1
|
Horn G, Rappenglück S, Worek F. Inhibition kinetics of acetylcholinesterase and butyrylcholinesterase from various species by 2-(2-cresyl)-4H-1,3,2-benzodioxaphosphorin-2-oxide (CBDP). Toxicol Lett 2024; 396:28-33. [PMID: 38642675 DOI: 10.1016/j.toxlet.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
The aerotoxic syndrome has been associated with exposure to tricresyl phosphate (TCP), which is used as additive in hydraulic fluids and engine lubricants. The toxic metabolite 2-(2-cresyl)-4H-1,3,2-benzodioxaphosphorin-2-oxide (CBDP) is formed from the TCP isomer tri-ortho-cresyl phosphate (TOCP) in vivo and is known to react with the active site serine in acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) resulting in the inhibition of the enzymes. Previous in vitro studies showed pronounced species differences in the inhibition kinetics of cholinesterases by organophosphorus compounds (OP), which must be considered in the development of relevant animal models for the investigation of OP poisoning and the aerotoxic syndrome. The present study was designed to investigate the inhibition kinetics of human, Cynomolgus monkey, pig, mini pig, guinea pig, mouse, and rat AChE as well as BChE by CBDP under standardized conditions. There were similar rate constants for the inhibition (ki) of human, Cynomolgus monkey and mouse AChE by CBDP. In contrast, the ki values obtained for guinea pig, mini pig, pig, and rat AChE were 2.8- to 5.9-fold lower than that of human AChE. The results of the present study confirmed CBDP as one of the most potent inhibitors of human BChE, indicating a ki value of 3.24 ± 0.33 ×108M-1min-1, which was about 1,140-fold higher than that of human AChE. Accordingly, a markedly more pronounced inhibition rate of BChE from the species guinea pig, mini pig, pig, rat, Cynomolgus monkey, and mouse by CBDP was found as compared to those of AChE from the respective sources, indicating 2.0- to 89.6-fold higher ki values.
Collapse
Affiliation(s)
- Gabriele Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | - Sebastian Rappenglück
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| |
Collapse
|
2
|
Sette KN, Alugubelly N, Glenn LB, Guo-Ross SX, Parkes MK, Wilson JR, Seay CN, Carr RL. The mechanistic basis for the toxicity difference between juvenile rats and mice following exposure to the agricultural insecticide chlorpyrifos. Toxicology 2022; 480:153317. [PMID: 36096317 DOI: 10.1016/j.tox.2022.153317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
At high exposure levels, organophosphorus insecticides (OPs) exert their toxicity in mammals through the inhibition of brain acetylcholinesterase (AChE) leading to the accumulation of acetylcholine in cholinergic synapses and hyperactivity of the nervous system. Currently, there is a concern that low-level exposure to OPs induces negative impacts in developing children and the chemical most linked to these issues is chlorpyrifos (CPF). Our laboratory has observed that a difference in the susceptibility to repeated exposure to CPF exists between juvenile mice and rats with respect to the inhibition of brain AChE. The basis for this difference is unknown but differences in the levels of the detoxification mechanisms could play a role. To investigate this, 10-day old rat and mice pups were exposed daily for 7 days to either corn oil or a range of dosages of CPF via oral gavage. Four hours following the last administration of CPF on day 16, brain, blood, and liver were collected. The inhibition of brain AChE activity was higher in juvenile rats as compared to juvenile mice. The levels of activity of the detoxification enzymes and the impact of CPF exposure on their activity were determined in the two species at this age. In blood and liver, the enzyme paraoxonase-1 (PON1) hydrolyzes the active metabolite of CPF (CPF-oxon), and the enzymes carboxylesterase (CES) and cholinesterase (ChE) act as alternative binding sites for CPF-oxon removing it from circulation and providing protection. Both species had similar levels of PON1 activity in the liver and serum. Mice had higher ChE activity in liver and serum than rats but, following CPF exposure, the percentage inhibition was similar between species at an equivalent dosage. Even though rats had slightly higher liver CES activity than mice, the level of inhibition following exposure was higher in rats. In serum, juvenile mice had an 8-fold higher CES activity than rats, and exposure to a CPF dosage that almost eliminated CES activity in rats only resulted in 22% inhibition in mice suggesting that the high serum CES activity in mice as compared to rats is a key component in this species difference. In addition, there was a species difference in the sensitivity of CES to inhibition by CPF-oxon with rats having a lower IC50 in both liver and serum as compared to mice. This greater enzyme sensitivity suggests that saturation of CES would occur more rapidly in juvenile rats than in mice, resulting in more CPF reaching the brain to inhibit AChE in rats.
