1
|
Marrez DA, Badr AN, El-Bahrawy A, Naeem MA. Algal extracts evaluation as an Antitoxicity sustainable solution against aflatoxin B 1 toxicity in rat tissues. Toxicon 2024; 250:108098. [PMID: 39284454 DOI: 10.1016/j.toxicon.2024.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Aflatoxin B1 (AFB1) is a pre-carcinogenic molecule produced by toxigenic fungi and is widely harmful to public health. Algae extracts are sub-cellular pilot plants rich in bioactive substances that aid detoxification. This study aimed to reduce AFB1-toxicity in biological tissues of administrated rats using two algae extracts, Spirulina (SPR) and Amphora (AMR). Algae extracts were prepared using an aqueous system, concentrated, and lyophilized before being administrated to rats. The extract contents of total phenolic and flavonoids were determined to indicate their bioactive content and antioxidant potency. The animal experiment was designed in 8 groups as the control negative and control positive (AFB1; 20 μg/kg BW/day); groups 3 and 4 were designed for control positive of algae applied at high doses for toxicity evaluation. Otherwise, four groups were classified as G5 and G6 for rats administrated by AFB1, followed by 50 and 100 mg/kg Spirulina extract, respectively. The G7 and G8 were administrated with an AFB1 dose followed by amphora treatment at 50 and 100 mg extract/kg, respectively. The results showed a significant content of algae extracts of phenolic compounds (27.36 ± 1.75 and 39.55 ± 1.14 mg GAE/g DW for the SPR and AMR, respectively), with a valuable antioxidant activity. For rats treated only with the SPR or AMR extracts, no tissue changes were recorded for the liver, kidney, pancreas, or testis. Again, the biochemical parameters of these groups are recorded without harmful impacts, particularly for the tumor markers of AFP, TNF-α, CEA, and ALP. Once more, a higher extract concentration was more effective in AFB1-toxicity reduction, particularly for the SPR on the liver and kidney tissues. The SPR extract manifested a protective impact in sensitive tissue against the AFB1 effect, particularly in the testis. The results recommend the application of SPR extract at 100 mg/kg bw as an effective treatment for AFB1-toxicity regulation (as pharmaceutical or nutraceutical) involved in daily habits.
Collapse
Affiliation(s)
- Diaa Attia Marrez
- Food Toxicology and Contaminants Dept., National Research Center, Cairo, 12622, Egypt
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Dept., National Research Center, Cairo, 12622, Egypt.
| | - Amanallah El-Bahrawy
- Department of Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32958, Egypt
| | - Mohamed Ahmed Naeem
- Nutrition and Food Science of Ain Shams University Specialized Hospital, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Pires RC, da Costa Calumby J, Rosim RE, Pires RD, Borowsky AM, Ali S, de Paiva EL, Silva R, Pimentel TC, da Cruz AG, de Oliveira CAF, Corassin CH. Evaluation of Ability of Inactivated Biomasses of Lacticaseibacillus rhamnosus and Saccharomyces cerevisiae to Adsorb Aflatoxin B 1 In Vitro. Foods 2024; 13:3299. [PMID: 39456361 PMCID: PMC11506918 DOI: 10.3390/foods13203299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Biological decontamination strategies using microorganisms to adsorb aflatoxins have shown promising results for reducing the dietary exposure to these contaminants. In this study, the ability of inactivated biomasses of Lacticaseibacillus rhamnosus (LRB) and Saccharomyces cerevisiae (SCB) incorporated alone or in combination into functional yogurts (FY) at 0.5-4.0% (w/w) to adsorb aflatoxin B1 (AFB1) was evaluated in vitro. Higher adsorption percentages (86.9-91.2%) were observed in FY containing 1.0% LR + SC or 2.0% SC (w/w). The survival of mouse embryonic fibroblasts increased after exposure to yogurts containing LC + SC at 1.0-4.0% (w/w). No significant differences were noted in the physicochemical and sensory characteristics between aflatoxin-free FY and control yogurts (no biomass) after 30 days of storage. The incorporation of combined LRB and SCB into yogurts as vehicles for these inactivated biomasses is a promising alternative for reducing the exposure to dietary AFB1. The results of this trial support further studies to develop practical applications aiming at the scalability of using the biomasses evaluated in functional foods to mitigate aflatoxin exposure.
Collapse
Affiliation(s)
- Rogério Cury Pires
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil; (R.C.P.); (R.D.P.); (A.M.B.)
| | - Julia da Costa Calumby
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| | - Roice Eliana Rosim
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| | - Rogério D’Antonio Pires
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil; (R.C.P.); (R.D.P.); (A.M.B.)
| | - Aline Moreira Borowsky
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil; (R.C.P.); (R.D.P.); (A.M.B.)
| | - Sher Ali
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| | - Esther Lima de Paiva
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| | - Ramon Silva
- Instituto Federal do Paraná, R. Felipe Tequinha Street, 1400, Paranavaí 87703-536, PR, Brazil; (R.S.); (T.C.P.)
| | - Tatiana Colombo Pimentel
- Instituto Federal do Paraná, R. Felipe Tequinha Street, 1400, Paranavaí 87703-536, PR, Brazil; (R.S.); (T.C.P.)
