1
|
Wang L, Dong Z, Zhang Y, Peng L. Emerging Roles of High-mobility Group Box-1 in Liver Disease. J Clin Transl Hepatol 2024; 12:1043-1056. [PMID: 39649031 PMCID: PMC11622203 DOI: 10.14218/jcth.2024.00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024] Open
Abstract
High-mobility group box-1 (HMGB1) is an architectural chromosomal protein with various roles depending on its cellular localization. Extracellular HMGB1 functions as a prototypical damage-associated molecular pattern that triggers inflammation and adaptive immune responses, mediated by specific cell surface receptors, including receptors for advanced glycation end products and toll-like receptors. Post-translational modifications of HMGB1 significantly impact various cellular processes that contribute to the pathogenesis of liver diseases. Recent studies have highlighted the close relationship between HMGB1 and the pathogenesis of acute liver injuries, including acetaminophen-induced liver injury, hepatic ischemia-reperfusion injury, and acute liver failure. In chronic liver diseases, HMGB1 plays a role in nonalcoholic fatty liver disease, alcohol-associated liver disease, liver fibrosis, and hepatocellular carcinoma. Targeting HMGB1 as a therapeutic approach, either by inhibiting its release or blocking its extracellular function, is a promising strategy for treating liver diseases. This review aimed to summarize the available evidence on HMGB1's role in liver disease, focusing on its multifaceted signaling pathways, impact on disease progression, and the translation of these findings into clinical interventions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Diagnostics, Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhiwei Dong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Shen P, Zhang L, Jiang X, Yu B, Zhang J. Targeting HMGB1 and Its Interaction with Receptors: Challenges and Future Directions. J Med Chem 2024; 67:21671-21694. [PMID: 39648929 DOI: 10.1021/acs.jmedchem.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
High mobility group box 1 (HMGB1) is a nonhistone chromatin protein predominantly located in the nucleus. However, under pathological conditions, HMGB1 can translocate from the nucleus to the cytoplasm and subsequently be released into the extracellular space through both active secretion and passive release mechanisms. The distinct cellular locations of HMGB1 facilitate its interaction with various endogenous and exogenous factors, allowing it to perform diverse functions across a range of diseases. This Perspective provides a comprehensive overview of the structure, release mechanisms, and multifaceted roles of HMGB1 in disease contexts. Furthermore, it introduces the development of both small molecule and macromolecule inhibitors targeting HMGB1 and its interaction with receptors. A detailed analysis of the predicted pockets is also presented, aiming to establish a foundation for the future design and development of HMGB1 inhibitors.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Libang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuewa Jiang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
3
|
Zhen M, Zhu Y, Wang P, Liu X, Zhu J, Liu H, Li J, Zhao J, Shu B. HMGB1 Accelerates Wound Healing by Promoting the Differentiation of Epidermal Stem Cells via the "HMGB1-TLR4-Wnt/Notch" Axis. Adv Wound Care (New Rochelle) 2024. [PMID: 39694535 DOI: 10.1089/wound.2023.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Objective: Impairments in the differentiation and migratory capacity of epidermal stem cells (ESCs) are pivotal factors contributing to delayed wound healing. High mobility group box1 (HMGB1) has recently emerged as a potential target for tissue repair. Therefore, we aimed to investigate the role and molecular mechanisms of HMGB1 in ESCs during the wound-healing process. Approach: Initially, we examined the expression of HMGB1 and the differentiation of ESCs in normal skin, normal wounds and chronic wounds. Then, we assessed the ESC migration and differentiation, and the key markers in the Wnt/Notch signaling pathways, after treatment of HMGB1 and inhibitor, and the knockdown of toll-like receptor 4 (TLR4), using scratch assay, qPCR, western blotting, and immunofluorescence. Finally, we conducted mice models to analyze the healing rates and quality in vivo. Results: HMGB1 was decreased across all epidermal layers, and the differentiation of ESCs was hindered in diabetic foot ulcer. In vitro, HMGB1 enhanced both the migration and differentiation of ESCs while stimulating the expression of the Wnt/Notch pathway within ESCs. However, the downregulation of TLR4 negated these effects. Finally, our in vivo experiments provided evidence that HMGB1 facilitates wound healing and epidermis differentiation via TLR4 and Wnt/Notch signaling pathways. Innovation: This study innovatively introduces HMGB1 as a novel target for skin wound healing and elucidates its mechanisms of action. Conclusions: HMGB1 accelerated wound healing by promoting the differentiation of epidermal stem cells through the "HMGB1-TLR4-Wnt/Notch" axis, which reveals a new potential mechanism and target to expedite wound healing.
Collapse
Affiliation(s)
- Miao Zhen
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongkang Zhu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Peng Wang
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaogang Liu
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junyou Zhu
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hengdeng Liu
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingting Li
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingling Zhao
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Shu
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Mohammad Mirzaei N, Kevrekidis PG, Shahriyari L. Oxygen, angiogenesis, cancer and immune interplay in breast tumour microenvironment: a computational investigation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240718. [PMID: 39665095 PMCID: PMC11631512 DOI: 10.1098/rsos.240718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer is a challenging global health problem among women. This study investigates the intricate breast tumour microenvironment (TME) dynamics utilizing data from mammary-specific polyomavirus middle T antigen overexpression mouse models (MMTV-PyMT). It incorporates endothelial cells (ECs), oxygen and vascular endothelial growth factors (VEGF) to examine the interplay of angiogenesis, hypoxia, VEGF and immune cells in cancer progression. We introduce an approach to impute immune cell fractions within the TME using single-cell RNA-sequencing (scRNA-seq) data from MMTV-PyMT mice. We quantify our analysis by estimating cell counts using cell size data and laboratory findings from existing literature. We perform parameter estimation via a Hybrid Genetic Algorithm (HGA). Our simulations reveal various TME behaviours, emphasizing the critical role of adipocytes, angiogenesis, hypoxia and oxygen transport in driving immune responses and cancer progression. Global sensitivity analyses highlight potential therapeutic intervention points, such as VEGFs' role in EC growth and oxygen transportation and severe hypoxia's effect on cancer and the total number of cells. The VEGF-mediated production rate of ECs shows an essential time-dependent impact, highlighting the importance of early intervention in slowing cancer progression. These findings align with clinical observations demonstrating the VEGF inhibitors' efficacy and suggest a timely intervention for better outcomes.
Collapse
Affiliation(s)
- Navid Mohammad Mirzaei
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York10032, USA
| | - Panayotis G. Kevrekidis
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA01003-4515, USA
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA01003-4515, USA
| |
Collapse
|
5
|
Li A, Li M, Fei R, Mallik S, Hu B, Yu Y. EfficientNet-resDDSC: A Hybrid Deep Learning Model Integrating Residual Blocks and Dilated Convolutions for Inferring Gene Causality in Single-Cell Data. Interdiscip Sci 2024:10.1007/s12539-024-00667-2. [PMID: 39578307 DOI: 10.1007/s12539-024-00667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/24/2024]
Abstract
Gene Regulatory Networks (GRNs) reveal complex interactions between genes in organisms, crucial for understanding the life system's operation. The rapid development of biotechnology, especially single-cell RNA sequencing (scRNA-seq), has generated a large amount of scRNA-seq data, which can be analyzed to explore the regulatory relationships between genes at the single-cell level. Previous models used to construct GRNs mainly aim at constructing associative relationships between genes, but usually fail to accurately reveal the causality between genes. Therefore, we present a hybrid deep learning model called EfficientNet-resDDSC (the EfficientNet with Residual Blocks and Depthwise Separable Dilated Convolutions) to infer causality between genes. The model inherits the basic structure of EfficientNet-B0 and incorporates residual blocks as well as dilated convolutions. The model's ability to extract low-level features at the primary stage is enhanced by introducing residual blocks. The model combines Depthwise Separable Convolution (DSC) in the inverted linear bottleneck layers with the dilated convolutions to expand the model's receptive fields without increasing the computational effort. This design enables the model to comprehensively reveal potential relationships among different genes in high-dimensional and high-noise single-cell data. In comparison with the five existing deep learning network models, EfficientNet-resDDSC's overall performance is significantly better than others on four datasets. In this study, EfficientNet-resDDSC was further applied to construct GRNs for breast cancer patients, focusing on the related regulatory genes of the key gene BRCA1, which contributes to the advancement of breast cancer research and treatment strategies.
Collapse
Affiliation(s)
- Aimin Li
- School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
- Shaanxi Key Laboratory for Network Computing and Security Technology, Xi'an, 710048, China
| | - Mingyue Li
- School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Rong Fei
- School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China.
- Shaanxi Key Laboratory for Network Computing and Security Technology, Xi'an, 710048, China.
| | - Saurav Mallik
- Department of Environmental Health, Harvard University T H Chan School of Public Health, Boston, 02115, USA
| | - Bo Hu
- Hangzhou HollySys Automation Co., Ltd, Hangzhou, 100176, China
| | - Yue Yu
- School of Information Science and Technology, Northwestern University, Xi'an, 710127, China
| |
Collapse
|
6
|
Wang S, Bai Y, Ma J, Qiao L, Zhang M. Long non-coding RNAs: regulators of autophagy and potential biomarkers in therapy resistance and urological cancers. Front Pharmacol 2024; 15:1442227. [PMID: 39512820 PMCID: PMC11540796 DOI: 10.3389/fphar.2024.1442227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The non-coding RNAs (ncRNAs) comprise a large part of human genome that mainly do not code for proteins. Although ncRNAs were first believed to be non-functional, the more investigations highlighted tthe possibility of ncRNAs in controlling vital biological processes. The length of long non-coding RNAs (lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and cytoplasm. LncRNAs do not translate to proteins and they have been implicated in the regulation of tumorigenesis. On the other hand, One way cells die is by a process called autophagy, which breaks down proteins and other components in the cytoplasm., while the aberrant activation of autophagy allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-cancer activity in pre-cancerous lesions, while it has oncogenic function in advanced stages of cancers. The current overview focuses on the connection between lncRNAs and autophagy in urological cancers is discussed. Notably, one possible role for lncRNAs is as diagnostic and prognostic variablesin urological cancers. The proliferation, metastasis, apoptosis and therapy response in prostate, bladder and renal cancers are regulated by lncRNAs. The changes in autophagy levels can also influence the apoptosis, proliferation and therapy response in urological tumors. Since lncRNAs have modulatory functions, they can affect autophagy mechanism to determine progression of urological cancers.
Collapse
Affiliation(s)
- Shizong Wang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Yang Bai
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Jie Ma
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Liang Qiao
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Mingqing Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| |
Collapse
|
7
|
Yang Y, Zhou T, Yang Y, Yang Z. Associations of the HMGB1 rs1412125 and rs2249825 polymorphisms with Kawasaki disease. Cardiol Young 2024:1-7. [PMID: 39438774 DOI: 10.1017/s1047951124026854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND Kawasaki disease is an acute febrile disease causing systemic vasculitis that is common in infants and young children. This study was conducted to explore the relationships of the rs1412125, and rs2249825 single nucleotide polymorphisms of the high mobility group box 1 gene to Kawasaki disease and its complication of coronary artery injury. METHODS In total, 200 children with Kawasaki disease (49 with coronary artery injury) and 200 healthy controls were enrolled in this study. Polymerase chain reaction was used to amplify the target gene, and direct sequencing was performed to determine distributions at the rs1412125 T/C and rs2249825 C/G loci in the HMGB1 gene. The chi-squared test was used to compare data between groups. Linkage disequilibrium coefficients and single nucleotide polymorphism haplotype analysis were conducted, and a false-positive report probability analysis was used to assess significant associations. Expression quantitative trait loci analysis was performed to determine if single nucleotide polymorphisms affected mRNA levels via the GTEx portal. RESULTS Significant differences in the genotype TT, TC, and CC distributions (χ2 = 7.918, P = 0.019) and allele T and C frequencies (χ2 = 6.125, P = 0.013) of rs1412125 T/C locus were found between the Kawasaki disease and healthy control groups. The genotype CC was associated with a greater Kawasaki disease risk [odds ratio = 3.205, 95% confidence interval = 1.352-7.595, χ2 = 7.560, P = 0.006]. C allele carriers had a higher Kawasaki disease risk than did T allele carriers (odds ratio = 1.469, 95% confidence interval = 1.083-1.993, χ2 = 6.125, P = 0.013). The rs1412125 genotype T/C distribution (χ2 = 10.906, P = 0.004) and allele frequencies (χ2 = 8.813, P = 0.003) differed significantly between patients with and without coronary artery injury. In the dominant model, the coronary artery injury risk was 3.006 times greater for patients with the TT genotype than for those with the other genotypes (odds ratio = 3.006, 95% confidence interval = 1.540-5.867, χ2 = 10.875, P = 0.001). No significant difference in the rs2249825 genotype C/G distribution or allele frequencies was found between the Kawasaki disease and control groups, or between the coronary artery injury and without coronary artery injury groups. CONCLUSIONS The rs1412125 polymorphism of the HMGB1 gene is associated with Kawasaki disease and its coronary artery injury complication. The CC genotype may be a risk factor for Kawasaki disease onset, and the TT genotype may be a risk factor for coronary artery injury in Kawasaki disease.
