1
|
Mondal I, Groves M, Driver EM, Vittori W, Halden RU. Carcinogenic formaldehyde in U.S. residential buildings: Mass inventories, human health impacts, and associated healthcare costs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173640. [PMID: 38825200 DOI: 10.1016/j.scitotenv.2024.173640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Formaldehyde, a human carcinogen, is formulated into building materials in the U.S. and worldwide. We used literature information and mass balances to obtain order-of-magnitude estimates of formaldehyde inventories in U.S. residential buildings as well as associated exposures, excess morbidity, and healthcare costs along with other economic ramifications. Use of formaldehyde in building materials dates to the 1940s and continues today unabated, despite its international classification in 2004 as a human carcinogen. Global production of formaldehyde was about 32 million metric tons (MMT) in 2006. In the U.S., 5.7 ± 0.05 to 7.4 ± 0.125 MMT of formaldehyde were produced annually from 2006 to 2022, with 65 ± 5 % of this mass (3.7 ± 0.03 to 4.8 ± 0.08 MMT) entering building materials. For a typical U.S. residential building constructed in 2022, we determined an average total mass of formaldehyde containing chemicals of 48.2 ± 10.1 kg, equivalent to 207 ± 40 g of neat formaldehyde per housing unit. When extrapolated to the entire U.S. housing stock, this equates to 29,800 ± 5760 metric tons of neat formaldehyde. If the health threshold in indoor air of 0.1 mg/m3 is never surpassed in a residential building, safe venting of embedded formaldehyde would take years. Using reported indoor air exceedances, up to 645 ± 33 excess cancer cases may occur U.S. nationwide annually generating up to US$65 M in cancer treatment costs alone, not counting ~16,000 ± 1000 disability adjusted life-years. Other documents showed health effects of formaldehyde exist, but could not be quantified reliably, including sick building syndrome outcomes such as headache, asthma, and various respiratory illnesses. Opportunities to improve indoor air exposure assessments are discussed with special emphasis on monitoring of building wastewater. Safer alternatives to formaldehyde in building products exist and are recommended for future use.
Collapse
Affiliation(s)
- Indrayudh Mondal
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America; School of Sustainable Engineering and the Built Environment, 660 S College Ave, Tempe, AZ 85281, United States of America
| | - Megan Groves
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America
| | - Erin M Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America
| | - Wendy Vittori
- Health Product Declaration Collaborative, 401 Edgewater Place, Suite 600, Wakefield, MA 01880, United States of America
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America.
| |
Collapse
|
2
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
3
|
Li SS, Fang SM, Chen J, Zhang Z, Yu QY. Effects of short-term exposure to volatile pesticide dichlorvos on the olfactory systems in Spodoptera litura: Calcium homeostasis, synaptic plasticity and apoptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161050. [PMID: 36549522 DOI: 10.1016/j.scitotenv.2022.161050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Volatile pesticides are a growing environmental and public health concern. However, little attention has been paid to its olfactory neurotoxic effect on pests and non-target organisms. Dichlorvos is a widely used organophosphorus fumigant that is ubiquitous in the environment. This study aims to explore the mode of action of the volatile dichlorvos-mediated olfactory impairment using a lepidopteran insect Spodoptera litura as a model. It was indicated that electroantennogram amplitudes of the male moths' response to sex pheromones and phenylacetaldehyde were reduced by approximately 20 % after 12-h fumigation exposure. RNA-Sequencing analysis revealed that down-regulation of trypsin and CLIC2 might be responsible for inhibition of odor recognition in the antenna, the peripheral olfactory tissue. In the head, 822 (84.05 %) of the 978 differentially expressed genes (DEGs) were up-regulated, of which seven DEGs encoding transcription factors may mainly modulate the stress-regulatory networks. Combining transcriptome with brain calcium imaging and Annexin V-mCherry staining experiments showed that volatile dichlorvos mainly disrupts Ca2+ homeostasis and synaptic plasticity, induces apoptosis in the central nervous system, and further leads to olfactory dysfunction. Overall, this study highlighted a comprehensive work model for dichlorvos-induced olfactory impairment in S. litura and may provide insights into toxic effects of airborne organophosphates on non-target organisms.