Collapse
Affiliation(s)
- Katelyn N Sette
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Navatha Alugubelly
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Lauren B Glenn
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Shirley X Guo-Ross
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - M Katherine Parkes
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Juliet R Wilson
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Caitlin N Seay
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Russell L Carr
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA.
| |
Collapse
|
3
|
McCann JJ, Pike DH, Brown MC, Crouse DT, Nanda V, Koder RL. Computational design of a sensitive, selective phase-changing sensor protein for the VX nerve agent. SCIENCE ADVANCES 2022; 8:eabh3421. [PMID: 35857443 PMCID: PMC9258810 DOI: 10.1126/sciadv.abh3421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The VX nerve agent is one of the deadliest chemical warfare agents. Specific, sensitive, real-time detection methods for this neurotoxin have not been reported. The creation of proteins that use biological recognition to fulfill these requirements using directed evolution or library screening methods has been hampered because its toxicity makes laboratory experimentation extraordinarily expensive. A pair of VX-binding proteins were designed using a supercharged scaffold that couples a large-scale phase change from unstructured to folded upon ligand binding, enabling fully internal binding sites that present the maximum surface area possible for high affinity and specificity in target recognition. Binding site residues were chosen using a new distributed evolutionary algorithm implementation in protCAD. Both designs detect VX at parts per billion concentrations with high specificity. Computational design of fully buried molecular recognition sites, in combination with supercharged phase-changing chassis proteins, enables the ready development of a new generation of small-molecule biosensors.
Collapse
Affiliation(s)
- James J. McCann
- Department of Physics, The City College of New York, New York, NY 10031, USA
| | - Douglas H. Pike
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mia C. Brown
- Department of Physics, The City College of New York, New York, NY 10031, USA
| | - David T. Crouse
- Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ronald L. Koder
- Department of Physics, The City College of New York, New York, NY 10031, USA
- Graduate Programs of Physics, Biology, Chemistry, and Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
4
|
Anjireddy K, Subramanian K. A new mode of Thinfilm and Nanofiber for burst release of the drug for Alzheimer disease; A complete scenario from dispersible polymer to formulation methodology. Mini Rev Med Chem 2021; 22:949-966. [PMID: 34629042 DOI: 10.2174/1389557521666211008152446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 05/01/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is usually caused intellectual deterioration which happened due to the degeneration of cholinergic neurons. Donepezil is employed for cholinesterase enzyme Inhibition (ChEI) to treat AD in a wider population. Over the years, researchers finding difficulties prompted through traditional dosage forms particularly in geriatric patience. To avoid swallowing difficulties brought about with the aid of the AD population, researchers majorly focused on oral thin-film technology (OTF). This technology strongly eliminates issues caused by solid oral dosage forms. It is one of the quality strategies to an alternate drug that is used in the first-pass metabolism or pre systematic metabolism. The solubility of the drug is a higher trouble and it can expand by way of lowering particle size. Nanofibers are the excellent desire to minimize the drug particles to the submicron stage and can increase the drug release rate drastically. It can be prepared by Electrospinning technology by incorporating polymeric material into poorly soluble drugs. Mostly natural and biodegradable polymers prefer in all pharmaceutical preparations. Polymers employed for oral delivery should be stable, possess mucoadhesive property, and should release the drug by diffusion, degradation, and swelling mechanism. The objective of the present review explains various thin-film and nanofiber formulations used for faster drug release in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Keshireddy Anjireddy
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore - 632 014, Tamilnadu. India
| | - Karpagam Subramanian
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore - 632 014, Tamilnadu. India
| |
Collapse
|
5
|
Dubrana LE, Knoll-Gellida A, Bourcier LM, Mercé T, Pedemay S, Nachon F, Calas AG, Baati R, Soares M, Babin PJ. An Antidote Screening System for Organophosphorus Poisoning Using Zebrafish Larvae. ACS Chem Neurosci 2021; 12:2865-2877. [PMID: 34284583 DOI: 10.1021/acschemneuro.1c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Organophosphorus (OP) cholinesterase inhibitors, which include insecticides and chemical warfare nerve agents, are very potent neurotoxicants. Given that the actual treatment has several limitations, the present study provides a general method, called the zebrafish-OP-antidote test (ZOAT), and basic scientific data, to identify new antidotes that are more effective than the reference pyridinium oximes after acute OP poisoning. The reactivation capacity of a chemical compound can be measured using in vivo and ex vivo acetylcholinesterase (AChE) assays. We demonstrated that it is possible to differentiate between chemical compound protective efficacies in the central and peripheral nervous system via the visual motor response and electric field pulse motor response tests, respectively. Moreover, the ability to cross the brain-blood barrier can be estimated in a physiological context by combining an AChE assay on the head and trunk-tail fractions and the cellular and tissue localization of AChE activity in the whole-mount animal. ZOAT is an innovative method suitable for the screening and rapid identification of chemicals and mixtures used as antidote for OP poisoning. The method will make it easier to identify more effective medical countermeasures for chemical threat agents, including combinatorial therapies.