Collapse
Affiliation(s)
- Yeyi Yang
- Department of Nephropathy and Rheumatology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Ting Zhou
- Department of Pediatrics, Zhuzhou Central Hospital, Zhuzhou, Hunan, P.R. China
| | - Yezhen Yang
- Department of Ophthalmology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Zuocheng Yang
- Department of Pediatrics, the Third Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
8
|
Zhou Q, Cao T, Li F, Zhang M, Li X, Zhao H, Zhou Y. Mitochondria: a new intervention target for tumor invasion and metastasis. Mol Med 2024; 30:129. [PMID: 39179991 PMCID: PMC11344364 DOI: 10.1186/s10020-024-00899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Mitochondria, responsible for cellular energy synthesis and signal transduction, intricately regulate diverse metabolic processes, mediating fundamental biological phenomena such as cell growth, aging, and apoptosis. Tumor invasion and metastasis, key characteristics of malignancies, significantly impact patient prognosis. Tumor cells frequently exhibit metabolic abnormalities in mitochondria, including alterations in metabolic dynamics and changes in the expression of relevant metabolic genes and associated signal transduction pathways. Recent investigations unveil further insights into mitochondrial metabolic abnormalities, revealing their active involvement in tumor cell proliferation, resistance to chemotherapy, and a crucial role in tumor cell invasion and metastasis. This paper comprehensively outlines the latest research advancements in mitochondrial structure and metabolic function. Emphasis is placed on summarizing the role of mitochondrial metabolic abnormalities in tumor invasion and metastasis, including alterations in the mitochondrial genome (mutations), activation of mitochondrial-to-nuclear signaling, and dynamics within the mitochondria, all intricately linked to the processes of tumor invasion and metastasis. In conclusion, the paper discusses unresolved scientific questions in this field, aiming to provide a theoretical foundation and novel perspectives for developing innovative strategies targeting tumor invasion and metastasis based on mitochondrial biology.
Collapse
Affiliation(s)
- Quanling Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Tingping Cao
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Fujun Li
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Ming Zhang
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Xiaohui Li
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Ya Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Guizhou, 563000, China.
| |
Collapse
|
9
|
Wang G, Hiramoto K, Ma N, Ohnishi S, Morita A, Xu Y, Yoshikawa N, Chinzei Y, Murata M, Kawanishi S. Immunohistochemical analyses reveal FoxP3 expressions in spleen and colorectal cancer in mice treated with AOM/DSS, and their suppression by glycyrrhizin. PLoS One 2024; 19:e0307038. [PMID: 39150932 PMCID: PMC11329161 DOI: 10.1371/journal.pone.0307038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/27/2024] [Indexed: 08/18/2024] Open
Abstract
We previously demonstrated that glycyrrhizin (GL) suppressed inflammation and carcinogenesis in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced murine model of colorectal cancer (CC). In this study, we found an accumulation of regulatory T cells (Tregs) in the spleen and suppression by GL in model mice. ICR mice were divided into four groups: Control, GL, CC, and GL-treated CC (CC+GL), and were sacrificed 20 weeks after AOM/DSS treatment. We measured spleen weight, areas of white and red pulp, and CD8+ T cells (cytotoxic T lymphocytes, CTL), and CD11c-positive cells (dendritic cells) in splenic tissues and forkhead box protein 3 (FoxP3)-positive cells (Tregs) in colorectal and splenic tissues. In all cases, the CC group showed a significant increase compared with those in Control group, and GL administration significantly attenuated this increase. These results indicate that Tregs accumulated in the spleen may participate in inflammation-related carcinogenesis by suppressing CTL. We also suggest that GL which binds to high-mobility group box 1 (HMGB1), suppresses carcinogenesis with decreasing Tregs in the spleen. Furthermore, there was an expression of FoxP3 in cancer cells, indicating that it may be involved in the malignant transformation of cancer cells.
Collapse
Affiliation(s)
- Guifeng Wang
- Department of Acupuncture and Moxibustion Medical Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Keiichi Hiramoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Akihiro Morita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Yifei Xu
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | - Yasuo Chinzei
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| |
Collapse
|
10
|
(Ogi) Suzuki K, Okamoto T, Tamai K, Tabata Y, Hatano E. Enhancement of tracheal cartilage regeneration by local controlled release of stromal cell-derived factor 1α with gelatin hydrogels and systemic administration of high-mobility group box 1 peptide. Regen Ther 2024; 26:415-424. [PMID: 39070123 PMCID: PMC11282968 DOI: 10.1016/j.reth.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction This present study evaluated the effect of combination therapy with stromal cell-derived factor 1α (SDF-1α) and high-mobility group box 1 (HMGB1) peptide on the regeneration of tracheal injury in a rat model. Methods To improve this effect, SDF-1α was incorporated into a gelatin hydrogel, which was then applied to the damaged tracheal cartilage of rats for local release. Furthermore, HMGB1 peptide was repeatedly administered intravenously. Regeneration of damaged tracheal cartilage was evaluated in terms of cell recruitment. Results Mesenchymal stem cells (MSC) with C-X-C motif chemokine receptor 4 (CXCR4) were mobilized more into the injured area, and consequently the fastest tracheal cartilage regeneration was observed in the combination therapy group eight weeks after injury. Conclusions The present study demonstrated that combination therapy with gelatin hydrogel incorporating SDF-1α and HMGB1 peptide injected intravenously can enhance the recruitment of CXCR4-positive MSC, promoting the regeneration of damaged tracheal cartilage.
Collapse
Affiliation(s)
- Kumiko (Ogi) Suzuki
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Biomaterials, Field of Tissue Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tatsuya Okamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
11
|
Tian Z, Zhu L, Xie Y, Hu H, Ren Q, Liu J, Wang Q. The mechanism of high mobility group box-1 protein and its bidirectional regulation in tumors. BIOMOLECULES & BIOMEDICINE 2024; 24:477-485. [PMID: 37897664 PMCID: PMC11088895 DOI: 10.17305/bb.2023.9760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/01/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
High-mobility group box-1 protein (HMGB1) is a nonhistone chromatin-related protein widely found in eukaryotic cells. It is involved in the transcription, replication, and repair of DNA to maintain nuclear homeostasis. It participates in cell growth, differentiation, and signal transduction. Recent studies showed that HMGB1 has a bidirectional regulatory effect on tumors by regulating TLR4/MYD88/NF-κB and RAGE/AMPK/mTOR signaling pathways. On the one hand, it is highly expressed in a variety of tumors, promoting tumor proliferation and invasion, while on the other hand, it induces autophagy and apoptosis of tumor cells and stimulates tumor-infiltrating lymphocytes to produce an anti-tumor immune response. At present, HMGB1 could be used as a target to regulate the drug resistance and prognostication in cancer. Clinical applications of HMGB1 in cancer need further in-depth studies.
Collapse
Affiliation(s)
- Zhongjia Tian
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Zhu
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Yutong Xie
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Huan Hu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qunli Ren
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Wang
- The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
12
|
Lv G, Yang M, Gai K, Jia Q, Wang Z, Wang B, Li X. Multiple functions of HMGB1 in cancer. Front Oncol 2024; 14:1384109. [PMID: 38725632 PMCID: PMC11079206 DOI: 10.3389/fonc.2024.1384109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear DNA-binding protein with a dual role in cancer, acting as an oncogene and a tumor suppressor. This protein regulates nucleosomal structure, DNA damage repair, and genomic stability within the cell, while also playing a role in immune cell functions. This review comprehensively evaluates the biological and clinical significance of HMGB1 in cancer, including its involvement in cell death and survival, its potential as a therapeutic target and cancer biomarker, and as a prosurvival signal for the remaining cells after exposure to cytotoxic anticancer treatments. We highlight the need for a better understanding of the cellular markers and mechanisms involved in the involvement of HMGB1in cancer, and aim to provide a deeper understanding of its role in cancer progression.
Collapse
Affiliation(s)
- Guangyao Lv
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Menglin Yang
- Quality Management Department, Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Keke Gai
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qiong Jia
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zhenzhen Wang
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Bin Wang
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xueying Li
- School of Health, Binzhou Polytechnic, Binzhou, China
| |
Collapse
|
13
|
Napolitano E, Criscuolo A, Riccardi C, Esposito CL, Catuogno S, Coppola G, Roviello GN, Montesarchio D, Musumeci D. Directing in Vitro Selection towards G-quadruplex-forming Aptamers to Inhibit HMGB1 Pathological Activity. Angew Chem Int Ed Engl 2024; 63:e202319828. [PMID: 38358301 DOI: 10.1002/anie.202319828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
In the search for novel, effective inhibitors of High-Mobility Group Box1 (HMGB1)-a protein involved in various inflammatory and autoimmune diseases as well as in cancer-we herein discovered a set of anti-HMGB1 G-quadruplex(G4)-forming aptamers by using an in vitro selection procedure applied to a doped library of guanine-rich oligonucleotides. The selected DNA sequences were then studied in a pseudo-physiological buffer mimicking the extracellular medium, where HMGB1 exerts its pathological activity, using spectroscopic, electrophoretic, and chromatographic techniques. All the oligonucleotides proved to fold into monomeric G4s and in some cases also dimeric species, stable at physiological temperature. Remarkably, the protein preferentially recognized the sequences forming dimeric parallel G4 structures, as evidenced by a properly designed chemiluminescent binding assay which also highlighted a good selectivity of these aptamers for HMGB1. Moreover, all aptamers showed anti-HMGB1 activity, inhibiting protein-induced cell migration. The acquired data allowed identifying L12 as the best anti-HMGB1 aptamer, featured by high thermal and enzymatic stability, no toxicity at least up to 5 μM concentration on healthy cells, along with potent anti-HMGB1 activity (IC50 ca. 28 nM) and good binding affinity for the protein, thus indicating it as a very promising lead candidate for in vivo studies.
Collapse
Affiliation(s)
- Ettore Napolitano
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, 80126, Napoli, Italy
| | - Andrea Criscuolo
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, 80126, Napoli, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, 80126, Napoli, Italy
| | - Carla L Esposito
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Via Sergio Pansini 5, 80131, Napoli, Italy
| | - Silvia Catuogno
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Via Sergio Pansini 5, 80131, Napoli, Italy
| | - Gabriele Coppola
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Via Sergio Pansini 5, 80131, Napoli, Italy
| | - Giovanni N Roviello
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 80145, Napoli, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, 80126, Napoli, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, 80126, Napoli, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 80145, Napoli, Italy
| |
Collapse
|
14
|
Kamali MJ, Salehi M, Mostafavi M, Morovatshoar R, Akbari M, Latifi N, Barzegari O, Ghadimi F, Daraei A. Hijacking and rewiring of host CircRNA/miRNA/mRNA competitive endogenous RNA (ceRNA) regulatory networks by oncoviruses during development of viral cancers. Rev Med Virol 2024; 34:e2530. [PMID: 38517354 DOI: 10.1002/rmv.2530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
A significant portion of human cancers are caused by oncoviruses (12%-25%). Oncoviruses employ various strategies to promote their replication and induce tumourigenesis in host cells, one of which involves modifying the gene expression patterns of the host cells, leading to the rewiring of genes and resulting in significant changes in cellular processes and signalling pathways. In recent studies, a specific mode of gene regulation known as circular RNA (circRNA)-mediated competing endogenous RNA (ceRNA) networks has emerged as a key player in this context. CircRNAs, a class of non-coding RNA molecules, can interact with other RNA molecules, such as mRNAs and microRNAs (miRNAs), through a process known as ceRNA crosstalk. This interaction occurs when circRNAs, acting as sponges, sequester miRNAs, thereby preventing them from binding to their target mRNAs and modulating their expression. By rewiring the host cell genome, oncoviruses have the ability to manipulate the expression and activity of circRNAs, thereby influencing the ceRNA networks that can profoundly impact cellular processes such as cell proliferation, differentiation, apoptosis, and immune responses. This review focuses on a comprehensive evaluation of the latest findings on the involvement of virus-induced reprogramming of host circRNA-mediated ceRNA networks in the development and pathophysiology of human viral cancers, including cervical cancer, gastric cancer, nasopharyngeal carcinoma, Kaposi's sarcoma, hepatocellular carcinoma, and diffuse large B cell lymphoma. Understanding these mechanisms can improve our knowledge of how oncoviruses contribute to human tumourigenesis and identify potential targets for developing optimised therapies and diagnostic tools for viral cancers.
