1
|
Xiong Y, Ma X, He B, Zhi J, Liu X, Wang P, Zhou Z, Liu D. Multifaceted Effects of Subchronic Exposure to Chlorfenapyr in Mice: Implications from Serum Metabolomics, Hepatic Oxidative Stress, and Intestinal Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7423-7437. [PMID: 38502791 DOI: 10.1021/acs.jafc.3c09682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
As chlorfenapyr is a commonly used insecticide in agriculture, the health risks of subchronic exposure to chlorfenapyr remained unclear. This study aimed to extensively probe the health risks from subchronic exposure to chlorfenapyr at the NOAEL and 10-fold NOAEL dose in mice. Through pathological and biochemical examinations, the body metabolism, hepatic toxicity, and intestinal homeostasis were systematically assessed. After 12 weeks, a 10-fold NOAEL dose of chlorfenapyr resulted in weight reduction, increased daily food intake, and blood lipid abnormalities. Concurrently, this dosage induced hepatotoxicity and amplified oxidative stress in hepatocytes, a finding further supported in HepG2 cells. Moreover, chlorfenapyr resulted in intestinal inflammation, evidenced by increased inflammatory factors (IL-17a, IL-10, IL-1β, IL-6, IL-22), disrupted immune cells (RORγt, Foxp3), and compromised intestinal barriers (ZO-1 and occludin). By contrast, the NOAEL dose presented less toxicity in most evaluations. Serum metabolomic analyses unveiled widespread disruptions in pathways related to hepatotoxicity and intestinal inflammation, including NF-κB signaling, Th cell differentiation, and bile acid metabolism. Microbiomic analysis showed an increase in Lactobacillus, a decrease in Muribaculaceae, and diminished anti-inflammatory microbes, which further propelled the inflammatory response and leaded to intestinal inflammation. These findings revealed the molecular mechanisms underlying chlorfenapyr-induced hepatotoxicity and intestinal inflammation, highlighting the significant role of the gut microbiota.
Collapse
Affiliation(s)
- Yabing Xiong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoran Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Bingying He
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jianwen Zhi
- Department of Proctology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Ezez D, Mekonnen N, Tefera M. Phytochemical analysis of Withania somnifera leaf extracts by GC-MS and evaluating antioxidants and antibacterial activities. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2173229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dessie Ezez
- Department of Chemistry, College of Natural Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Natinael Mekonnen
- Department of Chemistry, College of Natural Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Molla Tefera
- Department of Chemistry, College of Natural Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
Mondal M, Bala J, Mondal KR, Afrin S, Saha P, Saha M, Jamaddar S, Roy UK, Sarkar C. The protective effects of nerol to prevent the toxicity of carbon tetrachloride to the liver in Sprague-Dawley rats. Heliyon 2023; 9:e23065. [PMID: 38125544 PMCID: PMC10731234 DOI: 10.1016/j.heliyon.2023.e23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Carbon-tetrachloride (CCl4) is well-known to cause liver damage due to severe oxidative stress. Nerol, on the other hand, is a monoterpene that is antioxidant, antiviral, antibacterial, anti-inflammatory, and anxiolytic. This study set out to determine if nerol may be used as a prophylactic measure against the oxidative stress mediated hepatic injury caused by CCl4. Materials and methods For the aim of this experiment, 35 male Sprague-Dawley rats ranging in body weight (BW) from 140 to 180 g were split into five separate groups. With the exception of vehicle control group 1, all experimental rats were subjected to carbon tetrachloride exposure through intra-peritoneal injection at a 0.7 mL/kg body weight dose once a week for 4 weeks (28 days). The treatment groups 3 and 4 received oral administration of nerol at 50 and 100 mg/kg BW for 28 days. In the same time period, the standard control group received 100 mg/kg BW silymarin. Results Serum hepatic markers, lipid profiles, albumin, globulin, bilirubin, and total protein were all substantially improved in nerol-treated rats in a dose-dependent manner that had been exposed to CCl4 compared to the only CCl4-treated group. Carbon tetrachloride-exposed rats had lower glutathione, superoxide dismutase, and catalase levels and higher thio-barbituric acid reactive substances (TBARS) levels than normal rats. In contrast, administration of nerol shown a significant augmentation in the concentrations of these antioxidant compounds, while concurrently inducing a decline in the levels of TBARS in the hepatic tissue. In a similar vein, the histo-pathological examination yielded further evidence indicating that nerol offered protection to the hepatocyte against damage generated by CCl4. Conclusion According to the findings of our investigation, nerol has potential as a functional element to shield the liver from harm brought on by ROS that are caused by CCL4.
