1
|
Pal D, Prabhakar R, Barua VB, Zekker I, Burlakovs J, Krauklis A, Hogland W, Vincevica-Gaile Z. Microplastics in aquatic systems: A comprehensive review of its distribution, environmental interactions, and health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35741-1. [PMID: 39668270 DOI: 10.1007/s11356-024-35741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Microplastics (MPs) have become a critical pollutant, accumulating in aquatic ecosystems and posing significant environmental and human health risks. Approximately 5.25 trillion plastic particles float in global oceans, releasing up to 23,600 metric tonnes of dissolved organic carbon annually, which disrupts microbial dynamics. MPs arise from the breakdown of larger plastics, degraded by photodegradation, thermal degradation, and biological processes, which are influenced by polymer type and environmental factors. As carriers, MPs absorb and transport contaminants such as heavy metals, per- and polyfluoroalkyl substances (PFAS), and persistent organic pollutants (POPs) across trophic levels, thereby increasing toxicity within food webs. Key aquatic organisms, including microalgae, molluscs, and fish, experience cellular toxicity, oxidative stress, and disruptions in essential functions due to MP ingestion or adhesion, raising concerns about their bioaccumulation in humans through ingestion, inhalation, and dermal contact. The complex surface chemistry of MPs enhances their pollutant adsorption, a process modulated by environmental pH, salinity, and contamination levels, while aging and structural attributes further impact their bioavailability and toxicity. This review consolidates knowledge on MPs' occurrence, transformation, pollutant interactions, and methodologies for sampling and analysis, emphasizing advancements in spectroscopy and imaging techniques to improve MP detection in aquatic environments. These insights underscore the pressing need for standardized analytical protocols and comprehensive toxicological research to fully understand MPs' effects on ecosystems and human health, informing future mitigation strategies and policy development.
Collapse
Affiliation(s)
- Divya Pal
- Department of Biology and Environmental Science, Linnaeus University, SE-392 31, Kalmar, Sweden.
- Department of Ecology Environment & Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden.
| | - Roshan Prabhakar
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Stockholm, Sweden
| | - Visva Bharati Barua
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA
| | - Ivar Zekker
- Institute of Chemistry, University of Tartu, 14a Ravila St, Tartu, Estonia
| | | | - Andrejs Krauklis
- Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - William Hogland
- Environmental Engineering and Recovery, Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, SE-392 31, Kalmar, Sweden
| | - Zane Vincevica-Gaile
- Department of Environmental Science, University of Latvia, Jeglavas Street 1, Riga, LV-1004, Latvia
| |
Collapse
|
2
|
Winiarska E, Jutel M, Zemelka-Wiacek M. The potential impact of nano- and microplastics on human health: Understanding human health risks. ENVIRONMENTAL RESEARCH 2024; 251:118535. [PMID: 38460665 DOI: 10.1016/j.envres.2024.118535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
Plastics are used all over the world. Unfortunately, due to limited biodegradation, plastics cause a significant level of environmental pollution. The smallest recognized to date are termed nanoplastics (1 nm [nm] up to 1 μm [μm]) and microplastics (1 μm-5 mm). These nano- and microplastics can enter the human body through the respiratory system via inhalation, the digestive tract via consumption of contaminated food and water, or penetration through the skin via cosmetics and clothes contact. Bioaccumulation of plastics in the human body can potentially lead to a range of health issues, including respiratory disorders like lung cancer, asthma and hypersensitivity pneumonitis, neurological symptoms such as fatigue and dizziness, inflammatory bowel disease and even disturbances in gut microbiota. Most studies to date have confirmed that nano- and microplastics can induce apoptosis in cells and have genotoxic and cytotoxic effects. Understanding the cellular and molecular mechanisms of plastics' actions may help extrapolate the risks to humans. The article provides a comprehensive review of articles in databases regarding the impact of nano- and microplastics on human health. The review included retrospective studies and case reports of people exposed to nanoplastics and microplastics. This research highlights the need for further research to fully understand the extent of the impact of plastics on human health.
