1
|
Malaniyom K, Ratanachamnong P, Namchaiw P, Namdaung U, Suksamrarn S, Jaisin Y. Suppression of the inflammatory response by oxyresveratrol from the root bark of Artocarpus lakoocha Roxb against ultraviolet B-induced keratinocytes mediated by regulating p38 MAPK and AP-1. Heliyon 2024; 10:e38962. [PMID: 39469685 PMCID: PMC11513453 DOI: 10.1016/j.heliyon.2024.e38962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
Oxyresveratrol is a polyphenolic compound present in the root bark of Artocarpus lakoocha Roxb. Several studies have reported on its antioxidant, anti-inflammatory, and whitening properties. In this study, we report for the first time that oxyresveratrol alleviates the cytotoxicity of ultraviolet B (UVB) radiation in keratinocytes- . We performed resazurin cell viability, reactive oxygen species (ROS), and Griess assays to investigate the cytoprotective and free radical-scavenging capabilities of oxyresveratrol. The antioxidant effect was demonstrated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging assay. The inhibition of inflammatory and apoptotic proteins by oxyresveratrol in UVB-irradiated keratinocytes was investigated using western blotting. Pretreated cells with oxyresveratrol exhibited reduced cell death upon UVB exposure, which was mediated by its antioxidant activity. Oxyresveratrol protected cells by inhibiting the mitogen-activated protein kinase p38 and its downstream target, AP-1 transcription factor. These factors led to a decrease in UVB-induced cell inflammation through iNOS and COX-2 expression. Furthermore, the Bax/Bcl-2 ratio was significantly decreased by oxyresveratrol at 10 μM and thus reduced cell apoptosis, as demonstrated by the Hoechst 33342 staining assay. This study revealed the photoprotective effects of oxyresveratrol against UVB\ irradiation in keratinocytes. This strongly supports the benefits of using oxyresveratrol as an ingredient in skincare products for the prevention of sun-damaged skin.
Collapse
Affiliation(s)
- Kittiya Malaniyom
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Piyanee Ratanachamnong
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Poommaree Namchaiw
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Umalee Namdaung
- Herbal and Cannabis Science Program, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, 10600, Thailand
| | - Sunit Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Yamaratee Jaisin
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand
| |
Collapse
|
2
|
Li X, Cheng J, Guo K, Wan J, Wang C, Chen L, Xu N, Chen M. KGF-2 ameliorates UVB-triggered skin photodamage in mice by attenuating DNA damage and inflammatory response and mitochondrial dysfunction. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12993. [PMID: 39187972 DOI: 10.1111/phpp.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Long-term exposure to UVB induces DNA damage, inflammatory response, mitochondrial dysfunction, and apoptosis in skin cells, thus causing skin photodamage. Research has demonstrated the noteworthy antioxidant, anti-inflammatory, DNA repair, and mitochondrial protective properties of keratinocyte growth factor-2 (KGF-2). METHODS To examine the impact of KGF-2 on UVB-triggered skin photodamage in mice, hair-removed mice were initially exposed under UVB radiation and subsequently treated with KGF-2 hydrogel and repeated for 6 days. On day 7, the assessment of histopathological alterations, inflammation, DNA damage, mitochondrial function, and apoptosis in mouse skin was assessed. RESULTS It was found that KGF-2 could effectively relieve cutaneous photodamage symptoms and inhibit epidermal proliferation in mice. Meanwhile, KGF-2 was found to significantly reduce DNA damage, attenuate the inflammatory response, and inhibit the mitochondria-mediated intrinsic apoptotic pathway in the UVB-exposed mouse skin photodamage model. CONCLUSION To summarize, our results indicated that KGF-2 reduces the severity of mouse skin photodamage caused by UVB rays by attenuating DNA damage and the inflammatory response, besides inhibiting the mitochondria-mediated intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Xuenan Li
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jinli Cheng
- Department of Pharmacy, Nanjing Yuhua hospital, Nanjing, China
| | - Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jianwei Wan
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Cuihong Wang
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Min Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
3
|
Taghizadeh B, Moradi R, Mirzavi F, Barati M, Soleimani A, Jaafari MR, Zarghami N. The protection role of human growth hormone on skin cells following ultraviolet B exposure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112961. [PMID: 38917719 DOI: 10.1016/j.jphotobiol.2024.112961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Ultraviolet-B (UVB) radiation is the leading environmental cause of skin damage and photoaging. The epidermis and dermis layers of the skin mainly absorb UVB. UVB stimulates apoptosis, cell cycle arrest, generation of reactive oxygen species, and degradation of collagen and elastin fibers. OBJECTIVE This study investigated the potential of human growth hormone (hGH) in protecting the skin fibroblasts and keratinocytes (HFFF-2 and HaCaT cell lines) from UVB-induced damage. METHODS The MTT assay was performed to evaluate UVB-induced mitochondrial damage via assessing the mitochondrial dehydrogenase activity, and flow cytometry was carried out to investigate the effects of UVB and hGH on the cell cycle and apoptosis of UVB-irradiated cells. In addition, the fold change mRNA expression levels of Type I collagen and elastin in HFFF-2 cells were evaluated using the qRT-PCR method following UVB exposure. RESULTS We observed that treatment of cells with hGH before UVB exposure inhibited UVB-induced loss of mitochondrial dehydrogenase activity, apoptosis, and sub-G1 population formation in both cell lines. We also found that hGH-treated HFFF-2 cells showed up-regulated mRNA expression of Type I collagen, elastin, and IGF-1 in response to UVB irradiation. CONCLUSION These findings suggest hGH as a potential anti-UVB compound that can protect skin cells from UVB-induced damage. Our findings merit further investigation and can be used to better understand the role of hGH in skin photoaging.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Moradi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Barati
- Department of Pathophysiology and Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Anvar Soleimani
- Department of Medical Microbiology, Cihan University - Sulaimaniya, Kurdistan Region, Iraq
| | - Mahmoud-Reza Jaafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
4
|
Lamnis L, Christofi C, Stark A, Palm H, Roemer K, Vogt T, Reichrath J. Differential Regulation of Circadian Clock Genes by UV-B Radiation and 1,25-Dihydroxyvitamin D: A Pilot Study during Different Stages of Skin Photocarcinogenesis. Nutrients 2024; 16:254. [PMID: 38257148 PMCID: PMC10820546 DOI: 10.3390/nu16020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Increasing evidence points at an important physiological role of the timekeeping system, known as the circadian clock (CC), regulating not only our sleep-awake rhythm but additionally many other cellular processes in peripheral tissues. It was shown in various cell types that environmental stressors, including ultraviolet B radiation (UV-B), modulate the expression of genes that regulate the CC (CCGs) and that these CCGs modulate susceptibility for UV-B-induced cellular damage. It was the aim of this pilot study to gain further insights into the CCs' putative role for UV-B-induced photocarcinogenesis of skin cancer. METHODS Applying RT-PCR, we analyzed the expression of two core CCGs (brain and muscle ARNT-like 1 (Bmal1) and Period-2 (Per2)) over several time points (0-60 h) in HaCaT cells with and without 1,25-dihydroxyvitamin D (D3) and/or UV-B and conducted a cosinor analysis to evaluate the effects of those conditions on the circadian rhythm and an extended mixed-effects linear modeling to account for both fixed effects of experimental conditions and random inter-individual variability. Next, we investigated the expression of these two genes in keratinocytes representing different stages of skin photocarcinogenesis, comparing normal (Normal Human Epidermal Keratinocytes-NHEK; p53 wild type), precancerous (HaCaT keratinocytes; mutated p53 status), and malignant (Squamous Cell Carcinoma SCL-1; p53 null status) keratinocytes after 12 h under the same conditions. RESULTS We demonstrated that in HaCaT cells, Bmal1 showed a robust circadian rhythm, while the evidence for Per2 was limited. Overall expression of both genes, but especially for Bmal1, was increased following UV-B treatment, while Per2 showed a suppressed overall expression following D3. Both UVB and 1,25(OH)2D3 suggested a significant phase shift for Bmal1 (p < 0.05 for the acrophase), while no specific effect on the amplitude could be evidenced. Differential effects on the expression of BMAL1 and Per2 were found when we compared different treatment modalities (UV-B and/or D3) or cell types (NHEK, HaCaT, and SCL-1 cells). CONCLUSIONS Comparing epidermal keratinocytes representing different stages of skin photocarcinogenesis, we provide further evidence for an independently operating timekeeping system in human skin, which is regulated by UV-B and disturbed during skin photocarcinogenesis. Our finding that this pattern of circadian rhythm was differentially altered by treatment with UV-B, as compared with treatment with D3, does not support the hypothesis that the expression of these CCGs may be regulated via UV-B-induced synthesis of vitamin D but might be introducing a novel photoprotective property of vitamin D through the circadian clock.