Collapse
Affiliation(s)
- Shu-Shang Li
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China
| | - Jie Chen
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Marinsek GP, Choueri PKG, Choueri RB, de Souza Abessa DM, Gonçalves ARN, Bortolotto LB, de Britto Mari R. Integrated analysis of fish intestine biomarkers: Complementary tools for pollution assessment. MARINE POLLUTION BULLETIN 2022; 178:113590. [PMID: 35367694 DOI: 10.1016/j.marpolbul.2022.113590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The gastrointestinal tract and its enteric nervous system are the first routes of food and xenobiotics uptake. Considering the importance of this organ, this study evaluated intestinal biomarkers of Sphoeroides testudineus integrating the data to generate tools for pollution assessment. The fish were collected in three sites of São Paulo Coast and their intestines were analyzed for biochemical, histology, and neuronal density and morphometry biomarkers. To evaluate the differences among the data, a PERMANOVA was applied, followed by a FA/PCA. The PERMANOVA indicated differences (P < 0.001) between the regions (RA, A1, and A2). Four factors were extracted from the FA/PCA (62% cumulative), showing that the animals from A2 presented severe alterations, mainly in intestinal morphometry and neuronal density. A1 alterations refer mainly to the increase of neuronal metabolism. Our results also evidence a gradient of environmental quality related to the protection level (AR > A1 > A2).
Collapse
Affiliation(s)
- Gabriela Pustiglione Marinsek
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Animal Morphophysiology Laboratory, São Vicente, Brazil; São Paulo State University (Unesp), Institute for Advanced Studies of Ocean, São Vicente, Brazil.
| | - Paloma Kachel Gusso Choueri
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Research Group on Pollution and Aquatic Ecotoxicology, São Vicente, Brazil; Ecotoxicology Laboratory - Unisanta, Universidade Santa Cecília, R. Oswaldo Cruz, 277 - CP 11045-907 - Boqueirão, Santos - SP, Brazil
| | - Rodrigo Brasil Choueri
- Federal University of São Paulo, Baixada Santista Campus, Department of Marine Sciences, Institute of the Sea, Brazil
| | - Denis Moledo de Souza Abessa
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Research Group on Pollution and Aquatic Ecotoxicology, São Vicente, Brazil
| | - Alexandre Rodrigo Nascimento Gonçalves
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Animal Morphophysiology Laboratory, São Vicente, Brazil
| | - Lorihany Bogo Bortolotto
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Animal Morphophysiology Laboratory, São Vicente, Brazil
| | - Renata de Britto Mari
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Animal Morphophysiology Laboratory, São Vicente, Brazil; São Paulo State University (Unesp), Institute for Advanced Studies of Ocean, São Vicente, Brazil
| |
Collapse
|
5
|
Chen J, Li SS, Fang SM, Zhang Z, Yu QY. Olfactory dysfunction and potential mechanisms caused by volatile organophosphate dichlorvos in the silkworm as a model animal. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127940. [PMID: 34896704 DOI: 10.1016/j.jhazmat.2021.127940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Volatile pesticides impair olfactory function in workers/farmers and insects, but data on molecular responses and mechanisms are poorly understood. This study aims to reveal the mechanisms of olfactory dysfunction in the silkworm after exposure to volatile dichlorvos. Our results demonstrated that acute exposure for 12 h significantly reduced electroantennogram responses, and over 62.50% of the treated male moths cannot locate the pheromone source. Transcriptional and proteomic responses of the antennae and heads were investigated. A total of 101 differentially expressed genes (DEGs) in the antennae, 138 DEGs in the heads, and 43 differentially expressed proteins (DEPs) in the heads including antennae were revealed. We discovered that upregulations of Arrestin1 and nitric oxide synthase1 (NOS1) may inhibit cyclic nucleotide-gated channels and hinder calcium influx in the antennae. In the central nervous systems (CNS), downregulations of tyrosine hydroxylase (TH) and tyrosine decarboxylase (TDC) may inhibit olfactory signal transduction by reducing the second messenger biosynthesis. Meanwhile, an abnormal increase of brain cell apoptosis was revealed by Annexin V-mCherry staining, often leading to persistent neurologic impairment. Taken together, this study highlighted olfactory dysfunction caused by dichlorvos, which may provide a novel perspective for understanding the toxicity mechanism of volatile pesticides in other organisms.