Collapse
Affiliation(s)
- Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrnaz Mostafavi
- Department of Physics, Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mitra Akbari
- Eye Department, Eye Research Center, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Narges Latifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Omid Barzegari
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Ghadimi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
15
|
Tefr Faridová A, Heřman H, Danačíková Š, Svoboda J, Otáhal J. Serum biomarkers of hypoxic-ischemic brain injury. Physiol Res 2023; 72:S461-S474. [PMID: 38165751 PMCID: PMC10861251 DOI: 10.33549/physiolres.935214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Brain injury is a multifaceted condition arising from nonspecific damage to nervous tissue. The resulting cognitive developmental impairments reverberate through patients' lives, affecting their families, and even the broader economic landscape. The significance of early brain injury detection lies in its potential to stave off severe consequences and enhance the effectiveness of tailored therapeutic interventions. While established methods like neuroimaging and neurophysiology serve as valuable diagnostic tools, their demanding nature restricts their accessibility, particularly in scenarios such as small hospitals, nocturnal or weekend shifts, and cases involving unstable patients. Hence, there is a pressing need for more accessible and efficient diagnostic avenues. Among the spectrum of brain injuries, hypoxic-ischemic encephalopathy stands out as a predominant affliction in the pediatric population. Diagnosing brain injuries in newborns presents challenges due to the subjective nature of assessments like Apgar scores and the inherent uncertainty in neurological examinations. In this context, methods like magnetic resonance and ultrasound hold recommendations for more accurate diagnosis. Recognizing the potential of serum biomarkers derived from blood samples, this paper underscores their promise as a more expedient and resource-efficient means of assessing brain injuries. The review compiles current insights into serum biomarkers, drawing from experiments conducted on animal models as well as human brain pathologies. The authors aim to elucidate specific characteristics, temporal profiles, and the available corpus of experimental and clinical data for serum biomarkers specific to brain injuries. These include neuron-specific enolase (NSE), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), S100 calcium-binding protein beta (S100B), glial fibrillary acidic protein (GFAP), and high-mobility-group-protein-box-1 (HMGB1). This comprehensive endeavor contributes to advancing the understanding of brain injury diagnostics and potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- A Tefr Faridová
- A. Tefr Faridová, Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague 5, Czech Republic. and
| | | | | | | | | |
Collapse
|
16
|
Yang Q, Li M, Hou Y, He H, Sun S. High-mobility group box 1 emerges as a therapeutic target for asthma. Immun Inflamm Dis 2023; 11:e1124. [PMID: 38156383 PMCID: PMC10739362 DOI: 10.1002/iid3.1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a highly conserved nonhistone nuclear protein found in the calf thymus and participates in a variety of intracellular processes such as DNA transcription, replication and repair. In the cytoplasm, HMGB1 promotes mitochondrial autophagy and is involved in in cellular stress response. Once released into the extracellular, HMGB1 becomes an inflammatory factor that triggers inflammatory responses and a variety of immune responses. In addition, HMGB1 binding with the corresponding receptor can activate the downstream substrate to carry out several biological effects. Meanwhile, HMGB1 is involved in various signaling pathways, such as the HMGB1/RAGE pathway, HMGB1/NF-κB pathway, and HMGB1/JAK/STAT pathway, which ultimately promote inflammation. Moreover, HMGB1 may be involved in the pathogenesis of asthma by regulating downstream signaling pathways through corresponding receptors and mediates a number of signaling pathways in asthma, such as HMGB1/TLR4/NF-κB, HMGB1/RAGE, HMGB1/TGF-β, and so forth. Accordingly, HMGB1 emerges as a therapeutic target for asthma.
Collapse
Affiliation(s)
- Qianni Yang
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
- 2021 Class 2 of AnesthesiologyKunming Medical UniversityKunmingChina
| | - Min Li
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Yunjiao Hou
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Huilin He
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Shibo Sun
- Department of Pulmonary and Critical Care MedicineFirst Affiliated Hospital, Kunming Medical UniversityKunmingChina
| |
Collapse
|
17
|
Idoudi S, Bedhiafi T, Pedersen S, Elahtem M, Alremawi I, Akhtar S, Dermime S, Merhi M, Uddin S. Role of HMGB1 and its associated signaling pathways in human malignancies. Cell Signal 2023; 112:110904. [PMID: 37757902 DOI: 10.1016/j.cellsig.2023.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
The High-Mobility Group Box-1 (HMGB1), a non-histone chromatin-associated protein, plays a crucial role in cancer growth and response to therapy as it retains a pivotal role in promoting both cell death and survival. HMGB1 has been reported to regulate several signaling pathways engaged in inflammation, genome stability, immune function, cell proliferation, cell autophagy, metabolism, and apoptosis. However, the association between HMGB1 and cancer is complex and its mechanism in tumorigenesis needs to be further elucidated. This review aims to understand the role of HMGB1 in human malignancies and discuss the signaling pathways linked to this process to provide a comprehensive understanding on the association of HMGB1 with carcinogenesis. Further, we will review the role of HMGB1 as a target/biomarker for cancer therapy, the therapeutic strategies used to target this protein, and its potential role in preventing or treating cancers. In light of the recent growing evidence linking HMGB1 to cancer progression, we think that it may be suggested as a novel and emergent therapeutic target for cancer therapy. Hence, HMGB1 warrants paramount investigation to comprehensively map its role in tumorigenesis.
Collapse
Affiliation(s)
- Sourour Idoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | | | - Shona Pedersen
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Mohamed Elahtem
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | | | - Sabah Akhtar
- Department of Dermatology and venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
18
|
Jarmuzek P, Defort P, Kot M, Wawrzyniak-Gramacka E, Morawin B, Zembron-Lacny A. Cytokine Profile in Development of Glioblastoma in Relation to Healthy Individuals. Int J Mol Sci 2023; 24:16206. [PMID: 38003396 PMCID: PMC10671437 DOI: 10.3390/ijms242216206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cytokines play an essential role in the control of tumor cell development and multiplication. However, the available literature provides ambiguous data on the involvement of these proteins in the formation and progression of glioblastoma (GBM). This study was designed to evaluate the inflammatory profile and to investigate its potential for the identification of molecular signatures specific to GBM. Fifty patients aged 66.0 ± 10.56 years with newly diagnosed high-grade gliomas and 40 healthy individuals aged 71.7 ± 4.9 years were included in the study. White blood cells were found to fall within the referential ranges and were significantly higher in GBM than in healthy controls. Among immune cells, neutrophils showed the greatest changes, resulting in elevated neutrophil-to-lymphocyte ratio (NLR). The neutrophil count inversely correlated with survival time expressed by Spearman's coefficient rs = -0.359 (p = 0.010). The optimal threshold values corresponded to 2.630 × 103/µL for NLR (the area under the ROC curve AUC = 0.831, specificity 90%, sensitivity 76%, the relative risk RR = 7.875, the confidence intervals 95%CI 3.333-20.148). The most considerable changes were recorded in pro-inflammatory cytokines interleukin IL-1β, IL-6, and IL-8, which were approx. 1.5-2-fold higher, whereas tumor necrosis factor α (TNFα) and high mobility group B1 (HMGB1) were lower in GBM than healthy control (p < 0.001). The results of the ROC, AUC, and RR analysis of IL-1β, IL-6, IL-8, and IL-10 indicate their high diagnostics potential for clinical prognosis. The highest average RR was observed for IL-6 (RR = 2.923) and IL-8 (RR = 3.151), which means there is an approx. three-fold higher probability of GBM development after exceeding the cut-off values of 19.83 pg/mL for IL-6 and 10.86 pg/mL for IL-8. The high values of AUC obtained for the models NLR + IL-1β (AUC = 0.907), NLR + IL-6 (AUC = 0.908), NLR + IL-8 (AUC = 0.896), and NLR + IL-10 (AUC = 0.887) prove excellent discrimination of GBM patients from healthy individuals and may represent GBM-specific molecular signatures.
Collapse
Affiliation(s)
- Pawel Jarmuzek
- Department of Nervous System Diseases, Collegium Medicum, Neurosurgery Center University Hospital, University of Zielona Gora, 65-417 Zielona Gora, Poland; (P.J.); (M.K.)
| | - Piotr Defort
- Department of Nervous System Diseases, Collegium Medicum, Neurosurgery Center University Hospital, University of Zielona Gora, 65-417 Zielona Gora, Poland; (P.J.); (M.K.)
| | - Marcin Kot
- Department of Nervous System Diseases, Collegium Medicum, Neurosurgery Center University Hospital, University of Zielona Gora, 65-417 Zielona Gora, Poland; (P.J.); (M.K.)
| | - Edyta Wawrzyniak-Gramacka
- Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.Z.-L.)
| | - Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.Z.-L.)
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.Z.-L.)
| |
Collapse
|
19
|
Chen R, Zou J, Kang R, Tang D. The Redox Protein High-Mobility Group Box 1 in Cell Death and Cancer. Antioxid Redox Signal 2023; 39:569-590. [PMID: 36999916 DOI: 10.1089/ars.2023.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Significance: As a redox-sensitive protein, high-mobility group box 1 (HMGB1) is implicated in regulating stress responses to oxidative damage and cell death, which are closely related to the pathology of inflammatory diseases, including cancer. Recent Advances: HMGB1 is a nonhistone nuclear protein that acts as a deoxyribonucleic acid chaperone to control chromosomal structure and function. HMGB1 can also be released into the extracellular space and function as a damage-associated molecular pattern protein during cell death, including during apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, alkaliptosis, and cuproptosis. Once released, HMGB1 binds to membrane receptors to shape immune and metabolic responses. In addition to subcellular localization, the function and activity of HMGB1 also depend on its redox state and protein posttranslational modifications. Abnormal HMGB1 plays a dual role in tumorigenesis and anticancer therapy (e.g., chemotherapy, radiation therapy, and immunotherapy) depending on the tumor types and stages. Critical Issues: A comprehensive understanding of the role of HMGB1 in cellular redox homeostasis is important for deciphering normal cellular functions and pathological manifestations. In this review, we discuss compartmental-defined roles of HMGB1 in regulating cell death and cancer. Understanding these advances may help us develop potential HMGB1-targeting drugs or approaches to treat oxidative stress-related diseases or pathological conditions. Future Directions: Further studies are required to dissect the mechanism by which HMGB1 maintains redox homeostasis under different stress conditions. A multidisciplinary effort is also required to evaluate the potential applications of precisely targeting the HMGB1 pathway in human health and disease. Antioxid. Redox Signal. 39, 569-590.