Collapse
Affiliation(s)
- Leandros Lamnis
- Dermatology, University of Saarland Medical Center, 66421 Homburg, Germany; (L.L.); (T.V.)
| | - Christoforos Christofi
- Dermatology, University of Saarland Medical Center, 66421 Homburg, Germany; (L.L.); (T.V.)
| | - Alexandra Stark
- Dermatology, University of Saarland Medical Center, 66421 Homburg, Germany; (L.L.); (T.V.)
| | - Heike Palm
- Dermatology, University of Saarland Medical Center, 66421 Homburg, Germany; (L.L.); (T.V.)
| | - Klaus Roemer
- José Carreras Center and Internal Medicine I, 66421 Homburg, Germany
| | - Thomas Vogt
- Dermatology, University of Saarland Medical Center, 66421 Homburg, Germany; (L.L.); (T.V.)
| | - Jörg Reichrath
- Dermatology, University of Saarland Medical Center, 66421 Homburg, Germany; (L.L.); (T.V.)
| |
Collapse
|
5
|
Mansour N, Mehanna S, Bodman-Smith K, Daher CF, Khnayzer RS. A Ru(II)-Strained Complex with 2,9-Diphenyl-1,10-phenanthroline Ligand Induces Selective Photoactivatable Chemotherapeutic Activity on Human Alveolar Carcinoma Cells via Apoptosis. Pharmaceuticals (Basel) 2023; 17:50. [PMID: 38256884 PMCID: PMC10819265 DOI: 10.3390/ph17010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
[Ru(bipy)2(dpphen)]Cl2 (where bipy = 2,2'-bipyridine and dpphen = 2,9-diphenyl-1,10-phenanthroline) (complex 1) is a sterically strained compound that exhibits promising in vitro photocytotoxicity on an array of cell lines. Since lung adenocarcinoma cancer remains the most common lung cancer and the leading cause of cancer deaths, the current study aims to evaluate the plausible effect and uptake of complex 1 on human alveolar carcinoma cells (A549) and mesenchymal stem cells (MSC), and assess its cytotoxicity in vitro while considering its effect on cell morphology, membrane integrity and DNA damage. MSC and A549 cells showed similar rates of complex 1 uptake with a plateau at 12 h. Upon photoactivation, complex 1 exhibited selective, potent anticancer activity against A549 cells with phototoxicity index (PI) values of 16, 25 and 39 at 24, 48 and 72 h, respectively. This effect was accompanied by a significant increase in A549-cell rounding and detachment, loss of membrane integrity and DNA damage. Flow cytometry experiments confirmed that A549 cells undergo apoptosis when treated with complex 1 followed by photoactivation. In conclusion, this present study suggests that complex 1 might be a promising candidate for photochemotherapy with photoproducts that possess selective anticancer effects in vitro. These results are encouraging to probe the potential activity of this complex in vivo.
Collapse
Affiliation(s)
- Najwa Mansour
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon; (N.M.); (S.M.); (C.F.D.)
| | - Stephanie Mehanna
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon; (N.M.); (S.M.); (C.F.D.)
| | - Kikki Bodman-Smith
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Costantine F. Daher
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon; (N.M.); (S.M.); (C.F.D.)
| | - Rony S. Khnayzer
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon; (N.M.); (S.M.); (C.F.D.)
| |
Collapse
|
6
|
Sawicki K, Matysiak-Kucharek M, Kruszewski M, Wojtyła-Buciora P, Kapka-Skrzypczak L. Influence of chlorpyrifos exposure on UVB irradiation induced toxicity in human skin cells. J Occup Med Toxicol 2023; 18:23. [PMID: 37803377 PMCID: PMC10559529 DOI: 10.1186/s12995-023-00391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Although chlorpyrifos (CPS) has been banned in many developed countries, it still remains one of the best-selling pesticides in the world. Widespread environmental and occupational exposure to CPS pose a serious risk to human health. Another environmental factor that can adversely affect human health is ultraviolet radiation B (UVB, 280-315 nm wave length). Here we attempt determine if exposure to CPS can modify toxic effects of UVB. Such situation might be a common phenomenon in agriculture workers, where exposure to both factors takes place. METHODS Two skin cell lines; namely human immortalized keratinocytes HaCaT and BJ human fibroblasts were used in this study. Cytotoxicity was investigated using a cell membrane damage detection assay (LDH Cytotoxicity Assay), a DNA damage detection assay (Comet Assay), an apoptosis induction detection assay (Apo-ONE Homogeneous Caspase-3/7 Assay) and a cell reactive oxygen species detection assay (ROS-Glo H2O2 assay). Cytokine IL-6 production was also measured in cells using an ELISA IL-6 Assay. RESULTS Pre-incubation of skin cells with CPS significantly increased UVB-induced toxicity at the highest UVB doses (15 and 20 mJ/cm2). Also pre-exposure of BJ cells to CPS significantly increased the level of DNA damage, except for 20 mJ/cm2 UVB. In contrast, pre-exposure of HaCaT cells, to CPS prior to UVB radiation did not cause any significant changes. A decrease in caspase 3/7 activity was observed in HaCaT cells pre-exposed to 250 µM CPS and 5 mJ/cm2 UVB. Meanwhile, no statistically significant changes were observed in fibroblasts. In HaCaT cells, pre-exposure to CPS resulted in a statistically significant increase in ROS production. Also, in BJ cells, similar results were obtained except for 20 mJ/cm2. Interestingly, CPS seems to inhibited IL-6 production in HaCaT and BJ cells exposed to UVB (in the case of HaCaT cells for all UVB doses, while for BJ cells only at 15 and 20 mJ/cm2). CONCLUSIONS In conclusion, the present study indicates that CPS may contribute to the increased UVB-induced toxicity in skin cells, which was likely due to the induction of ROS formation along with the generation of DNA damage. However, further studies are required to gain better understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
| | - Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | | | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
- World Institute for Family Health, Calisia University, Kalisz, Poland.
| |
Collapse
|
7
|
Gag O, Dinu Ș, Manea H, Marcovici I, Pînzaru I, Popovici R, Crăiniceanu Z, Gyori Z, Iovănescu G, Chiriac S. UVA/UVB Irradiation Exerts a Distinct Phototoxic Effect on Human Keratinocytes Compared to Human Malignant Melanoma Cells. Life (Basel) 2023; 13:life13051144. [PMID: 37240789 DOI: 10.3390/life13051144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Solar ultraviolet radiation (UVR) is responsible for the development of many skin diseases, including malignant melanoma (MM). This study assessed the phototoxic effects of UVA, and UVB radiations on healthy and pathologic skin cells by evaluating the behavior of human keratinocytes (HaCaT) and MM cells (A375) at 24 h post-irradiation. The main results showed that UVA 10 J/cm2 exerted no cytotoxicity on HaCaT and A375 cells, while UVB 0.5 J/cm2 significantly reduced cell viability and confluence, induced cell shrinkage and rounding, generated nuclear and F-actin condensation, and induced apoptosis by modulating the expressions of Bax and Bcl-2. The association of UVA 10 J/cm2 with UVB 0.5 J/cm2 (UVA/UVB) induced the highest cytotoxicity in both cell lines (viability < 40%). However, the morphological changes were different-HaCaT cells showed signs of necrosis, while in A375 nuclear polarization and expulsion from the cells were observed, features that indicate enucleation. By unraveling the impact of different UVR treatments on the behavior of normal and cancer skin cells and describing enucleation as a novel process involved in the cytotoxicity of UVA/UVB irradiation, these findings bridge the gap between the current and the future status of research in the field.