Collapse
Affiliation(s)
- Ewa Winiarska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland; ALL-MED Medical Research Institute, Wroclaw, Poland
| | | |
Collapse
|
3
|
Chen Q, Deng Q, Liu Y, Long Z, Li S, Liu Q, Lv Y, Qin J, Yang A, Huang Y, Tan Z, Wang D, Xing X, Xiao Y. Co-exposure of petrochemical workers to noise and mixture of benzene, toluene, ethylbenzene, xylene, and styrene: Impact on mild renal impairment and interaction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123628. [PMID: 38395129 DOI: 10.1016/j.envpol.2024.123628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Epidemiological evidence concerning effects of simultaneous exposure to noise and benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) on renal function remains uncertain. In 2020, a cross-sectional study was conducted among 1160 petrochemical workers in southern China to investigate effects of their co-exposure on estimated glomerular filtration rate (eGFR) and mild renal impairment (MRI). Noise levels were assessed using cumulative noise exposure (CNE). Urinary biomarkers for BTEXS were quantified. We found the majority of workers had exposure levels to noise and BTEXS below China's occupational exposure limits. CNE, trans, trans-muconic acid (tt-MA), and the sum of mandelic acid and phenylglyoxylic acid (PGMA) were linearly associated with decreased eGFR and increased MRI risk. We observed U-shaped associations for both N-acetyl-S-phenyl-L-cysteine (SPMA) and o-methylhippuric acid (2-MHA) with MRI. In further assessing the joint effect of BTEXS (β, -0.164 [95% CI, -0.296 to -0.033]) per quartile increase in all BTEXS metabolites on eGFR using quantile g-computation models, we found SPMA, tt-MA, 2-MHA, and PGMA played pivotal roles. Additionally, the risk of MRI associated with tt-MA was more pronounced in workers with lower CNE levels (P = 0.004). Multiplicative interaction analysis revealed antagonisms of CNE and PGMA on MRI risk (P = 0.034). Thus, our findings reveal negative dose-effect associations between noise and BTEXS mixture exposure and renal function in petrochemical workers. With the exception of toluene, benzene, xylene, ethylbenzene, and styrene are all concerning pollutants for renal dysfunction. Effects of benzene, ethylbenzene, and styrene exposure on renal dysfunction were more pronounced in workers with lower CNE.
Collapse
Affiliation(s)
- Qingfei Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Qifei Deng
- School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, Guangdong, China
| | - Yan Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Zihao Long
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Shuangqi Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Jingyao Qin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Aichu Yang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, No. 68 Haikang Street, Guangzhou, 510300, Guangdong, China
| | - Yongshun Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, No. 68 Haikang Street, Guangzhou, 510300, Guangdong, China
| | - Zhaoqing Tan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Dongsheng Wang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China; Joint International Research Laboratory of Environment and Health, Ministry of Education, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
4
|
Wang H, Huang M, Chen H, Shan X, Wang Z, Liu F, Sheng L. Experimental and theoretical study on the photoionization of styrene. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4967. [PMID: 37464983 DOI: 10.1002/jms.4967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
This study employed a vacuum ultraviolet synchrotron radiation source and reflectron time-of-flight mass spectrometry (TOF-MS) to investigate the photoionization and dissociation of styrene. By analyzing the photoionization mass spectrum and efficiency curve alongside G3B3 theoretical calculations, we determined the ionization energy of the molecular ion, appearance energy of fragment ions, and relevant dissociation pathways. The major ion peaks observed in the photoionization mass spectra of styrene correspond to C8 H8 + , C8 H7 + and C6 H6 + . The ionization energy of styrene is measured as 8.46 ± 0.03 eV, whereas the appearance energies of C8 H7 + and C6 H6 + are found to be 12.42 ± 0.03 and 12.22 ± 0.03 eV, respectively, in agreement with theoretical values. The main channel for the photodissociation of styrene molecular ions is the formation of benzene ions, whereas the dissociation channel that loses hydrogen atoms is the secondary channel. Based on the experimental results and empirical formulas, the required dissociation energies (Ed ) of C8 H7 + , C8 H6 + and C6 H6 + are calculated to be (3.96 ± 0.06), (4.00 ± 0.06) and (3.76 ± 0.06) eV, respectively. Combined with related thermochemical parameters, the standard enthalpies of formations of C8 H8 + , C8 H7 + , C8 H6 + and C6 H6 + are determined to be 964.2, 1346.3, 1350.2 and 1327.0 kJ/mol, respectively. Based on the theoretical study, the kinetic factors controlling the styrene dissociation reaction process are determined by using the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. This provides a reference for further research on the atmospheric photooxidation reaction mechanism of styrene in atmospheric and interstellar environments.
