1
|
Wu P, Li Y. Prion-like Proteins in Plants: Key Regulators of Development and Environmental Adaptation via Phase Separation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2666. [PMID: 39339640 PMCID: PMC11435361 DOI: 10.3390/plants13182666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Prion-like domains (PrLDs), a unique type of low-complexity domain (LCD) or intrinsically disordered region (IDR), have been shown to mediate protein liquid-liquid phase separation (LLPS). Recent research has increasingly focused on how prion-like proteins (PrLPs) regulate plant growth, development, and stress responses. This review provides a comprehensive overview of plant PrLPs. We analyze the structural features of PrLPs and the mechanisms by which PrLPs undergo LLPS. Through gene ontology (GO) analysis, we highlight the diverse molecular functions of PrLPs and explore how PrLPs influence plant development and stress responses via phase separation. Finally, we address unresolved questions about PrLP regulatory mechanisms, offering prospects for future research.
Collapse
Affiliation(s)
- Peisong Wu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China;
| | - Yihao Li
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China;
- Center for Biological Science and Technology, Guangdong Zhuhai–Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
2
|
Li X, Lin C, Lan C, Tao Z. Genetic and epigenetic basis of phytohormonal control of floral transition in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4180-4194. [PMID: 38457356 DOI: 10.1093/jxb/erae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
The timing of the developmental transition from the vegetative to the reproductive stage is critical for angiosperms, and is fine-tuned by the integration of endogenous factors and external environmental cues to ensure successful reproduction. Plants have evolved sophisticated mechanisms to response to diverse environmental or stress signals, and these can be mediated by hormones to coordinate flowering time. Phytohormones such as gibberellin, auxin, cytokinin, jasmonate, abscisic acid, ethylene, and brassinosteroids and the cross-talk among them are critical for the precise regulation of flowering time. Recent studies of the model flowering plant Arabidopsis have revealed that diverse transcription factors and epigenetic regulators play key roles in relation to the phytohormones that regulate floral transition. This review aims to summarize our current knowledge of the genetic and epigenetic mechanisms that underlie the phytohormonal control of floral transition in Arabidopsis, offering insights into how these processes are regulated and their implications for plant biology.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chuyu Lin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenghao Lan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Wang F, Han T, Jeffrey Chen Z. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Commun Biol 2024; 7:579. [PMID: 38755402 PMCID: PMC11098820 DOI: 10.1038/s42003-024-06275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
As sessile organisms, plants must respond constantly to ever-changing environments to complete their life cycle; this includes the transition from vegetative growth to reproductive development. This process is mediated by photoperiodic response to sensing the length of night or day through circadian regulation of light-signaling molecules, such as phytochromes, to measure the length of night to initiate flowering. Flowering time is the most important trait to optimize crop performance in adaptive regions. In this review, we focus on interplays between circadian and light signaling pathways that allow plants to optimize timing for flowering and seed production in Arabidopsis, rice, soybean, and cotton. Many crops are polyploids and domesticated under natural selection and breeding. In response to adaptation and polyploidization, circadian and flowering pathway genes are epigenetically reprogrammed. Understanding the genetic and epigenetic bases for photoperiodic flowering will help improve crop yield and resilience in response to climate change.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tongwen Han
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
4
|
Tang L, Li G, Wang H, Zhao J, Li Z, Liu X, Shu Y, Liu W, Wang S, Huang J, Ying J, Tong X, Yuan W, Wei X, Tang S, Wang Y, Bu Q, Zhang J. Exogenous abscisic acid represses rice flowering via SAPK8-ABF1-Ehd1/Ehd2 pathway. J Adv Res 2024; 59:35-47. [PMID: 37399924 PMCID: PMC11081964 DOI: 10.1016/j.jare.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023] Open
Abstract
INTRODUCTION Rice flowering is a major agronomic trait, determining yield and ecological adaptability in particular regions. ABA plays an essential role in rice flowering, but the underlying molecular mechanism remains largely elusive. OBJECTIVES In this study, we demonstrated a "SAPK8-ABF1-Ehd1/Ehd2" pathway, through which exogenous ABA represses rice flowering in a photoperiod-independent manner. METHODS We generated abf1 and sapk8 mutants using the CRISPR-Cas9 method. Using yeast two-hybrid, Pull down, BiFC and kinase assays, SAPK8 interacted and phosphorylated ABF1. ABF1 directly bound to the promoters of Ehd1 and Ehd2 using ChIP-qPCR, EMSA, and LUC transient transcriptional activity assay, and suppressed the transcription of these genes. RESULTS Under both long day and short day conditions, simultaneous knock-out of ABF1 and its homolog bZIP40 accelerated flowering, while SAPK8 and ABF1 over-expression lines exhibited delayed flowering and hypersensitivity to ABA-mediated flowering repression. After perceiving the ABA signal, SAPK8 physically binds to and phosphorylates ABF1 to enhance its binding to the promoters of master positive flowering regulators Ehd1 and Ehd2. Upon interacting with FIE2, ABF1 recruited PRC2 complex to deposit H3K27me3 suppressive histone modification on Ehd1 and Ehd2 to suppress these genes transcription, thereby leading to later flowering. CONCLUSION Our work highlighted the biological functions of SAPK8 and ABF1 in ABA signaling, flowering control and the involvement of a PRC2-mediated epigenetic repression mechanism in the transcription regulation governed by ABF1 on ABA-mediated rice flowering repression.
Collapse
Affiliation(s)
- Liqun Tang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Guanghao Li
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Huimei Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Juan Zhao
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhiyong Li
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yazhou Shu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Wanning Liu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shuang Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jie Huang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Wenya Yuan
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiangjin Wei
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shaoqing Tang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, the Chinese Academy of Sciences, Harbin 150081, China; The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing 100101, China.
| | - Jian Zhang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
5
|
Wang M, Li J, Li T, Kang S, Jiang S, Huang J, Tang H. Light Supplementation in Pitaya Orchards Induces Pitaya Flowering in Winter by Promoting Phytohormone Biosynthesis. Int J Mol Sci 2024; 25:4794. [PMID: 38732009 PMCID: PMC11083671 DOI: 10.3390/ijms25094794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The interaction between light and phytohormones is crucial for plant growth and development. The practice of supplementing light at night during winter to promote pitaya flowering and thereby enhance yield has been shown to be crucial and widely used. However, it remains unclear how supplemental winter light regulates phytohormone levels to promote flowering in pitaya. In this study, through analyzing the transcriptome data of pitaya at four different stages (NL, L0, L1, L2), we observed that differentially expressed genes (DEGs) were mainly enriched in the phytohormone biosynthesis pathway. We further analyzed the data and found that cytokinin (CK) content first increased at the L0 stage and then decreased at the L1 and L2 stages after supplemental light treatment compared to the control (NL). Gibberellin (GA), auxin (IAA), salicylic acid (SA), and jasmonic acid (JA) content increased during the formation of flower buds (L1, L2 stages). In addition, the levels of GA, ethylene (ETH), IAA, and abscisic acid (ABA) increased in flower buds after one week of development (L2f). Our results suggest that winter nighttime supplemental light can interact with endogenous hormone signaling in pitaya, particularly CK, to regulate flower bud formation. These results contribute to a better understanding of the mechanism of phytohormone interactions during the induction of flowering in pitaya under supplemental light in winter.
Collapse
Affiliation(s)
- Meng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (M.W.); (J.L.); (T.L.); (S.K.); (S.J.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jiaxue Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (M.W.); (J.L.); (T.L.); (S.K.); (S.J.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Tao Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (M.W.); (J.L.); (T.L.); (S.K.); (S.J.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shaoling Kang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (M.W.); (J.L.); (T.L.); (S.K.); (S.J.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Senrong Jiang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (M.W.); (J.L.); (T.L.); (S.K.); (S.J.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jiaquan Huang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (M.W.); (J.L.); (T.L.); (S.K.); (S.J.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hua Tang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (M.W.); (J.L.); (T.L.); (S.K.); (S.J.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Qiu C, Wang T, Wang H, Tao Z, Wang C, Ma J, Li S, Zhao Y, Liu J, Li P. SISTER OF FCA physically associates with SKB1 to regulate flowering time in Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:188. [PMID: 38486139 PMCID: PMC10941358 DOI: 10.1186/s12870-024-04887-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Proper flowering time is important for the growth and development of plants, and both too early and too late flowering impose strong negative influences on plant adaptation and seed yield. Thus, it is vitally important to study the mechanism underlying flowering time control in plants. In a previous study by the authors, genome-wide association analysis was used to screen the candidate gene SISTER OF FCA (SSF) that regulates FLOWERING LOCUS C (FLC), a central gene encoding a flowering suppressor in Arabidopsis thaliana. RESULTS SSF physically interacts with Protein arginine methyltransferase 5 (PRMT5, SKB1). Subcellular co-localization analysis showed that SSF and SKB1 interact in the nucleus. Genetically, SSF and SKB1 exist in the same regulatory pathway that controls FLC expression. Furthermore, RNA-sequencing analysis showed that both SSF and SKB1 regulate certain common pathways. CONCLUSIONS This study shows that PRMT5 interacts with SSF, thus controlling FLC expression and facilitating flowering time control.