Collapse
Affiliation(s)
- Otilia Gag
- Faculty of Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Ștefania Dinu
- Faculty of Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Horațiu Manea
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Iasmina Marcovici
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Iulia Pînzaru
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Ramona Popovici
- Faculty of Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Zorin Crăiniceanu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Zsolt Gyori
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Gheorghe Iovănescu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| | - Sorin Chiriac
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No.2, 300041 Timisoara, Romania
| |
Collapse
|
8
|
Sukhonthasilakun S, Mahakunakorn P, Naladta A, Nuankaew K, Nualkaew S, Yenjai C, Nualkaew N. Anti-inflammatory effects of Derris scandens extract on narrowband-ultraviolet B exposed HaCaT human keratinocytes. J Ayurveda Integr Med 2023; 14:100693. [PMID: 36868047 PMCID: PMC9996209 DOI: 10.1016/j.jaim.2023.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/21/2022] [Accepted: 02/01/2023] [Indexed: 03/05/2023] Open
Abstract
Narrowband-ultraviolet B (NB-UVB) has been used to treat skin diseases such as psoriasis. Chronic use of NB-UVB might cause skin inflammation and lead to skin cancer. In Thailand, Derris Scandens (Roxb.) Benth. is used as an alternative medicine to nonsteroidal anti-inflammatory drugs (NSAIDs) for low back pain and osteoarthritis. Therefore, this study aimed to evaluate the potential anti-inflammatory effect of Derris scandens extract (DSE) on pre- and post exposed NB-UVB human keratinocytes (HaCaT). The results indicated that DSE could not protect HaCaT from cell morphology changes or DNA fragmentation and could not recover cell proliferation ability from the NB-UVB effects. DSE treatment reduced the expression of genes related to inflammation, collagen degradation, and carcinogenesis, such as IL-1α, IL-1β, IL-6, iNOS, COX-2, MMP-1, MMP-9, and Bax. These results indicated the potential use of DSE as a topical preparation against NB-UVB-induced inflammation, anti-aging, and prevention of skin cancer from phototherapy.
Collapse
Affiliation(s)
- Sumrit Sukhonthasilakun
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pramote Mahakunakorn
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alisa Naladta
- Department of Biochemistry, Faculty of Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Katesaraporn Nuankaew
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somsak Nualkaew
- Pharmaceutical Chemistry and Natural Product Research Unit, Faculty of Pharmacy, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Chavi Yenjai
- Natural Products Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Natsajee Nualkaew
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
9
|
Zhang M, Ying W. UV-induced skin's green autofluorescence is a biomarker for both non-invasive evaluations of the dosages of UV exposures of the skin and non-invasive prediction of UV-induced skin damage. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:159-168. [PMID: 36136240 DOI: 10.1007/s43630-022-00306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
It is crucial to discover biomarkers for non-invasive evaluations of the dosages of UV exposures to a person during post-UV exposure period, and for non-invasive prediction of UV-induced skin damage. Our current study has obtained findings: UVB exposures produced dose-dependent increases in skin's green autofluorescence (AF) intensity of mice, which were significantly associated with the UVB dosages. The UVC-induced green AF increases were dose dependent, which were highly associated with the UVC dosages. Moreover, both previous reports and our current study have collectively shown significant association between UVB/UVC dosages and UVB/UVC-induced skin damage. Collectively, our study has indicated that the UVB/UVC-induced skin's AF are first biomarkers for both non-invasive evaluations of the dosages of UV exposures to a person during post-UV exposure period and non-invasive and label-free prediction of UVB/UVC-induced skin damage.
Collapse
Affiliation(s)
- Mingchao Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, People's Republic of China.,Multiscale Research Institute of Complex Systems, Fudan University, 220 Handan Road, Shanghai, People's Republic of China
| | - Weihai Ying
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, People's Republic of China. .,Collaborative Innovation Center for Genetics and Development, Shanghai, 200043, People's Republic of China.
| |
Collapse
|
10
|
Han J, Jang Y, Shin DY, Lee J, Seo YR. A Genomic Approach to Identify the Different between Acute and Chronic UVB Exposures in the Causation of Inflammation and Cancer. J Cancer Prev 2022; 27:199-207. [PMID: 36713944 PMCID: PMC9836911 DOI: 10.15430/jcp.2022.27.4.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
As a principal component of solar radiation, ultraviolet B (UVB) exposure can be harmful depending on the duration and intensity because the human body can easily be exposed to it. Many studies have demonstrated that UVB causes a series of inflammatory and other skin disorders. UVB has been classified as the Group 1 carcinogen by the International Agency for Research on Cancer. Diverse studies have focused on UVB exposure but the complex perspective of acute and chronic UVB exposure is still lacking. This review presents the differences between acute and chronic exposure to UVB and summarizes public information in terms of toxicogenomic characteristics. We also demonstrated the differences between adverse effects of acute and chronic UVB exposure on the skin system. From the published literatures, we compared the biological pathways predict of the adverse effects caused by each UVB exposure type. Furthermore, our review not only clarifies the differences in each UVB exposure network but also suggests major hub genes related to cellular mechanisms and diseases that are thought to be affected by acute and chronic UVB exposure.