Collapse
Affiliation(s)
- Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Ju Zou
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Gillespie KP, Pirnie R, Mesaros C, Blair IA. Cisplatin Dependent Secretion of Immunomodulatory High Mobility Group Box 1 (HMGB1) Protein from Lung Cancer Cells. Biomolecules 2023; 13:1335. [PMID: 37759736 PMCID: PMC10526420 DOI: 10.3390/biom13091335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
High mobility group box 1 (HMGB1) is secreted from activated immune cells, necrotic cells, and certain cancers. Previous studies have reported that different patterns of post-translational modification, particularly acetylation and oxidation, mediate HMGB1 release and confer distinct extracellular HMGB1 signaling activity. Here we report that cisplatin but not carboplatin induces secretion of HMGB1 from human A549 non-small cell lung cancer (NSCLC) cells. Cisplatin-mediated HMGB1 secretion was dose-dependent and was regulated by nuclear exportin 1 (XPO1) also known as chromosomal maintenance 1 (CRM1) rather than adenosine diphosphate (ADP)-ribosylation, acetylation, or oxidation. HMGB1, as well as lysine acetylation and cysteine disulfide oxidation of secreted HMGB1, were monitored by sensitive and specific assays using immunoprecipitation, stable isotope dilution, differential alkylation, and nano liquid chromatography parallel reaction monitoring/high-resolution mass spectrometry (nano-LC-PRM/HRMS). A major fraction of the HMGB1 secreted by low-dose cisplatin treatment of A549 NSCLC cells was found to be in the fully reduced form. In contrast, mainly oxidized forms of HMGB1 were secreted by dimethyl sulfoxide (DMSO)-mediated apoptosis. These findings suggest that inhibition of XPO1 could potentiate the anti-tumor activity of cisplatin by increasing the nuclear accumulation of HMGB1 protein, an inhibitor of cisplatin DNA-adduct repair. Furthermore, low-dose cisplatin therapy could modulate the immune response in NSCLC through the established chemokine activity of extracellular reduced HMGB1. This could potentially enhance the efficacy of subsequent immunotherapy treatment.
Collapse
Affiliation(s)
| | | | | | - Ian A. Blair
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Ren J, Xu B, Ren J, Liu Z, Cai L, Zhang X, Wang W, Li S, Jin L, Ding L. The Importance of M1-and M2-Polarized Macrophages in Glioma and as Potential Treatment Targets. Brain Sci 2023; 13:1269. [PMID: 37759870 PMCID: PMC10526262 DOI: 10.3390/brainsci13091269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma is the most common and malignant tumor of the central nervous system. Glioblastoma (GBM) is the most aggressive glioma, with a poor prognosis and no effective treatment because of its high invasiveness, metabolic rate, and heterogeneity. The tumor microenvironment (TME) contains many tumor-associated macrophages (TAMs), which play a critical role in tumor proliferation, invasion, metastasis, and angiogenesis and indirectly promote an immunosuppressive microenvironment. TAM is divided into tumor-suppressive M1-like (classic activation of macrophages) and tumor-supportive M2-like (alternatively activated macrophages) polarized cells. TAMs exhibit an M1-like phenotype in the initial stages of tumor progression, and along with the promotion of lysing tumors and the functions of T cells and NK cells, tumor growth is suppressed, and they rapidly transform into M2-like polarized macrophages, which promote tumor progression. In this review, we discuss the mechanism by which M1- and M2-polarized macrophages promote or inhibit the growth of glioblastoma and indicate the future directions for treatment.
Collapse
Affiliation(s)
- Jiangbin Ren
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Bangjie Xu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Jianghao Ren
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China;
| | - Zhichao Liu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lingyu Cai
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Xiaotian Zhang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Weijie Wang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Shaoxun Li
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Luhao Jin
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lianshu Ding
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| |
Collapse
|
22
|
Yagci M, Aydemir Y, Baris Z. HMGB1 is related to disease activity in children with celiac disease. Clin Res Hepatol Gastroenterol 2023; 47:102175. [PMID: 37419246 DOI: 10.1016/j.clinre.2023.102175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION We aim to evaluate of the relationship between high mobility gene box-1 (HMGB1) levels and clinical, laboratory and histopathological findings at diagnosis and in remission in children with Celiac Disease (CD). MATERIAL AND METHODS The study included 36 celiac patients at diagnosis, 36 celiac patients in remission, and 36 healthy controls. Patients with intestinal pathologies other than CD, and accompanying inflammatory and/or autoimmune diseases were excluded. Relationship between HMGB1 levels and clinical, laboratory and histopathological findings were evaluated. RESULTS A total of 72 celiac patients [36 (18 girls, 18 boys, mean age 9.41±3.9 years) in group 1 and 36 (18 girls, 18 boys, mean age 9.91±3.36 years) in group 2] and 36 healthy controls in group 3 (19 girls, 17 boys, mean age 9.56±4 years) were included. The HMGB1 level was significantly higher in group 1 compared to group 2 and group 3 [36.63 (17.98-54.72) ng/ml vs 20.31 (16.89-29.79) ng/ml, p = 0.028 and 36.63 (17.98-54.72) ng/ml vs 20.38 (17.54-24.53) ng/ml p = 0.012, respectively]. A serum HMGB-1 level of 26.553 ng/ml was found to be a cut-off value for the CD with 61% sensitivity, 83% specificity, 78% positive predictive value, and 68% negative predictive value. Higher HMGB1 values were seen in patients with intestinal findings, anemia, anti-tissue transglutaminase IgA levels that were greater than 10 times upper limit of normal, and patients with a higher degree of atrophy as classified by Marsh-Oberhuber. CONCLUSIONS In conclusion, it was thought that HMGB-1 might be a marker that reflects the severity of atrophy at the time of diagnosis and could be used to control dietary compliance in the follow-up. However, there is need for larger population studies in order to evaluate its value as a serological marker for the diagnosis and follow-up of CD and to find a more reliable cut-off value.
Collapse
Affiliation(s)
- Murat Yagci
- Department of Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| | - Yusuf Aydemir
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Meselik, Eskisehir 26040, Turkey.
| | - Zeren Baris
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Meselik, Eskisehir 26040, Turkey
| |
Collapse
|
23
|
Lee MJ, Park J, Choi S, Yoo SM, Park C, Kim HS, Lee MS. HMGB1, a potential regulator of tumor microenvironment in KSHV-infected endothelial cells. Front Microbiol 2023; 14:1202993. [PMID: 37520371 PMCID: PMC10374257 DOI: 10.3389/fmicb.2023.1202993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a protein that binds to DNA and participates in various cellular processes, including DNA repair, transcription, and inflammation. It is also associated with cancer progression and therapeutic resistance. Despite its known role in promoting tumor growth and immune evasion in the tumor microenvironment, the contribution of HMGB1 to the development of Kaposi's sarcoma (KS) is not well understood. We investigated the effect of HMGB1 on KS pathogenesis using immortalized human endothelial cells infected with Kaposi's sarcoma-associated human herpes virus (KSHV). Our results showed that a higher amount of HMGB1 was detected in the supernatant of KSHV-infected cells compared to that of mock-infected cells, indicating that KSHV infection induced the secretion of HMGB1 in human endothelial cells. By generating HMGB1 knockout clones from immortalized human endothelial cells using CRISPR/Cas9, we elucidated the role of HMGB1 in KSHV-infected endothelial cells. Our findings indicate that the absence of HMGB1 did not induce lytic replication in KSHV-infected cells, but the cell viability of KSHV-infected cells was decreased in both 2D and 3D cultures. Through the antibody array for cytokines and growth factors, CXCL5, PDGF-AA, G-CSF, Emmprin, IL-17A, and VEGF were found to be suppressed in HMGB1 KO KSHV-infected cells compared to the KSHV-infected wild-type control. Mechanistically, phosphorylation of p38 would be associated with transcriptional regulation of CXCL5, PDGF-A and VEGF. These observations suggest that HMGB1 may play a critical role in KS pathogenesis by regulating cytokine and growth factor secretion and emphasize its potential as a therapeutic target for KS by modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Myung-Ju Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Joohee Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Seokjoo Choi
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Seung-Min Yoo
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Changhoon Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
24
|
Sumneang N, Tanajak P, Oo TT. Toll-like Receptor 4 Inflammatory Perspective on Doxorubicin-Induced Cardiotoxicity. Molecules 2023; 28:molecules28114294. [PMID: 37298770 DOI: 10.3390/molecules28114294] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Doxorubicin (Dox) is one of the most frequently used chemotherapeutic drugs in a variety of cancers, but Dox-induced cardiotoxicity diminishes its therapeutic efficacy. The underlying mechanisms of Dox-induced cardiotoxicity are still not fully understood. More significantly, there are no established therapeutic guidelines for Dox-induced cardiotoxicity. To date, Dox-induced cardiac inflammation is widely considered as one of the underlying mechanisms involved in Dox-induced cardiotoxicity. The Toll-like receptor 4 (TLR4) signaling pathway plays a key role in Dox-induced cardiac inflammation, and growing evidence reports that TLR4-induced cardiac inflammation is strongly linked to Dox-induced cardiotoxicity. In this review, we outline and address all the available evidence demonstrating the involvement of the TLR4 signaling pathway in different models of Dox-induced cardiotoxicity. This review also discusses the effect of the TLR4 signaling pathway on Dox-induced cardiotoxicity. Understanding the role of the TLR4 signaling pathway in Dox-induced cardiac inflammation might be beneficial for developing a potential therapeutic strategy for Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Natticha Sumneang
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Pongpan Tanajak
- Department of Physical Therapy, Rehabilitation Center, Apinop Wetchakam Hospital, Kaeng-Khoi District, Saraburi 18110, Thailand
| | - Thura Tun Oo
- Department of Biomedical Sciences, University of Illinois at Chicago, College of Medicine Rockford, Rockford, IL 61107, USA
| |
Collapse
|
25
|
Sabrina S, Takeda Y, Kato T, Naito S, Ito H, Takai Y, Ushijima M, Narisawa T, Kanno H, Sakurai T, Saitoh S, Araki A, Tsuchiya N, Asao H. Initial Myeloid Cell Status Is Associated with Clinical Outcomes of Renal Cell Carcinoma. Biomedicines 2023; 11:biomedicines11051296. [PMID: 37238964 DOI: 10.3390/biomedicines11051296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The therapeutic outcome of immune checkpoint inhibition (ICI) can be improved through combination treatments with ICI therapy. Myeloid-derived suppressor cells (MDSCs) strongly suppress tumor immunity. MDSCs are a heterogeneous cell population, originating from the unusual differentiation of neutrophils/monocytes induced by environmental factors such as inflammation. The myeloid cell population consists of an indistinguishable mixture of various types of MDSCs and activated neutrophils/monocytes. In this study, we investigated whether the clinical outcomes of ICI therapy could be predicted by estimating the status of the myeloid cells, including MDSCs. Several MDSC indexes, such as glycosylphosphatidylinositol-anchored 80 kD protein (GPI-80), CD16, and latency-associated peptide-1 (LAP-1; transforming growth factor-β1 precursor), were analyzed via flow cytometry using peripheral blood derived from patients with advanced renal cell carcinoma (n = 51) immediately before and during the therapy. Elevated CD16 and LAP-1 expressions after the first treatment were associated with a poor response to ICI therapy. Immediately before ICI therapy, GPI-80 expression in neutrophils was significantly higher in patients with a complete response than in those with disease progression. This is the first study to demonstrate a relationship between the status of the myeloid cells during the initial phase of ICI therapy and clinical outcomes.
Collapse
Affiliation(s)
- Saima Sabrina
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Yuji Takeda
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Tomoyuki Kato
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Sei Naito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hiromi Ito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Yuki Takai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Masaki Ushijima
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Takafumi Narisawa
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hidenori Kanno
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Toshihiko Sakurai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Shinichi Saitoh
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Akemi Araki
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
26
|
Li X, Chang E, Cui J, Zhao H, Hu C, O’Dea KP, Tirlapur N, Balboni G, Zhang J, Ying L, Ma D. Bv8 mediates myeloid cell migration and enhances malignancy of colorectal cancer. Front Immunol 2023; 14:1158045. [PMID: 37090721 PMCID: PMC10113555 DOI: 10.3389/fimmu.2023.1158045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Colorectal cancer (CRC) is the third most predominant malignancy in the world. Although the importance of immune system in cancer development has been well established, the underlying mechanisms remain to be investigated further. Here we studied a novel protein prokineticin 2 (Prok2, also known as Bv8) as a key pro-tumoral factor in CRC progression in in vitro and ex vivo settings. Human colorectal tumor tissues, myeloid cell lines (U937 cells and HL60 cells) and colorectal cancer cell line (Caco-2 cells) were used for various studies. Myeloid cell infiltration (especially neutrophils) and Bv8 accumulation were detected in human colorectal tumor tissue with immunostaining. The chemotactic effects of Bv8 on myeloid cells were presented in the transwell assay and chemotaxis assy. Cultured CRC cells treated with myeloid cells or Bv8 produced reactive oxygen species (ROS) and vascular endothelial growth factor (VEGF). Furthermore, ROS and VEGF acted as pro-angiogenesis buffer in myeloid cell-infiltrated CRC microenvironment. Moreover, myeloid cells or Bv8 enhanced energy consumption of glycolysis ATP and mitochondria ATP of CRC cells. Interestingly, myeloid cells increased CRC cell viability, but CRC cells decreased the viability of myeloid cells. ERK signalling pathway in CRC cells was activated in the presence of Bv8 or co-cultured myeloid cells. In conclusion, our data indicated the vital roles of Bv8 in myeloid cell infiltration and CRC development, suggesting that Bv8 may be a potential therapeutic target for colorectal cancer-related immunotherapy.