Collapse
Affiliation(s)
- Leslie E. Dubrana
- Department of Life and Health Sciences, INSERM, Maladies Rares: Génétique et Métabolisme (MRGM), U1211, Université de Bordeaux, Pessac, F-33615, France
| | - Anja Knoll-Gellida
- Department of Life and Health Sciences, INSERM, Maladies Rares: Génétique et Métabolisme (MRGM), U1211, Université de Bordeaux, Pessac, F-33615, France
| | - Laure M. Bourcier
- Department of Life and Health Sciences, INSERM, Maladies Rares: Génétique et Métabolisme (MRGM), U1211, Université de Bordeaux, Pessac, F-33615, France
| | - Théo Mercé
- Department of Life and Health Sciences, INSERM, Maladies Rares: Génétique et Métabolisme (MRGM), U1211, Université de Bordeaux, Pessac, F-33615, France
| | - Sandra Pedemay
- Department of Life and Health Sciences, INSERM, Maladies Rares: Génétique et Métabolisme (MRGM), U1211, Université de Bordeaux, Pessac, F-33615, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armés, Brétigny sur Orge, F-91220, France
| | - André-Guilhem Calas
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armés, Brétigny sur Orge, F-91220, France
| | - Rachid Baati
- ECPM UMR CNRS 7515, ICPEES Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé, Strasbourg, F-67087, France
| | - Magalie Soares
- Department of Life and Health Sciences, INSERM, Maladies Rares: Génétique et Métabolisme (MRGM), U1211, Université de Bordeaux, Pessac, F-33615, France
| | - Patrick J. Babin
- Department of Life and Health Sciences, INSERM, Maladies Rares: Génétique et Métabolisme (MRGM), U1211, Université de Bordeaux, Pessac, F-33615, France
| |
Collapse
|
6
|
Mit C, Tebby C, Gueganno T, Bado-Nilles A, Beaudouin R. Modeling acetylcholine esterase inhibition resulting from exposure to a mixture of atrazine and chlorpyrifos using a physiologically-based kinetic model in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:144734. [PMID: 33582354 DOI: 10.1016/j.scitotenv.2020.144734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Aquatic organisms are exposed to mixtures of chemicals that may interact. Mixtures of atrazine (ATR) and chlorpyrifos (CPF) may elicit synergic effects on the permanent inhibition of acetylcholinesterase (AChE) in certain aquatic organisms, causing severe damage. Mechanistic mathematical models of toxicokinetics and toxicodynamics (TD) may be used to better characterize and understand the interactions of these two chemicals. In this study, a previously published generic physiologically-based toxicokinetic (PBTK) model for fish was adapted to ATR and CPF. A sub-model of the kinetics of one of the main metabolites of CPF, chlorpyrifos-oxon (CPF-oxon), was included, as well as a TD model. Inhibition of two esterases, AChE and carboxylesterase, by ATR, CPF and CPF-oxon, was modeled using TD modeling of quantities of total and inactive esterases. Specific attention was given to the parameterization and calibration of the model to accurately predict the concentration and effects observed in the fish using Bayesian inference and published data from fathead minnow (Pimephales promelas), zebrafish (Danio rerio) and common carp (Cyprinus carpio L.). A PBTK-TD for mixtures was used to predict dose-response relationships for comparison with available adult fish data. Synergistic effects of a joint exposure to ATR and CPF could not be demonstrated in adult fish.
Collapse
Affiliation(s)
- Corentin Mit
- Unité METO (Modèles pour l'Ecotoxicologie et la Toxicologie), INERIS, 60550 Verneuil en Halatte, France; INERIS, UMR-I 02 SEBIO, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France; Unité ECOT (Ecotoxicologie in vitro et in vivo), INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France
| | - Cleo Tebby
- Unité METO (Modèles pour l'Ecotoxicologie et la Toxicologie), INERIS, 60550 Verneuil en Halatte, France
| | - Tristan Gueganno
- Unité METO (Modèles pour l'Ecotoxicologie et la Toxicologie), INERIS, 60550 Verneuil en Halatte, France
| | - Anne Bado-Nilles
- INERIS, UMR-I 02 SEBIO, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France; Unité ECOT (Ecotoxicologie in vitro et in vivo), INERIS, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France
| | - Rémy Beaudouin
- Unité METO (Modèles pour l'Ecotoxicologie et la Toxicologie), INERIS, 60550 Verneuil en Halatte, France; INERIS, UMR-I 02 SEBIO, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
7
|
Meek EC, Reiss R, Crow JA, Chambers JE. Inhibition Kinetics of 16 Organophosphorus Pesticides or Their Active Metabolites on Erythrocyte Acetylcholinesterase from Humans and Rats. Toxicol Sci 2021; 183:404-414. [PMID: 33720374 DOI: 10.1093/toxsci/kfab031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inhibition kinetics assays were conducted with 16 commercial organophosphate (OP) pesticides or their metabolites on acetylcholinesterase (AChE) in erythrocyte "ghost" preparations from 18 individual humans (both sexes; adults, juveniles and cord blood samples; mixed races/ethnicities) and pooled samples from adult rats (both sexes). A well established spectrophotometric assay using acetylthiocholine as substrate and a chromogen was employed. The kinetic parameters bimolecular rate constant (ki), dissociation constant (KI) and phosphorylation constant (kp) were calculated for each compound. As expected, a wide range of potencies were displayed among the tested compounds. Statistical analysis of the resultant data indicated no differences in sex, age or race/ethnicity among the human samples that are unexpected based on chance (4.2% statistically significant out of 48 parameters calculated) and no differences between the sexes in rats. The bimolecular rate constants for 10 of the compounds were not statistically different between rats and humans. The data indicate that, consistent with the high level of conservation of AChE among species and the fact that AChE at different locations within a species arises from the same gene, the inhibition kinetic parameters calculated from rat erythrocyte ghost preparations should be useful in estimating potencies of OP compounds on target AChE in humans. Additionally the data indicate that differences in sensitivities among individual humans were not apparent. Impact Statement: These data are expected to be useful in consideration of the intraspecies and interspecies uncertainty factors in OP pesticide risk assessment.