Collapse
Affiliation(s)
- Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Jibanananda Bala
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Sadia Afrin
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Protyaee Saha
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Moumita Saha
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Sarmin Jamaddar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Uttam Kumar Roy
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| |
Collapse
|
4
|
Wang R, Yang X, Wang T, Kou R, Liu P, Huang Y, Chen C. Synergistic effects on oxidative stress, apoptosis and necrosis resulting from combined toxicity of three commonly used pesticides on HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115237. [PMID: 37451096 DOI: 10.1016/j.ecoenv.2023.115237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The widespread use of pesticides performs a vital role in safeguarding crop yields and quality, providing the opportunity for multiple pesticides to co-exist, which poses a significant potential risk to human health. To assess the toxic effects caused by exposures to individual pesticides (chlorpyrifos, carbofuran and acetamiprid), binary combinations and ternary combinations, individual and combined exposure models were developed using HepG2 cells and the types of combined effects of pesticide mixtures were assessed using concentration addition (CA), independent action (IA) and combination index (CI) models, respectively, and the expression of biomarkers related to oxidative stress, apoptosis and cell necrosis was further examined. Our results showed that both individual pesticides and mixtures exerted toxic effects on HepG2 cells. The CI model indicated that the toxic effects of pesticide mixtures exhibited synergistic effects. The results of the lactate dehydrogenase (LDH) release and apoptosis assay revealed that the pesticide mixture increased the release of LDH and apoptosis levels. Moreover, our results also showed that individual pesticides and mixtures disrupted redox homeostasis and that pesticide mixtures produced more intense oxidative stress effects. In conclusion, we have illustrated the enhanced combined toxicity of pesticide mixtures by in-vitro experiments, which provides a theoretical basis and scientific basis for further toxicological studies.
Collapse
Affiliation(s)
- Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xi Yang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Tiancai Wang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Ruirui Kou
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Panpan Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Yueqing Huang
- Department of General Medicine, The Affliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou 215026, China.
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
5
|
Hossain M, Suchi TT, Samiha F, Islam MM, Tully FA, Hasan J, Rahman MA, Shill MC, Bepari AK, Rahman GS, Reza HM. Coenzyme Q10 ameliorates carbofuran induced hepatotoxicity and nephrotoxicity in wister rats. Heliyon 2023; 9:e13727. [PMID: 36865458 PMCID: PMC9971173 DOI: 10.1016/j.heliyon.2023.e13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Carbofuran is a widely used poisonous pesticide around the world that helps to control insects during farming. Upon oral ingestion to humans, it exaggerates oxidative stress in various organs like the liver, brain, kidney, and heart. Several studies reported that oxidative stress in the liver initiates and propagates hepatic cell necrosis, ultimately resulting in hepatotoxicity. It also reported that coenzyme Q10 (CoQ10) can neutralize oxidative stress due to its antioxidant properties. However, the hepatoprotective and nephroprotective role of CoQ10 against carbofuran toxicity has not been investigated. Therefore, the present study aimed to evaluate the hepatoprotective and nephroprotective role of CoQ10 in carbofuran-induced hepatotoxicity and nephrotoxicity in a mouse model for the first time. We determined the blood serum diagnostic markers, oxidative stress parameters, antioxidant system, and histopathological characteristics of liver and kidney tissues. The administration of 100 mg/kg of CoQ10 in carbofuran-treated rats significantly attenuated AST, ALT, ALP, serum creatinine, and BUN levels. Moreover, CoQ10 (100 mg/kg) remarkably altered the level of NO, MDA, AOPP, GSH, SOD, and CAT in both the liver and kidney. The histopathological data also unveiled that CoQ10 treatment prevented inflammatory cell infiltration in carbofuran-exposed rats. Therefore, our findings infer that CoQ10 may effectively protect liver and kidney tissues against carbofuran-induced oxidative hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Murad Hossain
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh,Corresponding author.