Collapse
Affiliation(s)
- Jie Chen
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Shu-Shang Li
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Quan-You Yu
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
Investigation of partition coefficients and fingerprints of atmospheric gas- and particle-phase intermediate volatility and semi-volatile organic compounds using pixel-based approaches. J Chromatogr A 2022; 1665:462808. [PMID: 35032735 DOI: 10.1016/j.chroma.2022.462808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/21/2022]
Abstract
Ambient gas- and particle-phase intermediate volatility and semi-volatile organic compounds (I/SVOCs) of Beijing were analyzed by a thermal desorption comprehensive two-dimensional gas chromatography quadrupole mass spectrometry (TD-GC × GC-qMS). A pixel-based scheme combing the integration-based approach was applied for partition coefficients estimation and fingerprints identification. Blob-by-blob recognition was firstly utilized to characterize I/SVOCs from the molecular level. 412 blobs in gas-phase and 460 blobs in particle-phase were resolved, covering a total response of 47.5% and 43.5%. A large pool of I/SVOCs was found with a large diversity of chemical classes in both gas- and particle-phase. Acids (8.5%), b-alkanes (5.8%), n-alkanes (C8-C25, 5.3%), and aromatics (4.4%) were dominant in gas-phase while esters (7.0%, including volatile chemical product compounds, VCPs), n-alkanes (C9-C34, 5.7%), acids (4.6%), and siloxanes (3.6%) were abundant in particle-phase. Air pollutants were then evaluated by a two-parameter linear free energy relationship (LFER) model, which could be further implemented in the two-dimensional volatility basis set (2D-VBS) model. Multiway principal component analysis (MPCA) and partial least squares-discriminant analysis (PLS-DA) implied that naphthalenes, phenol, propyl-benzene isomers, and oxygenated volatile organic compounds (OVOCs) were key components in the gas-phase under different pollution levels. This work gives more insight into property estimation and fingerprints identification for complex ambient samples.
Collapse
|
7
|
Presumed Exposure to Chemical Pollutants and Experienced Health Impacts among Warehouse Workers at Logistics Companies: A Cross-Sectional Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137052. [PMID: 34280987 PMCID: PMC8296867 DOI: 10.3390/ijerph18137052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/17/2022]
Abstract
During intercontinental shipping, freight containers and other closed transport devices are applied. These closed spaces can be polluted with various harmful chemicals that may accumulate in poorly ventilated environments. The major pollutants are residues of pesticides used for fumigation as well as volatile organic compounds (VOCs) released from the goods. While handling cargos at logistics companies, workers can be exposed to these pollutants, frequently without adequate occupational health and safety precautions. A cross-sectional questionnaire survey was conducted among potentially exposed warehouse workers and office workers as controls at Hungarian logistics companies (1) to investigate the health effects of chemical pollutants occurring in closed spaces of transportation and storage and (2) to collect information about the knowledge of and attitude toward workplace chemical exposures as well as the occupational health and safety precautions applied. Pre-existing medical conditions did not show any significant difference between the working groups. Numbness or heaviness in the arms and legs (AOR = 3.99; 95% CI = 1.72–9.26) and dry cough (AOR = 2.32; 95% CI = 1.09–4.93) were significantly associated with working in closed environments of transportation and storage, while forgetfulness (AOR = 0.40; 95% CI = 0.18–0.87), sleep disturbances (AOR = 0.36; 95% CI = 0.17–0.78), and tiredness after waking up (AOR = 0.40; 95% CI = 0.20–0.79) were significantly associated with employment in office. Warehouse workers who completed specific workplace health and safety training had more detailed knowledge related to this workplace chemical issue (AOR = 8.18; 95% CI = 3.47–19.27), and they were significantly more likely to use certain preventive measures. Warehouse workers involved in handling cargos at logistics companies may be exposed to different chemical pollutants, and the related health risks remain unknown if the presence of these chemicals is not recognized. Applied occupational health and safety measures at logistics companies are not adequate enough to manage this chemical safety issue, which warrants awareness raising and the introduction of effective preventive strategies to protect workers’ health at logistics companies.