Collapse
Affiliation(s)
- Edward C Meek
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Richard Reiss
- Exponent, 1800 Diagonal Road, Suite 500, Virginia, USA Alexandria
| | - J Allen Crow
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Janice E Chambers
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
8
|
Izquierdo PG, O'Connor V, Green AC, Holden-Dye L, Tattersall JEH. C. elegans pharyngeal pumping provides a whole organism bio-assay to investigate anti-cholinesterase intoxication and antidotes. Neurotoxicology 2020; 82:50-62. [PMID: 33176172 DOI: 10.1016/j.neuro.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Inhibition of acetylcholinesterase by either organophosphates or carbamates causes anti-cholinesterase poisoning. This arises through a wide range of neurotoxic effects triggered by the overstimulation of the cholinergic receptors at synapses and neuromuscular junctions. Without intervention, this poisoning can lead to profound toxic effects, including death, and the incomplete efficacy of the current treatments, particularly for oxime-insensitive agents, provokes the need to find better antidotes. Here we show how the non-parasitic nematode Caenorhabditis elegans offers an excellent tool for investigating the acetylcholinesterase intoxication. The C. elegans neuromuscular junctions show a high degree of molecular and functional conservation with the cholinergic transmission that operates in the autonomic, central and neuromuscular synapses in mammals. In fact, the anti-cholinesterase intoxication of the worm's body wall neuromuscular junction has been unprecedented in understanding molecular determinants of cholinergic function in nematodes and other organisms. We extend the use of the model organism's feeding behaviour as a tool to investigate carbamate and organophosphate mode of action. We show that inhibition of the cholinergic-dependent rhythmic pumping of the pharyngeal muscle correlates with the inhibition of the acetylcholinesterase activity caused by aldicarb, paraoxons and DFP exposure. Further, this bio-assay allows one to address oxime dependent reversal of cholinesterase inhibition in the context of whole organism recovery. Interestingly, the recovery of the pharyngeal function after such anti-cholinesterase poisoning represents a sensitive and easily quantifiable phenotype that is indicative of the spontaneous recovery or irreversible modification of the worm acetylcholinesterase after inhibition. These observations highlight the pharynx of C. elegans as a new tractable approach to explore anti-cholinesterase intoxication and recovery with the potential to resolve critical genetic determinants of these neurotoxins' mode of action.
Collapse
Affiliation(s)
- Patricia G Izquierdo
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| | - Vincent O'Connor
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - A Christopher Green
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - Lindy Holden-Dye
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - John E H Tattersall
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| |
Collapse
|
9
|
Nagabooshanam S, Roy S, Mathur A, Mukherjee I, Krishnamurthy S, Bharadwaj LM. Electrochemical micro analytical device interfaced with portable potentiostat for rapid detection of chlorpyrifos using acetylcholinesterase conjugated metal organic framework using Internet of things. Sci Rep 2019; 9:19862. [PMID: 31882767 PMCID: PMC6934781 DOI: 10.1038/s41598-019-56510-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/04/2019] [Indexed: 01/27/2023] Open
Abstract
An Electrochemical micro Analytical Device (EµAD) was fabricated for sensitive detection of organophosphate pesticide chlorpyrifos in the food chain. Gold microelectrode (µE) modified with Zinc based Metal Organic Framework (MOF-Basolite Z1200) and Acetylcholinesterase (AChE) enzyme served as an excellent electro-analytical transducer for the detection of chlorpyrifos. Electrochemical techniques such as Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Differential Pulse Voltammetry (DPV) were performed for electrochemical analysis of the developed EµAD. The sensor needs only 2 µL of the analyte and it was tested within the linear range of 10 to 100 ng/L. The developed EµAD’s limit of detection (LoD) and sensitivity is 6 ng/L and 0.598 µ A/ng L−1/mm2 respectively. The applicability of the device for the detection of chlorpyrifos from the real vegetable sample was also tested within the range specified. The fabricated sensor showed good stability with a shelf-life of 20 days. The EµAD’s response time is of 50 s, including an incubation time of 20 s. The developed EµAD was also integrated with commercially available low-cost, handheld potentiostat (k-Stat) using Bluetooth and the results were comparable with a standard electrochemical workstation.