Collapse
Affiliation(s)
- Xiaomeng Li
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Enqiang Chang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
- Department of Anaesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiang Cui
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Cong Hu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kieran P. O’Dea
- Division of Translational Critical Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Nikhil Tirlapur
- Division of Translational Critical Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Jiaqiang Zhang
- Department of Anaesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jiaqiang Zhang, ; Liming Ying, ; Daqing Ma,
| | - Liming Ying
- National Heart and Lung Institute, Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
- *Correspondence: Jiaqiang Zhang, ; Liming Ying, ; Daqing Ma,
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
- *Correspondence: Jiaqiang Zhang, ; Liming Ying, ; Daqing Ma,
| |
Collapse
|
27
|
Shi X, Ding J, Zheng Y, Wang J, Sobhani N, Neeli P, Wang G, Zheng J, Chai D. HMGB1/GPC3 dual targeting vaccine induces dendritic cells-mediated CD8 +T cell immune response and elicits potential therapeutic effect in hepatocellular carcinoma. iScience 2023; 26:106143. [PMID: 36879804 PMCID: PMC9984564 DOI: 10.1016/j.isci.2023.106143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a fatal malignant tumor, but effective clinical interventions are limited. PLGA/PEI-mediated DNA vaccine encoding the dual targets of high-mobility group box 1 (HMGB1) or GPC3 was developed for HCC treatment. Compared with PLGA/PEI-GPC3 immunization, PLGA/PEI-HMGB1/GPC3 co-immunization significantly inhibited the subcutaneous tumor growth, while increasing the infiltration of CD8+T cells and DCs. Furthermore, the PLGA/PEI-HMGB1/GPC3 vaccine induced a strong CTL effect and promoted functional CD8+T cell proliferation. Intriguingly, the depletion assay proved that the therapeutic effect PLGA/PEI-HMGB1/GPC3 vaccine was dependent on antigen-specific CD8+T cell immune responses. In the rechallenge experiment, PLGA/PEI-HMGB1/GPC3 vaccine provided a long-lasting resistance to the growth of the contralateral tumor by inducing the memory CD8+T cell responses. Collectively, PLGA/PEI-HMGB1/GPC3 vaccine could induce a strong and long-lasting CTL effect and inhibit the tumor progression or re-attack. Therefore, the combined co-immunization of PLGA/PEI-HMGB1/GPC3 might be served as an effective anti-tumor strategy against HCC.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Department of General Surgery, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang, Jiangsu 222004, China
| | - Jiage Ding
- Department of Oncology, Xuzhou Central Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China.,Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jiawei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Navid Sobhani
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Praveen Neeli
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.,Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
28
|
Aghamiri SS, Puniya BL, Amin R, Helikar T. A multiscale mechanistic model of human dendritic cells for in-silico investigation of immune responses and novel therapeutics discovery. Front Immunol 2023; 14:1112985. [PMID: 36993954 PMCID: PMC10040975 DOI: 10.3389/fimmu.2023.1112985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) with the unique ability to mediate inflammatory responses of the immune system. Given the critical role of DCs in shaping immunity, they present an attractive avenue as a therapeutic target to program the immune system and reverse immune disease disorders. To ensure appropriate immune response, DCs utilize intricate and complex molecular and cellular interactions that converge into a seamless phenotype. Computational models open novel frontiers in research by integrating large-scale interaction to interrogate the influence of complex biological behavior across scales. The ability to model large biological networks will likely pave the way to understanding any complex system in more approachable ways. We developed a logical and predictive model of DC function that integrates the heterogeneity of DCs population, APC function, and cell-cell interaction, spanning molecular to population levels. Our logical model consists of 281 components that connect environmental stimuli with various layers of the cell compartments, including the plasma membrane, cytoplasm, and nucleus to represent the dynamic processes within and outside the DC, such as signaling pathways and cell-cell interactions. We also provided three sample use cases to apply the model in the context of studying cell dynamics and disease environments. First, we characterized the DC response to Sars-CoV-2 and influenza co-infection by in-silico experiments and analyzed the activity level of 107 molecules that play a role in this co-infection. The second example presents simulations to predict the crosstalk between DCs and T cells in a cancer microenvironment. Finally, for the third example, we used the Kyoto Encyclopedia of Genes and Genomes enrichment analysis against the model's components to identify 45 diseases and 24 molecular pathways that the DC model can address. This study presents a resource to decode the complex dynamics underlying DC-derived APC communication and provides a platform for researchers to perform in-silico experiments on human DC for vaccine design, drug discovery, and immunotherapies.
Collapse
Affiliation(s)
| | | | - Rada Amin
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
29
|
Cheng KJ, Mohamed EHM, Syafruddin SE, Ibrahim ZA. Interleukin-1 alpha and high mobility group box-1 secretion in polyinosinic:polycytidylic-induced colorectal cancer cells occur via RIPK1-dependent mechanism and participate in tumourigenesis. J Cell Commun Signal 2023; 17:189-208. [PMID: 35534784 PMCID: PMC10030748 DOI: 10.1007/s12079-022-00681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022] Open
Abstract
Pathogenic infections have significant roles in the pathogenesis of colorectal cancer (CRC). These infections induce the secretion of various damage-associated molecular patterns (DAMPs) including interleukin-1 alpha (IL-1α) and high mobility group box-1 (HMGB1). Despite their implication in CRC pathogenesis, the mechanism(s) that modulate the secretion of IL-1α and HMGB1, along with their roles in promoting CRC tumourigenesis remain poorly understood. To understand the secretory mechanism, HT-29 and SW480 cells were stimulated with infectious mimetics; polyinosinic:polycytidylic acid [Poly(I:C)], lipopolysaccharide (LPS) and pro-inflammatory stimuli; tumour necrosis factor-alpha (TNF-α). IL-1α and HMGB1 secretion levels upon stimulation were determined via ELISA. Mechanism(s) mediating IL-1α and HMGB1 secretion in CRC cells were characterized using pharmacological inhibitors and CRISPR-Cas9 gene editing targeting relevant pathways. Recombinant IL-1α and HMGB1 were utilized to determine their impact in modulating pro-tumourigenic properties of CRC cells. Pharmacological inhibition showed that Poly(I:C)-induced IL-1α secretion was mediated through endoplasmic reticulum (ER) stress and RIPK1 signalling pathway. The secretion of HMGB1 was RIPK1-dependent but independent of ER stress. RIPK1-targeted CRC cell pools exhibited decreased cell viability upon Poly(I:C) stimulation, suggesting a potential role of RIPK1 in CRC cells survival. IL-1α has both growth-promoting capabilities and stimulates the production of pro-metastatic mediators, while HMGB1 only exhibits the latter; with its redox status having influence. We demonstrated a potential role of RIPK1-dependent signalling pathway in mediating the secretion of IL-1α and HMGB1 in CRC cells, which in turn enhances CRC tumorigenesis. RIPK1, IL-1α and HMGB1 may serve as potential therapeutic targets to mitigate CRC progression.
Collapse
Affiliation(s)
- Kim Jun Cheng
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Rojas A, Lindner C, Schneider I, González I, Morales MA. Contributions of the receptor for advanced glycation end products axis activation in gastric cancer. World J Gastroenterol 2023; 29:997-1010. [PMID: 36844144 PMCID: PMC9950863 DOI: 10.3748/wjg.v29.i6.997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Compelling shreds of evidence derived from both clinical and experimental research have demonstrated the crucial contribution of receptor for advanced glycation end products (RAGE) axis activation in the development of neoplasms, including gastric cancer (GC). This new actor in tumor biology plays an important role in the onset of a crucial and long-lasting inflammatory milieu, not only by supporting phenotypic changes favoring growth and dissemination of tumor cells, but also by functioning as a pattern-recognition receptor in the inflammatory response to Helicobacter pylori infection. In the present review, we aim to highlight how the overexpression and activation of the RAGE axis contributes to the proliferation and survival of GC cells as and their acquisition of more invasive phenotypes that promote dissemination and metastasis. Finally, the contribution of some single nucleotide polymorphisms in the RAGE gene as susceptibility or poor prognosis factors is also discussed.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Iván Schneider
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Ileana González
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| |
Collapse
|
31
|
Long Non-coding RNA KTN1-AS1 Targets miR-505 to Promote Glioblastoma Progression. Behav Neurol 2023; 2023:4190849. [PMID: 36762036 PMCID: PMC9904930 DOI: 10.1155/2023/4190849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is a highly malignant cancer, the prognosis of which is pretty poor. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs, which play important roles in carcinogenesis process of many cancers including GBM. In this study, we want to clarify the expression, biological function, and molecular mechanism of lncRNA KTN1 antisense RNA 1 (KTN1-AS1) in GBM tumor progression. We found that KTN1-AS1 expression was upregulated in GBM tissues and cell lines. KTN1-AS1 played oncogenic roles to facilitate proliferation, migration, and invasion of GBM cells. Then, we revealed that miR-505 was a target of KTN1-AS1, and its expression was decreased in GBM. KTN1-AS1 contributed to GBM progression by mediating miR-505. Finally, we demonstrated that KTN1-AS1 upregulated some target oncogenes of miR-505 including ZEB2, HMGB1, and RUNX2 in GBM cells. All in all, we concluded that the highly expressed KTN1-AS1 in GBM played oncogenic roles to facilitate GBM progression by targeting miR-505.
Collapse
|
32
|
Farzaneh M, Najafi S, Anbiyaee O, Azizidoost S, Khoshnam SE. LncRNA MALAT1-related signaling pathways in osteosarcoma. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:21-32. [PMID: 35790599 DOI: 10.1007/s12094-022-02876-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 01/07/2023]
Abstract
Osteosarcoma (OS) is a common and malignant form of bone cancer, which affects children and young adults. OS is identified by osteogenic differentiation and metastasis. However, the exact molecular mechanism of OS development and progression is still unclear. Recently, long non-coding RNAs (lncRNA) have been proven to regulate OS proliferation and drug resistance. LncRNAs are longer than 200 nucleotides that represent the extensive applications in the processing of pre-mRNA and the pathogenesis of human diseases. Metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) is a well-known lncRNA known as a transcriptional and translational regulator. The aberrant expression of MALAT1 has been shown in several human cancers. The high level of MALAT1 is involved in OS cell growth and tumorigenicity by targeting several signaling pathways and miRNAs. Hence, MALAT1 might be a suitable approach for OS diagnosis and treatment. In this review, we will summarize the role of lncRNA MALAT1 in the pathophysiology of OS.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Anbiyaee
- School of Medicine, Cardiovascular Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
33
|
lncRNA-mediated ceRNA network in bladder cancer. Noncoding RNA Res 2022; 8:135-145. [PMID: 36605618 PMCID: PMC9792360 DOI: 10.1016/j.ncrna.2022.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer is a common disease associated with high rates of morbidity and mortality. Although immunotherapy approaches such as adoptive T-cell therapy and immune checkpoint blockade have been investigated for the treatment of bladder cancer, their off-target effects and ability to affect only single targets have led to clinical outcomes that are far from satisfactory. Therefore, it is important to identify novel targets that can effectively control tumor growth and metastasis. It is well known that long noncoding RNAs (lncRNAs) are powerful regulators of gene expression. Increasing evidence has shown that dysregulated lncRNAs in bladder cancer are involved in cancer cell proliferation, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT). In this review, we focus on the roles and underlying mechanisms of lncRNA-mediated competing endogenous RNA (ceRNA) networks in the regulation of bladder cancer progression. In addition, we discuss the potential of targeting lncRNA-mediated ceRNA networks to overcome cancer treatment resistance and its association with clinicopathological features and outcomes in bladder cancer patients. We hope this review will stimulate research to develop more effective therapeutic approaches for bladder cancer treatment.
