1
|
Singh S, Praveen A, Dudha N, Sharma VK, Bhadrecha P. Single-cell transcriptomics: a new frontier in plant biotechnology research. PLANT CELL REPORTS 2024; 43:294. [PMID: 39585480 DOI: 10.1007/s00299-024-03383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Single-cell transcriptomic techniques have ushered in a new era in plant biology, enabling detailed analysis of gene expression at the resolution of individual cells. This review delves into the transformative impact of these technologies on our understanding of plant development and their far-reaching implications for plant biotechnology. We present a comprehensive overview of the latest advancements in single-cell transcriptomics, emphasizing their application in elucidating complex cellular processes and developmental pathways in plants. By dissecting the heterogeneity of cell populations, single-cell technologies offer unparalleled insights into the intricate regulatory networks governing plant growth, differentiation, and response to environmental stimuli. This review covers the spectrum of single-cell approaches, from pioneering techniques such as single-cell RNA sequencing (scRNA-seq) to emerging methodologies that enhance resolution and accuracy. In addition to showcasing the technological innovations, we address the challenges and limitations associated with single-cell transcriptomics in plants. These include issues related to sample preparation, cell isolation, data complexity, and computational analysis. We propose strategies to mitigate these challenges, such as optimizing protocols for protoplast isolation, improving computational tools for data integration, and developing robust pipelines for data interpretation. Furthermore, we explore the practical applications of single-cell transcriptomics in plant biotechnology. These applications span from improving crop traits through precise genetic modifications to enhancing our understanding of plant-microbe interactions. The review also touches on the potential for single-cell approaches to accelerate breeding programs and contribute to sustainable agriculture. This review concludes with a forward-looking perspective on the future impact of single-cell technologies in plant research. We foresee these tools becoming essential in plant biotechnology, spurring innovations that tackle global challenges in food security and environmental sustainability. This review serves as a valuable resource for researchers, providing a roadmap from sample preparation to data analysis and highlighting the transformative potential of single-cell transcriptomics in plant biotechnology.
Collapse
Affiliation(s)
- Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, 203201, Noida, U.P, India.
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, 203201, Noida, U.P, India
| | - Varun Kumar Sharma
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, 203201, Noida, U.P, India
| | - Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
2
|
Ashraf H, Ghouri F, Baloch FS, Nadeem MA, Fu X, Shahid MQ. Hybrid Rice Production: A Worldwide Review of Floral Traits and Breeding Technology, with Special Emphasis on China. PLANTS (BASEL, SWITZERLAND) 2024; 13:578. [PMID: 38475425 DOI: 10.3390/plants13050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024]
Abstract
Rice is an important diet source for the majority of the world's population, and meeting the growing need for rice requires significant improvements at the production level. Hybrid rice production has been a significant breakthrough in this regard, and the floral traits play a major role in the development of hybrid rice. In grass species, rice has structural units called florets and spikelets and contains different floret organs such as lemma, palea, style length, anther, and stigma exsertion. These floral organs are crucial in enhancing rice production and uplifting rice cultivation at a broader level. Recent advances in breeding techniques also provide knowledge about different floral organs and how they can be improved by using biotechnological techniques for better production of rice. The rice flower holds immense significance and is the primary focal point for researchers working on rice molecular biology. Furthermore, the unique genetics of rice play a significant role in maintaining its floral structure. However, to improve rice varieties further, we need to identify the genomic regions through mapping of QTLs (quantitative trait loci) or by using GWAS (genome-wide association studies) and their validation should be performed by developing user-friendly molecular markers, such as Kompetitive allele-specific PCR (KASP). This review outlines the role of different floral traits and the benefits of using modern biotechnological approaches to improve hybrid rice production. It focuses on how floral traits are interrelated and their possible contribution to hybrid rice production to satisfy future rice demand. We discuss the significance of different floral traits, techniques, and breeding approaches in hybrid rice production. We provide a historical perspective of hybrid rice production and its current status and outline the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Mersin 33100, Türkiye
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Senthilkumar P, Natarajan A, Salmen SH, Alharbi SA, Shavrov V, Lega P, Subramani R, Pushparaj C. Utilizing protein nanofibrils as a scaffold for enhancing nutritional value in toned milk. ENVIRONMENTAL RESEARCH 2023; 239:117420. [PMID: 37852464 DOI: 10.1016/j.envres.2023.117420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Toned milk is a lower-fat, healthier alternative to whole milk that still contains all essential nutrients. A number of methods have been developed to improve the functionality of toned milk and make it more appealing to the consumers. However, these methods often involve extensive processing techniques and can be expensive. Therefore, alternative methods are needed. Proteins are well known for their ability to form well-defined nanofibril materials that can be used as a scaffold for various applications. In this article, a straightforward self-assembly process was used to load inulin into protein nanofibrils, creating unique composite nanofibrils. Characterization using AFM and SEM revealed well-defined composite nanofibrils with an average diameter of 4-6 nm and lengths ranging from 0.25 μm up to 10 μm. FT-IR and in-vitro release assays show that inulin was successfully attached to prepared protein nanofibrils. The composite nanofibrils were tested on toned milk to enhance the physico/chemical properties and nutritional values. The findings can be applied to the food industry to create a number of novel functional food products cost-effectively.