Collapse
Affiliation(s)
- Shalini Nagabooshanam
- Amity Institute of Nanotechnology, Amity University, Noida, Sector 125, Uttar Pradesh, 201301, India
| | - Souradeep Roy
- Amity Institute of Nanotechnology, Amity University, Noida, Sector 125, Uttar Pradesh, 201301, India
| | - Ashish Mathur
- Amity Institute of Nanotechnology, Amity University, Noida, Sector 125, Uttar Pradesh, 201301, India.
| | - Irani Mukherjee
- Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Satheesh Krishnamurthy
- Nanoscale Energy and Surface Engineering, School of Engineering and Innovation, The Open University, Walton Hall Campus, Milton Keynes, MK7 6AA, United Kingdom.
| | - Lalit M Bharadwaj
- Amity Institute of Nanotechnology, Amity University, Noida, Sector 125, Uttar Pradesh, 201301, India
| |
Collapse
|
10
|
de A. Cavalcante SF, Simas ABC, Kuča K. Nerve Agents’ Surrogates: Invaluable Tools for Development of Acetylcholinesterase Reactivators. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190806114017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of nerve agents as warfare and in terrorist acts has drawn much attention from the governments and societies. Such toxic organophosphorus compounds are listed in Chemical Weapons Convention as Schedule 1 chemicals. The discussion about the chemical identity of the elusive Novichok agents, more potent compounds than best known G- and V-Agents, which have been implicated in recent rumorous assassination plots, clearly demonstrating the importance of the matter. Furthermore, accidents with pesticides or misuse thereof have been a pressing issue in many countries. In this context, the continued development of novel cholinesterase reactivators, antidotes for organophosphorus poisoning, a rather restricted class of pharmaceutical substances, is warranted. Testing of novel candidates may require use of actual nerve agents. Nonetheless, only a few laboratories comply with the requirements for storing, possession and manipulation of such toxic chemicals. To overcome such limitations, nerve agents’ surrogates may be a useful alternative, as they undergo the same reaction with cholinesterases, yielding similar adducts, allowing assays with novel antidote candidates, among other applications.
Collapse
Affiliation(s)
- Samir F. de A. Cavalcante
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alessandro B. C. Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Chambers JE, Meek EC. Novel centrally active oxime reactivators of acetylcholinesterase inhibited by surrogates of sarin and VX. Neurobiol Dis 2019; 133:104487. [PMID: 31158460 DOI: 10.1016/j.nbd.2019.104487] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/07/2019] [Accepted: 05/30/2019] [Indexed: 11/18/2022] Open
Abstract
A novel oxime platform, the substituted phenoxyalkyl pyridinium oximes (US patent 9,227,937), was invented at Mississippi State University with an objective of discovering a brain-penetrating antidote to highly potent organophosphate anticholinesterases, such as the nerve agents. The goal was reactivation of inhibited brain acetylcholinesterase to attenuate the organophosphate-induced hypercholinergic activity that results in glutamate-mediated excitotoxicity and neuropathology. The currently approved oxime antidote in the US, 2-PAM, cannot do this. Using highly relevant surrogates of sarin and VX that leave acetylcholinesterase phosphylated with the same chemical moiety as their respective nerve agents, in vitro screens and in vivo tests in rats were conducted to identify the most efficacious members of this platform. The most promising novel oximes provided 24-h survival of lethal level surrogate exposure better than 2-PAM in almost all cases, and two of the oximes shortened the time to cessation of seizure-like behavior while 2-PAM did not. The most promising novel oximes attenuated neuropathology as indicated by immunohistochemical stains for both glia and neurons, while 2-PAM did not protect either glia or neurons. These results strongly suggest that these novel oximes can function within the brain to protect it, and therefore show great promise as potential future nerve agent antidotes.
Collapse
Affiliation(s)
- Janice E Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States of America.
| | - Edward C Meek
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States of America
| |
Collapse
|
12
|
Thompson CM, Gerdes JM, VanBrocklin HF. Positron emission tomography studies of organophosphate chemical threats and oxime countermeasures. Neurobiol Dis 2019; 133:104455. [PMID: 31022458 DOI: 10.1016/j.nbd.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/28/2019] [Accepted: 04/19/2019] [Indexed: 01/31/2023] Open
Abstract
There is a unique in vivo interplay involving the mechanism of inactivation of acetylcholinesterase (AChE) by toxic organophosphorus (OP) compounds and the restoration of AChE activity by oxime antidotes. OP compounds form covalent adducts to this critical enzyme target and oximes are introduced to directly displace the OP from AChE. For the most part, the in vivo inactivation of AChE leading to neurotoxicity and antidote-based therapeutic reversal of this mechanism are well understood, however, these molecular-level events have not been evaluated by dynamic imaging in living systems at millimeter resolution. A deeper understanding of these critically, time-dependent mechanisms is needed to develop new countermeasures. To address this void and to help accelerate the development of new countermeasures, positron-emission tomography (PET) has been investigated as a unique opportunity to create platform technologies to directly examine the interdependent toxicokinetic/pharmacokinetic and toxicodynamic/pharmacodynamic features of OPs and oximes in real time within live animals. This review will cover two first-in-class PET tracers representing an OP and an oxime antidote, including their preparation, requisite pharmacologic investigations, mechanistic interpretations, biodistribution and imaging.