Collapse
Affiliation(s)
- Huanhuan Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingqiang Huang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry and Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, China
| | - Hao Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaobin Shan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhenya Wang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Fuyi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, China
| | - Liusi Sheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
5
|
Xia L, Noh Y, Whelton AJ, Boor BE, Cooper B, Lichti NI, Park JH, Shannahan JH. Pulmonary and neurological health effects associated with exposure to representative composite manufacturing emissions and corresponding alterations in circulating metabolite profiles. Toxicol Sci 2023; 193:62-79. [PMID: 36912746 PMCID: PMC10176243 DOI: 10.1093/toxsci/kfad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Cured-in-place pipe (CIPP) technology is increasingly being utilized to repair aging and damaged pipes, however, there are concerns associated with the public health hazards of emissions. CIPP installation involves the manufacture of a new plastic composite pipe at the worksite and includes multiple variable components including resin material, curing methods, and operational conditions. We hypothesize styrene-based composite manufacturing emissions (CMEs) will induce greater pulmonary inflammatory responses and oxidative stress, as well as neurological toxicity compared with nonstyrene CMEs. Further, these CME-toxicological responses will be sex- and time-dependent. To test the hypothesis, representative CMEs were generated using a laboratory curing chamber and characterized using thermal desorption-gas chromatography-mass spectrometry and photoionization detector. Styrene was released during staying, isothermal curing, and cooling phases of the process and peaked during the cooling phase. Male and female C57BL6/J mice were utilized to examine alterations in pulmonary responses and neurotoxicity 1 day and 7 days following exposure to air (controls), nonstyrene-CMEs, or styrene-CMEs. Serum styrene metabolites were increased in mice exposed to styrene-CMEs. Metabolic and lipid profiling revealed alterations related to CIPP emissions that were resin-, time-, and sex-dependent. Exposure to styrene-CMEs resulted in an influx of lymphocytes in both sexes. Expression of inflammatory and oxidative stress markers, including Tnfα, Vcam1, Ccl2, Cxcl2, Il6, Cxcl1, Tgfβ1, Tgmt2, and Hmox1, displayed alterations following exposure to emissions. These changes in pulmonary and neurological markers of toxicity were dependent on resin type, sex, and time. Overall, this study demonstrates resin-specific differences in representative CMEs and alterations in toxicity endpoints, which can potentially inform safer utilization of composite manufacturing processes.
Collapse
Affiliation(s)
- Li Xia
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yoorae Noh
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Andrew J Whelton
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Brandon E Boor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Bruce Cooper
- Bindley Bioscience Center Metabolomic Profiling Facility, Purdue University, West Lafayette, Indiana, USA
| | - Nathanael I Lichti
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
| | - Jae Hong Park
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
6
|
Huang M, Wang H, Shan X, Sheng L, Hu C, Gu X, Zhang W. Experimental study on synchrotron radiation photoionization of secondary organic aerosol derived from styrene ozonolysis. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Evaluation of Stoffenmanager and a New Exposure Model for Estimating Occupational Exposure to Styrene in the Fiberglass Reinforced Plastics Lamination Process. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124486. [PMID: 32580434 PMCID: PMC7344974 DOI: 10.3390/ijerph17124486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
This study aims to evaluate occupational exposure models by comparing model estimations of Stoffenmanager, version 8.2, and exposure scores calculated using a new exposure model with personal exposure measurements for styrene used in the fiberglass-reinforced plastic (FRP) lamination processes in Korea. Using the collected exposure measurements (n = 160) with detailed contextual information about the type of process, working conditions, local exhaust ventilation, respiratory protections, and task descriptions, we developed a new model algorithm to estimate the score for occupational exposures on situation level. We assumed that the source of exposure originates from the near field only (within the breathing zone of workers). The new model is designed as a simple formula of multiplying scores for job classification, exposure potential, engineering controls, chemical hazard, and exposure probability and then dividing the score for workplace size. The final score is log-transformed, ranging from 1 to 14, and the exposure category is divided into four ratings: no exposure (1), low (2), medium (3), and high (4) exposures. Using the contextual information, all the parameters and modifying factors are similarly entered into the two models through direct translation and coding processes with expert judgement, and the exposure estimations and scores using the two models are calculated for each situation. Overall bias and precision for Stoffenmanager are −1.00 ± 2.07 (50th) and −0.32 ± 2.32 (90th) for all situations (n = 36), indicating that Stoffenmanager slightly underestimated styrene exposures. Pearson’s correlation coefficients are significantly high for Stoffenmanager (r = 0.87) and the new model (r = 0.88), and the correlation between the two models is significantly high (r = 0.93) (p < 0.01). Therefore, the model estimations using Stoffenmanager and the new model are significantly correlated with the styrene exposures in the FRP lamination process. Further studies are needed to validate and calibrate the models using a larger number of exposure measurements for various substances in the future.