| | - Adriano Gomes da Cruz
- Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, R. Sen. Furtado, 121/125, Rio de Janeiro 20270-021, RJ, Brazil;
| | - Carlos Augusto Fernandes de Oliveira
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| | - Carlos Humberto Corassin
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| |
Collapse
|
3
|
Wang X, Wang L, Wei X, Xu C, Cavender G, Lin W, Sun S. INVITED REVIEW: Advances in Yogurt Development: Microbiological Safety, Quality, Functionality, Sensory Evaluation, and Consumer Perceptions across Different Dairy and Plant-based Alternative Sources. J Dairy Sci 2024:S0022-0302(24)01195-0. [PMID: 39369892 DOI: 10.3168/jds.2024-25322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024]
Abstract
Yogurt, as a globally prevalent fermented dairy product, is renowned for its substantial nutritional value and a myriad of health benefits, particularly pertaining to the digestive system. This narrative review elucidates the latest advancements in yogurt development from 2019 to 2024, addressing aspects of microbiological safety, quality, functionality, sensory evaluation, and consumer perceptions across diverse protein sources. The intrinsic quality of yogurt is significantly influenced by its primary ingredient, milk, traditionally derived from animals such as cows, goats, and sheep. In recent years, plant-based yogurts (PBYs) have emerged as a popular alternative to traditional dairy yogurts, that are made from plant sources and offer similar textures and flavors, catering to those seeking non-dairy options. This discussion encompasses the advantages and limitations of various sources and explores methodologies to enhance yogurt quality using these diverse sources. Ensuring the microbiological safety of yogurt is thus paramount to its quality, as it involves both preventing the presence of harmful pathogens and managing spoilage to maintain freshness. This article encapsulates the potential hazards and corresponding antibacterial strategies that safeguard yogurt consumption. These strategies include the use of natural preservatives, advancements in packaging technologies, and the implementation of stringent hygiene practices throughout the production process. Morever, the quality of yogurt is not only dependent on the source but also on the fermentation process and additional ingredients used. By addressing both the prevention of pathogen contamination and the control of spoilage organisms, this article explores not only explores comprehensive approaches but also examines the use of high-quality starter cultures, the role of prebiotics in enhancing probiotic efficacy, and genetic advancements, as well as improvements in the overall nutritional profile and shelf life of yogurt. Techniques to improve texture, flavor, and nutrient content are also discussed, providing a comprehensive overview of current quality enhancement methods.This analysis delves into the intricate mechanisms underpinning probiotic development, including the roles of prebiotics, supplementary starter cultures, and genetic factors that facilitate probiotic proliferation. These benefits include improved digestive health, enhanced immune function, and potential reductions in the risk of certain chronic diseases. Beyond quality and functionality, the sensory evaluation of yogurt remains crucial for consumer acceptance. In recent years, the incorporation of diverse additional ingredients into yogurt has been observed, aimed at augmenting its sensory attributes. This examination reveals these ingredients and their respective functions, such as natural flavorings, sweeteners, and texturizing agents, with the ultimate goal of enhancing overall consumer satisfaction. Consumer preferences exert a profound influence on yogurt production, rendering the understanding of customer opinions essential for devising competitive industry strategies. This article consolidates consumer feedback and preferences, striving to elevate yogurt quality and promote dietary diversity. The analysis includes trends such as the growing demand for organic and non-dairy yogurts, the importance of sustainable practices, and the impact of marketing and packaging on consumer choices. This comprehensive overview serves as a valuable reference for the dairy industry and researchers dedicated to the advancement of yogurt development.
Collapse
Affiliation(s)
- Xiaojun Wang
- Yantai Key Laboratory of Special Medical Food, School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong, 264003, PR China
| | - Linlin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Xinyao Wei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Changmou Xu
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - George Cavender
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, USA
| | - Walker Lin
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Shengqian Sun
- Yantai Key Laboratory of Special Medical Food, School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
4
|
Shehata MG, Alsulami T, El-Aziz NMA, Abd-Rabou HS, El Sohaimy SA, Darwish AMG, Hoppe K, Ali HS, Badr AN. Biopreservative and Anti-Mycotoxigenic Potentials of Lactobacillus paracasei MG847589 and Its Bacteriocin in Soft White Cheese. Toxins (Basel) 2024; 16:93. [PMID: 38393172 PMCID: PMC10891891 DOI: 10.3390/toxins16020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 02/25/2024] Open
Abstract
Probiotics and their bacteriocins have increasingly attracted interest for their use as safe food preservatives. This study aimed to produce soft white cheese fortified with Lacticaseibacillus MG847589 (Lb. paracasei MG847589) and/or its bacteriocin; cheese with Lacticaseibacillus (CP), cheese with bacteriocin (CB), and cheese with both Lacticaseibacillus and bacteriocin (CPB) were compared to control cheese (CS) to evaluate their biopreservative and anti-mycotoxigenic potentials for prolonged shelf life and safe food applications. The effects of these fortifications on physiochemical, microbial, texture, microstructure, and sensory properties were studied. Fortification with Lacticaseibacillus (CP) increased acidity (0.61%) and microbial counts, which may make the microstructure porous, while CPB showed intact microstructure. The CPB showed the highest hardness value (3988.03 g), while the lowest was observed with CB (2525.73 g). Consequently, the sensory assessment reflected the panelists' preference for CPB, which gained higher scores than the control (CS). Fortification with Lb. paracasei MG847589 and bacteriocin (CPB) showed inhibition effects against S. aureus from 6.52 log10 CFU/g at time zero to 2.10 log10 CFU/g at the end of storage, A. parasiticus (from 5.06 to 3.03 log10 CFU/g), and P. chrysogenum counts (from 5.11 to 2.86 log10 CFU/g). Additionally, CPB showed an anti-mycotoxigenic effect against aflatoxins AFB1 and AFM1, causing them to be decreased (69.63 ± 0.44% and 71.38 ± 0.75%, respectively). These potentials can extend shelf life and pave the way for more suggested food applications of safe food production by fortification with both Lb. paracasei MG847589 and its bacteriocin as biopreservatives and anti-mycotoxigenic.