Collapse
Affiliation(s)
- Chunhong Qiu
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Tengyue Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hui Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Tao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Chuanhong Wang
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jing Ma
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Shuai Li
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yibing Zhao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jifang Liu
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Peijin Li
- The National Key Engineering Lab of Crop Stress Resistance Breeding, Schoolof Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
Kim JH, Jung WJ, Kim MS, Seo YW. The wheat TaF-box3, SCF ubiquitin ligase component, participates in the regulation of flowering time in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111668. [PMID: 36858206 DOI: 10.1016/j.plantsci.2023.111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Histone methylation is actively involved in plant flowering time and is regulated by a myriad of genetic pathways that integrate endogenous and exogenous signals. We identified an F-box gene from wheat (Triticum aestivum L.) and named it TaF-box3. Transcript expression analysis showed that TaF-box3 expression was gradually induced during the floret development and anthesis stages (WS2.5-10). Furthermore, ubiquitination assays have shown that TaF-box3 is a key component of the SCF ubiquitin ligase complex. TaF-box3 overexpression in Arabidopsis resulted in an early flowering phenotype and different cell sizes in leaves compared to the WT. Furthermore, the transcript level of a flowering time-related gene was significantly reduced in TaF-box3 overexpressing plants, which was linked with lower histone H3 Lys4 trimethylation (H3K4me3) and H3 Lys36 trimethylation (H3K36me3). Overexpression of TaF-box3 in Arabidopsis was shown to be involved in the regulation of flowering time by demethylating FLC chromatin, according to ChIP experiments. Protein analysis confirmed that TaMETS interacts with TaF-box3 and is ubiquitinated and degraded in a TaF-box3-dependnent manner. Based on these findings, we propose that TaF-box3 has a positive role in flowering time, which leads to a better understanding of TaF-box3 physiological mechanism in Arabidopsis.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Plant Biotechnology, Korea University, Seoul, the Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul, the Republic of Korea
| | - Woo Joo Jung
- Institute of Life Science and Natural Resources, Korea University, Seoul, the Republic of Korea
| | - Moon Seok Kim
- Department of Plant Biotechnology, Korea University, Seoul, the Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, the Republic of Korea; Ojeong Plant Breeding Research Center, Korea University, Seoul, the Republic of Korea.
| |
Collapse
|
8
|
A Tea Plant ( Camellia sinensis) FLOWERING LOCUS C-like Gene, CsFLC1, Is Correlated to Bud Dormancy and Triggers Early Flowering in Arabidopsis. Int J Mol Sci 2022; 23:ijms232415711. [PMID: 36555355 PMCID: PMC9779283 DOI: 10.3390/ijms232415711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Flowering and bud dormancy are crucial stages in the life cycle of perennial angiosperms in temperate climates. MADS-box family genes are involved in many plant growth and development processes. Here, we identified three MADS-box genes in tea plant belonging to the FLOWERING LOCUS C (CsFLC) family. We monitored CsFLC1 transcription throughout the year and found that CsFLC1 was expressed at a higher level during the winter bud dormancy and flowering phases. To clarify the function of CsFLC1, we developed transgenic Arabidopsis thaliana plants heterologously expressing 35S::CsFLC1. These lines bolted and bloomed earlier than the WT (Col-0), and the seed germination rate was inversely proportional to the increased CsFLC1 expression level. The RNA-seq of 35S::CsFLC1 transgenic Arabidopsis showed that many genes responding to ageing, flower development and leaf senescence were affected, and phytohormone-related pathways were especially enriched. According to the results of hormone content detection and RNA transcript level analysis, CsFLC1 controls flowering time possibly by regulating SOC1, AGL42, SEP3 and AP3 and hormone signaling, accumulation and metabolism. This is the first time a study has identified FLC-like genes and characterized CsFLC1 in tea plant. Our results suggest that CsFLC1 might play dual roles in flowering and winter bud dormancy and provide new insight into the molecular mechanisms of FLC in tea plants as well as other plant species.
Collapse
|
9
|
Kleine T. Arabidopsis thaliana FLOWERING LOCUS M: A direct target of RBP45d? THE PLANT CELL 2022; 34:4138-4140. [PMID: 35945677 PMCID: PMC9614448 DOI: 10.1093/plcell/koac247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Tatjana Kleine
- Plant Molecular Biology (Botany), Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
10
|
Corcoran ET, LeBlanc C, Huang YC, Arias Tsang M, Sarkiss A, Hu Y, Pedmale UV, Jacob Y. Systematic histone H4 replacement in Arabidopsis thaliana reveals a role for H4R17 in regulating flowering time. THE PLANT CELL 2022; 34:3611-3631. [PMID: 35879829 PMCID: PMC9516085 DOI: 10.1093/plcell/koac211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/15/2022] [Indexed: 06/13/2023]
Abstract
Despite the broad array of roles for epigenetic mechanisms on regulating diverse processes in eukaryotes, no experimental system is currently available in plants for the direct assessment of histone function. In this work, we present the development of a genetic strategy in Arabidopsis (Arabidopsis thaliana) whereby modified histone H4 transgenes can completely replace the expression of endogenous histone H4 genes. Accordingly, we established a collection of plants expressing different H4 point mutants targeting residues that may be post-translationally modified in vivo. To demonstrate its utility, we screened this new H4 mutant collection to uncover substitutions in H4 that alter flowering time. We identified different mutations in the H4 tail (H4R17A) and the H4 globular domain (H4R36A, H4R39K, H4R39A, and H4K44A) that strongly accelerate the floral transition. Furthermore, we identified a conserved regulatory relationship between H4R17 and the ISWI chromatin remodeling complex in plants: As with other biological systems, H4R17 regulates nucleosome spacing via ISWI. Overall, this work provides a large set of H4 mutants to the plant epigenetics community that can be used to systematically assess histone H4 function in Arabidopsis and a roadmap to replicate this strategy for studying other histone proteins in plants.
Collapse
Affiliation(s)
- Emma Tung Corcoran
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Chantal LeBlanc
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Yi-Chun Huang
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Mia Arias Tsang
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Anthony Sarkiss
- Faculty of Arts and Sciences, Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Yuzhao Hu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ullas V Pedmale
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
11
|
Li Q, Peng A, Yang J, Zheng S, Li Z, Mu Y, Chen L, Si J, Ren X, Song H. A 215-bp indel at intron I of BoFLC2 affects flowering time in Brassica oleracea var. capitata during vernalization. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2785-2797. [PMID: 35760921 DOI: 10.1007/s00122-022-04149-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In response to cold, a 215-bp deletion at intron I of BoFLC2 slows its silencing activity by feedback to the core genes of the PHD-PRC2 complex, resulting in late flowering in cabbage. Cabbage is a plant-vernalization-responsive flowering type. In response to cold, BoFLC2 is an important transcription factor, which allows cabbage plants to remain in the vegetative phase. However, there have been few reports on the detailed and functional effects of genetic variation in BoFLC2 on flowering time in cabbage. Herein, BoFLC2E and BoFLC2L, cloned from extremely early and extremely late flowering cabbages, respectively, exhibited a 215-bp indel at intron I, three non-synonymous SNPs and a 3-bp indel at exon II. BoFLC2L was found to be related to late flowering, as verified in 40 extremely early/late flowering accessions, a diverse set of cabbage inbred lines and two F2 generations by using indel-FLC2 marker. Among the genetic variation of BoFLC2, the 215-bp deletion at intron I was the main reason for the delayed flowering time, as verified in the transgenic progenies of seed-vernalization-responsive Arabidopsis thaliana (Col) and rapid cycler B. oleracea (TO1000, boflc2). This is the first report to show that the intron I indel of BoFLC2 affects the flowering time of cabbage. Although the intron I 215-bp indel between BoFLC2E and BoFLC2L did not cause alternative splicing, it slowed BoFLC2L silencing during vernalization and feedback to the core genes of the PHD-PRC2 complex, resulting in their lower transcription levels. Our study not only provides an effective molecular marker-assisted selective strategy for identifying bolting-resistant resources and breeding improved varieties in cabbage, but also provides an entry point for exploring the mechanisms of flowering time in plant-vernalization-responsive plants.
Collapse
Affiliation(s)
- Qinfei Li
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Ao Peng
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Jiaqin Yang
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Sidi Zheng
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Zhangping Li
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Yinhui Mu
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Lei Chen
- Chongqing Academy of Agricultural Sciences, Chongqing Sanqian Seed Industry Co., Ltd, Chongqing, 400060, China
| | - Jun Si
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Xuesong Ren
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| | - Hongyuan Song
- Key Laboratory of Horticulture Science for the Southern Mountains Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
12
|
Yang S, Zhang T, Wang Z, Zhao X, Li R, Li J. Nitrilases NIT1/2/3 Positively Regulate Flowering by Inhibiting MAF4 Expression in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:889460. [PMID: 35665187 PMCID: PMC9157433 DOI: 10.3389/fpls.2022.889460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Three of the nitrilases (NITs), NIT1, NIT2, and NIT3, are ubiquitously existing in plant kingdom, which catalyze indole-3-acetonitrile into the most important auxin indole-3-acetic acid. Auxin is an indispensable hormone, which plays the important roles in almost all processes of plant growth and development. However, there are few reports on the regulation of flowering-time mediated by auxin. Here, we found that in Arabidopsis, nit1/2/3 showed a late flowering phenotype in short days. To explore the molecular mechanism by which NIT1/2/3 regulate flowering time, we performed transcriptome sequencing of nit1/2/3. The results showed that the expression of a MADS-box transcription factor gene MADS AFFECTING FLOWERING4 (MAF4) was dramatically increased in nit1/2/3 comparing to wild type (WT). MAF4 is one of the paralogs of the potent flowering inhibitor FLOWERING LOCUS C (FLC). There are four other paralogs in FLC clade in Arabidopsis, including FLOWERING LOCUS M (FLM/MAF1), MAF2, MAF3, and MAF5. The late flowering phenotype of nit1/2/3 could not be observed in the maf4 background, indicating that the phenotype was specifically dependent on MAF4 rather than other FLC clade members. Interestingly, the expression of a lncRNA gene MAS, which is transcribed in the opposite direction of MAF4, was found significantly increased in nit1/2/3. Also, MAS has been reported to activate MAF4 transcription by promoting histone 3 lysine 4 trimethylation (H3K4me3). As expected, H3K4me3 deposition at MAF4 locus in nit1/2/3 was highly enriched and significantly higher than that of WT. In summary, we show that NITs, NIT1/2/3, positively regulate flowering by repressing MAF4 through manipulating H3K4me3 modification. Further study needs to be performed to explore the largely unknown mechanisms behind it.
Collapse
|
13
|
Huang T, Zhang H, Zhou Y, Su Y, Zheng H, Ding Y. Phosphorylation of Histone H2A at Serine 95 Is Essential for Flowering Time and Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:761008. [PMID: 34887889 PMCID: PMC8650089 DOI: 10.3389/fpls.2021.761008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Phosphorylation of H2A at serine 95 (H2AS95ph) mediated by MLK4 promotes flowering and H2A.Z deposition. However, little is known about MLK1, MLK2, and MLK3 during the flowering time. Here, we systemically analyze the functions of MLK family in flowering time and development. Mutation in MLK3, but not MLK1 and MLK2, displayed late-flowering phenotype. Loss of MLK3 function enhanced the late-flowering phenotype of mlk4 mutant, but not reinforced the late-flowering phenotype of mlk1 mlk2 double mutants. MLK3 displayed the kinase activity to histone H2AS95ph in vitro. The global H2AS95ph levels were reduced in mlk3 mlk4, but not in mlk3 and mlk4 single mutant and mlk1 mlk2 double mutant, and the H2AS95ph levels in mlk1 mlk3 mlk4 and mlk2 mlk3 mlk4 were similar to those in mlk3 mlk4 double mutant. MLK3 interacted with CCA1, which binds to the promoter of GI. Correspondingly, the transcription levels and H2AS95ph levels of GI were reduced in mlk3 and mlk4 single mutant, and greatly decreased in mlk3 mlk4 double mutant, but not further attenuated in mlk1 mlk3 mlk4 and mlk2 mlk3 mlk4 triple mutant. Together, our results suggested that H2AS95ph deposition mediated by MLK3 and MLK4 is essential for flowering time in Arabidopsis.