Collapse
|
8
|
Banton MI, Bus JS, Collins JJ, Delzell E, Gelbke HP, Kester JE, Moore MM, Waites R, Sarang SS. Evaluation of potential health effects associated with occupational and environmental exposure to styrene - an update. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:1-130. [PMID: 31284836 DOI: 10.1080/10937404.2019.1633718] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potential chronic health risks of occupational and environmental exposure to styrene were evaluated to update health hazard and exposure information developed since the Harvard Center for Risk Analysis risk assessment for styrene was performed in 2002. The updated hazard assessment of styrene's health effects indicates human cancers and ototoxicity remain potential concerns. However, mechanistic research on mouse lung tumors demonstrates these tumors are mouse-specific and of low relevance to human cancer risk. The updated toxicity database supports toxicity reference levels of 20 ppm (equates to 400 mg urinary metabolites mandelic acid + phenylglyoxylic acid/g creatinine) for worker inhalation exposure and 3.7 ppm and 2.5 mg/kg bw/day, respectively, for general population inhalation and oral exposure. No cancer risk value estimates are proposed given the established lack of relevance of mouse lung tumors and inconsistent epidemiology evidence. The updated exposure assessment supports inhalation and ingestion routes as important. The updated risk assessment found estimated risks within acceptable ranges for all age groups of the general population and workers with occupational exposures in non-fiber-reinforced polymer composites industries and fiber-reinforced polymer composites (FRP) workers using closed-mold operations or open-mold operations with respiratory protection. Only FRP workers using open-mold operations not using respiratory protection have risk exceedances for styrene and should be considered for risk management measures. In addition, given the reported interaction of styrene exposure with noise, noise reduction to sustain levels below 85 dB(A) needs be in place.
Collapse
Affiliation(s)
- M I Banton
- a Gorge View Consulting LLC , Hood River , OR , USA
| | - J S Bus
- b Health Sciences , Exponent , Midland , MI , USA
| | - J J Collins
- c Health Sciences , Saginaw Valley State University , Saginaw , MI , USA
| | - E Delzell
- d Private consultant , Birmingham , AL , USA
| | | | - J E Kester
- f Kester Consulting LLC , Wentzville , MO , USA
| | | | - R Waites
- h Sabic , Innovative Plastics US LLC , Mount Vernon , IN , USA
| | - S S Sarang
- i Shell Health , Shell International , Houston , TX , USA
| |
Collapse
|
9
|
Kobos L, Teimouri Sendesi SM, Whelton AJ, Boor BE, Howarter JA, Shannahan J. In vitro toxicity assessment of emitted materials collected during the manufacture of water pipe plastic linings. Inhal Toxicol 2019; 31:131-146. [PMID: 31187656 DOI: 10.1080/08958378.2019.1621966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objectives: US water infrastructure is in need of widespread repair due to age-related deterioration. Currently, the cured-in-place (CIPP) procedure is the most common method for water pipe repair. This method involves the on-site manufacture of a new polymer composite plastic liner within the damaged pipe. The CIPP process can release materials resulting in occupational and public health concerns. To understand hazards associated with CIPP-related emission exposures, an in vitro toxicity assessment was performed. Materials and Methods: Mouse alveolar epithelial and alveolar macrophage cell lines and condensates collected at 3 worksites utilizing styrene-based resins were utilized for evaluations. All condensate samples were normalized based on the major emission component, styrene. Further, a styrene-only exposure group was used as a control to determine mixture related toxicity. Results: Cytotoxicity differences were observed between worksite samples, with the CIPP worksite 4 sample inducing the most cell death. A proteomic evaluation was performed, which demonstrated styrene-, worksite-, and cell-specific alterations. This examination of protein expression changes determined potential biomarkers of exposure including transglutaminase 2, advillin, collagen type 1, perilipin-2, and others. Pathway analysis of exposure-induced proteomic alterations identified MYC and p53 to be regulators of cellular responses. Protein changes were also related to pathways involved in cell damage, immune response, and cancer. Conclusions: Together these findings demonstrate potential risks associated with the CIPP procedure as well as variations between worksites regarding emissions and toxicity. Our evaluation identified biological pathways that require a future evaluation and also demonstrates that exposure assessment of CIPP worksites should examine multiple chemical components beyond styrene, as many cellular responses were styrene-independent.