Collapse
Affiliation(s)
- Mohamed G. Shehata
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt; (M.G.S.); (N.M.A.E.-A.); (S.A.E.S.)
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi 20602, United Arab Emirates
| | - Tawfiq Alsulami
- Food Science & Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Nourhan M. Abd El-Aziz
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt; (M.G.S.); (N.M.A.E.-A.); (S.A.E.S.)
| | - Hagar S. Abd-Rabou
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt; (M.G.S.); (N.M.A.E.-A.); (S.A.E.S.)
| | - Sobhy A. El Sohaimy
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt; (M.G.S.); (N.M.A.E.-A.); (S.A.E.S.)
- Department of Technology and Organization of Public Catering, Institute of Sport, Tourism, and Service, South Ural State University, 454080 Chelyabinsk, Russia
| | - Amira M. G. Darwish
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt; (M.G.S.); (N.M.A.E.-A.); (S.A.E.S.)
| | - Karolina Hoppe
- Chemistry Department, Poznan University of Life Science, ul. Wojska Polskiego 75, 60-625 Poznan, Poland;
| | - Hatem S. Ali
- Food Technology Department, National Research Centre, Cairo 12622, Egypt;
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
5
|
Hassanen EI, Ahmed LI, Fahim KM, Shehata MG, Badr AN. Chitosan nanoparticle encapsulation increased the prophylactic efficacy of Lactobacillus plantarum RM1 against AFM 1-induced hepatorenal toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123925-123938. [PMID: 37995030 PMCID: PMC10746602 DOI: 10.1007/s11356-023-31016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Aflatoxin M1 (AFM1) is a significant contaminant of food, particularly dairy products and can resist various industrial processes. Several probiotic strains like Lactobacillus plantarum are known to reduce aflatoxin availability in synthetic media and some food products. The current work investigated the possible chitosan coating prophylactic efficacy of Lactobacillus plantarum RM1 nanoemulsion (CS-RM1) against AFM1-induced hepatorenal toxicity in rats. Twenty-eight male Wistar rats were divided into four groups (n = 7) as follows: group 1 received normal saline, group 2 received CS-RM1 (1mL contains 6.7 × 1010 CFU), group 3 received AFM1 (60 µg/kg bwt), and group 4 received both CS-RM1(1 mL contains 6.7 × 1010 CFU) and AFM1 (60 µg/kg bwt). All receiving materials were given to rats daily via oral gavage for 28 days. AFM1 caused a significant elevation in serum levels of ALT, AST, ALP, uric acid, urea, and creatinine with marked alterations in protein and lipid profiles. Additionally, AFM1 caused marked pathological changes in the liver and kidneys, such as cellular necrosis, vascular congestion, and interstitial inflammation. AFM1 also increased the MDA levels and decreased several enzymatic and non-enzymatic antioxidants. Liver and kidney sections of the AFM1 group displayed strong caspase-3, TNF-α, and iNOS immunopositivity. Co-treatment of CS-RM1 with AFM1 significantly lowered the investigated toxicological parameter changes and markedly improved the microscopic appearance of liver and kidneys. In conclusion, AFM1 induces hepatorenal oxidative stress damage via ROS overgeneration, which induces mitochondrial caspase-3-dependent apoptosis and inflammation. Furthermore, CS-RM1 can reduce AFM1 toxicity in both the liver and kidneys. The study recommends adding CS-RM1 to milk and milk products for AFM1-elimination.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Lamiaa I Ahmed
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Karima M Fahim
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed G Shehata
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Application, Alexandria, Egypt
| | - Ahmed N Badr
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, 12622, Cairo, Egypt
| |
Collapse
|
6
|
Hoxha R, Evstatieva Y, Nikolova D. Physicochemical, Rheological, and Sensory Characteristics of Yogurt Fermented by Lactic Acid Bacteria with Probiotic Potential and Bioprotective Properties. Foods 2023; 12:2552. [PMID: 37444290 DOI: 10.3390/foods12132552] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The applicability of two lactic acid bacterial strains with probiotic potential and bioprotective properties as additions in the starter culture in yogurt fermentation was examined. The studied strains, Lactobacillus delbrueckii subsp. bulgaricus KZM 2-11-3 and Lactiplantibacillus plantarum KC 5-12, inhibited the growth of Kluyveromyces lactis, Kluyveromyces marxianus, and Saccharomyces cerevisiae. The strain L. delbrueckii subsp. bulgaricus KZM 2-11-3 directly inhibited Escherichia coli. The important characteristics for the quality of the yogurt product, such as physicochemical parameters during fermentation and storage, rheological characteristics, and sensory changes during the storage of samples were determined. The yogurt samples with the strains did not differ in most parameters from the control yogurt with the commercial starter. The added strains showed stable viability in the yogurt samples during storage. The yogurt sample with L. delbrueckii subsp. bulgaricus KZM 2-11-3 and the sample with both strains based on the total evaluation were very similar to the control yogurt with the commercial starter. Using these strains as probiotic supplements to enrich the starter cultures in yogurt production will contribute to developing new products with benefits to human health.