| | - Tamanna Tanjim Suchi
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - Farzana Samiha
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - M.M. Monirul Islam
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - Fahima Abdullah Tully
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - Javed Hasan
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md Ashrafur Rahman
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh,Department of Pharmaceutical Sciences, Wilkes university, Pennsylvania, USA, 18766
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - G.M. Sayedur Rahman
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, School of Health & Life Sciences, North South University, Dhaka 1229, Bangladesh,Corresponding author.
| |
Collapse
|
6
|
Kempuraj D, Zhang E, Gupta S, Gupta RC, Sinha NR, Mohan RR. Carbofuran pesticide toxicity to the eye. Exp Eye Res 2023; 227:109355. [PMID: 36572166 PMCID: PMC9918712 DOI: 10.1016/j.exer.2022.109355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Pesticide exposure to eyes is a major source of ocular morbidities in adults and children all over the world. Carbofuran (CF), N-methyl carbamate, pesticide is most widely used as an insecticide, nematicide, and acaricide in agriculture, forestry, and gardening. Contact or ingestion of carbofuran causes high morbidity and mortality in humans and pets. Pesticides are absorbed in the eye faster than other organs of the body and damage ocular tissues very quickly. Carbofuran exposure to eye causes blurred vision, pain, loss of coordination, anti-cholinesterase activities, weakness, sweating, nausea and vomiting, abdominal pain, endocrine, reproductive, and cytotoxic effects in humans depending on amount and duration of exposure. Pesticide exposure to eye injures cornea, conjunctiva, lens, retina, and optic nerve and leads to abnormal ocular movement and vision impairment. Additionally, anticholinesterase pesticides like carbofuran are known to cause salivation, lacrimation, urination, and defecation (SLUD). Carbofuran and its two major metabolites (3-hydroxycarbofuran and 3-ketocarbofuran) are reversible inhibitors of acetylcholinesterase (AChE) which regulates acetylcholine (ACh), a neurohumoral chemical that plays an important role in corneal wound healing. The corneal epithelium contains high levels of ACh whose accumulation by AChE inhibition after CF exposure overstimulates muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs). Hyper stimulation of mAChRs in the eye causes miosis (excessive constriction of the pupil), dacryorrhea (excessive flow of tears), or chromodacryorrhea (red tears). Recent studies reported alteration of autophagy mechanism in human cornea in vitro and ex vivo post carbofuran exposure. This review describes carbofuran toxicity to the eye with special emphasis on corneal morbidities and blindness.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health One-Medicine Vision Research Program, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Eric Zhang
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health One-Medicine Vision Research Program, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ramesh C Gupta
- Toxicology Department, Murray State University, Hopkinsville, KY, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health One-Medicine Vision Research Program, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health One-Medicine Vision Research Program, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
7
|
Sari MI, Lia Kusumawati R, Pane YS, Sufitni S. Coleus Amboinicus Lour. Leaf Extract as an Antioxidant in Sepsis. Med Arch 2023; 77:451-454. [PMID: 38313107 PMCID: PMC10834052 DOI: 10.5455/medarh.2023.77.451-454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 02/06/2024] Open
Abstract
Background As broad-spectrum antibiotics can cause antimicrobial resistance in sepsis, there is the need for a complementary therapy to combat sepsis. Oxidative stress causes an increased severity and mortality in sepsis, whereas herbal medicines have been considered as an option due to its antioxidant potential. Coleus amboinicus Lour. has been documented for its therapeutic value due to the presence of flavonoid, an antioxidant compound. Objective To study the effect of Coleus amboinicus Lour. leaf extract on total antioxidant capacity (TAC) and hepatic catalase (CAT) levels in septic rat model. Methods Twenty-eight male Rattus norvegicus rats were divided into four groups: control (rats without sepsis induction and treatment), group 1 (septic rats treated with antibiotics), group 2 (septic rats treated with antibiotics and 250 mg/kg body weight of Coleus amboinicus Lour. leaf extract), and group 3 (septic rats treated with antibiotics and 500 mg/kg body weight of Coleus amboinicus Lour. leaf extract). The rats were sacrificed at the end of the eighth day of observation, and blood and liver tissues were gathered for examination. Results Compared to the septic rat groups treated with only antibiotics, there was an increase in the TAC levels and CAT expression levels in septic rat groups given antibiotics and Coleus amboinicus Lour. leaf extract. However, the increase was not significant. Conclusion Administering Coleus amboinicus Lour. leaf extract increases TAC levels and CAT expression levels in sepsis, decreasing oxidative stress. This will exert protective effects in the cells and therefore alleviate sepsis.