Collapse
Affiliation(s)
- Lisa Kobos
- a School of Health Sciences, College of Human and Health Sciences , Purdue University , West Lafayette , IN , USA
| | - Seyedeh Mahboobeh Teimouri Sendesi
- b Lyles School of Civil Engineering and Division of Environmental and Ecological Engineering , College of Engineering, Purdue University , West Lafayette , IN , USA
| | - Andrew J Whelton
- b Lyles School of Civil Engineering and Division of Environmental and Ecological Engineering , College of Engineering, Purdue University , West Lafayette , IN , USA
| | - Brandon E Boor
- b Lyles School of Civil Engineering and Division of Environmental and Ecological Engineering , College of Engineering, Purdue University , West Lafayette , IN , USA
| | - John A Howarter
- c Division of Environmental and Ecological Engineering, and School of Materials Engineering, College of Engineering , Purdue University , West Lafayette , IN , USA
| | - Jonathan Shannahan
- a School of Health Sciences, College of Human and Health Sciences , Purdue University , West Lafayette , IN , USA
| |
Collapse
|
10
|
Ra K, Teimouri Sendesi SM, Nuruddin M, Zyaykina NN, Conkling EN, Boor BE, Jafvert CT, Howarter JA, Youngblood JP, Whelton AJ. Considerations for emission monitoring and liner analysis of thermally manufactured sewer cured-in-place-pipes (CIPP). JOURNAL OF HAZARDOUS MATERIALS 2019; 371:540-549. [PMID: 30877867 DOI: 10.1016/j.jhazmat.2019.02.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/02/2019] [Accepted: 02/26/2019] [Indexed: 05/15/2023]
Abstract
Cured-in-place-pipes (CIPP) are plastic liners chemically manufactured inside existing damaged sewer pipes. They are gaining popularity in North America, Africa, Asia, Europe, and Oceania. Volatile and semi-volatile organic compound (VOC/SVOC) emissions from storm sewer CIPP installations were investigated at a dedicated outdoor research site. Tedlar bag, sorbent tube, and photoionization detector (PID) air sampling was conducted for five steam-CIPP installations and was coupled with composite characterizations. New CIPPs contained up to 2.21 wt% volatile material and only 6-31% chemical mass extracted per CIPP was identified. Each 6.1 m [20 ft] liner contained an estimated 5-10 kg [11-22 lbs] of residual chemical. Extracted chemicals included hazardous air pollutants and suspected and known carcinogens that were not reported by others. These included monomers, monomer oxidation products, antioxidants, initiator degradation products, and a plasticizer. PID signals did not accurately represent styrene air concentration differing sometimes by 10s- to 1000s-fold. Multiple VOCs found in air samples likely affected PID responses. Styrene (>86.4 ppmv) and methylene chloride (>1.56 ppmv) air concentrations were likely greater onsite and phenol was also detected. Additional studies are needed to examine pollutant emissions so process monitoring can be improved, and environment impacts and associated human exposures can be minimized.