Collapse
Affiliation(s)
- Ramize Hoxha
- Department of Biotechnology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Yana Evstatieva
- Department of Biotechnology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Dilyana Nikolova
- Department of Biotechnology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| |
Collapse
|
7
|
Birsa ML, Sarbu LG. Health Benefits of Key Constituents in Cichorium intybus L. Nutrients 2023; 15:1322. [PMID: 36986053 PMCID: PMC10058675 DOI: 10.3390/nu15061322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The genus Cichorium (Asteraceae) that originates from the Mediterranean area consists of six species (Cichorium intybus, Cichorium frisee, Cichorium endivia, Cichorium grouse, Cichorium chico and Cichorium pumilum). Cichorium intybus L., commonly known as chicory, has a rich history of being known as a medicinal plant and coffee substitute. A variety of key constituents in chicory play important roles as antioxidant agents. The herb is also used as a forage plant for animals. This review highlights the bioactive composition of C. intybus L. and summarizes the antioxidant activity associated with the presence of inulin, caffeic acid derivatives, ferrulic acid, caftaric acid, chicoric acid, chlorogenic and isochlorogenic acids, dicaffeoyl tartaric acid, sugars, proteins, hydroxycoumarins, flavonoids and sesquiterpene lactones. It also covers the plant's occurrence, agriculture improvement, natural biosynthesis, geographical distribution and waste valorization.
Collapse
Affiliation(s)
| | - Laura G. Sarbu
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania
| |
Collapse
|
8
|
Ali HS, Badr AN, Alsulami T, Shehata MG, Youssef MM. Quality Attributes of Sesame Butter (Tahini) Fortified with Lyophilized Powder of Edible Mushroom ( Agaricus blazei). Foods 2022; 11:foods11223691. [PMID: 36429283 PMCID: PMC9689749 DOI: 10.3390/foods11223691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Sesame butter (tahini) is a common appetizer and food additive in the Mediterranean basin. Pathogenic strains and mycotoxin content are the most hazardous issues in the final product. This investigation aimed to enhance the quality and safety properties of tahini products against microbial hazards and mycotoxins. Local samples of tahini were evaluated for natural contamination, including mycotoxin level determinations. Agaricus blazei was utilized as a bioactive source and evaluated for the bioactive content of laccase, B-glucan, antioxidant activity, and phenolic content, as well as antimicrobial and antioxidant potency. Two fortification ratios (0.5% and 1.0%) were chosen to apply Agaricus in tahini sesame as a model. Chemical composition, color attributes, sensory properties, emulsion, and oxidative stability were evaluated for the fortified samples versus the control. The results reflected increments of protein (22.91 ± 0.64% to 29.34 ± 0.96%), fiber content (3.09 ± 0.05% to 6.27 ± 0.06%), emulsion stability (84.9 ± 1.24% to 95.41 ± 0.56%), oxidative stability, and bioactive group content. The fortification process is reflected by the absence of Salmonella, Listeria, and E. coli bacteria from contaminated samples after 30 days of storage. The water activity for 1.0% fortification (0.154 ± 0.001) was recorded as lower than the control sample (0.192 ± 0.002). Moreover, the degradation of aflatoxins and zearalenone content was recorded during storage. The degradation ratio reached 68% and 97.2% for 0.5% and 1.0% fortifications, respectively, while zearalenone degradation recorded a decline of 26.7% and 33.7%, respectively, for the same fortification ratios. These results recommended 1.0% lyophilized mushroom fortification as a quality and ameliorative safety treatment for tahini products.