Collapse
Affiliation(s)
- Praveetha Senthilkumar
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, 641004, India
| | - Arunadevi Natarajan
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, 641004, India
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Vladimir Shavrov
- The Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia, 125009
| | - Petr Lega
- The Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia, 125009; RUDN University, Moscow, Russia 117198
| | - Ramesh Subramani
- Department of Food Processing Technology & Management, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, 641004, India.
| | - Charumathi Pushparaj
- Department of Zoology, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, 641004, India.
| |
Collapse
|
4
|
Kumar N, Sharma V, Kaur G, Lata C, Dasila H, Perveen K, Khan F, Gupta VK, Khanam MN. Brassinosteroids as promoters of seedling growth and antioxidant activity under heavy metal zinc stress in mung bean ( Vigna radiata L.). Front Microbiol 2023; 14:1259103. [PMID: 37869675 PMCID: PMC10586047 DOI: 10.3389/fmicb.2023.1259103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
The escalation of harmful pollutants, including heavy metals, due to industrialization and urbanization has become a global concern. To mitigate the negative impacts of heavy metal stress on germination and early plant development, growth regulators have been employed. This study aimed to evaluate the response of mung bean (Vigna radiata L.) to zinc stress in the presence of brassinosteroids, focusing on seedling growth and antioxidant potential. Mung bean seedlings were treated with three concentrations of 24-epibrassinolide (EBL) (0.1, 0.2, and 0.4 PPM) with or without zinc. Results demonstrated that the application of brassinosteroids, combined with zinc stress, significantly enhanced germination percentage (about 47.06, 63.64, and 120%), speed of germination (about 39.13, 50, and 100%), seedling growth (about 38% in case of treatment combined 0.4 PPM 24-EBL and 1.5 mM ZnSO4) and seedling vigor index (204% in case of treatment combined 0.4 PPM 24-EBL and 1.5 mM ZnSO4) compared to zinc-treated seedlings alone after 24 h. The activities of antioxidative enzymes (catalase, ascorbate peroxidase, polyphenol oxidase, and peroxidase) and total soluble protein content decreased, while lipid peroxidation and proline content exhibited a significant increase (p ≤ 0.05) when compared to the control. However, the negative effects induced by heavy metal stress on these parameters were significantly mitigated by EBL application. Notably, the most effective concentration of EBL in overcoming zinc stress was found to be 0.4 PPM. These findings underscore the potential of exogenously applied brassinosteroids as a valuable tool in phytoremediation projects by ameliorating heavy metal stress.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Chemistry and Biochemistry, Eternal University, Rajgarh, India
- Department of Biochemistry, Kurukshetra University, Kurukshetra, India
| | - Vikas Sharma
- ICAR-National Dairy Research Institute, Karnal, India
| | - Gurpreet Kaur
- ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Charu Lata
- ICAR- Indian Institute of Wheat and Barley Research, RRS, Shimla, India
| | - Hemant Dasila
- Department of Microbiology, Eternal University, Rajgarh, India
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Faheema Khan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vijay K. Gupta
- Department of Biochemistry, Kurukshetra University, Kurukshetra, India
| | - Mehrun Nisha Khanam
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Kansman JT, Jaramillo JL, Ali JG, Hermann SL. Chemical ecology in conservation biocontrol: new perspectives for plant protection. TRENDS IN PLANT SCIENCE 2023; 28:1166-1177. [PMID: 37271617 DOI: 10.1016/j.tplants.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
Threats to food security require novel sustainable agriculture practices to manage insect pests. One strategy is conservation biological control (CBC), which relies on pest control services provided by local populations of arthropod natural enemies. Research has explored manipulative use of chemical information from plants and insects that act as attractant cues for natural enemies (predators and parasitoids) and repellents of pests. In this review, we reflect on past strategies using chemical ecology in CBC, such as herbivore-induced plant volatiles and the push-pull technique, and propose future directions, including leveraging induced plant defenses in crop plants, repellent insect-based signaling, and genetically engineered crops. Further, we discuss how climate change may disrupt CBC and stress the importance of context dependency and yield outcomes.