Collapse
|
14
|
Samarth, Lee R, Kelly D, Turnbull MH, Macknight R, Poole AM, Jameson PE. A novel TFL1 gene induces flowering in the mast seeding alpine snow tussock, Chionochloa pallens (Poaceae). Mol Ecol 2021; 31:822-838. [PMID: 34779078 DOI: 10.1111/mec.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/07/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Masting, the synchronous, highly variable flowering across years by a population of perennial plants, has been reported to be precipitated by various factors including nitrogen levels, drought conditions, and spring and summer temperatures. However, the molecular mechanism leading to the initiation of flowering in masting plants in particular years remains largely unknown, despite the potential impact of climate change on masting phenology. We studied genes controlling flowering in the alpine snow tussock Chionochloa pallens (Poaceae), a strongly masting perennial grass. We used a range of in situ and manipulated plants to obtain leaf samples from tillers (shoots) which subsequently remained vegetative or flowered. Here, we show that a novel orthologue of TERMINAL FLOWER 1 (TFL1; normally a repressor of flowering in other species) promotes the induction of flowering in C. pallens (hence Anti-TFL1), a conclusion supported by structural, functional and expression analyses. Global transcriptomic analysis indicated differential expression of CpTPS1, CpGA20ox1, CpREF6 and CpHDA6, emphasizing the role of endogenous cues and epigenetic regulation in terms of responsiveness of plants to initiate flowering. Our molecular-based study provides insights into the cellular mechanism of flowering in masting plants and will supplement ecological and statistical models to predict how masting will respond to global climate change.
Collapse
Affiliation(s)
- Samarth
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Robyn Lee
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Dave Kelly
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Matthew H Turnbull
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Richard Macknight
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Anthony M Poole
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Bioinformatics Institute, University of Auckland, Auckland, New Zealand
| | - Paula E Jameson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
15
|
Huang L, Min Y, Schiessl S, Xiong X, Jan HU, He X, Qian W, Guan C, Snowdon RJ, Hua W, Guan M, Qian L. Integrative analysis of GWAS and transcriptome to reveal novel loci regulation flowering time in semi-winter rapeseed. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110980. [PMID: 34315596 DOI: 10.1016/j.plantsci.2021.110980] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Flowering is an important turning point from vegetative growth to reproductive growth, and vernalization is an essential condition for the flowering of annual winter plants. To investigate the genetic architecture of flowering time in rapeseed, we used the 60 K Brassica Infinium SNP array to perform a genome-wide analysis of haplotype blocks associated with flowering time in 203 Chinese semi-winter rapeseed inbred lines. Twenty-one haplotype regions carrying one or more candidate genes showed a significant association with flowering time. Interestingly, we detected a SNP (Bn-scaff_22728_1-p285715) located in exon 3 of the BnVIN3-C03 gene that showed a significant association with flowering time on chromosome C03. Based on the SNP alleles A and G, two groups of accessions with early and late flowering time phenotypes were selected, respectively, and PCR amplification and gene expression analysis were combined to reveal the structural variation of the BnVIN3-C03 gene that affected flowering time. Moreover, we found that BnVIN3-C03 inhibited the expression of BnFLC-A02, BnFLC-A03.1, BnFLC-A10 and BnFLC-C03.1, thus modulating the flowering time of Brassica napus. This result provides insight into the genetic improvement of flowering time in B. napus.
Collapse
Affiliation(s)
- Luyao Huang
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Yao Min
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Sarah Schiessl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Xinghua Xiong
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Habib U Jan
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Xin He
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Qian
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Chunyun Guan
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Wei Hua
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China; Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Mei Guan
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China.
| | - Lunwen Qian
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
16
|
Fourounjian P, Slovin J, Messing J. Flowering and Seed Production across the Lemnaceae. Int J Mol Sci 2021; 22:2733. [PMID: 33800476 PMCID: PMC7962950 DOI: 10.3390/ijms22052733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Plants in the family Lemnaceae are aquatic monocots and the smallest, simplest, and fastest growing angiosperms. Their small size, the smallest family member is 0.5 mm and the largest is 2.0 cm, as well as their diverse morphologies make these plants ideal for laboratory studies. Their rapid growth rate is partially due to the family's neotenous lifestyle, where instead of maturing and producing flowers, the plants remain in a juvenile state and continuously bud asexually. Maturation and flowering in the wild are rare in most family members. To promote further research on these unique plants, we have optimized laboratory flowering protocols for 3 of the 5 genera: Spirodela; Lemna; and Wolffia in the Lemnaceae. Duckweeds were widely used in the past for research on flowering, hormone and amino acid biosynthesis, the photosynthetic apparatus, and phytoremediation due to their aqueous lifestyle and ease of aseptic culture. There is a recent renaissance in interest in growing these plants as non-lignified biomass sources for fuel production, and as a resource-efficient complete protein source. The genome sequences of several Lemnaceae family members have become available, providing a foundation for genetic improvement of these plants as crops. The protocols for maximizing flowering described herein are based on screens testing daylength, a variety of media, supplementation with salicylic acid or ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) (EDDHA), as well as various culture vessels for effects on flowering of verified Lemnaceae strains available from the Rutgers Duckweed Stock Cooperative.
Collapse
Affiliation(s)
- Paul Fourounjian
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - Janet Slovin
- Genetic Improvement of Fruits & Vegetables Laboratory, USDA, Beltsville, MD 20705, USA;
| | - Joachim Messing
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
17
|
Liu X, Luo J, Li T, Yang H, Wang P, Su L, Zheng Y, Bao C, Zhou C. SDG711 Is Involved in Rice Seed Development through Regulation of Starch Metabolism Gene Expression in Coordination with Other Histone Modifications. RICE (NEW YORK, N.Y.) 2021; 14:25. [PMID: 33666740 PMCID: PMC7936014 DOI: 10.1186/s12284-021-00467-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/17/2021] [Indexed: 05/22/2023]
Abstract
SDG711 is a histone H3K27me2/3 transmethylase in rice, a homolog of CLF in Arabidopsis, and plays key roles in regulating flowering time and panicle development. In this work, we investigated the role of SDG711 in rice seed development. Overexpression and downregulation of SDG711 lead to a decrease and increase in the expression level of genes related to starch accumulation, resulting in smaller seeds or even seed abortion. ChIP assay showed that SDG711-mediated H3K27me3 changed significantly in genes related to endosperm development, and SDG711 can directly bind to the gene body region of several starch synthesis genes and amylase genes. In addition, H3K4me3 and H3K9ac modifications also cooperate with H3K27me3 to regulate the development of the endosperm. Our results suggest that the crosstalk between SDG711-mediated H3K27me3 and H3K4me3, and H3K9ac are involved in starch accumulation to control normal seed development.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China.
| | - Junling Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Tiantian Li
- Institute for Systems Biology, Jianghan University, Wuhan, 430056, Hubei, China
| | - Huilan Yang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Ping Wang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Lufang Su
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Yu Zheng
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Chun Bao
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU) /Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
18
|
Wang Z, Kang J, Armando Casas-Mollano J, Dou Y, Jia S, Yang Q, Zhang C, Cerutti H. MLK4-mediated phosphorylation of histone H3T3 promotes flowering by transcriptional silencing of FLC/MAF in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1400-1412. [PMID: 33280202 DOI: 10.1111/tpj.15122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 05/26/2023]
Abstract
Casein kinase I (CK1), a ubiquitous Ser/Thr protein kinase in eukaryotes, plays a critical role in higher plant flowering. Arabidopsis CK1 family member MUT9-LIKE KINASEs, such as MLK1 and MLK3, have been shown to phosphorylate histone H3 at threonine 3 (H3T3), an evolutionarily conserved residue, and the modification is associated with the transcriptional repression of euchromatic and heterochromatic loci. This study demonstrates that mlk4-3, a T-DNA insertion mutant of MLK4, flowered late, and that overexpression of MLK4 caused early flowering. The nuclear protein MLK4 phosphorylated histone H3T3 both in vitro and in vivo, and this catalytic activity required the conserved lysine residue K175. mutation of MLK4 at K175 failed to restore the level of phosphorylated H3T3 (H3T3ph) or to complement the phenotypic defects of mlk4-3. The FLC/MAF-clade genes, including FLC, MAF4 and MAF5, were significantly upregulated in mlk4-3. The double mutant mlk4-3 flc-3 flowered earlier than mlk4-3, suggesting that functional FLC is crucial for flowering repression in mlk4-3. Chromatin immunoprecipitation assays showed that MLK4 bound to FLC/MAF chromatin and that H3T3ph occupancy at the promoter of FLC/MAF was negatively associated with its transcriptional level. In accordance, H3T3ph accumulated at FLC/MAF in 35S::MLK4/mlk4-3 but diminished in 35S::MLK4(K175R)/mlk4-3 plants. Moreover, the amount of RNA Pol II deposited at FLC/MAF was clearly enriched in mlk4-3 relative to the wild type. Therefore, MLK4-dependent phosphorylation of H3T3 contributes to accelerating flowering by repressing the transcription of negative flowering regulator FLC/MAF. This study sheds light on the delicate control of flowering by the plant-specific CK1, MLK4, via post-translational modification of histone H3.