Collapse
Affiliation(s)
- Hatem Salama Ali
- Food Technology Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo 12622, Egypt
- Correspondence: ; Tel.: +20-100-032-764-0
| | - Tawfiq Alsulami
- Food Science and Nutrition Department, Food and Agriculture Science College, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohamed Gamal Shehata
- Food Science Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Mohamed Mahmoud Youssef
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
9
|
Aytekin Sahin G, Karabulut D, Unal G, Sayan M, Sahin H. Effects of probiotic supplementation on very low dose AFB1-induced neurotoxicity in adult male rats. Life Sci 2022; 306:120798. [PMID: 35843344 DOI: 10.1016/j.lfs.2022.120798] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022]
Abstract
AIMS Aflatoxin B1 (AFB1) is the most toxic and common form of AF found in food and feed. Although AFB1 exposure has toxic effects on many organs, studies on the brain are limited. Moreover, to the best of our knowledge, there is no study on the effect of probiotics on AFB1-induced neurotoxicity. Therefore, we aimed to evaluate the possible effects of probiotics on AFB1-induced neurotoxicity in the brain. MAIN METHODS Thirty-two adult male Wistar rats were divided into four groups: Vehicle (VEH), Probiotic (PRO) (2.5 × 1010 CFU/day VSL#3, orally), Aflatoxin B1 (AFB1) (25 μg/kg/week AFB1, orally), and Aflatoxin B1 + Probiotic (AFB1 + PRO) (2.5 × 1010 CFU/day VSL#3 + 25 μg/kg/week AFB1, orally). At the end of eight weeks, rats were behaviorally evaluated by the open field test, novel object recognition test, and forced swim test. Then, oxidative stress and inflammatory markers in brain tissues were analyzed. Next, brain sections were processed for Hematoxylin&Eosin staining and NeuN and GFAP immunostaining. KEY FINDINGS Probiotic supplementation tended to decrease oxidative stress and inflammatory markers compared to the AFB1 group. Besides, brain tissues had more normal histological structures in VEH, PRO, and AFB1 + PRO groups than in the AFB1 group. Moreover, in probiotic groups, GFAP immunoreactivity intensity was decreased, while NeuN-positive cell number increased in brain tissues compared to the AFB1 group. SIGNIFICANCE Probiotics seem to be effective at reducing the neurotoxic effects of AFB1. Thus, our study suggested that especially Bifidobacterium and Lactobacillus species can improve AFB1-induced neurotoxicity with their antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Gizem Aytekin Sahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Nuh Naci Yazgan University, Kayseri, Turkey.
| | - Derya Karabulut
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gokhan Unal
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Meryem Sayan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Habibe Sahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erciyes University, Kayseri, Turkey
| |
Collapse
|
10
|
Albaridi NA, Badr AN, Ali HS, Shehata MG. Outstanding Approach to Enhance the Safety of Ready-to-Eat Rice and Extend the Refrigerated Preservation. Foods 2022; 11:1928. [PMID: 35804745 PMCID: PMC9265863 DOI: 10.3390/foods11131928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Rice is a broad-spectrum meal consumed annually in large amounts. Ready-to-eat rice is a member of dishes with a high risk of contamination. The present study aimed to increase the safety and shelflife of ready-to-eat rice during temporary storage. To prepare a mixture for extraction, three spices were chosen ginger: thyme:coriander (1:2:1). Two types of extract were prepared, aromatic and water extracts. The bioactive aromatic extract was preserved by encapsulation using chitosan nanoparticle preparation, while water extracts were prepared by warm diffusion. The aromatic extract possessed volatiles with antimicrobial features, including α-pinene, cymene, camphor, 1, 8 cineol, and limonene. The results expressed the extracts' better antifungal and antibacterial effect, with a distinguishing aromatic one. Water extract was recorded as being rich in phenolic and flavonoids, like Salysilic, p-hydroxybenzoic acid, ferulic, Luteolin 7 glucoside, and quercitin. These molecules play functionality for microbial inhibition in the simulated media. Ready-to-eat rice shelflife was extended by applying the aromatic extract of the encapsulated mixture at the late stage of cooking and before packaging. It can preserve the samples for up to five days at room temperature and up to eight days of refrigerator storage (8 °C). However, water extract had lower activity as antibacterial and antifungal than the aromatic one. Again, water extract activity reduces fungal citrinin secretion by low efficiency more than the aromatic extract. These results recommended the addition of aromatic extract to the ready-to-eat rice meals as a final additive just before packaging.
Collapse
Affiliation(s)
- Najla A. Albaridi
- Nutrition and Food Science, Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Ahmed Noah Badr
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Hatem Salama Ali
- Department of Food Technology, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Mohamed Gamal Shehata
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific-Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt;
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), P.O. Box 52150, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Badr AN, El-Attar MM, Ali HS, Elkhadragy MF, Yehia HM, Farouk A. Spent Coffee Grounds Valorization as Bioactive Phenolic Source Acquired Antifungal, Anti-Mycotoxigenic, and Anti-Cytotoxic Activities. Toxins (Basel) 2022; 14:toxins14020109. [PMID: 35202136 PMCID: PMC8876227 DOI: 10.3390/toxins14020109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Spent coffee grounds (SCGs), which constitute 75% of original coffee beans, represent an integral part of sustainability. Contamination by toxigenic fungi and their mycotoxins is a hazard that threatens food production. This investigation aimed to examine SCGs extract as antimycotic and anti-ochratoxigenic material. The SCGs were extracted in an eco-friendly way using isopropanol. Bioactive molecules of the extract were determined using the UPLC apparatus. The cytotoxicity on liver cancer cells (Hep-G2) showed moderate activity with selectivity compared with human healthy oral epithelial (OEC) cell lines but still lower than the positive control (Cisplatin). The antibacterial properties were examined against pathogenic strains, and the antifungal was examined against toxigenic fungi using two diffusion assays. Extract potency was investigated by two simulated models, a liquid medium and a food model. The results of the extract showed 15 phenolic acids and 8 flavonoids. Rosmarinic and syringic acids were the most abundant phenolic acids, while apigenin-7-glucoside, naringin, epicatechin, and catechin were the predominant flavonoids in the SCGs extract. The results reflected the degradation efficiency of the extract against the growth of Aspergillus strains. The SCGs recorded detoxification in liquid media for aflatoxins (AFs) and ochratoxin A (OCA). The incubation time of the extract within dough spiked with OCA was affected up to 2 h, where cooking was not affected. Therefore, SCGs in food products could be applied to reduce the mycotoxin contamination of raw materials to the acceptable regulated limits.