Collapse
Affiliation(s)
- Jessica T Kansman
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Jorge L Jaramillo
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Jared G Ali
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Sara L Hermann
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
6
|
Idris SH, Mat Jalaluddin NS, Chang LW, 曾 立纬. Ethical and legal implications of gene editing in plant breeding: a systematic literature review. J Zhejiang Univ Sci B 2023; 24:1093-1105. [PMID: 38057267 PMCID: PMC10710910 DOI: 10.1631/jzus.b2200601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/30/2023] [Indexed: 07/11/2023]
Abstract
Biotechnology policies and regulations must be revised and updated to reflect the most recent advances in plant-breeding technology. New Plant Breeding Techniques (NPBT) such as gene editing have been applied to address the myriad of challenges in plant breeding, while the use of NPBT as emerging biotechnological tools raises legal and ethical concerns. This study aims to highlight how gene editing is operationalized in the existing literature and examine the critical issues of ethical and legal issues of gene editing for plant breeding. We carried out a systematic literature review (SLR) to provide the current states of ethical and legal discourses surrounding this topic. We also identified critical research priority areas and policy gaps that must be addressed when designing the future governance of gene editing in plant breeding.
Collapse
Affiliation(s)
- Siti Hafsyah Idris
- Faculty of Law, Universiti Teknologi MARA, Jalan Sarjana 1/2, Shah Alam 40450, Selangor, Malaysia
| | - Nurzatil Sharleeza Mat Jalaluddin
- Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Research Management and Innovation Complex, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| | - Lee Wei Chang
- Faculty of Law, Universiti Teknologi MARA, Jalan Sarjana 1/2, Shah Alam 40450, Selangor, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Level 3, Research Management and Innovation Complex, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Civilisational Dialogue, Level 1, High Impact Research Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - 立 纬 曾
- Centre for Civilisational Dialogue, Level 1, High Impact Research Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
7
|
Román Collazo C, Chacha Guerrero K, Loja Mejia T, Andrade Campoverde D, Hernández Rodriguez Y. Attitudes of the Ecuadorian University Community Toward Genetically Modified Organisms. Front Bioeng Biotechnol 2022; 9:801891. [PMID: 35252162 PMCID: PMC8894883 DOI: 10.3389/fbioe.2021.801891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The acceptance of genetically modified organisms (GMOs) by the civilian population in Ecuador is a controversial issue, where beliefs and practices are determinant. In Ecuador, the use of GMOs for research or productive purposes has been banned since 2008; however, the current position of the population toward this technology is unknown.Objective: The aim of the study was to explain the attitude toward GMOs in the Ecuadorian university population based on sociodemographic variables, knowledge, beliefs, practices, and bioethical approach.Methods: A validated survey was applied to 719 students and teachers of the Catholic University of Cuenca through Google Forms. The collected data were processed using SPSS 23.0 software. Multivariate and linear regression analyses were used to explain the attitude toward GMOs based on the variables studied.Results: Partial approval of GMO use is research-oriented, with a rejection toward food. The linear regression model explained 65% of the variance of attitude toward GMOs from the beliefs, practices, knowledge, and bioethical approach variables. The sociodemographic variables were completely excluded from the model due to the absence of statistical significance.Conclusions: The incipient acceptance of GMOs in the academic sector corroborates a transformation in the thinking of Ecuadorian civil society. Considerations on the use of GMOs are supported by a bioethical approach that leans toward a pragmatic utilitarianism based on the immediate or mediate benefits of the technology.