Collapse
|
34
|
Zhang J, Chen W, Ma W, Han C, Song K, Kwon H, Wu T. EZH2 Promotes Cholangiocarcinoma Development and Progression through Histone Methylation and microRNA-Mediated Down-Regulation of Tumor Suppressor Genes. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1712-1724. [PMID: 36456043 PMCID: PMC9765312 DOI: 10.1016/j.ajpath.2022.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tree. Although studies have implicated enhancer of Zeste homolog 2 (EZH2) in CCA growth, the role of EZH2 in CCA development has not been investigated, and the mechanism for EZH2-regulated gene expression in CCA remains to be further defined. The current study used a mouse model of CCA induced by hydrodynamic tail vein injection of Notch1 intracellular domain and myristoylated-AKT plasmids. Mice with liver-specific EZH2 knockout displayed reduced CCA development. In a xenograft model, EZH2 knockdown significantly decreased CCA progression. Administration of the EZH2 inhibitor GSK126 decreased CCA tumor burden in mice. Accordingly, EZH2 depletion or inhibition reduced the growth and colony formation capability of CCA cells. Analysis of high-throughput data identified a set of 12 tumor-inhibiting genes as targets of EZH2 in CCA. The experimental results suggest that EZH2 may down-regulate these tumor-inhibiting genes through methylation of lysine 27 on histone H3 (H3K27) in the gene louses and through regulation of specific miRNAs. High mobility group box 1 was shown to facilitate the methyltransferase activity of EZH2, which is implicated in the regulation of CCA cell growth. The study shows that EZH2 promotes CCA development and progression through a complicated regulatory network involving tumor-inhibiting genes, miRNAs, and high mobility group box 1, which support targeting EZH2 as a potentially effective strategy for CCA treatment.
Collapse
Affiliation(s)
- Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kyoungsub Song
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hyunjoo Kwon
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
35
|
Pirnie R, Gillespie KP, Weng L, Mesaros C, Blair IA. Characterization and Quantification of Oxidized High Mobility Group Box 1 Proteoforms Secreted from Hepatocytes by Toxic Levels of Acetaminophen. Chem Res Toxicol 2022; 35:1893-1902. [PMID: 35922039 PMCID: PMC9580022 DOI: 10.1021/acs.chemrestox.2c00161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The high mobility group box 1 (HMGB1), which is released during acute acetaminophen (APAP) overdose, is thought to mediate a subsequent immune response, particularly hepatic infiltration of macrophages. The redox behavior of HMGB1 and the proteoforms of HMGB1 present in oxidative environments has been the subject of a number of confusing and contradictory studies. Therefore, a stable isotope dilution two-dimensional nanoultrahigh-performance liquid chromatography parallel reaction monitoring/high-resolution mass spectrometry method was developed in order to characterize and quantify oxidative modifications to the cysteine (Cys) residues (Cys-23, Cys-45, and Cys-106) that are present in HMGB1. Disulfide linkages were determined using carbamidoethyl derivatization before and after reduction as well as by direct analysis of disulfide cross-linked peptides. A stable isotope labeled form of HMGB1 was used as an internal standard to correct for sample to sample differences in immunoaffinity precipitation, derivatization, and electrospray ionization. Four discrete HMGB1 proteoforms were found to be released from a hepatocarcinoma cell model of APAP overdose after 24 h. Fully reduced HMGB1 with all three Cys-residues in their free thiol state accounted for 18% of the secreted HMGB1. The proteoform with disulfide between Cys-23 and Cys-45 accounted for 24% of the HMGB1. No evidence was obtained for a disulfide cross-link between Cys-106 and the other two Cys-residues. However, 45% of the HMGB1 formed a cross-link with unidentified intracellular proteins via an intermolecular disulfide bond, and 12% was present as the terminally oxidized cysteic acid. Surprisingly, there was no evidence for the formation of HMGB1 disulfides with GSH or other low molecular weight thiols. Secreted plasma HMGB1 Cys-23/Cys45 disulfide proteoform together with the Cys-106/protein disulfide proteoforms could potentially serve as early biomarkers of hepatoxicity after APAP overdose as well as biomarkers of drug-induced liver injury.
Collapse
|
36
|
Songjang W, Nensat C, Nernpermpisooth N, Seenak P, Pankhong P, Jumroon N, Kumphune S, Jiraviriyakul A. Tumor-Promoting Activity and Proteomic Profiling of Cisplatin/Oxaliplatin-Derived DAMPs in Cholangiocarcinoma Cells. Int J Mol Sci 2022; 23:ijms231810540. [PMID: 36142453 PMCID: PMC9502173 DOI: 10.3390/ijms231810540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are well recognized as the molecular signature of immunogenic cell death (ICD). The efficacy of drug-induced ICD function may be impacted by the precise ratio between immunostimulatory and immunoinhibitory DAMPs. Tumor-derived DAMPs can activate tumor-expressed TLRs for the promotion of tumor cell motility, invasion, metastatic spread and resistance to chemotherapeutic treatment. Herein, drug-induced DAMPs’ expression and their role in tumor progression are utilized as one crucial point of evaluation regarding chemotherapeutic treatment efficacy in our study. Cisplatin and oxaliplatin, the conventional anticancer chemotherapy drugs, are emphasized as a cause of well-known DAMPs’ release from cholangiocarcinoma (CCA) cells (e.g., HSP family, S100, CRT and HMGB1), whereby they trigger Akt, ERK and Cyclin-D1 to promote tumor activities. These findings strengthen the evidence that DAMPs are not only involved in immunomodulation but also in tumor promotion. Therefore, DAMP molecules should be considered as either targets of cancer treatment or biomarkers to evaluate treatment efficacy and tumor recurrence.
Collapse
Affiliation(s)
- Worawat Songjang
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Chatchai Nensat
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Nitirut Nernpermpisooth
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Porrnthanate Seenak
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Panyupa Pankhong
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Noppadon Jumroon
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Sarawut Kumphune
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arunya Jiraviriyakul
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence:
| |
Collapse
|
37
|
Kuzevanova A, Apanovich N, Mansorunov D, Korotaeva A, Karpukhin A. The Features of Checkpoint Receptor—Ligand Interaction in Cancer and the Therapeutic Effectiveness of Their Inhibition. Biomedicines 2022; 10:biomedicines10092081. [PMID: 36140182 PMCID: PMC9495440 DOI: 10.3390/biomedicines10092081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
To date, certain problems have been identified in cancer immunotherapy using the inhibition of immune checkpoints (ICs). Despite the excellent effect of cancer therapy in some cases when blocking the PD-L1 (programmed death-ligand 1) ligand and the immune cell receptors PD-1 (programmed cell death protein 1) and CTLA4 (cytotoxic T-lymphocyte-associated protein 4) with antibodies, the proportion of patients responding to such therapy is still far from desirable. This situation has stimulated the exploration of additional receptors and ligands as targets for immunotherapy. In our article, based on the analysis of the available data, the TIM-3 (T-cell immunoglobulin and mucin domain-3), LAG-3 (lymphocyte-activation gene 3), TIGIT (T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains), VISTA (V-domain Ig suppressor of T-cell activation), and BTLA (B- and T-lymphocyte attenuator) receptors and their ligands are comprehensively considered. Data on the relationship between receptor expression and the clinical characteristics of tumors are presented and are analyzed together with the results of preclinical and clinical studies on the therapeutic efficacy of their blocking. Such a comprehensive analysis makes it possible to assess the prospects of receptors of this series as targets for anticancer therapy. The expression of the LAG-3 receptor shows the most unambiguous relationship with the clinical characteristics of cancer. Its inhibition is the most effective of the analyzed series in terms of the antitumor response. The expression of TIGIT and BTLA correlates well with clinical characteristics and demonstrates antitumor efficacy in preclinical and clinical studies, which indicates their high promise as targets for anticancer therapy. At the same time, the relationship of VISTA and TIM-3 expression with the clinical characteristics of the tumor is contradictory, and the results on the antitumor effectiveness of their inhibition are inconsistent.
Collapse
|
38
|
Bhat AA, Nisar S, Singh M, Ashraf B, Masoodi T, Prasad CP, Sharma A, Maacha S, Karedath T, Hashem S, Yasin SB, Bagga P, Reddy R, Frennaux MP, Uddin S, Dhawan P, Haris M, Macha MA. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Commun (Lond) 2022; 42:689-715. [PMID: 35791509 PMCID: PMC9395317 DOI: 10.1002/cac2.12295] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 04/24/2022] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is a predominant life-threatening cancer, with liver and peritoneal metastases as the primary causes of death. Intestinal inflammation, a known CRC risk factor, nurtures a local inflammatory environment enriched with tumor cells, endothelial cells, immune cells, cancer-associated fibroblasts, immunosuppressive cells, and secretory growth factors. The complex interactions of aberrantly expressed cytokines, chemokines, growth factors, and matrix-remodeling enzymes promote CRC pathogenesis and evoke systemic responses that affect disease outcomes. Mounting evidence suggests that these cytokines and chemokines play a role in the progression of CRC through immunosuppression and modulation of the tumor microenvironment, which is partly achieved by the recruitment of immunosuppressive cells. These cells impart features such as cancer stem cell-like properties, drug resistance, invasion, and formation of the premetastatic niche in distant organs, promoting metastasis and aggressive CRC growth. A deeper understanding of the cytokine- and chemokine-mediated signaling networks that link tumor progression and metastasis will provide insights into the mechanistic details of disease aggressiveness and facilitate the development of novel therapeutics for CRC. Here, we summarized the current knowledge of cytokine- and chemokine-mediated crosstalk in the inflammatory tumor microenvironment, which drives immunosuppression, resistance to therapeutics, and metastasis during CRC progression. We also outlined the potential of this crosstalk as a novel therapeutic target for CRC. The major cytokine/chemokine pathways involved in cancer immunotherapy are also discussed in this review.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Mayank Singh
- Department of Medical OncologyDr. B. R. Ambedkar Institute Rotary Cancer HospitalAll India Institute of Medical Sciences (AIIMS)New Delhi110029India
| | - Bazella Ashraf
- Department of BiotechnologySchool of Life SciencesCentral University of KashmirGanderbalJammu & Kashmir191201India
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Chandra P. Prasad
- Department of Medical OncologyDr. B. R. Ambedkar Institute Rotary Cancer HospitalAll India Institute of Medical Sciences (AIIMS)New Delhi110029India
| | - Atul Sharma
- Department of Medical OncologyDr. B. R. Ambedkar Institute Rotary Cancer HospitalAll India Institute of Medical Sciences (AIIMS)New Delhi110029India
| | - Selma Maacha
- Division of Translational MedicineResearch BranchSidra MedicineDoha26999Qatar
| | | | - Sheema Hashem
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Syed Besina Yasin
- Department of PathologySher‐I‐Kashmir Institute of Medical SciencesSrinagarJammu & Kashmir190011India
| | - Puneet Bagga
- Department of Diagnostic ImagingSt. Jude Children's Research HospitalMemphisTN38105USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision MedicineDepartment of RadiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104USA
| | | | - Shahab Uddin
- Translational Research InstituteHamad Medical CorporationDoha3050Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
- Laboratory Animal Research CenterQatar UniversityDoha2713Qatar
| | - Muzafar A. Macha
- Watson‐Crick Centre for Molecular MedicineIslamic University of Science and TechnologyAwantiporaJammu & Kashmir192122India
| |
Collapse
|
39
|
Zheng X, Wang X, He Y, Ge H. Systematic analysis of expression profiles of HMGB family members for prognostic application in non-small cell lung cancer. Front Mol Biosci 2022; 9:844618. [PMID: 35923467 PMCID: PMC9340210 DOI: 10.3389/fmolb.2022.844618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Lung cancer is a significant challenge to human health. Members of the high mobility group (HMG) superfamily (HMGB proteins) are implicated in a wide variety of physiological and pathophysiological processes, but the expression and prognostic value of HMGB family members in non-small cell lung cancer (NSCLC) have not been elucidated. Methods: In this study, ONCOMINE, UALCAN, GEPIA, Kaplan–Meier Plotter, starBase, OncomiR databases, and GeneMANIA were utilized to evaluate the prognostic significance of HMGB family members in NSCLC. Results: HMGB2/3 expression levels were higher in NSCLC patients. HMGB1 expression was higher in lung squamous cell carcinoma (LUSC) and was lower in lung adenocarcinoma (LUAD) tissue than in normal lung tissue. HMGB2 expression was related to cancer stage. Increased HMGB1 mRNA expression levels were associated with improved lung cancer prognosis, including overall survival (OS), first-progression survival (FP), and post-progression survival (PPS). There was no significant association between HMGB2 levels and prognostic indicators. HMGB3 expression was associated with poorer OS. GeneMANIA and GO/KEGG pathway analysis showed that HMGB family members mainly associated with chromosome condensation, regulation of chromatin organization, and nucleosome binding in NSCLC. HMGBs expression were closely correlated with infiltrating levels of specific types of immune cells in NSCLC, especially Th2 cells, Th17 cells, and mast cells. hsa-miR-25-3p, hsa-miR-374a-3p, and hsa-miR-93-5p were significantly positively correlated with HMGB1, HMGB2, and HMGB3, respectively. However, hsa-miR-30a-5p was predicted to significantly negatively regulate HMGB3 expression. Conclusion: Our study revealed that HMGB1 is positively related to the improved prognosis in NSCLC, and demonstrate that HMGB3 might be a risk factor for poorer survival of NSCLC patients.