Collapse
Affiliation(s)
- JunPyo Han
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Yujin Jang
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Dong Yeop Shin
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Jun Lee
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea,Correspondence to Young Rok Seo, E-mail: , https://orcid.org/0000-0002-4093-4073
| |
Collapse
|
11
|
Acute cytotoxicity, genotoxicity, and apoptosis induced by petroleum VOC emissions in A549 cell line. Toxicol In Vitro 2022; 83:105409. [DOI: 10.1016/j.tiv.2022.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
|
12
|
Mavrogonatou E, Angelopoulou M, Rizou SV, Pratsinis H, Gorgoulis VG, Kletsas D. Activation of the JNKs/ATM-p53 axis is indispensable for the cytoprotection of dermal fibroblasts exposed to UVB radiation. Cell Death Dis 2022; 13:647. [PMID: 35879280 PMCID: PMC9314411 DOI: 10.1038/s41419-022-05106-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023]
Abstract
Although UVB radiation is mainly absorbed by the epidermis, ~5-10% of its photons reach and affect the upper part of the dermis. Physiologically relevant UVB doses, able to provoke erythema, induce apoptosis in human dermal fibroblasts in vitro, as well as in the dermis of SKH-1 mice. Given the sparse and even contradictory existing information on the effect of UVB radiation on dermal fibroblasts' viability, aim of this work was to unravel the crucial signaling pathways regulating the survival of UVB-treated human dermal fibroblasts. We found that UVB radiation immediately stimulates the phosphorylation of MAPK family members, as well as Akt, and is genotoxic leading to the delayed ATM-p53 axis activation. Akt phosphorylation after UVB radiation is EGFR-mediated and EGFR inhibition leads to a further decrease of viability, while the Akt activator SC79 rescues fibroblasts to an extent by a mechanism involving Nrf2 activation. The known Nrf2 activator sulforaphane also exerts a partial protective effect, although by acting in a distinct mechanism from SC79. On the other hand, inhibition of JNKs or of the ATM-p53 axis leads to a complete loss of viability after UVB irradiation. Interestingly, JNKs activation is necessary for p53 phosphorylation, while the ATM-p53 pathway is required for the long-term activation of JNKs and Akt, reassuring the protection from UVB. Although UVB radiation results in intense and prolonged increase of intracellular ROS levels, classical anti-oxidants, such as Trolox, are unable to affect Akt, JNKs, or p53 phosphorylation and to reverse the loss of fibroblasts' viability. Collectively, here we provide evidence that the main viability-regulating UVB-triggered biochemical pathways act synergistically towards the protection of human dermal fibroblasts, with EGFR/Akt and Nrf2 serving as auxiliary anti-apoptotic machineries, while JNKs/ATM-p53 activation and interplay being overriding and indispensable for the perpetuation of cellular defense and the maintenance of cell viability.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Maria Angelopoulou
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Sophia V. Rizou
- grid.5216.00000 0001 2155 0800Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harris Pratsinis
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Vassilis G. Gorgoulis
- grid.5216.00000 0001 2155 0800Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece ,grid.417593.d0000 0001 2358 8802Biomedical Research Foundation, Academy of Athens, Athens, Greece ,grid.5379.80000000121662407Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK ,grid.5216.00000 0001 2155 0800Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece ,grid.8241.f0000 0004 0397 2876Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Dimitris Kletsas
- grid.6083.d0000 0004 0635 6999Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| |
Collapse
|
13
|
He H, Xiong L, Jian L, Li L, Wu Y, Qiao S. Role of mitochondria on UV-induced skin damage and molecular mechanisms of active chemical compounds targeting mitochondria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112464. [PMID: 35597147 DOI: 10.1016/j.jphotobiol.2022.112464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/07/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are the principal place of energy metabolism and ROS production, leading to mtDNA being especially sensitive to the impacts of oxidative stress. Our review aims to elucidate and update the mechanisms of mitochondria in UV-induced skin damage. The mitochondrial deteriorative response to UV manifests morphological and functional alterations, including mitochondrial fusion and fission, mitochondrial biogenesis, mitochondrial energy metabolism and mitophagy. Additionally, we conclude the effect and molecular mechanisms of active chemical components to protect skin from UV-induced damage via mitochondrial protection which have been described in the last five years, showing prospective prospects in cosmetics as new therapeutic targets.
Collapse
Affiliation(s)
- Hailun He
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China; Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
| | - Linge Jian
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Liangman Li
- Orthopedics Department, the First Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China.
| | - Shuai Qiao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China.
| |
Collapse
|
14
|
Liang J, Liu L, Tang H, Ma Q, Sang Y, Kang X. UVB-induced SFRP1 methylation potentiates skin damage by promoting cell apoptosis and DNA damage. Exp Dermatol 2022; 31:1443-1453. [PMID: 35657114 DOI: 10.1111/exd.14621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
In response to the accumulation of genetic mutations and cellular changes, ultraviolet radiation B (UVB) skin lesions undergo dysplasia and transform into a cutaneous squamous cell carcinoma (CSCC). Consistent with our previous findings that secreted frizzled-related protein 1 (SFRP1), a member of the SFRP gene family, was downregulated in human CSCC tissue samples, we found a significant downregulation of SFRP1 in HaCaT, A431, and SCL-1 cells after UVB irradiation. DNA methyltransferase 1 (DNMT1) was significantly increased in CSCC tissues as well as UVB-exposed A431 and SCL-1 cells. Bisulfite genomic sequencing analysis showed that the downregulation of SFRP1 was mainly due to methylation of the SFRP1 promoter, as indicated by increased methylation rate of SFRP1 after UVB irradiation in HaCaT cells. Moreover, demethylation treatment with 5-aza'-deoxycytidine (5-AzaC) increased SFRP1 expression and reduced the methylation rate of SFRP1 in HaCaT cells. Flow cytometry analyses demonstrated that 5-AzaC treatment or overexpression of SFRP1 ameliorated UVB-induced apoptosis, while knockdown of SFRP1 promoted UVB-induced apoptosis in HaCaT cells. In addition, a comet assay confirmed that 5-AzaC treatment reduced DNA damage following UVB irradiation, while knockdown of SFRP1 enhanced DNA damage following UVB irradiation. In conclusion, our study identified DNA methylation of SFRP1 as a key mediator in the UVB-induced apoptosis of keratinocytes. These findings indicate that reinforcing SFRP1 defenses by 5-AzaC may help prevent UVB-induced skin damage.
Collapse
Affiliation(s)
- Junqin Liang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Lina Liu
- Departmental of medical research, Naval Medical Center of PLA, Shanghai, China
| | - Hongbo Tang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Qingyu Ma
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Yingbing Sang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Xiaojing Kang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| |
Collapse
|
15
|
Cell-derived artificial nanovesicle as a drug delivery system for malignant melanoma treatment. Pharmacotherapy 2022; 147:112586. [PMID: 34999373 DOI: 10.1016/j.biopha.2021.112586] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023]
Abstract
Extracellular vehicles have a natural targeting ability and immune tolerance of being usually applied in drug delivery systems; however, the purification of EVs is complicated and the production yield was quite low. We developed an artificial cellular mimetic nanovesicle (NV) with melanoma fragment membrane for the transportation with curcumin to achieve the anticancer purpose. B16F10 derived NVs were manufactured by the breakdown of cells using a series of extrusions through cut-off size filters (10 and 5 µm), and the whole procedure was easy and time-saving. To terminate the suspicion of cancer metastatic issue, B16F10 cells were treated by 30-min sonication and 1-min UVB exposure to remove genetic materials before the extrusion. B16F10 derived NV loaded with curcumin was called NV(S30U1/Cur), and the anticancer effect was evaluated by cell-based viability, immune, migration, and invasion. The results showed that NVs were manufactured by passing through 10 and 5 µm filters having an enviable production yield, and the mRNA amounts were declined within NVs produced by B16F10 cells treated with UVB in a comparison to the control group. NV(S30U1/Cur) were effectively decreased B1610 cell viability, and migratory and invasive abilities were also reduced significantly. Besides, CD8+ expression of murine primary lymphocytes was activated with CD4+ reduction by NV(S30U1/Cur) to stimulate the inherent tumor suppressive capacity in the immune system. Taken together, we established bioengineered NVs serving as novel cell mimetic nanocarriers to deliver natural compound for malignant melanoma potential immune chemotherapy. DATA AVAILABILITY STATEMENT: The data used to support the findings of this study are available from the corresponding author upon requests.
Collapse
|
16
|
Mehanna S, Mansour N, Daher CF, Elias MG, Dagher C, Khnayzer RS. Drug-free phototherapy of superficial tumors: White light at the end of the tunnel. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112324. [PMID: 34619435 DOI: 10.1016/j.jphotobiol.2021.112324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Visible light has long been recognized as a treatment for many diseases and an essential component of photo-induced chemotherapy. While previous data proved its inherent cytotoxicity, this study is the first to explore the use of a commercially available, high-intensity white LED light (24.5 mW.cm-2) as a treatment for skin tumors. After a 9-h exposure in vitro, the viability of Human Malignant Melanoma cells (A375) decreased by around 70%. Western blot analysis suggested an apoptotic cell death confirmed by the upregulation of Bax, cleaved PARP/caspase-3/8, cytochrome c, and t-bid. Additionally, cellular ROS accumulation and DNA damage were induced upon irradiation with blue light. When tested on a DMBA/TPA skin carcinogenesis model, a 90-min exposure to white light thrice weekly resulted in a significant decrease in tumor volumes/incidence compared to control and cisplatin groups, and restored normal morphological features, as confirmed by histopathology. Toxicological evaluation of ight-treated animals indicated a 100% survival rate, no skin irritation, no signs of discomfort or changes in body weight/behavior, and no toxicities to vital organs. Although these results must be confirmed by further studies, this research showed that short-exposure by commercially available high-intensity white LED light irradiation may be a promising approach for the treatment of superficial malignancies.