Collapse
Affiliation(s)
- Carlos Román Collazo
- Faculty of Biochemistry and Pharmacy, Catholic University of Cuenca, Cuenca, Ecuador
- *Correspondence: Carlos Román Collazo,
| | - Karen Chacha Guerrero
- Faculty of Biochemistry and Pharmacy, Catholic University of Cuenca, Cuenca, Ecuador
| | - Tatiana Loja Mejia
- Faculty of Biochemistry and Pharmacy, Catholic University of Cuenca, Cuenca, Ecuador
| | | | | |
Collapse
|
8
|
Oluwole OO, Aworunse OS, Aina AI, Oyesola OL, Popoola JO, Oyatomi OA, Abberton MT, Obembe OO. A review of biotechnological approaches towards crop improvement in African yam bean ( Sphenostylis stenocarpa Hochst. Ex A. Rich.). Heliyon 2021; 7:e08481. [PMID: 34901510 PMCID: PMC8642607 DOI: 10.1016/j.heliyon.2021.e08481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
Globally, climate change is a major factor that contributes significantly to food and nutrition insecurity, limiting crop yield and availability. Although efforts are being made to curb food insecurity, millions of people still suffer from malnutrition. For the United Nations (UN) Sustainable Development Goal of Food Security to be achieved, diverse cropping systems must be developed instead of relying mainly on a few staple crops. Many orphan legumes have untapped potential that can be of significance for developing improved cultivars with enhanced tolerance to changing climatic conditions. One typical example of such an orphan crop is Sphenostylis stenocarpa Hochst. Ex A. Rich. Harms, popularly known as African yam bean (AYB). The crop is an underutilised tropical legume that is climate-resilient and has excellent potential for smallholder agriculture in sub-Saharan Africa (SSA). Studies on AYB have featured morphological characterisation, assessment of genetic diversity using various molecular markers, and the development of tissue culture protocols for rapidly multiplying propagules. However, these have not translated into varietal development, and low yields remain a challenge. The application of suitable biotechnologies to improve AYB is imperative for increased yield, sustainable utilisation and conservation. This review discusses biotechnological strategies with prospective applications for AYB improvement. The potential risks of these strategies are also highlighted.
Collapse
Affiliation(s)
- Olubusayo O. Oluwole
- Department of Biological Sciences, Covenant University, Canaan Land, Ota, Nigeria
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Oluwadurotimi S. Aworunse
- Department of Biological Sciences, Covenant University, Canaan Land, Ota, Nigeria
- UNESCO Chair on Plant Biotechnology, Plant Science Research Cluster, Covenant University, Canaan Land, Ota, Nigeria
| | - Ademola I. Aina
- Department of Crop Protection and Environmental Biology, University of Ibadan, Oyo State, Nigeria
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Olusola L. Oyesola
- Department of Biological Sciences, Covenant University, Canaan Land, Ota, Nigeria
- UNESCO Chair on Plant Biotechnology, Plant Science Research Cluster, Covenant University, Canaan Land, Ota, Nigeria
| | - Jacob O. Popoola
- Department of Biological Sciences, Covenant University, Canaan Land, Ota, Nigeria
- UNESCO Chair on Plant Biotechnology, Plant Science Research Cluster, Covenant University, Canaan Land, Ota, Nigeria
| | - Olaniyi A. Oyatomi
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Michael T. Abberton
- Genetic Resources Centre, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Olawole O. Obembe
- Department of Biological Sciences, Covenant University, Canaan Land, Ota, Nigeria
- UNESCO Chair on Plant Biotechnology, Plant Science Research Cluster, Covenant University, Canaan Land, Ota, Nigeria
| |
Collapse
|
9
|
Yassitepe JEDCT, da Silva VCH, Hernandes-Lopes J, Dante RA, Gerhardt IR, Fernandes FR, da Silva PA, Vieira LR, Bonatti V, Arruda P. Maize Transformation: From Plant Material to the Release of Genetically Modified and Edited Varieties. FRONTIERS IN PLANT SCIENCE 2021; 12:766702. [PMID: 34721493 PMCID: PMC8553389 DOI: 10.3389/fpls.2021.766702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/15/2021] [Indexed: 05/17/2023]
Abstract
Over the past decades, advances in plant biotechnology have allowed the development of genetically modified maize varieties that have significantly impacted agricultural management and improved the grain yield worldwide. To date, genetically modified varieties represent 30% of the world's maize cultivated area and incorporate traits such as herbicide, insect and disease resistance, abiotic stress tolerance, high yield, and improved nutritional quality. Maize transformation, which is a prerequisite for genetically modified maize development, is no longer a major bottleneck. Protocols using morphogenic regulators have evolved significantly towards increasing transformation frequency and genotype independence. Emerging technologies using either stable or transient expression and tissue culture-independent methods, such as direct genome editing using RNA-guided endonuclease system as an in vivo desired-target mutator, simultaneous double haploid production and editing/haploid-inducer-mediated genome editing, and pollen transformation, are expected to lead significant progress in maize biotechnology. This review summarises the significant advances in maize transformation protocols, technologies, and applications and discusses the current status, including a pipeline for trait development and regulatory issues related to current and future genetically modified and genetically edited maize varieties.
