1
|
Telgmann L, Horn H. The behavior of pharmaceutically active compounds and contrast agents during wastewater treatment - Combining sampling strategies and analytical techniques: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174344. [PMID: 38964417 DOI: 10.1016/j.scitotenv.2024.174344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Increasing consumption of pharmaceuticals and the respective consequences for the aquatic environment have been the focus of many studies over the last thirty years. Various aspects in this field were investigated, considering diverse pharmaceutical groups and employing a wide range of research methodologies. Various questions from the perspectives of different research areas were devised and answered, resulting in a large mix of individual findings and conclusions. Collectively, the results of the studies offer a comprehensive overview. The large variety of methods and strategies, however, demands close attention when comparing and combining information from heterogeneous projects. This review critically examines the application of diverse sampling techniques as well as analytical methods in investigations concerning the behavior of pharmaceutically active compounds (PhACs) and contrast agents (CAs) in wastewater treatment plants (WWTPs). The combination of sampling and analysis is discussed with regard to its suitability for specific scientific problems. Different research focuses need different methods and answer different questions. An overview of studies dealing with the fate and degradation of PhACs and CAs in WWTPs is presented, discussing their strategic approaches and findings. This review includes surveys of anticancer drugs, antibiotics, analgesics and anti-inflammatory drugs, antidiabetics, beta blockers, hormonal contraceptives, lipid lowering agents, antidepressants as well as contrast agents for X-ray and magnetic resonance imaging.
Collapse
Affiliation(s)
- Lena Telgmann
- Department of Chemistry and Pharmacy, University of Münster, Münster, Germany
| | - Harald Horn
- Department Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruher Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
2
|
Yu X, Ryadun AA, Pavlov DI, Guselnikova TY, Potapov AS, Fedin VP. Ln-MOF-Based Hydrogel Films with Tunable Luminescence and Afterglow Behavior for Visual Detection of Ofloxacin and Anti-Counterfeiting Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311939. [PMID: 38275004 DOI: 10.1002/adma.202311939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Highly selective and sensitive quantitative detection of ofloxacin (OFX) at ultralow concentrations in aqueous media and development of new afterglow materials remains a challenge. Herein, a new 2D water-stable lanthanide metal-organic framework (NIIC-2-Tb) is proposed, which exhibits high selectivity towards OFX through the luminescence quenching with the lowest detection limit (1.1 × 10-9 M) reported to date and a fast response within 6 s. In addition, the luminescent detection of OFX by NIIC-2-Tb is not affected by typical components of blood plasma and urine. The excellent sensing effect of NIIC-2-Tb is further utilized to prepare a composite functional sensing carrageenan hydrogel material for the rapid detection of OFX in meat in real time and the first discovery of impressive afterglow in MOF-based hydrogels. This study not only presents novel Ln-MOF materials and Ln-MOF-based hydrogel films for luminescent sensing of OFX, but also demonstrates color-tunable luminescent films with afterglow, which expands the application of composite luminescent materials for detection and anti-counterfeiting.