Collapse
Affiliation(s)
- Zhen Wang
- Institute of Animal Science, the Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Science, the Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Juan Armando Casas-Mollano
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Yongchao Dou
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Science, the Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chi Zhang
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Heriberto Cerutti
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| |
Collapse
|
19
|
González R, Butković A, Rivarez MPS, Elena SF. Natural variation in Arabidopsis thaliana rosette area unveils new genes involved in plant development. Sci Rep 2020; 10:17600. [PMID: 33077802 PMCID: PMC7788084 DOI: 10.1038/s41598-020-74723-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 11/08/2022] Open
Abstract
Growth is a complex trait influenced by multiple genes that act at different moments during the development of an organism. This makes it difficult to spot its underlying genetic mechanisms. Since plant growth is intimately related to the effective leaf surface area (ELSA), identifying genes controlling this trait will shed light on our understanding of plant growth. To find new genes with a significant contribution to plant growth, here we used the natural variation in Arabidopsis thaliana to perform a genome-wide association study of ELSA. To do this, the projected rosette area of 710 worldwide distributed natural accessions was measured and analyzed using the genome-wide efficient mixed model association algorithm. From this analysis, ten genes were identified having SNPs with a significant association with ELSA. To validate the implication of these genes into A. thaliana growth, six of them were further studied by phenotyping knock-out mutant plants. It was observed that rem1.2, orc1a, ppd1, and mcm4 mutants showed different degrees of reduction in rosette size, thus confirming the role of these genes in plant growth. Our study identified genes already known to be involved in plant growth but also assigned this role, for the first time, to other genes.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain.
| | - Anamarija Butković
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain
| | - Mark Paul Selda Rivarez
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| |
Collapse
|
20
|
Fu W, Huang S, Gao Y, Zhang M, Qu G, Wang N, Liu Z, Feng H. Role of BrSDG8 on bolting in Chinese cabbage (Brassica rapa). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2937-2948. [PMID: 32656681 DOI: 10.1007/s00122-020-03647-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/01/2020] [Indexed: 05/28/2023]
Abstract
Mapping and resequencing of two allelic early bolting mutants ebm5-1 and ebm5-2 revealed that the BrSDG8 gene is related to bolting in Chinese cabbage (Brassica rapa ssp. pekinensis). Bolting influences the leafy head formation and seed yield of Chinese cabbage therefore being an important agronomic trait. Herein, two allelic early bolting mutants, ebm5-1 and ebm5-2, stably inherited in Chinese cabbage were obtained from wild-type 'FT' seeds by ethyl methane sulfonate mutagenesis. Both mutants flowered significantly earlier than 'FT,' and genetic analysis revealed that the early bolting of the two mutants was controlled by one recessive nuclear gene. With BSR-seq, the mutations originating lines ebm5-1 and ebm5-2 were located to the same region in chromosome A07. Using the 1741 F2 individuals with the ebm5-1 phenotype as the mapping population, this region was narrowed to 56.24 kb between markers InDel18 and InDel45. A single-nucleotide polymorphism (SNP) was aligned to the BraA07g040740.3C (BrSDG8) region by whole-genome resequencing of ebm5-1 mutant and 'FT.' BrSDG8 is a homolog of Arabidopsis thaliana SDG8 encoding a histone methyltransferase affecting H3K4 trimethylation in FLOWERING LOCUS C chromatin. Comparative sequencing established that the SNP occurred on BrSDG8 17th exon in ebm5-1. Genotype analysis showed full co-segregation of the early bolting phenotype with this SNP. Cloning of allelic mutant ebm5-2 indicated that it harbors a deletion mutation on the 12th exon of BrSDG8. Quantitative real-time PCR analysis indicated that BrSDG8 expression level was observably lower in mutant ebm5-1 than in 'FT.' Overall, the present results provide strong evidence that BrSDG8 mutation leads to early bolting in Chinese cabbage, thereby providing a basis to understand the molecular mechanisms underlying this phenotype.
Collapse
Affiliation(s)
- Wei Fu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Shengnan Huang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Yue Gao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Meidi Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Gaoyang Qu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Nan Wang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Zhiyong Liu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China.
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China.
| |
Collapse
|
21
|
Overexpression of a phosphate transporter gene ZmPt9 from maize influences growth of transgenic Arabidopsis thaliana. Biochem Biophys Res Commun 2020; 558:196-201. [PMID: 32962860 DOI: 10.1016/j.bbrc.2020.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/23/2022]
Abstract
Phosphate transporters (PHTs) are well-known for their roles in phosphate uptake in plants. However, their actions in imparting plant growth in plants are still not so clear. In our previous study, we observed that maize PHT1 gene ZmPt9 plays a significant role in phosphate uptake. In this study, we further characterized ZmPt9 in response to low phosphate condition through ZmPt9 promoter inductive analysis by GUS staining and quantification. To elucidate the function of ZmPt9, we generated overexpression plant in Arabidopsis. ZmPt9 overexpressing Arabidopsis plants conferred small leaves and early flowering compared with the wild-type plants. In addition, ZmPt9 can complement the late flowering phenotype of Arabidopsis mutant pht1;2. The qRT-PCR analysis revealed that overexpression of ZmPt9 in Arabidopsis changed expression levels of some flowering-related genes. Further expressed detection of hormone related genes revealed that GA and auxin maybe the main determinant for growth influences of ZmPt9. In conclusion, these results suggest that apart from phosphate transport activity, ZmPt9 can be further exploited for improving crops growth.
Collapse
|
22
|
Guo Z, Li Z, Liu Y, An Z, Peng M, Shen WH, Dong A, Yu Y. MRG1/2 histone methylation readers and HD2C histone deacetylase associate in repression of the florigen gene FT to set a proper flowering time in response to day-length changes. THE NEW PHYTOLOGIST 2020; 227:1453-1466. [PMID: 32315442 DOI: 10.1111/nph.16616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 05/26/2023]
Abstract
Day-length changes represent an important cue for modulating flowering time. In Arabidopsis, the expression of the florigen gene FLOWERING LOCUS T (FT) exhibits a 24-h circadian rhythm under long-day (LD) conditions. Here we focus on the chromatin-based mechanism regarding the control of FT expression. We conducted co-immunoprecipitation assays along with LC-MS/MS analysis and identified HD2C histone deacetylase as the binding protein of the H3K4/H3K36 methylation reader MRG2. HD2C and MRG1/2 regulate flowering time under LD conditions, but not under short-day conditions. Moreover, HD2C functions as an effective deacetylase in planta, mainly targeting H3K9ac, H3K23ac and H3K27ac. At dusk, HD2C is recruited to FT to deacetylate histones and repress transcription in an MRG1/2-dependent manner. More importantly, HD2C competes with CO for the binding of MRG2, and the accumulation of HD2C at the FT locus occurs at the end of the day. Our findings not only reveal a histone deacetylation mechanism contributing to prevent FT overexpression and precocious flowering, but also support the model in which the histone methylation readers MRG1/2 provide a platform on chromatin for connecting regulatory factors involved in activating FT expression in response to daylight and decreasing FT expression around dusk under long days.
Collapse
Affiliation(s)
- Zhihao Guo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zepeng Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- CNRS, IBMP UPR 2357, Université de Strasbourg, Strasbourg, F-67000, France
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zengxuan An
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Maolin Peng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- CNRS, IBMP UPR 2357, Université de Strasbourg, Strasbourg, F-67000, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yu Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
23
|
Kelly D, Turnbull MH, Jameson PE. Molecular control of masting: an introduction to an epigenetic summer memory. ANNALS OF BOTANY 2020; 125:851-858. [PMID: 31960889 PMCID: PMC7218805 DOI: 10.1093/aob/mcaa004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/09/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Mast flowering ('masting') is characterized by mass synchronized flowering at irregular intervals in populations of perennial plants over a wide geographical area, resulting in irregular high seed production. While masting is a global phenomenon, it is particularly prevalent in the alpine flora of New Zealand. Increases in global temperature may alter the masting pattern, affecting wider communities with a potential impact on plant-pollinator interactions, seed set and food availability for seed-consuming species. SCOPE This review summarizes an ecological temperature model (ΔT) that is being used to predict the intensity of a masting season. We introduce current molecular studies on flowering and the concept of an 'epigenetic summer memory' as a driver of mast flowering. We propose a hypothetical model based on temperature-associated epigenetic modifications of the floral integrator genes FLOWERING LOCUS T, FLOWERING LOCUS C and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1. CONCLUSIONS Genome-wide transcriptomic and targeted gene expression analyses are needed to establish the developmental and physiological processes associated with masting. Such analyses may identify changes in gene expression that can be used to predict the intensity of a forthcoming masting season, as well as to determine the extent to which climate change will influence the mass synchronized flowering of masting species, with downstream impacts on their associated communities.
Collapse
Affiliation(s)
- Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Matthew H Turnbull
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
24
|
Emami H, Kempken F. PRECOCIOUS1 (POCO1), a mitochondrial pentatricopeptide repeat protein affects flowering time in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:265-278. [PMID: 31219634 DOI: 10.1111/tpj.14441] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 05/24/2023]
Abstract
Flowering is a vital developmental shift in plants from vegetative to reproductive phase. The timing of this shift is regulated by various linked genetic pathways including environmental cues and internal regulation. Here we report a role for an Arabidopsis gene, AT1G15480, which encodes a P-class pentatricopeptide repeat (PPR) protein, affecting flowering time. We show that AT1G15480 is localized to mitochondria. An AT1G15480 T-DNA insertion line exhibits an early-flowering phenotype, which is quite a rare phenotype among PPR mutants. The early-flowering phenotype was observed under both long and short days compared with wild type plants. Genetic complementation confirmed the observed phenotype. We therefore named the PPR protein PRECOCIOUS1 (POCO1). poco1 plants showed lower respiration, ATP content and higher accumulation of superoxide. Importantly, the quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that the expression of FLOWERING LOCUS C (FLC), which is a key floral repressor, was strongly downregulated in the poco1. Likewise, the expression level of the FLC positive regulator ABSCISIC ACID-INSENSITIVE 5 (ABI5) was reduced in the poco1. Consistent with the qRT-PCR results, poco1 plants showed reduced sensitivity to abscisic acid compared with wild type with respect to primary root growth and days to flowering. Furthermore, the poco1 mutation enhances the sensitivity to drought stress. Further analysis showed that POCO1 affects mitochondrial RNA editing. Taken together, our data demonstrate a remarkable function of POCO1 in flowering time and the abscisic acid signalling pathway.
Collapse
Affiliation(s)
- Hossein Emami
- Department of Botany, Christian Albrechts University, Olshausenstr. 40, 24098, Kiel, Germany
| | - Frank Kempken
- Department of Botany, Christian Albrechts University, Olshausenstr. 40, 24098, Kiel, Germany
| |
Collapse
|
25
|
Ning YQ, Chen Q, Lin RN, Li YQ, Li L, Chen S, He XJ. The HDA19 histone deacetylase complex is involved in the regulation of flowering time in a photoperiod-dependent manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:448-464. [PMID: 30828924 DOI: 10.1111/tpj.14229] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/08/2018] [Accepted: 12/19/2018] [Indexed: 05/22/2023]
Abstract
Chromatin modifications are known to affect flowering time in plants, but little is known about how these modifications regulate flowering time in response to environmental signals like photoperiod. In Arabidopsis thaliana, HDC1, a conserved subunit of the RPD3-like histone deacetylase (HDAC) complex, was previously reported to regulate flowering time via the same mechanism as does the HDAC HDA6. Here, we demonstrate that HDC1, SNLs and MSI1 are shared subunits of the HDA6 and HDA19 HDAC complexes. While the late-flowering phenotype of the hda6 mutant is independent of photoperiod, the hda19, hdc1 and snl2/3/4 mutants flower later than or at a similar time to the wild-type in long-day conditions but flower earlier than the wild-type in short-day conditions. Our genome-wide analyses indicate that the effect of hdc1 on histone acetylation and transcription is comparable with that of hda19 but is different from that of hda6. Especially, we demonstrate that the HDA19 complex directly regulates the expression of two flowering repressor genes related to the gibberellin signaling pathway. Thus, the study reveals a photoperiod-dependent role of the HDA19 HDAC complex in the regulation of flowering time.