Collapse
Affiliation(s)
- Juliana Erika de Carvalho Teixeira Yassitepe
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Viviane Cristina Heinzen da Silva
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - José Hernandes-Lopes
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ricardo Augusto Dante
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Isabel Rodrigues Gerhardt
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Fernanda Rausch Fernandes
- Embrapa Informática Agropecuária, Campinas, Brazil
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Priscila Alves da Silva
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Leticia Rios Vieira
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Vanessa Bonatti
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
10
|
Toledo-Hernández M, Lander TA, Bao C, Xie K, Atta-Boateng A, Wanger TC. Genome-edited tree crops: mind the socioeconomic implementation gap. Trends Ecol Evol 2021; 36:972-975. [PMID: 34503839 DOI: 10.1016/j.tree.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022]
Abstract
The discussion about CRISPR/Cas genome editing is focused mostly on technical aspects to improve productivity and climate resilience in major tree crops such as cocoa, coffee, and citrus. We suggest a solution to the largely ignored socioeconomic impacts for farmers, when new genome-edited varieties are introduced from the laboratory to the field.
Collapse
Affiliation(s)
- Manuel Toledo-Hernández
- Sustainability, Agriculture, and Technology Laboratory, School of Engineering, Westlake University, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Zhejiang Province, China; Agroecology, Department of Crop Sciences, University of Göttingen, Germany; GlobalAgroforestryNetwork.org, China.
| | | | - Chen Bao
- Sustainability, Agriculture, and Technology Laboratory, School of Engineering, Westlake University, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Zhejiang Province, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Thomas Cherico Wanger
- Sustainability, Agriculture, and Technology Laboratory, School of Engineering, Westlake University, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Zhejiang Province, China; Agroecology, Department of Crop Sciences, University of Göttingen, Germany; GlobalAgroforestryNetwork.org, China.
| |
Collapse
|
11
|
Nakhle F, Harfouche AL. Ready, Steady, Go AI: A practical tutorial on fundamentals of artificial intelligence and its applications in phenomics image analysis. PATTERNS (NEW YORK, N.Y.) 2021; 2:100323. [PMID: 34553170 PMCID: PMC8441561 DOI: 10.1016/j.patter.2021.100323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High-throughput image-based technologies are now widely used in the rapidly developing field of digital phenomics and are generating ever-increasing amounts and diversity of data. Artificial intelligence (AI) is becoming a game changer in turning the vast seas of data into valuable predictions and insights. However, this requires specialized programming skills and an in-depth understanding of machine learning, deep learning, and ensemble learning algorithms. Here, we attempt to methodically review the usage of different tools, technologies, and services available to the phenomics data community and show how they can be applied to selected problems in explainable AI-based image analysis. This tutorial provides practical and useful resources for novices and experts to harness the potential of the phenomic data in explainable AI-led breeding programs.
Collapse
Affiliation(s)
- Farid Nakhle
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
| | - Antoine L. Harfouche
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
| |
Collapse
|