Collapse
Affiliation(s)
- Stephanie Mehanna
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Najwa Mansour
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Costantine F Daher
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Maria George Elias
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Carole Dagher
- School of Medicine, Lebanese American University, Lebanon
| | - Rony S Khnayzer
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon.
| |
Collapse
|
17
|
Atalay S, Gęgotek A, Skrzydlewska E. Protective Effects of Cannabidiol on the Membrane Proteome of UVB-Irradiated Keratinocytes. Antioxidants (Basel) 2021; 10:402. [PMID: 33800305 PMCID: PMC8001542 DOI: 10.3390/antiox10030402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Ultraviolet (UV) radiation contained in sunlight disturbs the redox state of skin cells, leading to changes in the structures and functions of macromolecules including components of biological membranes. Cannabidiol (CBD), which accumulates in biomembranes, may be a promising protective antioxidant compound. Accordingly, the aim of this study was to compare the effects of short-term (24 h) and long-term (48 h) CBD application on the proteomic profile of biological membranes in UVB-irradiated keratinocytes. The data obtained show that UVB radiation quantitatively and qualitatively modified cell membrane proteins, with a particular research focus on adducts of proteins with the lipid peroxidation products malondialdehyde (MDA) or 4-hydroxynonenal (4-HNE). CBD application reduced the UVB-enhanced level of these protein adducts. This was particularly notable amongst proteins related to cell proliferation and apoptosis. Moreover, CBD dramatically increased the UVB-induced expression of proteins involved in the regulation of protein translation and cell proliferation (S3a/L13a/L7a ribosomal proteins), the inflammatory response (S100/S100-A6 proteins), and maintenance of redox balance (peroxiredoxin-1, carbonyl reductase 1, and aldo-keto reductase family 1 members). In contrast, CBD effects on the level of 4-HNE-protein adducts involved in the antioxidant response and proteasomal degradation process indicate that CBD may protect keratinocytes in connection with protein catabolism processes or pro-apoptotic action.
Collapse
Affiliation(s)
| | | | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, 15-089 Białystok, Poland; (S.A.); (A.G.)
| |
Collapse
|
18
|
da Silva BTA, Peloi KE, Ximenes VF, Nakamura CV, de Oliveira Silva Lautenschlager S. 2-acetylphenothiazine protects L929 fibroblasts against UVB-induced oxidative damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112130. [PMID: 33561688 DOI: 10.1016/j.jphotobiol.2021.112130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/10/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Ultraviolet B (UVB) light corresponds to 5% of ultraviolet radiation. It is more genotoxic and mutagenic than UVA and causes direct and indirect cellular damage through the generation of reactive oxygen species (ROS). Even after radiation, ROS generation may continue through activation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) enzyme. Long-term exposure can progress to premature skin aging and photocarcinogenesis. To prevent damage that is caused by UVB radiation, several studies have focused on the topical administration of compounds that have antioxidant properties. 2-Acetylphenothiazine (ML171) is a potent and selective inhibitor of NOX1. The present study investigated the antioxidant potential and photoprotective ability of ML171 in UVB-irradiated L929 fibroblasts. ML171 had considerable antioxidant activity in both the DPPH• and xanthine/luminol/xanthine oxidase assays. ML171 did not induce cytotoxicity in L929 fibroblasts and increased the viability of UVB-irradiated cells. ML171 also inhibited ROS production, the enzymatic activity of NOX, depolarization of the mitochondrial membrane, and DNA damage. Additionally, ML171 protected cell membrane integrity and induced fibroblast migration. These results suggest that the incorporation of ML171 in topical administration systems may be a promising strategy to mitigate UVB-induced oxidative damage in L929 fibroblasts.
Collapse
Affiliation(s)
| | - Karen Elaine Peloi
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), Bauru, São Paulo 17033360, Brazil
| | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Health Sciences, Maringa State University (UEM), Maringá, Paraná 87020900, Brazil
| | - Sueli de Oliveira Silva Lautenschlager
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Health Sciences, Maringa State University (UEM), Maringá, Paraná 87020900, Brazil.
| |
Collapse
|
19
|
Khalil C, Chahine JB, Haykal T, Al Hageh C, Rizk S, Khnayzer RS. E-cigarette aerosol induced cytotoxicity, DNA damages and late apoptosis in dynamically exposed A549 cells. CHEMOSPHERE 2021; 263:127874. [PMID: 33297006 DOI: 10.1016/j.chemosphere.2020.127874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/15/2020] [Accepted: 07/27/2020] [Indexed: 06/12/2023]
Abstract
In this study, the acute toxicological impacts associated with electronic cigarettes consumption were determined using a novel dynamic exposure methodology. The methodology was deployed to test various e-cigarette generated aerosols in A549 cell cultures. The e-liquid chemical profiling was achieved using GC-MS analysis while toxicity of diluted e-liquids aerosols was reported using numerous cytotoxicity assays. The presented findings pointed to acute aerosol exposure (thirty puffs at 40 W of power and higher) inducing significant cytotoxic, genotoxic, and apoptotic induction in exposed cells. These findings highlighted the significant risks posed by e-cigarette usage. The proposed methodology proved to be a useful tool for future screening of e-liquids generated aerosols toxicity. Future research is needed to establish the chronic toxicity resulting from long-term e-cigarette consumption.
Collapse
Affiliation(s)
- Christian Khalil
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University (LAU), Byblos, Lebanon; Department of Natural Sciences, Lebanese American University, Chouran, Beirut, 1102-2801, Lebanon.
| | - Joe Braham Chahine
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University (LAU), Byblos, Lebanon
| | - Tony Haykal
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University (LAU), Byblos, Lebanon
| | - Cynthia Al Hageh
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University (LAU), Byblos, Lebanon
| | - Sandra Rizk
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University (LAU), Byblos, Lebanon
| | - Rony S Khnayzer
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut, 1102-2801, Lebanon
| |
Collapse
|
20
|
Tenje M, Cantoni F, Porras Hernández AM, Searle SS, Johansson S, Barbe L, Antfolk M, Pohlit H. A practical guide to microfabrication and patterning of hydrogels for biomimetic cell culture scaffolds. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.ooc.2020.100003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
A photoactivatable Ru (II) complex bearing 2,9-diphenyl-1,10-phenanthroline: A potent chemotherapeutic drug inducing apoptosis in triple negative human breast adenocarcinoma cells. Chem Biol Interact 2020; 336:109317. [PMID: 33197429 DOI: 10.1016/j.cbi.2020.109317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
The photoactivatable Ru (II) complex 1 [Ru(bipy)2(dpphen)]Cl2 (where bipy = 2,2'-bipyridine and dpphen = 2,9-diphenyl-1,10-phenanthroline) has been shown to possess promising anticancer activity against triple negative adenocarcinoma MDA-MB-231 cells. The present study aims to elucidate the plausible mechanism of action of the photoactivatable complex 1 against MDA-MB-231 cells. Upon photoactivation, complex 1 exhibited time-dependent cytotoxic activity with a phototoxicity index (P Index) of >100 after 72 h. A significant increase in cell rounding and detachment, loss of membrane integrity, ROS accumulation and DNA damage was observed. Flow cytometry and a fluorescent apoptosis/necrosis assay showed an induction of cell apoptosis. Western blot analysis revealed the induction of intrinsic and extrinsic pathways and inhibition of the MAPK and PI3K pathways. The photoproduct of complex 1 showed similar effects on key apoptotic protein expression confirming that it is behind the observed cell death. In conclusion, the present study revealed that complex 1 is a potent multi-mechanistic photoactivatable chemotherapeutic drug that may serve as a potential lead molecule for targeted cancer chemotherapy.