Collapse
Affiliation(s)
- Yong-Qiang Ning
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Qing Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Rong-Nan Lin
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yong-Qiang Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
| |
Collapse
|
26
|
Sternberger AL, Bowman MJ, Kruse CPS, Childs KL, Ballard HE, Wyatt SE. Transcriptomics Identifies Modules of Differentially Expressed Genes and Novel Cyclotides in Viola pubescens. FRONTIERS IN PLANT SCIENCE 2019; 10:156. [PMID: 30828342 PMCID: PMC6384259 DOI: 10.3389/fpls.2019.00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/29/2019] [Indexed: 05/24/2023]
Abstract
Viola is a large genus with worldwide distribution and many traits not currently exemplified in model plants including unique breeding systems and the production of cyclotides. Here we report de novo genome assembly and transcriptomic analyses of the non-model species Viola pubescens using short-read DNA sequencing data and RNA-Seq from eight diverse tissues. First, V. pubescens genome size was estimated through flow cytometry, resulting in an approximate haploid genome of 455 Mbp. Next, the draft V. pubescens genome was sequenced and assembled resulting in 264,035,065 read pairs and 161,038 contigs with an N50 length of 3,455 base pairs (bp). RNA-Seq data were then assembled into tissue-specific transcripts. Together, the DNA and transcript data generated 38,081 ab initio gene models which were functionally annotated based on homology to Arabidopsis thaliana genes and Pfam domains. Gene expression was visualized for each tissue via principal component analysis and hierarchical clustering, and gene co-expression analysis identified 20 modules of tissue-specific transcriptional networks. Some of these modules highlight genetic differences between chasmogamous and cleistogamous flowers and may provide insight into V. pubescens' mixed breeding system. Orthologous clustering with the proteomes of A. thaliana and Populus trichocarpa revealed 8,531 sequences unique to V. pubescens, including 81 novel cyclotide precursor sequences. Cyclotides are plant peptides characterized by a stable, cyclic cystine knot motif, making them strong candidates for drug scaffolding and protein engineering. Analysis of the RNA-Seq data for these cyclotide transcripts revealed diverse expression patterns both between transcripts and tissues. The diversity of these cyclotides was also highlighted in a maximum likelihood protein cladogram containing V. pubescens cyclotides and published cyclotide sequences from other Violaceae and Rubiaceae species. Collectively, this work provides the most comprehensive sequence resource for Viola, offers valuable transcriptomic insight into V. pubescens, and will facilitate future functional genomics research in Viola and other diverse plant groups.
Collapse
Affiliation(s)
- Anne L. Sternberger
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
| | - Megan J. Bowman
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Colin P. S. Kruse
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
- Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Kevin L. Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Harvey E. Ballard
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
| | - Sarah E. Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
- Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| |
Collapse
|
27
|
Cao Y, Ma L. To Splice or to Transcribe: SKIP-Mediated Environmental Fitness and Development in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1222. [PMID: 31632433 PMCID: PMC6785753 DOI: 10.3389/fpls.2019.01222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/04/2019] [Indexed: 05/04/2023]
Abstract
Gene expression in eukaryotes is controlled at multiple levels, including transcriptional and post-transcriptional levels. The transcriptional regulation of gene expression is complex and includes the regulation of the initiation and elongation phases of transcription. Meanwhile, the post-transcriptional regulation of gene expression includes precursor messenger RNA (pre-mRNA) splicing, 5' capping, and 3' polyadenylation. Among these events, pre-mRNA splicing, conducted by the spliceosome, plays a key role in the regulation of gene expression, and the efficiency and precision of pre-mRNA splicing are critical for gene function. Ski-interacting protein (SKIP) is an evolutionarily conserved protein from yeast to humans. In plants, SKIP is a bifunctional regulator that works as a splicing factor as part of the spliceosome and as a transcriptional regulator via interactions with the transcriptional regulatory complex. Here, we review how the functions of SKIP as a splicing factor and a transcriptional regulator affect environmental fitness and development in plants.
Collapse
|
28
|
Guo S, Dai S, Singh PK, Wang H, Wang Y, Tan JLH, Wee W, Ito T. A Membrane-Bound NAC-Like Transcription Factor OsNTL5 Represses the Flowering in Oryza sativa. FRONTIERS IN PLANT SCIENCE 2018; 9:555. [PMID: 29774039 PMCID: PMC5943572 DOI: 10.3389/fpls.2018.00555] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/09/2018] [Indexed: 05/20/2023]
Abstract
In spite of short-day (SD) nature, rice (Oryza sativa) shares a conserved photoperiodic network for flowering control with long-day plants like Arabidopsis thaliana. Flowering or heading is an important agronomic trait in rice. NAC transcription factors (TFs) are well-conserved and one of the largest families of plant TFs. However, their function in flowering or heading time is not well-known yet. A preferential expression of a membrane-bound NAC-like TF OsNTL5 in developing leaves and panicles of rice indicated to us its putative role in flowering. To examine its function, three independent constructs was generated, one with a deletion in the C terminus membrane-spanning domain (OsNTL5∆C), OsNTL5∆C fused with the SRDX transcriptional repressor motif and OsNTL5∆C used with the VP16 activation domain under the Ubiquitin promoter to produce the overexpressing lines OsNTL5∆C, OsNTL5∆C-SRDX, and OsNTL5∆C-VP, respectively in rice. The OsNTL5∆C-VP line showed an early-flowering phenotype. In contrast to this, the plants with OsNTL5∆C and OsNTL5∆C-SRDX showed a very strong late-flowering phenotype, suggesting that OsNTL5 suppresses flowering as a transcriptional repressor. The protein subcellular localization assay suggested that N-terminal part of the OsNTL5 is localized to the nucleus after the protein is cleaved from its membrane-spanning domain at the C-terminal end and functions as a TF. Expression of flowering genes responsible for day length signals such as Early Heading Date 1 (Ehd1), Heading Date 3a (Hd3a), and Rice Flowering Locus T1 (RFT1) was significantly changed in the overexpression lines of OsNTL5∆C-VP, OsNTL5∆C, and OsNTL5∆C-SRDX as analyzed by Quantitative Real-time PCR. ChIP-qPCR and rice protoplasts assays indicate that OsNTL5 directly binds to the promoter of Ehd1 and negatively regulates the expression of Ehd1, which shows antagonistic photoperiodic expression patterns of OsNTL5 in a 24-h SD cycle. Hence in conclusion, the NAC-like TF OsNTL5 functions as a transcriptional repressor to suppress flowering in rice as an upstream factor of Ehd1.
Collapse
Affiliation(s)
- Siyi Guo
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- *Correspondence: Siyi Guo, Toshiro Ito,
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Prashant K. Singh
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Hongyan Wang
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Yanan Wang
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Jeanie L. H. Tan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Wanyi Wee
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Toshiro Ito
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- *Correspondence: Siyi Guo, Toshiro Ito,
| |
Collapse
|
29
|
Cui Z, Tong A, Huo Y, Yan Z, Yang W, Yang X, Wang XX. SKIP controls flowering time via the alternative splicing of SEF pre-mRNA in Arabidopsis. BMC Biol 2017; 15:80. [PMID: 28893254 PMCID: PMC5594616 DOI: 10.1186/s12915-017-0422-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/25/2017] [Indexed: 12/04/2022] Open
Abstract
Background Similar to other eukaryotes, splicing is emerging as an important process affecting development and stress tolerance in plants. Ski-interacting protein (SKIP), a splicing factor, is essential for circadian clock function and abiotic stress tolerance; however, the mechanisms whereby it regulates flowering time are unknown. Results In this study, we found that SKIP is required for the splicing of serratedleaves and early flowering (SEF) pre-messenger RNA (mRNA), which encodes a component of the ATP-dependent SWR1 chromatin remodeling complex (SWR1-C). Defects in the splicing of SEF pre-mRNA reduced H2A.Z enrichment at FLC, MAF4, and MAF5, suppressed the expression of these genes, and produced an early flowering phenotype in skip-1 plants. Conclusions Our findings indicate that SKIP regulates SWR1-C function via alternative splicing to control the floral transition in Arabidopsis thaliana. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0422-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhibo Cui
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Aizi Tong
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yiqiong Huo
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhiqiang Yan
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Weiqi Yang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xianli Yang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiao-Xue Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
30
|
Dutta A, Choudhary P, Caruana J, Raina R. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:1015-1028. [PMID: 28650521 DOI: 10.1111/tpj.13623] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/12/2017] [Accepted: 06/19/2017] [Indexed: 05/17/2023]
Abstract
Histone methylation is known to dynamically regulate diverse developmental and physiological processes. Histone methyl marks are written by methyltransferases and erased by demethylases, and result in modification of chromatin structure to repress or activate transcription. However, little is known about how histone methylation may regulate defense mechanisms and flowering time in plants. Here we report characterization of JmjC DOMAIN-CONTAINING PROTEIN 27 (JMJ27), an Arabidopsis JHDM2 (JmjC domain-containing histone demethylase 2) family protein, which modulates defense against pathogens and flowering time. JMJ27 is a nuclear protein containing a zinc-finger motif and a catalytic JmjC domain with conserved Fe(II) and α-ketoglutarate binding sites, and displays H3K9me1/2 demethylase activity both in vitro and in vivo. JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens. JMJ27 is a negative modulator of WRKY25 (a repressor of defense) and a positive modulator of several pathogenesis-related (PR) proteins. Additionally, loss of JMJ27 function leads to early flowering. JMJ27 negatively modulates the major flowering regulator CONSTANS (CO) and positively modulates FLOWERING LOCUS C (FLC). Taken together, our results indicate that JMJ27 functions as a histone demethylase to modulate both physiological (defense) and developmental (flowering time) processes in Arabidopsis.