Collapse
Affiliation(s)
- Kyungyeon Ra
- Division of Ecological and Environmental Engineering, 500 Central Drive, Purdue University, West Lafayette, 47907, IN, USA.
| | | | - Md Nuruddin
- School of Materials Engineering, 701 W Stadium Avenue, Purdue University, West Lafayette, 47907, IN, USA.
| | - Nadezhda N Zyaykina
- Division of Ecological and Environmental Engineering, 500 Central Drive, Purdue University, West Lafayette, 47907, IN, USA; Lyles School of Civil Engineering, 550 Stadium Mall Drive, Purdue University, West Lafayette, 47907, IN, USA.
| | - Emily N Conkling
- Division of Ecological and Environmental Engineering, 500 Central Drive, Purdue University, West Lafayette, 47907, IN, USA.
| | - Brandon E Boor
- Lyles School of Civil Engineering, 550 Stadium Mall Drive, Purdue University, West Lafayette, 47907, IN, USA.
| | - Chad T Jafvert
- Division of Ecological and Environmental Engineering, 500 Central Drive, Purdue University, West Lafayette, 47907, IN, USA; Lyles School of Civil Engineering, 550 Stadium Mall Drive, Purdue University, West Lafayette, 47907, IN, USA.
| | - John A Howarter
- Division of Ecological and Environmental Engineering, 500 Central Drive, Purdue University, West Lafayette, 47907, IN, USA; Lyles School of Civil Engineering, 550 Stadium Mall Drive, Purdue University, West Lafayette, 47907, IN, USA.
| | - Jeffrey P Youngblood
- School of Materials Engineering, 701 W Stadium Avenue, Purdue University, West Lafayette, 47907, IN, USA.
| | - Andrew J Whelton
- Division of Ecological and Environmental Engineering, 500 Central Drive, Purdue University, West Lafayette, 47907, IN, USA; Lyles School of Civil Engineering, 550 Stadium Mall Drive, Purdue University, West Lafayette, 47907, IN, USA.
| |
Collapse
|
11
|
Li X, Ra K, Nuruddin M, Teimouri Sendesi SM, Howarter JA, Youngblood JP, Zyaykina N, Jafvert CT, Whelton AJ. Outdoor manufacture of UV-Cured plastic linings for storm water culvert repair: Chemical emissions and residual. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:1031-1040. [PMID: 30682737 DOI: 10.1016/j.envpol.2018.10.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/20/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
Storm water culverts are integral for U.S. public safety and welfare, and their mechanical failure can cause roadways to collapse. To repair these buried assets, ultraviolet (UV) light cured-in-place-pipes (CIPP) are being installed. Chemical emission and residual material left behind from the installation process was investigated in New York and Virginia, USA. Samples of an uncured resin tube and field-cured styrene-based resin CIPPs were collected and analyzed. Also collected were air and water samples before, during, and after installations. Chemicals were emitted into air because of the installation and curing processes. Particulates emitted into the air, water, and soil contained fiberglass, polymer, and contaminants, some of which are regulated by state-level water quality standards. The uncured resin tube contained more than 70 chemical compounds, and 19 were confirmed with analytical standards. Compounds included known and suspected carcinogens, endocrine disrupting compounds, hazardous air pollutants, and other compounds with little aquatic toxicity data available. Compounds (14 of 19 confirmed) were extracted from the newly installed CIPPs, and 11 were found in water samples. Aqueous styrene (2.31 mg/L), dibutyl phthalate (12.5 μg/L), and phenol (16.7 μg/L) levels exceeded the most stringent state water quality standards chosen in this study. Styrene was the only compound that was found to have exceed a 48 h aquatic toxicity threshold. Newly installed CIPPs contained a significant amount volatile material (1.0 to > 9.0 wt%). Recommendations provided can reduce chemical emission, as well as improve worksite and environmental protection practices. Recommended future research is also described.
Collapse
Affiliation(s)
- Xianzhen Li
- Division of Ecological and Environmental Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Kyungyeon Ra
- Division of Ecological and Environmental Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Md Nuruddin
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | | | - John A Howarter
- School of Materials Engineering and Division of Ecological and Environmental Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jeffrey P Youngblood
- School of Materials Engineering and Division of Ecological and Environmental Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Nadya Zyaykina
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Chad T Jafvert
- Lyles School of Civil Engineering and Division of Ecological and Environmental Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Andrew J Whelton
- Lyles School of Civil Engineering and Division of Ecological and Environmental Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
12
|
Editorial: ISBM 10. Toxicol Lett 2018; 298:1-3. [PMID: 30442238 DOI: 10.1016/j.toxlet.2018.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|