Collapse
Affiliation(s)
- Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA.
| | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco 185 Berry St. Suite 350, San Francisco, CA 94107, USA
| |
Collapse
|
13
|
Leung MCK, Silva MH, Palumbo AJ, Lohstroh PN, Koshlukova SE, DuTeaux SB. Adverse outcome pathway of developmental neurotoxicity resulting from prenatal exposures to cannabis contaminated with organophosphate pesticide residues. Reprod Toxicol 2019; 85:12-18. [PMID: 30668982 DOI: 10.1016/j.reprotox.2019.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/07/2018] [Accepted: 01/14/2019] [Indexed: 01/11/2023]
Abstract
There is growing concern that increased use of medical and recreational cannabis may result in increased exposure to contaminants on the cannabis, such as pesticides. Several states are moving towards implementing robust regulation of the sales, cultivation, and manufacture of cannabis products. However, there are challenges with creating health-protective regulations in an industry that, to date, has been largely unregulated. The focus of this publication is a theoretical examination of what may happen when women are exposed pre-conceptually or during pregnancy to cannabis contaminated with pesticides. We propose an adverse outcome pathway of concomitant prenatal exposure to cannabinoids and the organophosphate pesticide chlorpyrifos by curating what we consider to be the key events at the molecular, cellular, and tissue levels that result in developmental neurotoxicity. The implications of this adverse outcome pathway underscore the need to elucidate the potential developmental neurotoxicity that may result from prenatal exposure to pesticide-contaminated cannabis.
Collapse
Affiliation(s)
- Maxwell C K Leung
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States.
| | - Marilyn H Silva
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Amanda J Palumbo
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Peter N Lohstroh
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Svetlana E Koshlukova
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Shelley B DuTeaux
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| |
Collapse
|
14
|
Moon Y, Jafry AT, Bang Kang S, Young Seo J, Baek KY, Kim EJ, Pan JG, Choi JY, Kim HJ, Han Lee K, Jeong K, Bae SW, Shin S, Lee J, Lee Y. Organophosphorus hydrolase-poly-β-cyclodextrin as a stable self-decontaminating bio-catalytic material for sorption and degradation of organophosphate pesticide. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:261-269. [PMID: 30447633 DOI: 10.1016/j.jhazmat.2018.10.094] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/05/2018] [Accepted: 10/31/2018] [Indexed: 05/25/2023]
Abstract
A region suffering from an attack of a nerve agent requires not only a highly sorptive material but also a fast-acting catalyst to decontaminate the lethal chemical present. The product should be capable of high sorptive capacity, selectivity and quick response time to neutralize the long lasting harmful effects of nerve agents. Herein, we have utilized organophosphorus hydrolase (OPH) as a non-toxic bio-catalytic material held in with the supporting matrix of poly-β-cyclodextrin (PCD) as a novel sorptive reinforced self-decontaminating material against organophosphate intoxication. OPH coated PCD (OPH-PCD) will not only be providing support for holding enzyme but also would be adsorbing methyl paraoxon (MPO) used as a simulant, in a host-guest inclusion complex formation. Sorption trend for PCD revealed preference towards the more hydrophobic MPO against para-nitrophenol (pNP). The results show sorption capacity of 1.26 mg/g of 100 μM MPO with PCD which was 1.7 times higher compared to pNP. The reaction rate with immobilized OPH-PCD was found to be 23% less compared to free enzyme. With the help of OPH-PCD, continuous hydrolysis (100%) of MPO into pNP was observed for a period of 24 h through packed bed reactor with good reproducibility and stability of enzyme. The long-term stability also confirmed its stable nature for the investigation period of 4 days where it maintained activity. Combined with its fast and reactive nature, the resulting self-decontaminating regenerating material provides a promising strategy for the neutralization of nerve agents and preserving the environment.