Collapse
Affiliation(s)
- Aditya Dutta
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | | | - Julie Caruana
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Ramesh Raina
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| |
Collapse
|
31
|
Cheng JZ, Zhou YP, Lv TX, Xie CP, Tian CE. Research progress on the autonomous flowering time pathway in Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:477-485. [PMID: 28878488 PMCID: PMC5567719 DOI: 10.1007/s12298-017-0458-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 05/19/2023]
Abstract
The transition from vegetative to reproductive growth phase is a pivotal and complicated process in the life cycle of flowering plants which requires a comprehensive response to multiple environmental aspects and endogenous signals. In Arabidopsis, six regulatory flowering time pathways have been defined by their response to distinct cues, namely photoperiod, vernalization, gibberellin, temperature, autonomous and age pathways, respectively. Among these pathways, the autonomous flowering pathway accelerates flowering independently of day length by inhibiting the central flowering repressor FLC. FCA, FLD, FLK, FPA, FVE, FY and LD have been widely known to play crucial roles in this pathway. Recently, AGL28, CK2, DBP1, DRM1, DRM2, ESD4, HDA5, HDA6, PCFS4, PEP, PP2A-B'γ, PRMT5, PRMT10, PRP39-1, REF6, and SYP22 have also been shown to be involved in the autonomous flowering time pathway. This review mainly focuses on FLC RNA processing, chromatin modification of FLC, post-translational modification of FLC and other molecular mechanisms in the autonomous flowering pathway of Arabidopsis.
Collapse
Affiliation(s)
- Jing-Zhi Cheng
- School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Yu-Ping Zhou
- School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Tian-Xiao Lv
- School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Chu-Ping Xie
- School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Chang-En Tian
- School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| |
Collapse
|
32
|
Liu C, Wang S, Xu W, Liu X. Genome-wide transcriptome profiling of radish (Raphanus sativus L.) in response to vernalization. PLoS One 2017; 12:e0177594. [PMID: 28498850 PMCID: PMC5428929 DOI: 10.1371/journal.pone.0177594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/28/2017] [Indexed: 11/21/2022] Open
Abstract
Vernalization is a key process for premature bolting. Although many studies on vernalization have been reported, the molecular mechanism of vernalization is still largely unknown in radish. In this study, we sequenced the transcriptomes of radish seedlings at three different time points during vernalization. More than 36 million clean reads were generated for each sample and the portions mapped to the reference genome were all above 67.0%. Our results show that the differentially expressed genes (DEGs) between room temperature and the early stage of vernalization (4,845) are the most in all treatments pairs. A series of vernalization related genes, including two FLOWERING LOCUS C (FLC) genes, were screened according to the annotations. A total of 775 genes were also filtered as the vernalization related candidates based on their expression profiles. Cold stress responsive genes were also analyzed to further confirm the sequencing result. Several key genes in vernalization or cold stress response were validated by quantitative RT-PCR (RT-qPCR). This study identified a number of genes that may be involved in vernalization, which are useful for other functional genomics research in radish.
Collapse
Affiliation(s)
- Chen Liu
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong, People's Republic of China
| | - Shufen Wang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong, People's Republic of China
- * E-mail:
| | - Wenling Xu
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong, People's Republic of China
| | - Xianxian Liu
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong, People's Republic of China
| |
Collapse
|
33
|
|
34
|
PIF4-controlled auxin pathway contributes to hybrid vigor in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:E3555-E3562. [PMID: 28396418 DOI: 10.1073/pnas.1703179114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
F1 hybrids in Arabidopsis and crop species are uniform and high yielding. The F2 generation loses much of the yield advantage and the plants have heterogeneous phenotypes. We generated pure breeding hybrid mimic lines by recurrent selection and also selected a pure breeding small phenotype line. The hybrid mimics are almost completely homozygous with chromosome segments from each parent. Four particular chromosomal segments from C24 and 8 from Ler were present in all of the hybrid mimic lines, whereas in the F6 small phenotype line, the 12 segments were each derived from the alternative parent. Loci critical for promoting hybrid vigor may be contained in each of these 12 conserved segments. We have identified genes with similar altered expression in hybrid mimics and F1 plants but not in the small phenotype line. These genes may be critical for the generation of hybrid vigor. Analysis of transcriptomes indicated that increased expression of the transcription factor PHYTOCHROME-INTERACTING FACTOR (PIF4) may contribute to hybrid vigor by targeting the auxin biosynthesis gene YUCCA8 and the auxin signaling gene IAA29 A number of auxin responsive genes promoting leaf growth were up-regulated in the F1 hybrids and hybrid mimics, suggesting that increased auxin biosynthesis and signaling contribute to the hybrid phenotype. The hybrid mimic seeds had earlier germination as did the seeds of the F1 hybrids, indicating cosegregation of the genes for rosette size and the germination trait. Early germination may be an indicator of vigorous hybrids.
Collapse
|
35
|
Boycheva I, Vassileva V, Revalska M, Zehirov G, Iantcheva A. Different functions of the histone acetyltransferase HAC1 gene traced in the model species Medicago truncatula, Lotus japonicus and Arabidopsis thaliana. PROTOPLASMA 2017; 254:697-711. [PMID: 27180194 DOI: 10.1007/s00709-016-0983-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/06/2016] [Indexed: 05/26/2023]
Abstract
In eukaryotes, histone acetyltransferases regulate the acetylation of histones and transcription factors, affecting chromatin structural organization, transcriptional regulation, and gene activation. To assess the role of HAC1, a gene encoding for a histone acetyltransferase in Medicago truncatula, stable transgenic lines with modified HAC1 expression in the model plants M. truncatula, Lotus japonicus, and Arabidopsis thaliana were generated by Agrobacterium-mediated transformation and used for functional analyses. Histochemical, transcriptional, flow cytometric, and morphological analyses demonstrated the involvement of HAC1 in plant growth and development, responses to internal stimuli, and cell cycle progression. Expression patterns of a reporter gene encoding beta-glucuronidase (GUS) fused to the HAC1 promoter sequence were associated with young tissues comprised of actively dividing cells in different plant organs. The green fluorescent protein (GFP) signal, driven by the HAC1 promoter, was detected in the nuclei and cytoplasm of root cells. Transgenic lines with HAC1 overexpression and knockdown showed a wide range of phenotypic deviations and developmental abnormalities, which provided lines of evidence for the role of HAC1 in plant development. Synchronization of A. thaliana root tips in a line with HAC1 knockdown showed the involvement of this gene in the acetylation of two core histones during S phase of the plant cell cycle.
Collapse
Affiliation(s)
- Irina Boycheva
- AgroBioInstitute, Blvd. Dragan Tzankov 8, 1164, Sofia, Bulgaria
| | - Valya Vassileva
- Institute of Plant Physiology and Genetics, Acad. Georgi Bonchev Str., Bl. 21, 1113, Sofia, Bulgaria
| | | | - Grigor Zehirov
- Institute of Plant Physiology and Genetics, Acad. Georgi Bonchev Str., Bl. 21, 1113, Sofia, Bulgaria
| | - Anelia Iantcheva
- AgroBioInstitute, Blvd. Dragan Tzankov 8, 1164, Sofia, Bulgaria.
| |
Collapse
|
36
|
Kwak JS, Son GH, Song JT, Seo HS. Post-translational modifications of FLOWERING LOCUS C modulate its activity. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:383-389. [PMID: 28204510 DOI: 10.1093/jxb/erw431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Flowering Locus C (FLC) is a key floral repressor that precisely controls flowering time. The role of FLC has been extensively studied at the transcriptional level using molecular biological and epigenetic approaches. However, how FLC functions and how its stability is controlled at the post-translational level are only beginning to be understood. Recent studies show that various post-translational modifications (PTMs) control the stability and activity of FLC. In this review, we focus on three types of PTMs that regulate FLC function: phosphorylation, ubiquitination, and sumoylation. This report should serve as a model to guide post-translational studies of other important floral regulators.
Collapse
Affiliation(s)
- Jun Soo Kwak
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Ga Hyun Son
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Hak Soo Seo
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
37
|
Abstract
Plants must adapt to multiple biotic and abiotic stresses ; thus, sensing and responding to environmental signals is imperative for their survival. Moreover, understanding these responses is imperative for efforts to improve plant yield and consistency. Regulation of transcript levels is a key aspect of the plant response to environmental signals. Long noncoding RNAs (lncRNAs) have gained widespread attention in recent years with the advance of high-throughput sequencing technologies. As important biological regulators, lncRNAs have been implicated in a wide range of developmental processes and diseases in animals. However, knowledge of the role that lncRNAs play in plant stress tolerance remains limited. Here, we review recent studies on the identification, characteristics, classification, and biological functions of lncRNAs in response to various stresses, including bacterial pathogens, excess light, drought, salinity, hypoxia, extreme temperatures, and nitrogen/phosphate deficiency. We also discuss possible directions for future research.
Collapse
|
38
|
Zhou L, Luo L, Zuo JF, Yang L, Zhang L, Guang X, Niu Y, Jian J, Geng QC, Liang L, Song Q, Dunwell JM, Wu Z, Wen J, Liu YQ, Zhang YM. Identification and Validation of Candidate Genes Associated with Domesticated and Improved Traits in Soybean. THE PLANT GENOME 2016; 9. [PMID: 27898807 DOI: 10.3835/plantgenome2015.09.0090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 01/23/2016] [Indexed: 05/08/2023]
Abstract
Soybean, an important source of vegetable oils and proteins for humans, has undergone significant phenotypic changes during domestication and improvement. However, there is limited knowledge about genes related to these domesticated and improved traits, such as flowering time, seed development, alkaline-salt tolerance, and seed oil content (SOC). In this study, more than 106,000 single nucleotide polymorphisms (SNPs) were identified by restriction site associated DNA sequencing of 14 wild, 153 landrace, and 119 bred soybean accessions, and 198 candidate domestication regions (CDRs) were identified via multiple genetic diversity analyses. Of the 1489 candidate domestication genes (CDGs) within these CDRs, a total of 330 CDGs were related to the above four traits in the domestication, gene ontology (GO) enrichment, gene expression, and pathway analyses. Eighteen, 60, 66, and 10 of the 330 CDGs were significantly associated with the above four traits, respectively. Of 134 trait-associated CDGs, 29 overlapped with previous CDGs, 11 were consistent with candidate genes in previous trait association studies, and 66 were covered by the domesticated and improved quantitative trait loci or their adjacent regions, having six common CDGs, such as one functionally characterized gene (). Of the 68 seed size (SS) and SOC CDGs, 37 were further confirmed by gene expression analysis. In addition, eight genes were found to be related to artificial selection during modern breeding. Therefore, this study provides an integrated method for efficiently identifying CDGs and valuable information for domestication and genetic research.