Collapse
Affiliation(s)
- Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: (A.N.B.); (H.S.A.); Tel.: +20-1000327640 (H.S.A.)
| | - Marwa M. El-Attar
- Radioisotopes Department, Nuclear Research Center, Atomic Energy Authority, Cairo 11787, Egypt;
| | - Hatem S. Ali
- Food Technology Department, National Research Center, Cairo 12622, Egypt
- Correspondence: (A.N.B.); (H.S.A.); Tel.: +20-1000327640 (H.S.A.)
| | - Manal F. Elkhadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hany M. Yehia
- Food Science and Nutrition Department, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Food Science and Nutrition Department, Faculty of Home Economics, Helwan University, Cairo 11221, Egypt
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Cairo 12622, Egypt;
| |
Collapse
|
12
|
Bioactives of Pomegranate By-Products and Barley Malt Grass Engage in Cereal Composite Bar to Achieve Antimycotic and Anti-Aflatoxigenic Attributes. Foods 2022; 11:foods11010119. [PMID: 35010246 PMCID: PMC8750530 DOI: 10.3390/foods11010119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Food is the source from where a person obtains the body’s daily requirements. People’s current daily habits force them to consume fast food, which is known for its poor nutritional and safety features. So, it is urgent to provide a suitable substitution product to solve this issue. The present investigation aimed to produce a bar with a dual function: nutritional and long shelf life. Two materials were chosen to support the bar manufacturing regarding their bioactive contents, barley malt grass (BMG) and pomegranate byproducts (PBD). Chemical composition, antioxidant, and antimicrobial potency were measured. Β-carotene, vitamin C, and tocopherol were determined using HPLC apparatus. Extracts’ bio-safety against cell lines was determined, besides their enhancement against cell-death factors. Simulation experiments were designed to evaluate extracts’ impact to extend bar shelf life. Data represented the richness of essential minerals and fibers. Results of the FTIR reflected the existence of various active groups in the contents. Phenolic fractions of PBD are distinctive for their content of ellagic (39.21 ± 5.42 mg/kg), ferulic acid fractions (31.28 ± 4.07 mg/kg) which is a known with antifungal activity. Extracts and their mix (1:1) represented inhibition zone diameters that reach 15.1 ± 1.66 mm for bacteria and 23.81 ± 1.41 mm for fungi. Extracts were shown to have better safety against the cell line strain of hepatic HL-7702, with an elevation of a harmful dose of aflatoxin (IC50 304.5 µg/mL for PBD, IC50 381 µg/mL for BMG). Sensory evaluation of fortified bars reflected a preferable application of mix (1:1) due to color attributes and panelist evaluations, the same result recorded for simulation studies. The experiment recommended applying a mix (1:1) of BMG: PBD in addition to their extracts (200 mg/kg dough) for functional bar manufacturing with antifungal properties.
Collapse
|
13
|
Synergistic Impact of Bioactive Byproduct Extract Leads to Anti- Fusarium and Anti-Mycotoxin Secretion. J Fungi (Basel) 2021; 8:jof8010030. [PMID: 35049970 PMCID: PMC8779159 DOI: 10.3390/jof8010030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022] Open
Abstract
Fruit byproducts are considered a high source of bioactive molecules, which possess antioxidant activities. These antioxidants play principal functions in mycotoxin reduction. This study aimed to evaluate crude mandarin byproduct extract for its chemical interaction with fungal growth and suppression of mycotoxin production, and to illustrate whether the impact was regarding individual molecules or a synergistic antioxidation process. Extract contents were analyzed for their phenolic, flavonoids, and antioxidant activity. The fatty acid composition and volatile components were determined using the GC apparatus. The influence of the extract evaluated versus the standard phenolics of trans-ferulic and hesperidin were evaluated. The liposome technique was applied to prevent the antioxidant properties of the bioactive extract. The anti-mycotoxigenic effects of the liposomal and non-liposomal extract were determined in fungal media against the standard phenolics. The results manifested ferulic (235.54 ± 3.34 mg/100 g) and hesperidin (492.11 ± 1.15 mg/100 g) as high phenolics in the extract. Limonene was the main volatile (67.54 ± 1.74%), as well antioxidant activities determined in considerable values. The crude extract recorded efficiency as an anti-Fusarium agent, but less than the standard hesperidin applied in fungal media. The bioactive extract recorded possessed a reduction influence on mycotoxin production. The impact may be joining with its fungal inhibition or its component activity with the active groups on the mycotoxin molecule. The formation of liposomal extract enhanced its efficacy in mycotoxin reduction. This enhancement may illustrate its protective properties for antioxidant components of the bioactive extract.