Collapse
Affiliation(s)
- Youngkwang Moon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Ali Turab Jafry
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Soon Bang Kang
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jin Young Seo
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kyung-Youl Baek
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | | | | | | | - Hyun-Ji Kim
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kang Han Lee
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Keunhong Jeong
- Department of Chemistry and Nuclear & WMD Protection Research Center, Korea Military Academy, Seoul, Republic of Korea
| | - Se Won Bae
- Korea Institute of Industrial Technology, Cheonan, Republic of Korea
| | - Seunghan Shin
- Korea Institute of Industrial Technology, Cheonan, Republic of Korea
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Yongwoo Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
15
|
Chao CK, Balasubramanian N, Gerdes JM, Thompson CM. The inhibition, reactivation and mechanism of VX-, sarin-, fluoro-VX and fluoro-sarin surrogates following their interaction with HuAChE and HuBuChE. Chem Biol Interact 2018; 291:220-227. [PMID: 29920286 PMCID: PMC6061941 DOI: 10.1016/j.cbi.2018.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/20/2018] [Accepted: 06/15/2018] [Indexed: 10/14/2022]
Abstract
In this study, the mechanisms of HuAChE and HuBChE inhibition by Me-P(O) (OPNP) (OR) [PNP = p-nitrophenyl; R = CH2CH3, CH2CH2F, OCH(CH3)2, OCH(CH3) (CH2F)] representing surrogates and fluoro-surrogates of VX and sarin were studied by in vitro kinetics and mass spectrometry. The in vitro measures showed that the VX- and fluoro-VX surrogates were relatively strong inhibitors of HuAChE and HuBChE (ki ∼ 105-106 M-1min-1) and underwent spontaneous and 2-PAM-mediated reactivation within 30 min. The sarin surrogates were weaker inhibitors of HuAChE and HuBChE (ki ∼ 104-105 M-1min-1), and in general did not undergo spontaneous reactivation, although HuAChE adducts were partially reactivatable at 18 h using 2-PAM. The mechanism of HuAChE and HuBChE inhibition by the surrogates was determined by Q-TOF and MALDI-TOF mass spectral analyses. The surrogate-adducted proteins were trypsin digested and the active site-containing peptide bearing the OP-modified serine identified by Q-TOF as triply- and quadruply-charged ions representing the respective increase in mass of the attached OP moiety. Correspondingly, monoisotopic ions of the tryptic peptides representing the mass increase of the OP-adducted peptide was identified by MALDI-TOF. The mass spectrometry analyses validated the identity of the OP moiety attached to HuAChE or HuBChE as MeP(O) (OR)-O-serine peptides (loss of the PNP leaving group) via mechanisms consistent with those found with chemical warfare agents. MALDI-TOF MS analyses of the VX-modified peptides versus time showed a steady reduction in adduct versus parent peptide (reactivation), whereas the sarin-surrogate-modified peptides remained largely intact over the course of the experiment (24 h). Overall, the presence of a fluorine atom on the surrogate modestly altered the rate constants of inhibition and reactivation, however, the mechanism of inhibition (ejection of PNP group) did not change.
Collapse
Affiliation(s)
- Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, 59812, United States
| | | | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, 59812, United States
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT, 59812, United States.
| |
Collapse
|
16
|
Gambardella C, Nichino D, Iacometti C, Ferrando S, Falugi C, Faimali M. Long term exposure to low dose neurotoxic pesticides affects hatching, viability and cholinesterase activity of Artemia sp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 196:79-89. [PMID: 29358113 DOI: 10.1016/j.aquatox.2018.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
The brine shrimp Artemia was used as a model organism to test toxicity of several neuroactive pesticides (chlorpyrifos (CLP), chlorpyrifos oxon (CLP ox), diazinon (DZN), carbaryl (CBR)) following exposure to far below than lethal doses. Cysts were exposed to the pesticides in order to test a scenario similar to actual coastal environment contamination, by analyzing different responses. Cysts were rehydrated in water containing the pesticides at concentrations ranging from 10-11 to 10-5 M, for 72, 96 and 192 h, respectively. For these exposure times, morpho-functional and biochemical parameters, such as hatching speed and viability were investigated in the larvae together with cholinesterase (ChE) activity quantification and histochemical localization. Finally, ChE inhibition was also compared with conventional selective ChE inhibitors. Results showed that CLP ox and CBR caused a significant dose-dependent decrease in hatching speed, followed by high percentages of larval death, while CLP and DZN were responsible for irregular hatching patterns. In addition, the pesticides mostly caused larval death some days post-hatching, whereas this effect was negligible for the specific ChE inhibitors, suggesting that part of pesticide toxicity may be due to molecules other than the primary target. ChE activity was observed in the protocerebrum lobes, linked to the development of pair eyes. Such activity was inhibited in larvae exposed to all pesticides. When compared to conventional selective inhibitors of ChE activities, this inhibition demonstrated that the selected pesticides mainly affect acetylcholinesterase and, to a lesser extent, pseudocholinesterases. In conclusion, the brine shrimp is a good model to test the environmental toxicity of long term exposure to cholinergic pesticides, since changes in hatching speed, viability and ChE activity were observed.