Collapse
|
39
|
Structure and function of histone methylation-binding proteins in plants. Biochem J 2016; 473:1663-80. [DOI: 10.1042/bcj20160123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022]
Abstract
Post-translational modifications of histones play important roles in modulating many essential biological processes in both animals and plants. These covalent modifications, including methylation, acetylation, phosphorylation, ubiquitination, SUMOylation and so on, are laid out and erased by histone-modifying enzymes and read out by effector proteins. Recent studies have revealed that a number of developmental processes in plants are under the control of histone post-translational modifications, such as floral transition, seed germination, organogenesis and morphogenesis. Therefore, it is critical to identify those protein domains, which could specifically recognize these post-translational modifications to modulate chromatin structure and regulate gene expression. In the present review, we discuss the recent progress in understanding the structure and function of the histone methylation readers in plants, by focusing on Arabidopsis thaliana proteins.
Collapse
|
40
|
Du Y, He W, Deng C, Chen X, Gou L, Zhu F, Guo W, Zhang J, Wang T. Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza Sativa). PLoS One 2016; 11:e0150458. [PMID: 26934377 PMCID: PMC4774988 DOI: 10.1371/journal.pone.0150458] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
Flowering time is a critical trait for crops cultivated under various temperature/photoperiod conditions around the world. To understand better the flowering time of rice, we used the vector pTCK303 to produce several lines of RNAi knockdown transgenic rice and investigated their flowering times and other agronomic traits. Among them, the heading date of FRRP1-RNAi knockdown transgenic rice was 23-26 days earlier than that of wild-type plants. FRRP1 is a novel rice gene that encodes a C3HC4-type Really Interesting Novel Gene (RING) finger domain protein. In addition to the early flowering time, FRRP1-RNAi knockdown transgenic rice caused changes on an array of agronomic traits, including plant height, panicle length and grain length. We analyzed the expression of some key genes associated with the flowering time and other agronomic traits in the FRRP1-RNAi knockdown lines and compared with that in wild-type lines. The expression of Hd3a increased significantly, which was the key factor in the early flowering time. Further experiments showed that the level of histone H2B monoubiquitination (H2Bub1) was noticeably reduced in the FRRP1-RNAi knockdown transgenic rice lines compared with wild-type plants and MBP-FRRP1-F1 was capable of self-ubiquitination. The results indicate that Flowering Related RING Protein 1 (FRRP1) is involved in histone H2B monoubiquitination and suggest that FRRP1 functions as an E3 ligase in vivo and in vitro. In conclusion, FRRP1 probably regulates flowering time and yield potential in rice by affecting histone H2B monoubiquitination, which leads to changes in gene expression in multiple processes.
Collapse
Affiliation(s)
- Yiwei Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei He
- Rice Research Institute, Fujian Academy of Agricultural Sciences/ Key Laboratory of Hybrid Rice Germplasm Enhancement and Molecular Breeding in South China, Ministry of Agriculture, Fuzhou, China
| | - Changwang Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lanming Gou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences/ Key Laboratory of Hybrid Rice Germplasm Enhancement and Molecular Breeding in South China, Ministry of Agriculture, Fuzhou, China
- * E-mail: (TW); (JFZ)
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- * E-mail: (TW); (JFZ)
| |
Collapse
|
41
|
Han Z, Yu H, Zhao Z, Hunter D, Luo X, Duan J, Tian L. AtHD2D Gene Plays a Role in Plant Growth, Development, and Response to Abiotic Stresses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:310. [PMID: 27066015 PMCID: PMC4815178 DOI: 10.3389/fpls.2016.00310] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/29/2016] [Indexed: 05/20/2023]
Abstract
The histone deacetylases play important roles in the regulation of gene expression and the subsequent control of a number of important biological processes, including those involved in the response to environmental stress. A specific group of histone deacetylase genes, HD2, is present in plants. In Arabidopsis, HD2s include HD2A, HD2B, HD2C, and HD2D. Previous research showed that HD2A, HD2B, and HD2C are more related in terms of expression and function, but not HD2D. In this report, we studied different aspects of AtHD2D in Arabidopsis with respect to plant response to drought and other abiotic stresses. Bioinformatics analysis indicates that HD2D is distantly related to other HD2 genes. Transient expression in Nicotiana benthamiana and stable expression in Arabidopsis of AtHD2D fused with gfp showed that AtHD2D was expressed in the nucleus. Overexpression of AtHD2D resulted in developmental changes including fewer main roots, more lateral roots, and a higher root:shoot ratio. Seed germination and plant flowering time were delayed in transgenic plants expressing AtHD2D, but these plants exhibited higher degrees of tolerance to abiotic stresses, including drought, salt, and cold stresses. Physiological studies indicated that the malondialdehyde (MDA) content was high in wild-type plants but in plants overexpressing HD2D the MDA level increased slowly in response to stress conditions of drought, cold, and salt stress. Furthermore, electrolyte leakage in leaf cells of wild type plants increased but remained stable in transgenic plants. Our results indicate that AtHD2D is unique among HD2 genes and it plays a role in plant growth and development regulation and these changes can modulate plant stress responses.
Collapse
Affiliation(s)
- Zhaofen Han
- College of Life Science, Northwest A & F UniversityYangling, China
| | - Huimin Yu
- Department of E-A Information Engineering, Liaoning Institute of Science and TechnologyBenxi, China
| | - Zhong Zhao
- College of Forestry, Northwest A & F UniversityYangling, China
- *Correspondence: Zhong Zhao
| | - David Hunter
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-food CanadaLondon, ON, Canada
| | - Xinjuan Luo
- College of Life Science, Northwest A & F UniversityYangling, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Genetics and Breeding, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Lining Tian
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-food CanadaLondon, ON, Canada
- Lining Tian
| |
Collapse
|
42
|
Kwak JS, Son GH, Kim SI, Song JT, Seo HS. Arabidopsis HIGH PLOIDY2 Sumoylates and Stabilizes Flowering Locus C through Its E3 Ligase Activity. FRONTIERS IN PLANT SCIENCE 2016; 7:530. [PMID: 27148346 PMCID: PMC4837325 DOI: 10.3389/fpls.2016.00530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/04/2016] [Indexed: 05/03/2023]
Abstract
Flowering Locus C (FLC), a floral repressor, plays an important role in flowering. The mechanisms regulating FLC gene expression and protein function have been studied extensively; however, post-translational regulation of FLC remains unclear. Here, we identified Arabidopsis HIGH PLOIDY2 (HPY2) as an E3 SUMO ligase for FLC. In vitro and vivo pull-down assays showed that FLC physically interacts with HPY2. In vitro assays showed that the stimulation of FLC sumoylation by HPY2 was dependent on SUMO-activating enzyme E1 and -conjugating enzyme E2, indicating that HPY2 was an E3 SUMO ligase for FLC. In transgenic plants, inducible HPY2 overexpression increased the concentration of FLC, indicating that HPY2 stabilized FLC through direct sumoylation. Flowering time in hpy2-2 mutants was shorter than in wild-type plants under long- and short-day conditions, with a greater effect under short-day conditions, and FLC was downregulated in hpy2-2 mutants. These data indicate that HPY2 regulates FLC function and stability at both the transcriptional and post-translational levels through its E3 SUMO ligase activity.
Collapse
Affiliation(s)
- Jun S. Kwak
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Ga H. Son
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Sung-Il Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Jong T. Song
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Hak S. Seo
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, South Korea
- Bio-MAX Institute Seoul National UniversitySeoul, South Korea
- *Correspondence: Hak S. Seo,
| |
Collapse
|
43
|
TAO X, YONG B, SHAO HH, MA XR. Cloning and abiotic stress resistance analyses of a new proline-glycine-alaninehistidine-rich protein gene from Ipomoea batatas (L.) Lam. Turk J Biol 2016. [DOI: 10.3906/biy-1509-76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
44
|
Sun M, Qi X, Hou L, Xu X, Zhu Z, Li M. Gene Expression Analysis of Pak Choi in Response to Vernalization. PLoS One 2015; 10:e0141446. [PMID: 26517271 PMCID: PMC4627790 DOI: 10.1371/journal.pone.0141446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/08/2015] [Indexed: 12/21/2022] Open
Abstract
Pak choi is a seed vernalization-type plant whose vernalization mechanism is currently unclear. Therefore, it is critical to discover genes related to vernalization and research its functions during vernalization in pak choi. Here, the gene expression profiles in the shoot apex were analyzed after low temperature treatment using high-throughput RNA sequencing technology. The results showed that there are 1,664 and 1,192 differentially expressed genes (DEGs) in pak choi in cold treatment ending and before flower bud differentiation, respectively, including 42 genes that exhibited similar expression trend at both stages. Detailed annotation revealed that the proteins encoded by the DEGs are located in the extracellular region, cell junction and extracellular matrix. These proteins exhibit activity such as antioxidant activity and binding protein/transcription factor activity, and they are involved in signal transduction and the immune system/biological processes. Among the DEGs, Bra014527 was up-regulated in low temperature treatment ending, Bra024097 was up-regulated before flower bud differentiation and Bra035940 was down-regulated at both stages in low temperature-treated shoot apices. Homologues of these genes in A. thaliana, AT3G59790, AT4G30200 and AT5G61150, are involved in flowering and vernalization, suggesting that they take part in the vernalization process in pak choi. Further pathway enrichment analysis revealed that most genes were enriched in the tryptophan metabolism and glucosinolate biosynthesis pathways. However, the functions of tryptophan and glucosinolate in vernalization are not yet clear and require further analysis.