Collapse
|
22
|
Bianchini Silva LS, Perasoli FB, Carvalho KV, Vieira KM, Paz Lopes MT, Bianco de Souza GH, Henrique Dos Santos OD, Freitas KM. Melaleuca leucadendron (L.) L. flower extract exhibits antioxidant and photoprotective activities in human keratinocytes exposed to ultraviolet B radiation. Free Radic Biol Med 2020; 159:54-65. [PMID: 32745772 DOI: 10.1016/j.freeradbiomed.2020.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022]
Abstract
Recently, there has been a demand for the replacement of chemical sunscreens with natural compounds that could prevent or restore UV-induced skin damage. Here, we investigated the photoprotective influence of the Melaleuca leucadendron ethanolic flower extract (EEMec) on factors involved in cellular and molecular UVB-induced oxidative stress in human skin keratinocytes (HaCaT). The phytochemical constituents, antioxidant potential by DPPH assay, content of total phenolic and flavonoid compounds in EEMec were evaluated. HaCaT cells were treated with EEMec followed by irradiation with UVB. CAT activity; GSH and ROS levels; and SOD1, GPx, CAT and COX-2 expression assays were employed to verify the oxidative stress, as well as EEMec effect on transmembrane transport, and pro-inflammatory and pro-apoptotic protein expression. EEMec reverted the viability loss of HaCaT cells after irradiation with UVB, exhibited significant antioxidant capacity and free radical scavenging activity in vitro, inhibited COX-2 expression and ensure protection of DNA-damage. EEMec shown a great photoprotective property to prevent keratinocytes damage induced by UV radiation and, thus a candidate potential to application as an adjuvant in sunscreen formulations as a strategy to reduce risk of sunburn and prevent skin diseases associated with UV-induced inflammation and cancer.
Collapse
Affiliation(s)
- Luan Silvestro Bianchini Silva
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Fernanda Barçante Perasoli
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Karen Vitor Carvalho
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Karla Murata Vieira
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Miriam Teresa Paz Lopes
- Laboratório de Substâncias Antitumorais, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil
| | - Gustavo Henrique Bianco de Souza
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Orlando David Henrique Dos Santos
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil.
| | - Kátia Michelle Freitas
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| |
Collapse
|
23
|
Catanzaro E, Bishayee A, Fimognari C. On a Beam of Light: Photoprotective Activities of the Marine Carotenoids Astaxanthin and Fucoxanthin in Suppression of Inflammation and Cancer. Mar Drugs 2020; 18:E544. [PMID: 33143013 PMCID: PMC7692561 DOI: 10.3390/md18110544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Every day, we come into contact with ultraviolet radiation (UVR). If under medical supervision, small amounts of UVR could be beneficial, the detrimental and hazardous effects of UVR exposure dictate an unbalance towards the risks on the risk-benefit ratio. Acute and chronic effects of ultraviolet-A and ultraviolet-B involve mainly the skin, the immune system, and the eyes. Photodamage is an umbrella term that includes general phototoxicity, photoaging, and cancer caused by UVR. All these phenomena are mediated by direct or indirect oxidative stress and inflammation and are strictly connected one to the other. Astaxanthin (ASX) and fucoxanthin (FX) are peculiar marine carotenoids characterized by outstanding antioxidant properties. In particular, ASX showed exceptional efficacy in counteracting all categories of photodamages, in vitro and in vivo, thanks to both antioxidant potential and activation of alternative pathways. Less evidence has been produced about FX, but it still represents an interesting promise to prevent the detrimental effect of UVR. Altogether, these results highlight the importance of digging into the marine ecosystem to look for new compounds that could be beneficial for human health and confirm that the marine environment is as much as full of active compounds as the terrestrial one, it just needs to be more explored.
Collapse
Affiliation(s)
- Elena Catanzaro
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
24
|
Xu H, Gan C, Gao Z, Huang Y, Wu S, Zhang D, Wang X, Sheng J. Caffeine Targets SIRT3 to Enhance SOD2 Activity in Mitochondria. Front Cell Dev Biol 2020; 8:822. [PMID: 33015038 PMCID: PMC7493682 DOI: 10.3389/fcell.2020.00822] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Caffeine is chemically stable and not readily oxidized under normal physiological conditions but also has antioxidant effects, although the underlying molecular mechanism is not well understood. Superoxide dismutase (SOD) 2 is a manganese-containing enzyme located in mitochondria that protects cells against oxidative stress by scavenging reactive oxygen species (ROS). SOD2 activity is inhibited through acetylation under conditions of stress such as exposure to ultraviolet (UV) radiation. Sirtuin 3 (SIRT3) is the major mitochondrial nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, which deacetylates two critical lysine residues (lysine 68 and lysine 122) on SOD2 and promotes its antioxidative activity. In this study, we investigated whether the antioxidant effect of caffeine involves modulation of SOD2 by SIRT3 using in vitro and in vivo models. The results show that caffeine interacts with SIRT3 and promotes direct binding of SIRT3 with its substrate, thereby enhancing its enzymatic activity. Mechanistically, caffeine bound to SIRT3 with high affinity (KD = 6.858 × 10–7 M); the binding affinity between SIRT3 and its substrate acetylated p53 was also 9.03 (without NAD+) or 6.87 (with NAD+) times higher in the presence of caffeine. Caffeine effectively protected skin cells from UV irradiation-induced oxidative stress. More importantly, caffeine enhanced SIRT3 activity and reduced SOD2 acetylation, thereby leading to increased SOD2 activity, which could be reversed by treatment with the SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) in vitro and in vivo. Taken together, our results show that caffeine targets SIRT3 to enhance SOD2 activity and protect skin cells from UV irradiation-induced oxidative stress. Thus, caffeine, as a small-molecule SIRT3 activator, could be a potential agent to protect human skin against UV radiation.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Chunxia Gan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ziqi Gao
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yewei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Simin Wu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dongying Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
25
|
Abi-Gerges A, Dagher-Hamalian C, Abou-Khalil P, Chahine JB, Hachem P, Khalil C. Evaluation of waterpipe smoke toxicity in C57BL/6 mice model. Pulm Pharmacol Ther 2020; 63:101940. [PMID: 32889155 DOI: 10.1016/j.pupt.2020.101940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023]
Abstract
Waterpipe smoking is a popular pastime worldwide with statistics pointing to an alarming increase in consumption. In the current paper, the evaluation of sub-chronic waterpipe smoke exposure was undertaken using C57BL/6 female mice using a dynamic exposure setting to emulate smoke exposure. Mice were daily subjected to either one (single exposure, SE) or two sessions (double exposure, DE) of waterpipe-generated smoke (two-apple flavor) for a period of two months. Although lungs histopathological examination pointed to a minor inflammation in smoke-exposed mice compared to control air-exposed (CON) group, the lung weights of the waterpipe-exposed mice were significantly higher (+72% in SE and +39% in DE) (p < 0.01) when compared to CON group. Moreover, changes in the protein expression of several proteins such as iNOS and JNK were noted in the lungs of smoke-exposed mice. However, no changes in p38 and EGFR protein levels were noted between the three groups of mice. Our results mainly showed a significant increase in urea serum levels (+28%) in SE mice along with renal pathological damage in both SE and DE mice compared to CON. Additionally, severe significant DNA damages (p < 0.05) were reported in the lungs, kidneys, bone marrow and liver of waterpipe-exposed animals, using MTS and COMET assays. These findings highlighted the significant risks posed by sub-chronic waterpipe smoke exposure in the selected animal model and the pressing need for future better management of waterpipe indoor consumption.
