and hypoxia in matrix deposition. Matrix Biol 2012; 32:95-105. [PMID: 23262216 DOI: 10.1016/j.matbio.2012.11.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/06/2012] [Accepted: 11/06/2012] [Indexed: 02/07/2023]
Abstract
The components that comprise the extracellular matrix (ECM) are integral to normal tissue homeostasis as well as the development and progression of breast tumors. The secretion, construction, and remodeling of the ECM are each regulated by a complex interplay between tumor cells, fibroblasts and macrophages. Transforming growth factor-β (TGF-β) is an essential molecule in regulating the cellular production of ECM molecules and the adhesive interactions of cells with the ECM. Additionally, hypoxic cell signals, initiated by oxygen deprivation, additional metabolic factors or receptor activation, are associated with ECM formation and the progression of breast cancer. Both TGF-β and hypoxic cell signals are implicated in the functional and morphological changes of cancer-associated-fibroblasts and tumor-associated-macrophages. Moreover, the enhanced recruitment of tumor and stromal cells in response to hypoxia-induced chemokines leads to increased ECM deposition and remodeling, increased blood vessel formation, and enhanced tumor migration. Thus, elucidation of the collaborative networks between tumor and stromal cells in response to the combined signals of TGF-β and hypoxia may yield insight into treatment parameters that target both tumor and stromal cells.
Collapse
Affiliation(s)
- Colleen S Curran
- Laboratory of Cell and Molecular Biology, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States.
| | | |
Collapse
|