Collapse
|
14
|
Bioactive Molecules of Mandarin Seed Oils Diminish Mycotoxin and the Existence of Fungi. Molecules 2021; 26:molecules26237130. [PMID: 34885712 PMCID: PMC8659201 DOI: 10.3390/molecules26237130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Mandarin is a favorite fruit of the citrus family. Mandarin seeds are considered a source of nontraditional oil obtained from byproduct materials. This investigation aimed to assess the biomolecules of mandarin seeds and evaluated their antimycotic and antimycotoxigenic impact on fungi. Moreover, it evaluated the protective role of mandarin oil against aflatoxin toxicity in cell lines. The two types of extracted oil (fixed and volatile) were ecofriendly. The fatty acid composition, tocopherol, sterols, and carotenoids were determined in the fixed oil, whereas volatiles and phenolics were estimated in the essential oil. A mixture of the two oils was prepared and evaluated for its antimicrobial impact. The reduction effect of this mixture was also investigated to reduce mycotoxin secretion using a simulated experiment. The protective effect of the oil was evaluated using healthy strains of cell lines. Fixed oil was distinguished by the omega fatty acid content (76.24%), lutein was the major carotenoid (504.3 mg/100 g) and it had a high β-sitosterol content (294.6 mg/100 g). Essential oil contained limonene (66.05%), α-pinene (6.82%), β-pinene (4.32%), and γ-terpinene (12.31%) in significant amounts, while gallic acid and catechol were recorded as the dominant phenolics. Evaluation of the oil mix for antimicrobial potency reflected a considerable impact against pathogenic bacteria and toxigenic fungi. By its application to the fungal media, this oil mix possessed a capacity for reducing mycotoxin secretion. The oil mix was also shown to have a low cytotoxic effect against healthy strains of cell lines and had potency in reducing the mortality impact of aflatoxin B1 applied to cell lines. These results recommend further study to involve this oil in food safety applications.
Collapse
|
15
|
Efficacy of Bottle Gourd Seeds' Extracts in Chemical Hazard Reduction Secreted as Toxigenic Fungi Metabolites. Toxins (Basel) 2021; 13:toxins13110789. [PMID: 34822573 PMCID: PMC8620683 DOI: 10.3390/toxins13110789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Bottle gourd seeds are surrounded by innumerable bioactive components of phytochemicals. This work aimed to evaluate the effectiveness of bottle gourd extracts as antimicrobial and an-ti-mycotoxigenic against toxigenic fungi and mycotoxins. Polar and nonpolar extracts were made from the seeds. The polar eco-friendly extract was prepared by an ultrasonication-assisted technique utilizing aqueous isopropanol (80%), whereas the non-polar extract was obtained using petroleum ether (40–60). The antioxidant efficacy, total phenolic content, and flavonoid content of the extracts were all measured. The fatty acid profile was measured using GC equipment, and the influence on toxigenic fungus and mycotoxin release was also investigated. The antioxidant efficacy of the polar extract is reflected. The total phenolic values of the oil and polar extract were 15.5 and 267 mg of GAE/g, respectively. The total flavonoid content of the oil was 2.95 mg catechol/g, whereas the isopropyl extract of seeds contained 14.86 mg catechol/g. The polar extract inhibited the DPPH more effectively than oil. When compared to other seed oils, the fatty acid composition differed. The pathogens were distinguished by the MIC and MFC for the polar extract. Three sterols were found in the oil, with a high concentration of B-sitosterols. The oil’s valuable -carotene content and tocopherol content were recorded. When compared to traditional antibiotics, the polar extract has shown promising antimicrobial activity against infections and toxigenic fungi. Bottle gourd extracts, as a non-traditional bioactive source, are viewed as a potentially promising alternative that might contribute to increased food safety, shelf-life, and security.