Collapse
Affiliation(s)
- Aniella Abi-Gerges
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Carole Dagher-Hamalian
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Pamela Abou-Khalil
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Joe Braham Chahine
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Pia Hachem
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Christian Khalil
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
26
|
Bechnak L, Khalil C, Kurdi RE, Khnayzer RS, Patra D. Curcumin encapsulated colloidal amphiphilic block co-polymeric nanocapsules: colloidal nanocapsules enhance photodynamic and anticancer activities of curcumin. Photochem Photobiol Sci 2020; 19:1088-1098. [PMID: 32638825 DOI: 10.1039/d0pp00032a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin-based novel colloidal nanocapsules were prepared from amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (F108). These colloidal nanocapsules appeared as spherical particles with size ranging between 270 and 310 nm. Curcumin fluorescence spectra exhibited an aggregation-induced 23 nm red-shift of the emission maximum in addition to the enhancement of the fluorescence quantum yield in these nanocapsules. The cytotoxicity of curcumin and colloidal nanocapsules was assessed using human derived immortalized cell lines (A549 and A375 cells) in the presence and absence of light irradiation. The nanocapsules exhibited a >30-fold decrease in IC50, suggesting enhanced anticancer activity associated with curcumin encapsulation. Higher toxicity was also reported in the presence of light irradiation (as shown by the IC50 data), indicating their potential for future application in photodynamic therapy. Finally, A375 cells treated with curcumin and the nanocapsules showed a significant increase in single- and/or double-strand DNA breaks upon exposure to light, indicating promising biological effects.
Collapse
Affiliation(s)
- Linda Bechnak
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Christian Khalil
- Department of Natural Sciences, Lebanese American University, 13-5053, 1102-2801, Chouran, Beirut, Lebanon
| | - Riham El Kurdi
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Rony S Khnayzer
- Department of Natural Sciences, Lebanese American University, 13-5053, 1102-2801, Chouran, Beirut, Lebanon
| | - Digambara Patra
- Department of Chemistry, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
27
|
Anwar A, Anwar H, Yamauchi T, Tseng R, Agarwal R, Horwitz LD, Zhai Z, Fujita M. Bucillamine Inhibits UVB-Induced MAPK Activation and Apoptosis in Human HaCaT Keratinocytes and SKH-1 Hairless Mouse Skin. Photochem Photobiol 2020; 96:870-876. [PMID: 32077107 DOI: 10.1111/php.13228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Ultraviolet B (UVB) radiation is known as a culprit in skin carcinogenesis. We have previously reported that bucillamine (N-[2-mercapto-2-methylpropionyl]-L-cysteine), a cysteine derivative with antioxidant and anti-inflammatory capacity, protects against UVB-induced p53 activation and inflammatory responses in mouse skin. Since MAPK signaling pathways regulate p53 expression and activation, here we determined bucillamine effect on UVB-mediated MAPK activation in vitro using human skin keratinocyte cell line HaCaT and in vivo using SKH-1 hairless mouse skin. A single low dose of UVB (30 mJ cm-2 ) resulted in increased JNK/MAPK phosphorylation and caspase-3 cleavage in HaCaT cells. However, JNK activation and casaspe-3 cleavage were inhibited by pretreatment of HaCaT cells with physiological doses of bucillamine (25 and 100 µm). Consistent with these results, bucillamine pretreatment in mice (20 mg kg-1 ) inhibited JNK/MAPK and ERK/MAPK activation in skin epidermal cells at 6-12 and 24 h, respectively, after UVB exposure. Moreover, bucillamine attenuated UVB-induced Ki-67-positive cells and cleaved caspase-3-positive cells in mouse skin. These findings demonstrate that bucillamine inhibits UVB-induced MAPK signaling, cell proliferation and apoptosis. Together with our previous report, we provide evidence that bucillamine has a photoprotective effect against UV exposure.
Collapse
Affiliation(s)
- Adil Anwar
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Hiba Anwar
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ryan Tseng
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Lawrence D Horwitz
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Denver Veterans Affairs Medical Center, Denver, CO
| |
Collapse
|
28
|
Liao Z, Nie J, Sun P. The impact of particulate matter (PM2.5) on skin barrier revealed by transcriptome analysis: Focusing on cholesterol metabolism. Toxicol Rep 2019; 7:1-9. [PMID: 31867221 PMCID: PMC6906712 DOI: 10.1016/j.toxrep.2019.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/20/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests that particulate matter (PM2.5), as a major air pollutant, imposes a certain degree of destruction and toxicity to the skin. It particularly impairs the structure and function of the epidermis. To study the impact of PM2.5 on the skin, transcriptome analysis was performed on PM2.5-exposed human primary keratinocytes. Functional annotation analysis demonstrates that PM2.5 significantly up-regulates cholesterol-metabolism-related genes. Via lipid extraction from PM2.5 treated three-dimensional epidermis tissue model (3D-ETM) and subsequent characterization via mass spectrometry, it was confirmed that PM2.5 significantly increases epidermal cholesterol levels in vitro. Conversely, the amount of squalene in 3D-ETM was significantly reduced by PM2.5. Interestingly, neither cholesterol nor squalene showed significant fluctuations in the green tea extract (GTE) treated epidermis tissue model under PM2.5 exposure. This study shows that PM2.5 may cause barrier disorders by increasing cholesterol synthesis, leading to transient accumulation of epidermal cholesterol and decrease of squalene. It was suggested that cholesterol and squalene, which are the key substances affecting skin barrier function, can be used as new biomarkers of skin damage induced by PM2.5. Moreover, it was demonstrated that GTE can reduce damage caused by PM2.5 exposure by not only anti-inflammatory and antioxidant mechanisms, but also by off-setting the disturbance to epidermal lipid homeostasis. This study demonstrates the strong potential of GTE as an active ingredient to be utilized in cosmetic products to effectively reduce the damage PM2.5 induces in skin.
Collapse
Affiliation(s)
- Zhengzheng Liao
- Shanghai Chicmax Cosmetic Co., Ltd, Floor 38th, Global Harbor Building, 200036, Shanghai, China
| | | | | |
Collapse
|
29
|
Khalil C, Chahine JB, Chahla B, Hobeika T, Khnayzer RS. Characterization and cytotoxicity assessment of nargile smoke using dynamic exposure. Inhal Toxicol 2019; 31:343-356. [DOI: 10.1080/08958378.2019.1683104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Christian Khalil
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
- Institute of Environmental Studies, University of New South Wales (UNSW), Sydney, Australia
| | - Joe Braham Chahine
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Brenda Chahla
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Tamara Hobeika
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Rony S. Khnayzer
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut, Lebanon
| |
Collapse
|
30
|
Abstract
Much biomedical research focuses on the effects of UV light on human cells. UV light sources are a prerequisite for such research. This paper presents the design and achieved performance of a UVA (Ultraviolet A: 320–400 nm) and a UVB (Ultraviolet B: 290–320 nm) LED-based lamp suitable for use in bioassays, as well as inside an incubator. Numerical simulations were used to optimise the number, layout and output power of LEDs to achieve good irradiance homogeneity while maintaining low costs. Design was optimised for the efficient transfer of generated heat away from the irradiated samples through the heatsink at the back of the lamps. The average irradiance of the target surface by the UVA lamp was 70.1 W/m2 with a maximum deviation of 4.9%, and the average irradiance by the UVB lamp was 3.1 W/m2 with a maximum deviation of 4.8%. With the UVA and UVB lamps, the temperature of samples undergoing irradiation in the incubator rises from 37 to 42 °C within 40 and 67 min, respectively. This by far exceeds the required UV irradiation time in most cases. Tests on Jurkat and HEK-293 cell cultures confirmed the suitability of our lamps for biomedical research.