Collapse
Affiliation(s)
- Mengxia Sun
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xianhui Qi
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Leiping Hou
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaoyong Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhujun Zhu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province/College of Agricultural and Food Science, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| | - Meilan Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
45
|
Liu F, Wang X, Su M, Yu M, Zhang S, Lai J, Yang C, Wang Y. Functional characterization of DnSIZ1, a SIZ/PIAS-type SUMO E3 ligase from Dendrobium. BMC PLANT BIOLOGY 2015; 15:225. [PMID: 26376625 PMCID: PMC4574183 DOI: 10.1186/s12870-015-0613-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 09/11/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND SUMOylation is an important post-translational modification of eukaryotic proteins that involves the reversible conjugation of a small ubiquitin-related modifier (SUMO) polypeptide to its specific protein substrates, thereby regulating numerous complex cellular processes. The PIAS (protein inhibitor of activated signal transducers and activators of transcription [STAT]) and SIZ (scaffold attachment factor A/B/acinus/PIAS [SAP] and MIZ) proteins are SUMO E3 ligases that modulate SUMO conjugation. The characteristic features and SUMOylation mechanisms of SIZ1 protein in monocotyledon are poorly understood. Here, we examined the functions of a homolog of Arabidopsis SIZ1, a functional SIZ/PIAS-type SUMO E3 ligase from Dendrobium. RESULTS In Dendrobium, the predicted DnSIZ1 protein has domains that are highly conserved among SIZ/PIAS-type proteins. DnSIZ1 is widely expressed in Dendrobium organs and has a up-regulated trend by treatment with cold, high temperature and wounding. The DnSIZ1 protein localizes to the nucleus and shows SUMO E3 ligase activity when expressed in an Escherichia coli reconstitution system. Moreover, ectopic expression of DnSIZ1 in the Arabidopsis siz1-2 mutant partially complements several phenotypes and results in enhanced levels of SUMO conjugates in plants exposed to heat shock conditions. We observed that DnSIZ1 acts as a negative regulator of flowering transition which may be via a vernalization-induced pathway. In addition, ABA-hypersensitivity of siz1-2 seed germination can be partially suppressed by DnSIZ1. CONCLUSIONS Our results suggest that DnSIZ1 is a functional homolog of the Arabidopsis SIZ1 with SUMO E3 ligase activity and may play an important role in the regulation of Dendrobium stress responses, flowering and development.
Collapse
Affiliation(s)
- Feng Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Xiao Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Mengying Su
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Mengyuan Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Shengchun Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Yaqin Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
46
|
The Cytosolic Iron-Sulfur Cluster Assembly Protein MMS19 Regulates Transcriptional Gene Silencing, DNA Repair, and Flowering Time in Arabidopsis. PLoS One 2015; 10:e0129137. [PMID: 26053632 PMCID: PMC4459967 DOI: 10.1371/journal.pone.0129137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/05/2015] [Indexed: 11/19/2022] Open
Abstract
MMS19 is an essential component of the cytoplasmic iron-sulfur (Fe-S) cluster assembly complex in fungi and mammals; the mms19 null mutant alleles are lethal. Our study demonstrates that MMS19/MET18 in Arabidopsis thaliana interacts with the cytoplasmic Fe-S cluster assembly complex but is not an essential component of the complex. We find that MMS19 also interacts with the catalytic subunits of DNA polymerases, which have been demonstrated to be involved in transcriptional gene silencing (TGS), DNA repair, and flowering time regulation. Our results indicate that MMS19 has a similar biological function, suggesting a functional link between MMS19 and DNA polymerases. In the mms19 null mutant, the assembly of Fe-S clusters on the catalytic subunit of DNA polymerase α is reduced but not blocked, which is consistent with the viability of the mutant. Our study suggests that MMS19 assists the assembly of Fe-S clusters on DNA polymerases in the cytosol, thereby facilitating transcriptional gene silencing, DNA repair, and flowering time control.
Collapse
|
47
|
Liu J, Wang H, Chua NH. Long noncoding RNA transcriptome of plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:319-28. [PMID: 25615265 DOI: 10.1111/pbi.12336] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 05/20/2023]
Abstract
Since their discovery more than two decades ago, animal long noncoding RNAs (lncRNAs) have emerged as important regulators of many biological processes. Recently, a large number of lncRNAs have also been identified in higher plants, and here, we review their identification, classification and known regulatory functions in various developmental events and stress responses. Knowledge gained from a deeper understanding of this special group of noncoding RNAs may lead to biotechnological improvement of crops. Some possible examples in this direction are discussed.
Collapse
Affiliation(s)
- Jun Liu
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
48
|
Sharma SK, Yamamoto M, Mukai Y. Immuno-cytogenetic manifestation of epigenetic chromatin modification marks in plants. PLANTA 2015; 241:291-301. [PMID: 25539867 DOI: 10.1007/s00425-014-2233-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/16/2014] [Indexed: 05/26/2023]
Abstract
Histone proteins and the nucleosomes along with DNA are the essential components of eukaryotic chromatin. Post-translational histone-DNA interactions and modifications eventually offer significant alteration in the chromatin environment and potentially influence diverse fundamental biological processes, some of which are known to be epigenetically inherited and constitute the "epigenetic code". Such chromatin modifications evidently uncover remarkable diversity and biological specificity associated with distinct patterns of covalent histone marks. The past few years have witnessed major breakthroughs in plant biology research by utilizing chromatin modification-specific antibodies through molecular cytogenetic tools to ascertain hallmark signatures of chromatin domains on the chromosomes. Here, we survey current information on chromosomal distribution patterns of chromatin modifications with special emphasis on histone methylation, acetylation, phosphorylation, and centromere-specific histone 3 (CENH3) marks in plants using immuno-FISH as a basic tool. Major available information has been classified under typical and comparative cytogenetic detection of chromatin modifications in plants. Further, spatial distribution of chromatin environment that exists between different cell types such as angiosperm/gymnosperm, monocot/dicot, diploid/polyploids, vegetative/generative cells, as well as different stages, i.e., mitosis versus meiosis has also been discussed in detail. Several challenges and future perspectives of molecular cytogenetics in the grooming field of plant chromatin dynamics have also been addressed.
Collapse
Affiliation(s)
- Santosh Kumar Sharma
- Division of Natural Sciences, Laboratory of Plant Molecular Genetics, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan,
| | | | | |
Collapse
|
49
|
Matschegewski C, Zetzsche H, Hasan Y, Leibeguth L, Briggs W, Ordon F, Uptmoor R. Genetic variation of temperature-regulated curd induction in cauliflower: elucidation of floral transition by genome-wide association mapping and gene expression analysis. FRONTIERS IN PLANT SCIENCE 2015; 6:720. [PMID: 26442034 PMCID: PMC4564693 DOI: 10.3389/fpls.2015.00720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/27/2015] [Indexed: 05/09/2023]
Abstract
Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High ambient temperatures delay harvest time. The elucidation of the genetic regulation of floral transition is highly interesting for a precise harvest scheduling and to ensure stable market supply. This study aims at genetic dissection of temperature-dependent curd induction in cauliflower by genome-wide association studies and gene expression analysis. To assess temperature-dependent curd induction, two greenhouse trials under distinct temperature regimes were conducted on a diversity panel consisting of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad phenotypic variation and high heritability (0.93) were observed for temperature-related curd induction within the cauliflower population. GWA mapping identified a total of 18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding time under two distinct temperature regimes. Among those, several QTL are localized within regions of promising candidate flowering genes. Inferring population structure and genetic relatedness among the diversity set assigned three main genetic clusters. Linkage disequilibrium (LD) patterns estimated global LD extent of r(2) = 0.06 and a maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was performed, showing increased expression levels of BoVRN2 in genotypes with faster curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently be supported, which probably suggests to act facultative and/or might evidence for BoVRN2/BoFLC-independent mechanisms in temperature-regulated floral transition in cauliflower. Genetic insights in temperature-regulated curd induction can underpin genetically informed phenology models and benefit molecular breeding strategies toward the development of thermo-tolerant cultivars.
Collapse
Affiliation(s)
- Claudia Matschegewski
- Chair of Agronomy, Faculty of Agriculture and Environmental Science, University of RostockRostock, Germany
- *Correspondence: Claudia Matschegewski, Chair of Agronomy, Faculty of Agriculture and Environmental Science, University of Rostock, Justus-von-Liebig-Weg 6, D-18059 Rostock, Germany,
| | - Holger Zetzsche
- Institute of Resistance Research and Stress Tolerance, Julius-Kuehn InstituteQuedlinburg, Germany
| | - Yaser Hasan
- Institute of Horticultural Production Systems, Leibniz Universität HannoverHannover, Germany
| | - Lena Leibeguth
- Chair of Agronomy, Faculty of Agriculture and Environmental Science, University of RostockRostock, Germany
| | | | - Frank Ordon
- Institute of Resistance Research and Stress Tolerance, Julius-Kuehn InstituteQuedlinburg, Germany
| | - Ralf Uptmoor
- Chair of Agronomy, Faculty of Agriculture and Environmental Science, University of RostockRostock, Germany
- Institute of Horticultural Production Systems, Leibniz Universität HannoverHannover, Germany
| |
Collapse
|
50
|
Ridge S, Brown PH, Hecht V, Driessen RG, Weller JL. The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:125-35. [PMID: 25355864 PMCID: PMC4265156 DOI: 10.1093/jxb/eru408] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In agricultural species that are sexually propagated or whose marketable organ is a reproductive structure, management of the flowering process is critical. Inflorescence development in cauliflower is particularly complex, presenting unique challenges for those seeking to predict and manage flowering time. In this study, an integrated physiological and molecular approach was used to clarify the environmental control of cauliflower reproductive development at the molecular level. A functional allele of BoFLC2 was identified for the first time in an annual brassica, along with an allele disrupted by a frameshift mutation (boflc2). In a segregating F₂ population derived from a cross between late-flowering (BoFLC2) and early-flowering (boflc2) lines, this gene behaved in a dosage-dependent manner and accounted for up to 65% of flowering time variation. Transcription of BoFLC genes was reduced by vernalization, with the floral integrator BoFT responding inversely. Overall expression of BoFT was significantly higher in early-flowering boflc2 lines, supporting the idea that BoFLC2 plays a key role in maintaining the vegetative state. A homologue of Arabidopsis VIN3 was isolated for the first time in a brassica crop species and was up-regulated by two days of vernalization, in contrast to findings in Arabidopsis where prolonged exposure to cold was required to elicit up-regulation. The correlations observed between gene expression and flowering time in controlled-environment experiments were validated with gene expression analyses of cauliflowers grown outdoors under 'natural' vernalizing conditions, indicating potential for transcript levels of flowering genes to form the basis of predictive assays for curd initiation and flowering time.
Collapse
Affiliation(s)
- Stephen Ridge
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Philip H Brown
- School of Medical and Applied Sciences, CQUniversity, Bundaberg Campus, Locked Bag 3333, Queensland 4670, Australia; and Queensland Government Department of Agriculture, Fisheries and Forestry, Bundaberg Research Station, Ashfield Road, Kalkie, Queensland 4670, Australia
| | - Valérie Hecht
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | | | - James L Weller
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| |
Collapse
|