Collapse
|
16
|
Da Silveira AR, Rosa ÉVF, Sari MHM, Sampaio TB, Dos Santos JT, Jardim NS, Müller SG, Oliveira MS, Nogueira CW, Furian AF. Therapeutic potential of beta-caryophyllene against aflatoxin B1-Induced liver toxicity: biochemical and molecular insights in rats. Chem Biol Interact 2021; 348:109635. [PMID: 34506763 DOI: 10.1016/j.cbi.2021.109635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022]
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin highly toxic and carcinogenic to humans due to its potential to induce oxidative stress. The Beta-caryophyllene (BCP) have been highlighted for its broad spectrum of pharmacological effects. The present study aimed to investigate the beneficial effects of BCP against the susceptibility of hepatic and renal tissues to AFB1 toxicity, in biochemical parameters to assess organ function, tissue oxidation, and the immunocontent of oxidative and inflammatory proteins. Male Wistar rats was exposed to AFB1 (250 μg/kg, i.g.) and/or BCP (100 mg/kg, i.p.) for 14 successive days. It was found that exposure to AFB1 did not change the measured renal toxicity parameters. Also, AFB1 increased liver injury biomarkers (gamma glutamyl transferase and alkaline phosphatase) and reduced levels of non-enzymatic antioxidant defenses (ascorbic acid and non-protein thiol), however did not cause changes in the lipid peroxidation levels. Moreover, AFB1 interfered in oxidative pathway regulated by Kelch-like ECH-associated protein (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2), overacting Glutathione-S-Transferase (GST) activity. Lastly, a main effect of AFB1 on the total interleukin 1 beta (IL-1β) was observed. Remarkably, the associated treatment of AFB1 + BCP improved altered liver parameters. In addition, BCP and AFB1 + BCP groups showed an increase in the levels of inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ). Thus, these results indicated that BCP has potential protective effect against AFB1 induced hepatotoxicity.
Collapse
Affiliation(s)
- Alice Rosa Da Silveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Érica Vanessa Furlan Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | | | - Tuane Bazanella Sampaio
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Jamila Trindade Dos Santos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Natália Silva Jardim
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Sabrina Grendene Müller
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Cristina Wayne Nogueira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Ana Flávia Furian
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
17
|
Abu-Sree YH, Abdel-Fattah SM, Abdel-Razek AG, Badr AN. Neoteric approach for peanuts biofilm using the merits of Moringa extracts to control aflatoxin contamination. Toxicol Rep 2021; 8:1685-1692. [PMID: 34589415 PMCID: PMC8458776 DOI: 10.1016/j.toxrep.2021.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/06/2021] [Accepted: 08/28/2021] [Indexed: 12/24/2022] Open
Abstract
Aflatoxigenic fungi and aflatoxins are still a principal challenge that threatened peanut production, marketing, and handling. This study aimed to face the problem using bioactive materials, which reduce fungi and mycotoxin contamination, Moringa extracts may be suitable for solving this challenge. Also, the study was compared the extracts of leaves and oil-free seeds. Fresh leaves and seeds were collected, dried, and milled, while oil was collected by cold pressing. The extracts were evaluated for total phenols, flavonoids, and antioxidants, the oil contents of fatty acids, tocopherol, and sterols were determined. An emulsion for protecting peanuts compositing of leaves extract carried by Moringa oil, and commercial emulsifier. Leaves extract evaluation reflected distinct properties of its fibers, total phenols, and flavonoids. It was recorded a microbial inhibition of bacteria and fungi. The values for both minimal inhibition and fungicidal concentrations were recorded at 3.2 mg/mL and 490 μg/L, respectively. For oil, it showed a unique content, as oleic acid was the main fatty acid, with an affinity between palmitic and behenic in their ratios. Also, oil was recorded by high contents of alpha-tocopherol and Δ7-Campesterol, with 1.166 mg/kg oil as total sterols content. The leaves extract has also a unique capacity to inhibit toxigenic fungi. By applying the composite emulsion for peanut coating, results expressed a high CFU-count inhibition when it was inoculated by A. flavus strain compared to the control.
Collapse
Affiliation(s)
- Yehia Hassan Abu-Sree
- Food Toxicology and Contaminants Department, National Research Centre, Dokki 12622, Cairo, Egypt
| | | | | | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Dokki 12622, Cairo, Egypt
| |
Collapse
|
18
|
Bioactivity evaluation for volatiles and water extract of commercialized star anise. Heliyon 2021; 7:e07721. [PMID: 34409184 PMCID: PMC8361074 DOI: 10.1016/j.heliyon.2021.e07721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background Usually, it takes about a year since the harvested fresh star anise fruit (SAF) reaches the market for consumer usage, all this time with different handling processes and different storage circumstances greatly affect its quality as well as its chemical composition and biological activity. Aim This study investigated the chemical constituents for volatiles and water extracts of commercialized SAF, as well as, their bioactivities. Results The chemical constituents were dominated by Trans-Anethole (47.16 %), estragole (14.4 %), and foeniculin (8.86 %) in the essential oils. Meanwhile, Coumarin, Apigenin, and Rosmarinic were the predominant phenolics of water extract. The result reflects a distinction of water extract to minimize mycotoxin secretion in liquid media. The SAF-volatiles were more effective in inhibiting microbial growth of the investigated bacterial and fungal strains. Conclusion Although samples were commercially collected from markets, their extracts were still capable to inhibit up to 55 % of fungal growth. The SAF water extract exhibited a moderate and selective cytotoxic effect (IC50 = 114.9 μg/ml) against HepG2 cell lines compared to the low impact of essential oil (IC50 = 513.8 μg/ml). Which led to the conclusion that despite the long-time span for SAF till it reaches the market, aqueous extract maintained a good ability for reducing mycotoxins-secretion from fungi grown in liquid media. This result emphasizes the role of the phenolics of water extracts' as an anti-mycotoxigenic agent.
Collapse
|