Collapse
|
40
|
Oltean T, Lippens L, Lemeire K, De Tender C, Vuylsteke M, Denys H, Vandecasteele K, Vandenabeele P, Adjemian S. Association of Cell Death Markers With Tumor Immune Cell Infiltrates After Chemo-Radiation in Cervical Cancer. Front Oncol 2022; 12:892813. [PMID: 35903697 PMCID: PMC9316180 DOI: 10.3389/fonc.2022.892813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Irradiation induces distinct cellular responses such as apoptosis, necroptosis, iron-dependent cell death (a feature of ferroptosis), senescence, and mitotic catastrophe. Several of these outcomes are immunostimulatory and may represent a potential for immunogenic type of cell death (ICD) induced by radiotherapy triggering abscopal effects. The purpose of this study is to determine whether intra-tumoral ICD markers can serve as biomarkers for the prediction of patient's outcomes defined as the metastasis status and survival over a 5-year period. Thirty-eight patients with locally advanced cervical cancer, treated with neoadjuvant chemoradiotherapy using cisplatin were included in this study. Pre-treatment tumor biopsy and post-treatment hysterectomy samples were stained for cell death markers and danger associated molecular patterns (DAMPs): cleaved caspase-3 (apoptosis), phosphorylated mixed lineage kinase domain like pseudokinase (pMLKL; necroptosis), glutathione peroxidase 4 (GPX4; ferroptosis) and 4-hydroxy-2-noneal (4-HNE; ferroptosis), high mobility group box 1 (HMGB1) and calreticulin. Although these markers could not predict the patient's outcome in terms of relapse or survival, many significantly correlated with immune cell infiltration. For instance, inducing ferroptosis post-treatment seems to negatively impact immune cell recruitment. Measuring ICD markers could reflect the impact of treatment on the tumor microenvironment with regard to immune cell recruitment and infiltration. One Sentence Summary Cell death readouts during neoadjuvant chemoradiation in cervical cancer.
Collapse
Affiliation(s)
- Teodora Oltean
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lien Lippens
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Kelly Lemeire
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Inflammation Research (IRC) Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Caroline De Tender
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | | | - Hannelore Denys
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Katrien Vandecasteele
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Methusalem Program, Ghent University, Ghent, Belgium
| | - Sandy Adjemian
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
41
|
Abstract
Sepsis, a systemic inflammatory response disease, is the most severe complication of infection and a deadly disease. High mobility group proteins (HMGs) are non-histone nuclear proteins binding nucleosomes and regulate chromosome architecture and gene transcription, which act as a potent pro-inflammatory cytokine involved in the delayed endotoxin lethality and systemic inflammatory response. HMGs increase in serum and tissues during infection, especially in sepsis. A growing number of studies have demonstrated HMGs are not only cytokines which can mediate inflammation, but also potential therapeutic targets in sepsis. To reduce sepsis-related mortality, a better understanding of HMGs is essential. In this review, we described the structure and function of HMGs, summarized the definition, epidemiology and pathophysiology of sepsis, and discussed the HMGs-related mechanisms in sepsis from the perspectives of non-coding RNAs (microRNA, long non-coding RNA, circular RNA), programmed cell death (apoptosis, necroptosis and pyroptosis), drugs and other pathophysiological aspects to provide new targets and ideas for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Guibin Liang
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhihui He
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
42
|
HMGB1 Promotes Lymphangiogenesis through the Activation of RAGE on M2 Macrophages in Laryngeal Squamous Cell Carcinoma. DISEASE MARKERS 2022; 2022:4487435. [PMID: 35280439 PMCID: PMC8916867 DOI: 10.1155/2022/4487435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022]
Abstract
Background. Receptor for advanced glycation end products (RAGE) is implicated in tumor biology. Released high mobility group box protein 1 (HMGB1) ligand binding to RAGE receptor in tumor cells promotes tumor progression. The mechanisms of HMGB1-RAGE signaling in M2 macrophages involved in lymphangiogenesis in laryngeal carcinoma remain poorly understood. Here, we assessed the effect of HMGB1-RAGE signaling on M2 macrophages in lymphangiogenesis. Methods. HMGB1, CD163, and D2-40 in laryngeal squamous cell carcinoma (LSCC,
), laryngeal precursor lesions (LPLs,
), and vocal polyp (VP,
) were analyzed by immunohistochemistry. THP-1 cell-expressed RAGE gene was knocked down and then polarized to M0 macrophages and M2 macrophages. IL-23, TNF-α, TGF-β, and IL-10 were measured by ELISA; IL-1β, IL-12, IL-10, and CCL-13 were evaluated by RT-qPCR, and CD206, CD163, and RAGE were evaluated by western blot to evaluate whether classical M2 macrophages were obtained. Conditioned media from RAGE+/- M0 macrophages and RAGE+/- M2 macrophages incubated in the presence or absence of HMGB1, anti-Toll-like receptor (TLR)2, anti-TLR4 antibodies, and anti-VEGF-C antibodies were collected separately for human dermal lymphatic endothelial cells (HDLEC) for proliferation, migration, lymphangiogenesis assay, and VEGF-C concentration analysis. Results. HMGB1 and M2 macrophage densities were increased in LSCC (
). HMGB1 and M2 macrophage densities were significantly correlated with lymphatic vessel density (LVD) in LSCC (
). The HMGB1 overexpression and higher M2 macrophage density were involved in lymph node metastasis (
) and poor prognosis (
). In vitro, conditioned medium from HMGB1-stimulated RAGE+ M2 macrophages activated lymphangiogenesis by upregulating the VEGF compared to controls (
). On the contrary, RAGE knockdown obviously decreased the corresponding effects of HMGB1-preconditioned M2 macrophages upon HDLEC (
). HMGB1-TLR pathway does not significantly increase HDLEC proliferation, migration, and lymphangiogenesis on M2 macrophages. Conclusions. HMGB1 promotes lymphangiogenesis by activation of RAGE on M2 macrophages. Targeting RAGE may provide an effective therapeutic strategy against M2 macrophages in LSCC patients with lymph node metastasis.
Collapse
|
43
|
Cao S, Miao J, Qian M, Zhu C, Ding S, Yin J, Zhu L, Zhang Q. Helicobacter hepaticus Infection Promotes the Progression of Liver Preneoplasia in BALB/c Mice via the Activation and Accumulation of High-Mobility Group Box-1. Front Microbiol 2022; 12:789752. [PMID: 35046917 PMCID: PMC8763329 DOI: 10.3389/fmicb.2021.789752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
It has been documented that Helicobacter hepaticus (H. hepaticus) infection is linked to chronic hepatitis and fibrosis in male BALB/c mice. However, the mechanism underlying the mice model of H. hepaticus–induced hepatocellular carcinoma is not fully known. In this study, male BALB/c mice were infected with H. hepaticus for 3, 6, 12, and 18 months. H. hepaticus colonization, histopathology, expression of proinflammatory cytokines, key signaling pathways, and protein downstream high-mobility group box-1 (HMGB1) in the liver were examined. Our data suggested that the H. hepaticus colonization level in the colon and liver progressively increased over the duration of the infection. H. hepaticus–induced hepatic inflammation and fibrosis were aggravated during the infection, and hepatic preneoplasia developed in the liver of infected mice at 12 and 18 months post-inoculation (MPI). H. hepaticus infection increased the levels of alanine aminotransferase and aspartate aminotransferase in the infected mice. In addition, the mRNA levels of IL-6, Tnf-α, Tgf-β, and HMGB1 were significantly elevated in the liver of H. hepaticus–infected mice from 3 to 18 MPI as compared to the controls. In addition, Ki67 was increased throughout the duration of the infection. Furthermore, HMGB1 protein was activated and translocated from the nucleus to the cytoplasm in the hepatocytes and activated the proteins of signal transducers and activators of transcription 3 (Stat3) and mitogen-activated protein kinase (MAPK) [extracellular regulated protein kinases 1/2 (Erk1/2) and mitogen-activated protein kinase p38 (p38)] upon H. hepaticus infection. In conclusions, these data demonstrated that male BALB/c mice infected with H. hepaticus are prone to suffering hepatitis and developing into hepatic preneoplasia. To verify the effect of HMGB1 in the progression of liver preneoplasia, mice were infected by H. hepaticus for 2 months before additional HMGB1 recombinant adenovirus treatment. All mice were sacrificed at 4 MPI, and the sera and liver tissues from all of the mice were collected. Immunology and histopathology evaluation showed that HMGB1 knockdown attenuated the H. hepaticus–induced hepatic and fibrosis at 4 MPI. Therefore, we showed that H. hepaticus–induced liver preneoplasia is closely correlated with the activation and accumulation of HMGB1.
Collapse
Affiliation(s)
- Shuyang Cao
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiancheng Miao
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Miao Qian
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Chen Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shiping Ding
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Jun Yin
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Liqi Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Quan Zhang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
44
|
Zhang X, Zou N, Deng W, Song C, Yan K, Shen W, Zhu S. HMGB1 induces radioresistance through PI3K/AKT/ATM pathway in esophageal squamous cell carcinoma. Mol Biol Rep 2022; 49:11933-11945. [PMID: 36260180 PMCID: PMC9712304 DOI: 10.1007/s11033-022-07989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND To explore the effect of HMGB1 on the radio-sensitivity of esophageal cancer cells through regulating the PI3K/Akt/ATM pathway. METHODS AND RESULTS We observed the expression of HMGB1 and p-ATM in biopsies of esophageal cancer patients with immunohistochemical staining. Western blot and RT-qPCR were applied to detect the protein and RNA related to PI3K/Akt/ATM pathway, respectively. In addition, we inhibited the PI3K/Akt pathway with ly294002 and activated it with IGF1, then we explored the invasion, proliferation ability, and apoptosis of esophageal cancer cells in vitro by transwell, CCK8 assay, and flow cytometry respectively. In vivo, xenograft tumor model was established in nude mice to study the effect of HMGB1 on radioresistance via PI3K/AKT/ATM Signaling Pathway. The survival rate in patients with single positive/double negative expression of HMGB1 and p-ATM was significantly higher than in those with both positive expression of HMGB1 and p-ATM, the depletion of HMGB1 combined with ly294002 significantly inhibited cell proliferation and invasion ability, meanwhile, the addition of IGF1 reversed it. Meanwhile, depletion of HMGB1 and ly294002 promoted apoptosis and arrested the cancer cells in G0/G1 cell cycle with the decreased expression of Cyclin D1 and CDK4 and improved P16. We further validated these results in vivo, the application of HMGB1 silencing promoted apoptosis of xenograft tumors after radiation, especially combined with pathway inhibitor ly294002. CONCLUSIONS Esophageal cancer patients with high expression of HMGB1 and p-ATM have a poor prognosis after chemo-radiotherapy. Down-regulation of HMGB1 may promote the radio-sensitivity of esophageal cancer cells through regulating PI3K/Akt/ATM pathway.