Collapse
Affiliation(s)
- Mutiara Indah Sari
- Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - R. Lia Kusumawati
- Department of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yunita Sari Pane
- Department of Pharmacology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Sufitni Sufitni
- Department of Anatomy, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
8
|
Sarkar C, Mondal M, Al-Khafaji K, El-Kersh DM, Jamaddar S, Ray P, Roy UK, Afroze M, Moniruzzaman M, Khan M, Asha UH, Khalipha ABR, Mori E, de Lacerda BCGV, Araújo IM, Coutinho HDM, Shill MC, Islam MT. GC–MS analysis, and evaluation of protective effect of Piper chaba stem bark against paracetamol-induced liver damage in Sprague-Dawley rats: Possible defensive mechanism by targeting CYP2E1 enzyme through in silico study. Life Sci 2022; 309:121044. [DOI: 10.1016/j.lfs.2022.121044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 10/31/2022]
|
9
|
Subchronic Toxicity Study of Alternanthera philoxeroides in Swiss Albino Mice Having Antioxidant and Anticoagulant Activities. J Toxicol 2022; 2022:8152820. [PMID: 35875616 PMCID: PMC9300360 DOI: 10.1155/2022/8152820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/12/2022] [Accepted: 06/25/2022] [Indexed: 11/20/2022] Open
Abstract
Alternanthera philoxeroides, a tropical herb and edible vegetable, has been popular as a medicinal plant. Applying in vitro approach, we initially attempted to assess the phytochemicals, bioactive chemicals, as well as antioxidant and anticoagulant activities of this plant. Following that, the in vivo toxicological effects of methanolic extracts of A. philoxeroides using different doses on the kidney, heart, lung, liver, stomach, brain, and blood of female Swiss Albino mice were investigated. We estimated phytochemicals content as well as antioxidant activity through DPPH, NO, CUPRAC, and reducing power assays, followed by the anticoagulant activities of PT and aPTT and bioactive compounds using HPLC. To confirm the biocompatibility of A. philoxeroides extracts, histopathological and hematological parameters were examined in a mice model. Total phenol, flavonoid, and tannin content in A. philoxeroides was 181.75 ± 2.47 mg/g, 101.5 ± 3 .53 mg/g, and 68.58 ± 0.80 mg/g, respectively. Furthermore, the HPLC study confirmed the presence of four phenolic compounds: catechin, tannic acid, gallic acid, and vanillic acid. The methanolic extract of A. philoxeroides showed considerable antioxidant activity in all four antioxidant assay methods when compared to the standard. In comparison to ascorbic acid, A. philoxeroides also demonstrated a minor concentration-dependent ferric and cupric reduction activity. In vivo evaluation indicated that A. philoxeroides extracts (doses: 250, 500, and 1000 mg/kg) had no negative effects on the relative organ or body weight, or hematological indicators. Our study concluded that A. philoxeroides had significant antioxidant and anticoagulant activities and demonstrated no negative effects on the body or relative organ weight, histopathological, and hematological indices in the mouse model.
Collapse
|