Collapse
Affiliation(s)
| | - Daniela Nichino
- DISTAV, University of Genoa, Viale Benedetto XV, 16132, Italy
| | | | - Sara Ferrando
- DISTAV, University of Genoa, Viale Benedetto XV, 16132, Italy
| | - Carla Falugi
- DISTAV, University of Genoa, Viale Benedetto XV, 16132, Italy
| | | |
Collapse
|
17
|
Neumann KD, Thompson CM, Blecha JE, Gerdes JM, VanBrocklin HF. An improved radiosynthesis of O-(2-[ 18 F]fluoroethyl)-O-(p-nitrophenyl)methylphosphonate: A first-in-class cholinesterase PET tracer. J Labelled Comp Radiopharm 2017; 60:337-342. [PMID: 28406525 DOI: 10.1002/jlcr.3511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 11/06/2022]
Abstract
O-(2-Fluoroethyl)-O-(p-nitrophenyl) methylphosphonate 1 is an organophosphate cholinesterase inhibitor that creates a phosphonyl-serine covalent adduct at the enzyme active site blocking cholinesterase activity in vivo. The corresponding radiolabeled O-(2-[18 F]fluoroethyl)-O-(p-nitrophenyl) methylphosphonate, [18 F]1, has been previously prepared and found to be an excellent positron emission tomography imaging tracer for assessment of cholinesterases in live brain, peripheral tissues, and blood. However, the previously reported [18 F]1 tracer synthesis was slow even with microwave acceleration, required high-performance liquid chromatography separation of the tracer from impurities, and gave less optimal radiochemical yields. In this paper, we report a new synthetic approach to circumvent these shortcomings that is reliant on the facile reactivity of bis-(O,O-p-nitrophenyl) methylphosphonate, 2, with 2-fluoroethanol in the presence of DBU. The cold synthesis was successfully translated to provide a more robust radiosynthesis. Using this new strategy, the desired tracer, [18 F]1, was obtained in a non-decay-corrected radiochemical yield of 8 ± 2% (n = 7) in >99% radiochemical and >95% chemical purity with a specific activity of 3174 ± 345 Ci/mmol (EOS). This new facile radiosynthesis routinely affords highly pure quantities of [18 F]1, which will further enable tracer development of OP cholinesterase inhibitors and their evaluation in vivo.
Collapse
Affiliation(s)
- Kiel D Neumann
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Joseph E Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
18
|
Chao CK, Ahmed SK, Gerdes JM, Thompson CM. Novel Organophosphate Ligand O-(2-Fluoroethyl)-O-(p-Nitrophenyl)Methylphosphonate: Synthesis, Hydrolytic Stability and Analysis of the Inhibition and Reactivation of Cholinesterases. Chem Res Toxicol 2016; 29:1810-1817. [PMID: 27551891 PMCID: PMC5575788 DOI: 10.1021/acs.chemrestox.6b00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The organophosphate O-(2-fluoroethyl)-O-(p-nitrophenyl) methyphosphonate 1 is the first-in-class, fluorine-18 radiolabeled organophosphate inhibitor ([18F]1) of acetylcholinesterase (AChE). In rats, [18F]1 localizes in AChE rich regions of the brain and other tissues where it likely exists as the (CH3)(18FCH2CH2O)P(O)-AChE adduct (ChE-1). Characterization of this adduct would define the inhibition mechanism and subsequent postinhibitory pathways and reactivation rates. To validate this adduct, the stability (hydrolysis) of 1 and ChE-1 reactivation rates were determined. Base hydrolysis of 1 yields p-nitrophenol and (CH3) (FCH2CH2O)P(O)OH with pseudo first order rate constants (kobsd) at pH 7.4 (PBS) of 3.25 × 10-4 min-1 (t1/2 = 35.5 h) at 25 °C and 8.70 × 10-4 min-1 (t1/2 = 13.3 h) at 37 °C. Compound 1 was a potent inhibitor of human acetylcholinesterase (HuAChE; ki = 7.5 × 105 M-1 min-1), electric eel acetylcholinesterase (EEAChE) (ki = 3.0 × 106 M-1 min-1), and human serum butyrylcholinesterase (HuBChE; 1.95 × 105 M-1 min-1). Spontaneous and oxime-mediated reactivation rates for the (CH3) (FCH2CH2O)P(O)-serine ChE adducts using 2-PAM (10 μM) were (a) HuAChE 8.8 × 10-5 min-1 (t1/2 = 131.2 h) and 2.41 × 10-2 min-1 (t1/2 = 0.48 h), (b) EEAChE 9.32 × 10-3 min-1 (t1/2 = 1.24 h) and 3.33 × 10-2 min-1 (t1/2 = 0.35 h), and (c) HuBChE 1.16 × 10-4 min-1 (t1/2 = 99.6 h) and 4.19 × 10-2 min-1 (t1/2 = 0.27 h). All ChE-1 adducts undergo rapid and near complete restoration of enzyme activity following addition of 2-PAM (30 min), and no aging was observed for either reactivation process. The fast reactivation rates and absence of aging of ChE-1 adducts are explained on the basis of the electron-withdrawing fluorine group that favors the nucleophilic reactivation processes but disfavors cation-based dealkylation aging mechanisms. Therefore, the likely fate of radiolabeled compound 1 in vivo is the formation of (CH3)(FCH2CH2O)P(O)-serine adducts and monoacid (CH3)(FCH2CH2O)P(O)OH from hydrolysis and reactivation.
Collapse
Affiliation(s)
- Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
| | - S. Kaleem Ahmed
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
- Center for Neuromolecular Research, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - John M. Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
- Center for Neuromolecular Research, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - Charles M. Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|