Collapse
Affiliation(s)
- Xueyuan Zhang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Naiyi Zou
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Wenzhao Deng
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Chunyang Song
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Ke Yan
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Wenbin Shen
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Shuchai Zhu
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, Hebei, 050011, People's Republic of China.
| |
Collapse
|
45
|
miR-142-3p simultaneously targets HMGA1, HMGA2, HMGB1, and HMGB3 and inhibits tumorigenic properties and in-vivo metastatic potential of human cervical cancer cells. Life Sci 2021; 291:120268. [PMID: 34973275 DOI: 10.1016/j.lfs.2021.120268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022]
Abstract
AIMS High-mobility group (HMG) proteins are oncogenic in different cancers, including cervical cancer; silencing their individual expression using sh-RNAs, siRNAs, and miRNAs has had anti-tumorigenic effects, but the consequences of their collective downregulation are not known. Since multiple gene targeting is generally very effective in cancer therapy, the present study highlighted the consequences of silencing the expression of HMGA1, A2, B1, and B3 using sh-RNAs or miR-142-3p (that can potentially target HMGA1, A2, B1, and B3) in cervical cancer cell lines. MAIN METHODS 3' UTR luciferase reporter assays were performed to validate HMGA1, A2, B1, and B3 as targets of miR-142-3p in human cervical cancer cells. Annexin V/PI dual staining and flow cytometry analyses were used to detect apoptotic cells. miR-142-3p-mediated regulation of cell death, colony formation, migration, and invasion was investigated in human cervical cancer cells together with in vivo metastasis in zebrafish. KEY FINDINGS Concurrent knockdown of HMGA1, A2, B1, and B3 through their corresponding sh-RNAs inhibited cell viability and colony formation but induced apoptosis, and these effects were relatively reduced upon their individual knockdown. miR-142-3p targeted HMGA1, A2, B1, and B3 by binding to their 3'UTRs and induced apoptosis but inhibited proliferation, migration, and invasion of human cervical cancer cells. In addition, miR-142-3p expression decreased phospho-p65 and EMT-related proteins in cervical cancer cells and their in vivo metastatic potential upon implantation in zebrafish. SIGNIFICANCE These findings suggest that miR-142-3p acts as a tumor-suppressive miRNA by targeting HMGA1, A2, B1, and B3 and may serve as a potential therapeutic agent in human cervical cancer.
Collapse
|
46
|
Suwannakul N, Midorikawa K, Du C, Qi YP, Zhang J, Xiang BD, Murata M, Ma N. Subcellular localization of HMGB1 in human cholangiocarcinoma: correlation with tumor stage. Discov Oncol 2021; 12:49. [PMID: 35201494 PMCID: PMC8777519 DOI: 10.1007/s12672-021-00446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant disease with a poor prognosis, and several studies have been conducted using different molecular markers as a tool for CCA diagnosis, including Clonorchis sinensis (CS)-CCA. We initially identified the expression profiles of the three markers of interest, HMGB1, SOX9, and YAP1, using GSE (GSE76297 and GSE32958) datasets. Upregulated levels of these three proteins were detected in CCA samples compared to those in normal samples. To clarify this issue, 24 human CCA tissues with paired adjacent normal tissues were evaluated using immunohistochemical staining. Of the three markers, the total cellular staining intensities were scanned, and subcellular localization was scored in the nuclear and cytoplasmic regions. The intensities of HMGB1, SOX9, and YAP1 were elevated in CCA tissues than the adjacent normal tissues. Individual scoring of subcellular localization revealed that the expression levels of HMGB1 (nucleus) and YAP1 (nucleus and cytoplasm) were significantly different from the pathologic M stage. Moreover, the translocation pattern was categorized using "site-index", and the results demonstrated that the overexpression of HMGB1 and SOX9 was mostly observed in both the nucleus and cytoplasm, whereas YAP1 was predominantly expressed in the cytoplasm of tumor cells. Interestingly, the site index of HMGB1 was moderately correlated with the tumor stage (r = 0.441, p = 0.031). These findings imply that the overexpression of subcellular HMGB1 could be associated with the metastatic status of patients with CS-CCA, which was shown to be effective for CS-CCA prognosis.
Collapse
Affiliation(s)
- Nattawan Suwannakul
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Chunping Du
- Department of Pathology, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Ya-Peng Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, 1001-1, Kishioka, Suzuka, Mie, 510-0293, Japan.
| |
Collapse
|
47
|
Abu N, Rus Bakarurraini NAA, Nasir SN. Extracellular Vesicles and DAMPs in Cancer: A Mini-Review. Front Immunol 2021; 12:740548. [PMID: 34721407 PMCID: PMC8554306 DOI: 10.3389/fimmu.2021.740548] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Certain cancer therapy has been shown to induce immunogenic cell death in cancer cells and may promote tumor progression instead. The external stress or stimuli may induce cell death and contribute toward the secretion of pro inflammatory molecules. The release of damage-associated molecular patterns (DAMPs) upon induction of therapy or cell death has been shown to induce an inflammatory response. Nevertheless, the mechanism as to how the DAMPs are released and engage in such activity needs further in-depth investigation. Interestingly, some studies have shown that DAMPs can be released through extracellular vesicles (EVs) and can bind to receptors such as toll-like receptors (TCRs). Ample pre-clinical studies have shown that cancer-derived EVs are able to modulate immune responses within the tumor microenvironment. However, the information on the presence of such DAMPs within EVs is still elusive. Therefore, this mini-review attempts to summarize and appraise studies that have shown the presence of DAMPs within cancer-EVs and how it affects the downstream cellular process.
Collapse
Affiliation(s)
- Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - Siti Nurmi Nasir
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
48
|
Farhana A, Koh AEH, Tong JB, Alsrhani A, Kumar Subbiah S, Mok PL. Nanoparticle-Encapsulated Camptothecin: Epigenetic Modulation in DNA Repair Mechanisms in Colon Cancer Cells. Molecules 2021; 26:5414. [PMID: 34500845 PMCID: PMC8434408 DOI: 10.3390/molecules26175414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular crosstalk between the cellular epigenome and genome converge as a synergistic driver of oncogenic transformations. Besides other pathways, epigenetic regulatory circuits exert their effect towards cancer progression through the induction of DNA repair deficiencies. We explored this mechanism using a camptothecin encapsulated in β-cyclodextrin-EDTA-Fe3O4 nanoparticles (CPT-CEF)-treated HT29 cells model. We previously demonstrated that CPT-CEF treatment of HT29 cells effectively induces apoptosis and cell cycle arrest, stalling cancer progression. A comparative transcriptome analysis of CPT-CEF-treated versus untreated HT29 cells indicated that genes controlling mismatch repair, base excision repair, and homologues recombination were downregulated in these cancer cells. Our study demonstrated that treatment with CPT-CEF alleviated this repression. We observed that CPT-CEF exerts its effect by possibly affecting the DNA repair mechanism through epigenetic modulation involving genes of HMGB1, APEX1, and POLE3. Hence, we propose that CPT-CEF could be a DNA repair modulator that harnesses the cell's epigenomic plasticity to amend DNA repair deficiencies in cancer cells.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf Province, Saudi Arabia; (A.A.); (P.L.M.)
| | - Avin Ee-Hwan Koh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| | - Jia Bei Tong
- Department of Medical Microbiology, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf Province, Saudi Arabia; (A.A.); (P.L.M.)
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Bharath University, Chennai 600073, Tamil Nadu, India
| | - Pooi Ling Mok
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf Province, Saudi Arabia; (A.A.); (P.L.M.)
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| |
Collapse
|
49
|
Dangtakot R, Intuyod K, Chamgramol Y, Pairojkul C, Pinlaor S, Jantawong C, Pongking T, Haonon O, Ma N, Pinlaor P. CagA + Helicobacter pylori infection and N-nitrosodimethylamine administration induce cholangiocarcinoma development in hamsters. Helicobacter 2021; 26:e12817. [PMID: 34031944 DOI: 10.1111/hel.12817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/10/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Helicobacter pylori (HP) has been detected in the hepatobiliary tract of cholangiocarcinoma (CCA) patients in regions both endemic and non-endemic for Opisthorchis viverrini (OV) infection. However, whether H. pylori infection promotes CCA development remains unknown. We investigated CCA development in hamsters induced by a combination of infection with H. pylori and administration of N-nitrosodimethylamine (NDMA) and compared findings with those in an OV plus NDMA group. MATERIALS AND METHODS Eighty-five hamsters were divided into four groups: (1) normal, (2) administered NDMA, (3) infected with cagA+ H. pylori and administered NDMA (HN group), and (4) infected with OV and administered NDMA (ON group). Animals were euthanized at 3 and 6 months post-infection. Histopathological changes of liver and the expression of markers associated with carcinogenesis were studied. RESULTS At 3 months post-infection (p.i.), cholangitis and lymphoid follicles without tumor appearance were noted in the HN group, whereas extensive fibrosis was seen in members of the ON group, 10% of which had developed tumors. At 6 months p.i., 10% of hamsters administered NDMA alone had developed CCA, whereas in the HN and ON groups, 20% and 60% of hamsters, respectively, had developed CCA. Cytokeratin-19 (CK19) expression was observed in the CCA tissues of both the HN and the ON groups, confirming the bile duct origin of the CCA cells. CCA development in the HN group might be inflammation-mediated, as suggested by overexpression of HMGB1, PCNA, IL-8, and 8-OxodG in CCA tissues. CONCLUSION cagA+ H. pylori infection and carcinogen intake can induce CCA development with slow progression.
Collapse
Affiliation(s)
- Rungtiwa Dangtakot
- Biomedical Science Program, Graduate School, Khon Kaen University, KhonKaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Kitti Intuyod
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yaovalux Chamgramol
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Somchai Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chanakan Jantawong
- Biomedical Science Program, Graduate School, Khon Kaen University, KhonKaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Thatsanapong Pongking
- Biomedical Science Program, Graduate School, Khon Kaen University, KhonKaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Ornuma Haonon
- Faculty of Medical Technology, Nakhonratchasima College, Nakhonratchasima, Thailand
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Porntip Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, KhonKaen University, KhonKaen, Thailand
| |
Collapse
|
50
|
Zhou C, Yang Q. Value of HMGB1 expression for assessing gastric cancer severity: a systematic meta-analysis. J Int Med Res 2021; 49:300060521993312. [PMID: 33682495 PMCID: PMC7944546 DOI: 10.1177/0300060521993312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate the clinical value of high mobility group box-1 (HMGB1) expression levels in patients with gastric cancer. METHODS Articles published from January 2000 to August 2022 were searched using PubMed, Google Scholar and Science Direct, Springer, Wiley and NIH to evaluate the clinicopathological significance of HMGB1 expression in gastric cancer. RESULTS A total of 156 publications were selected, of which six studies, comprising 846 patients, met the criteria for inclusion in this study. Forest plots of clinicopathological characteristics indicated that HMGB1 expression was not associated with age (odds ratio (OR) = 1.07, 95% confidence interval (CI): 0.89-1.28), sex (OR = 0.90, 95% CI: 0.81-1.00), TNM (OR = 1.39, 95% CI: 0.82-2.37), N stage (OR = 1.42, 95% CI: 0.97-2.07), or tumor differentiation (OR = 0.96, 95% CI: 0.71-1.29), but was highly correlated with pT stage (OR = 1.56, 95% CI: 1.17-2.07). Funnel plots showed no significant publication bias in the included studies in terms of age, sex, TNM, pT stage, N stage, or tumor differentiation. CONCLUSION HMGB1 expression was significantly correlated with tumor pT stage, but not with age, sex, TNM stage, tumor N stage, tumor differentiation, or lymphatic metastasis in patients with GC.
Collapse
Affiliation(s)
- Chunxiang Zhou
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,Department of Gastrointestinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qun Yang
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|