Collapse
|
8
|
Taylor WL, Schuldt SJ, Delorit JD, Chini CM, Postolache TT, Lowry CA, Brenner LA, Hoisington AJ. A framework for estimating the United States depression burden attributable to indoor fine particulate matter exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143858. [PMID: 33293092 DOI: 10.1016/j.scitotenv.2020.143858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Recently published exploratory studies based on exposure to outdoor fine particulates, defined as particles with a nominal mean diameter less than or equal to 2.5 μm (PM2.5) indicate that the pollutant may play a role in mental health conditions, such as major depressive disorder. This paper details a model that can estimate the United States (US) major depressive disorder burden attributable to indoor PM2.5 exposure, locally modifiable through input parameter calibrations. By utilizing concentration values in an exposure-response function, along with relative risk values derived from epidemiological studies, the model estimated the prevalence of expected cases of major depressive disorder in multiple scenarios. Model results show that exposure to indoor PM2.5 might contribute to 476,000 cases of major depressive disorder in the US (95% confidence interval 11,000-1,100,000), approximately 2.7% of the total number of cases reported annually. Increasing heating, ventilation, and air conditioning (HVAC) filter efficiency in a residential dwelling results in minor reductions in depressive disorders in rural or urban locations in the US. Nevertheless, a minimum efficiency reporting value (MERV) 13 filter does have a benefit/cost ratio at or near one when smoking occurs indoors; during wildfires; or in locations with elevated outdoor PM2.5 concentrations. The approach undertaken herein could provide a transparent strategy for investment into the built environment to improve the mental health of the occupants.
Collapse
Affiliation(s)
- William L Taylor
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA
| | - Steven J Schuldt
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA
| | - Justin D Delorit
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA
| | - Christopher M Chini
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA
| | - Teodor T Postolache
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christopher A Lowry
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Departments of Physical Medicine and Rehabilitation, Psychiatry, & Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lisa A Brenner
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Departments of Physical Medicine and Rehabilitation, Psychiatry, & Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Psychiatry and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew J Hoisington
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Department of Psychiatry and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
9
|
Gallon V, Le Cann P, Sanchez M, Dematteo C, Le Bot B. Emissions of VOCs, SVOCs, and mold during the construction process: Contribution to indoor air quality and future occupants' exposure. INDOOR AIR 2020; 30:691-710. [PMID: 31943356 DOI: 10.1111/ina.12647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Building materials and human activities are important sources of contamination indoors, but little information is available regarding contamination during construction process which could persist during the whole life of buildings. In this study, six construction stages on two construction sites were investigated regarding the emissions of 43 volatile organic compounds (VOCs), 46 semi-volatile organic compounds (SVOCs), and the presence of 4 genera of mold. Results show that the future indoor air quality does not only depend on the emissions of each building product but that it is also closely related to the whole implementation process. Mold spore measurements can reach 1400 CFU/m3 , which is particularly high compared with the concentrations usually measured in indoor environments. Relatively low concentrations of VOCs were observed, in relation to the use of low emissive materials. Among SVOCs analyzed, some phthalates, permethrin, and hydrocarbons were found in significant concentrations upon the delivery of building as well as triclosan, suspected to be endocrine disruptor, and yet prohibited in the treatment of materials and construction since 2014. As some regulations exist for VOC emissions, it is necessary to implement them for SVOCs due to their toxicity.