Collapse
|
31
|
Dihydrocaffeic Acid Prevents UVB-Induced Oxidative Stress Leading to the Inhibition of Apoptosis and MMP-1 Expression via p38 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2419096. [PMID: 30800206 PMCID: PMC6360051 DOI: 10.1155/2019/2419096] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/13/2018] [Accepted: 11/18/2018] [Indexed: 01/18/2023]
Abstract
Chronic UVB exposure promotes oxidative stress, directly causes molecular damage, and induces aging-related signal transduction, leading to skin photoaging. Dihydrocaffeic acid (DHCA) is a phenolic compound with potential antioxidant capacity and is thus a promising compound for the prevention of UVB-induced skin photodamage. The aim of this study was to evaluate the antioxidant and protective effect of DHCA against oxidative stress, apoptosis, and matrix metalloproteinase (MMP) expression via the mitogen-activated protein kinase (MAPK) signaling pathway on L929 fibroblasts irradiated with UVB. DHCA exhibited high antioxidant capacity on 2,2-diphenyl-1-picrylhydrazyl (DPPH•), 2,2-azinobis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS•+), and xanthine/luminol/xanthine oxidase (XOD) assays and reduced UVB-induced cell death in the neutral red assay. DHCA also modulated oxidative stress by decreasing intracellular reactive oxygen species (ROS) and extracellular hydrogen peroxide (H2O2) production, enhancing catalase (CAT) and superoxide dismutase (SOD) activities and reduced glutathione (GSH) levels. Hence, cellular damage was attenuated by DHCA, including lipid peroxidation, apoptosis/necrosis and its markers (loss of mitochondria membrane potential, DNA condensation, and cleaved caspase 9 expression), and MMP-1 expression. Furthermore, DHCA reduced the phosphorylation of MAPK p38. These findings suggest that DHCA can be used in the development of skin care products to prevent UVB-induced skin damage.
Collapse
|
32
|
Mehanna S, Mansour N, Audi H, Bodman-Smith K, Mroueh MA, Taleb RI, Daher CF, Khnayzer RS. Enhanced cellular uptake and photochemotherapeutic potential of a lipophilic strained Ru(ii) polypyridyl complex. RSC Adv 2019; 9:17254-17265. [PMID: 35519840 PMCID: PMC9064604 DOI: 10.1039/c9ra02615k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
A strained Ru(ii) prodrug exhibited enhanced cellular uptake and phototoxicity due to its lipophilic properties.
Collapse
Affiliation(s)
- Stephanie Mehanna
- Department of Natural Sciences
- Lebanese American University
- Beirut 1102-2801
- Lebanon
- Faculty of Health and Medical Sciences
| | - Najwa Mansour
- Department of Natural Sciences
- Lebanese American University
- Beirut 1102-2801
- Lebanon
- Faculty of Health and Medical Sciences
| | - Hassib Audi
- Department of Natural Sciences
- Lebanese American University
- Beirut 1102-2801
- Lebanon
| | - Kikki Bodman-Smith
- Faculty of Health and Medical Sciences
- Department of Microbial and Cellular Sciences
- University of Surrey
- UK
| | - Mohamad A. Mroueh
- School of Pharmacy
- Department of Pharmaceutical Sciences
- Lebanese American University
- Lebanon
| | - Robin I. Taleb
- Department of Natural Sciences
- Lebanese American University
- Beirut 1102-2801
- Lebanon
| | - Costantine F. Daher
- Department of Natural Sciences
- Lebanese American University
- Beirut 1102-2801
- Lebanon
| | - Rony S. Khnayzer
- Department of Natural Sciences
- Lebanese American University
- Beirut 1102-2801
- Lebanon
| |
Collapse
|
33
|
Khalil C, Al Hageh C, Korfali S, Khnayzer RS. Municipal leachates health risks: Chemical and cytotoxicity assessment from regulated and unregulated municipal dumpsites in Lebanon. CHEMOSPHERE 2018; 208:1-13. [PMID: 29857206 DOI: 10.1016/j.chemosphere.2018.05.151] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 05/15/2023]
Abstract
The proper management of municipal waste is critical for resource recovery, sustainability and health. Lebanon main approach for managing its municipal waste consisted of landfill disposal with minimal recycling capacity. This approach contributed to exceeding the holding capacity of existing landfills leading eventually to their closures. The closure of a major landfill (Naameh landfill) servicing Beirut and Mount Lebanon areas led to municipal wastes piling in the streets and forests for more than a year in 2016. The main problem identified in the municipal wastes consisted of untreated leachates (from regulated and unregulated dumpsites) going straight into the Mediterranean Sea. Therefore leachate samples were collected and subjected to chemical characterization followed by biological assessment. The chemical characterization and profiling of the Lebanese leachates were compared to results reported in Lebanon, Europe and United States as well as to the toxicity reference values (TRV). The biological assessment was conducted in vitro using human derived immortalized cell cultures. This strategy revealed significant alarming cellular organelles and DNA damages using in vitro cytotoxicity assays (MTS and comet assay). The significant damages observed at the cellular level prompted further animal model investigations using BALB/c mice. The animal data pointed to significant upregulation of liver activity enzymes coupled with significant damage expression in liver spleen and bone marrow DNA. The presented research clearly indicated that there is an urgent need for development of national waste strategies for proper treatment and disposal of municipal waste leachates in Lebanon.
Collapse
Affiliation(s)
- Christian Khalil
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon.
| | - Cynthia Al Hageh
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Samira Korfali
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| | - Rony S Khnayzer
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon
| |
Collapse
|
34
|
Khalil C. Human skin explants an in vitro approach for assessing UVB induced damage. Toxicol In Vitro 2018; 53:193-199. [PMID: 30149078 DOI: 10.1016/j.tiv.2018.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/30/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022]
Abstract
Lifestyle changes involving frequent outdoor activities are contributing to higher exposure to harmful ultraviolet light (UVB). The acute effects of UVB irradiation on human skin was evaluated in this study using freshly excised human skin from elective surgery subjected to UVB doses (0-3.76 J/cm2). The assessment of UVB induced cellular and skin damages was undertaken at two time points immediately and 24 h post exposure using in vitro, and immunohistochemical staining techniques. The results indicated no significant loss of skin integrity or significant acute mitochondrial cellular damages in UVB exposed skin sections as measured by the MTS cytotoxicity assay. The other key markers of damage showed significant extracellular LDH membrane leakages and upregulation of inflammatory cytokines such as IL-1β. Skin integrity analysis was also undertaken using H&E, HLADR, and anti-cytokeratin antibodies. The results showed significant epidermal changes, basal cell activation and Langerhans cells depletion. The research proved the usefulness of freshly excised human skin explant model in measuring UVB damage. Furthermore, freshly excised human skin maintains the natural layering and therefore does not pose the same challenges faced by commercially available reconstructed skin in terms of higher costs and accurate mimicking of all the complex interactions observed in human skin.
Collapse
Affiliation(s)
- Christian Khalil
- Lebanese American University, Byblos, Lebanon; University of New South Wales, Sydney, Australia.
| |
Collapse
|
35
|
Balupillai A, Nagarajan RP, Ramasamy K, Govindasamy K, Muthusamy G. Caffeic acid prevents UVB radiation induced photocarcinogenesis through regulation of PTEN signaling in human dermal fibroblasts and mouse skin. Toxicol Appl Pharmacol 2018; 352:87-96. [DOI: 10.1016/j.taap.2018.05.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/12/2018] [Accepted: 05/22/2018] [Indexed: 01/10/2023]
|
36
|
Hong YH, Jeon HL, Ko KY, Kim J, Yi JS, Ahn I, Kim TS, Lee JK. Assessment of the predictive capacity of the optimized in vitro comet assay using HepG2 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 827:59-67. [DOI: 10.1016/j.mrgentox.2018.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
|
37
|
Al Hageh C, Al Assaad M, El Masri Z, Samaan N, El-Sibai M, Khalil C, Khnayzer RS. A long-lived cuprous bis-phenanthroline complex for the photodynamic therapy of cancer. Dalton Trans 2018; 47:4959-4967. [DOI: 10.1039/c8dt00140e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An earth-abundant cuprous bis-phenanthroline photosensitizer showed potential use in the photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Cynthia Al Hageh
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Majd Al Assaad
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Zeinab El Masri
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Nawar Samaan
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Christian Khalil
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| | - Rony S. Khnayzer
- Department of Natural Sciences
- Lebanese American University
- Chouran
- Lebanon
| |
Collapse
|