Collapse
Affiliation(s)
- Victoria Gallon
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, University of Rennes, Rennes, France
| | - Pierre Le Cann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, University of Rennes, Rennes, France
| | | | | | - Barbara Le Bot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, University of Rennes, Rennes, France
| |
Collapse
|
10
|
Degl'Innocenti D, Ramazzotti M, Sarchielli E, Monti D, Chevanne M, Vannelli GB, Barletta E. Oxadiazon affects the expression and activity of aldehyde dehydrogenase and acylphosphatase in human striatal precursor cells: A possible role in neurotoxicity. Toxicology 2018; 411:110-121. [PMID: 30391265 DOI: 10.1016/j.tox.2018.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/05/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
Abstract
Exposure to herbicides can induce long-term chronic adverse effects such as respiratory diseases, malignancies and neurodegenerative diseases. Oxadiazon, a pre-emergence or early post-emergence herbicide, despite its low acute toxicity, may induce liver cancer and may exert adverse effects on reproductive and on endocrine functions. Unlike other herbicides, there are no indications on neurotoxicity associated with long-term exposure to oxadiazon. Therefore, we have analyzed in primary neuronal precursor cells isolated from human striatal primordium the effects of non-cytotoxic doses of oxadiazon on neuronal cell differentiation and migration, and on the expression and activity of the mitochondrial aldehyde dehydrogenase 2 (ALDH2) and of the acylphosphatase (ACYP). ALDH2 activity protects neurons against neurotoxicity induced by toxic aldehydes during oxidative stress and plays a role in neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease. ACYP is involved in ion transport, cell differentiation, programmed cell death and cancer, and increased levels of ACYP have been revealed in fibroblasts from patients affected by Alzheimer's disease. In this study we demonstrated that non-cytotoxic doses of oxadiazon were able to inhibit neuronal striatal cell migration and FGF2- and BDNF-dependent differentiation towards neuronal phenotype, and to inhibit the expression and activity of ALDH2 and to increase the expression and activity of ACYP2. In addition, we have provided evidence that in human primary neuronal precursor striatal cells the inhibitory effects of oxadiazon on cell migration and differentiation towards neuronal phenotype were achieved through modulation of ACYP2. Taken together, our findings reveal for the first time that oxadiazon could exert neurotoxic effects by impairing differentiative capabilities of primary neuronal cells and indicate that ALDH2 and ACYP2 are relevant molecular targets for the neurotoxic effects of oxadiazon, suggesting a potential role of this herbicide in the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Donatella Degl'Innocenti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Erica Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Marta Chevanne
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| |
Collapse
|
11
|
Pelletier M, Glorennec P, Mandin C, Le Bot B, Ramalho O, Mercier F, Bonvallot N. Chemical-by-chemical and cumulative risk assessment of residential indoor exposure to semivolatile organic compounds in France. ENVIRONMENT INTERNATIONAL 2018; 117:22-32. [PMID: 29705548 DOI: 10.1016/j.envint.2018.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The toxic effects of environmental exposure to chemicals are increasingly being studied and confirmed, notably for semivolatile organic compounds (SVOCs). These are found in many products and housing materials, from which they are emitted to indoor air, settled dust and other surfaces. OBJECTIVES The objective of this work is to assess the human health risk posed by residential indoor exposure to 32 SVOCs, assessed in previous nationwide studies. METHODS A chemical-by-chemical risk assessment, using a hazard quotient (HQ) or excess risk (ER) method, was supplemented by a cumulative risk assessment (CRA). For CRA, a hazard index (HI) method, as well as higher tier approaches using relative potency factors (RPFs) or toxic equivalency factors (TEFs) were used for the following endpoints: neurotoxicity, reproductive toxicity, genotoxicity and immunotoxicity. RESULTS HQs were above 1 for 50% of French children from birth to 2 years for BDE 47, and for 5% of children for lindane and dibutyl phthalate (DBP). Corresponding hazards are reprotoxic for BDE 47 and DBP, and immunotoxic for lindane. The CRA approach provided additional information of reprotoxic risks (HI > 1) that may occur for 95% of children and for 5% of the offspring for pregnant women's exposure. The SVOCs contributing most to these risks were PCB 101 and 118, BDE 47, and DBP. The higher tier CRA approaches showed that exposure to dwellings' SVOC mixtures were of concern for 95% of children for neurotoxic compounds having effects linked with neuronal death. To a lesser extent, effects mediated by the aryl hydrocarbon receptor (AhR) or by a decrease in testosterone levels may concern 5% of children and adults. Lastly, unacceptable immunotoxic risk related to exposure to 8 indoor PCBs was also observed for 5% of children. CONCLUSIONS In view of uncertainties related to compounds' toxicity for humans, these results justify the implementation of preventive measures, as well as the production of more standardized and comprehensive toxicological data for some compounds.
Collapse
Affiliation(s)
- Maud Pelletier
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Philippe Glorennec
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Corinne Mandin
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447, Marne la Vallée Cedex 2, France
| | - Barbara Le Bot
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Olivier Ramalho
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447, Marne la Vallée Cedex 2, France
| | - Fabien Mercier
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Nathalie Bonvallot
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|