Collapse
Affiliation(s)
- Xiaolin Yu
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Alexey A Ryadun
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Dmitry I Pavlov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Tatiana Y Guselnikova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Andrei S Potapov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Vladimir P Fedin
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| |
Collapse
|
3
|
Fan XF, Fu L, Cui GH. Three robust Cd(II) coordination polymers as bifunctional luminescent probes for efficient detection of pefloxacin and Cr 2O 72- in water. Dalton Trans 2024; 53:5051-5063. [PMID: 38375864 DOI: 10.1039/d4dt00128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The accurate and rapid detection of antibiotics and heavy-metal-based toxic oxo-anions in water media employing coordination polymers (CPs) as luminescent probes has attracted a lot of attention. Three new Cd(II)-based ternary CPs derived from first-presented L ligands, including [Cd(DCTP)(L)(OH)]n (1), [Cd(TBTA)(L)(OH)]n (2), and [Cd(NPHT)(L)(H2O)]n (3) (L = 2-((1H-imidazol-1-yl)methyl)-5,6-dimethyl-1H-benzo[d]imidazole, H2DCTP = 2,5-dichloroterephthalic acid, H2TBTA = tetrabromoterephthalic acid and H2NPHT = 3-nitrophthalic acid), were successfully assembled and characterized. 1 and 2 show 2D hcb layers, which can be further extended into a 3D supramolecular framework via classic hydrogen bonding interactions. 3 features a 1D double chain that ultimately spreads into a 2D network through weak hydrogen bonding interactions. With the advantages of high stability and excellent luminescent properties, the three CPs display high sensitivity, selectivity, and good anti-interference for the sensing of pefloxacin (PEF) and Cr2O72- ions (LOD values toward PEF: 3.82 × 10-7 mol L-1 for 1, 4.06 × 10-7 mol L-1 for 2, and 1.36 × 10-8 mol L-1 for 3, and toward Cr2O72- ions: 5.97 × 10-7 mol L-1 for 1, 5.87 × 10-7 mol L-1 for 2, and 8.21 × 10-8 mol L-1 for 3). These CPs are the first examples of bifunctional luminescent sensors to detect PEF and Cr2O72- in aqueous solutions. The luminescence quenching mechanisms are explored in detail.
Collapse
Affiliation(s)
- Xiao-Fei Fan
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian new-city, Tangshan, Hebei, 063210, P. R. China.
| | - Lianshe Fu
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Guang-Hua Cui
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian new-city, Tangshan, Hebei, 063210, P. R. China.
| |
Collapse
|
4
|
Xiao J, Qin L, Zhao D, Huang N, Xu W, Zhang L, Pan X, Han S, Ding M, Li L, Le T, Peng D. Monospecific and ultrasensitive detection of ofloxacin: A computational chemistry-assisted hapten screening strategy and analysis of molecular recognition mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133221. [PMID: 38103295 DOI: 10.1016/j.jhazmat.2023.133221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Contamination in food and the environment with fluoroquinolones (FQs) has become a serious threat to the global ecological balance and public health safety. Ofloxacin (OFL) is one of the most widely utilized sterilization agents in FQs. In the process of monitoring OFL, broad-spectrum monoclonal antibodies (mAb) cannot meet the demand for monospecific detection. Here, a computational chemistry-assisted hapten screening strategy was proposed in this study. Differences in the properties of antigenic epitopes were precisely extracted through a comprehensive comparative study of 16 common FQs molecules and a monospecific and ultrasensitive mAb-3B4 for OFL was successfully prepared. The screened fleroxacin (FLE) hapten was applied in a heterologous competition strategy resulting in a 20-fold improvement in the half inhibitory concentration (IC50) of mAb-3B4 to 0.0375 μg L-1 and cross-reacted only with marbofloxacin (MAR) in regulated FQs. In addition, a single-chain variable fragment (scFv) for OFL was constructed for the first time with an IC50 of 0.378 μg L-1. Molecular recognition mechanism studies validated the reliability of this strategy and revealed the key amino acid sites responsible for OFL specificity and sensitivity. Finally, ic-ELISA and GICA were established for OFL in real samples. This work provides new ideas for the preparation of monospecific mAb and improves the monitoring system of FQs.
Collapse
Affiliation(s)
- Jiaxu Xiao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangni Qin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Zhao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Niexie Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Wennuo Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Linwei Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoming Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyun Han
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyue Ding
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
5
|
Zhang B, Lang Y, Guo B, Cao Z, Cheng J, Cai D, Shentu X, Yu X. Indirect Competitive Enzyme-Linked Immunosorbent Assay Based on Broad-Spectrum Antibody for Simultaneous Determination of Thirteen Fluoroquinolone Antibiotics in Rana catesbeianus. Foods 2023; 12:2530. [PMID: 37444268 DOI: 10.3390/foods12132530] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Fluoroquinolone (FQ) is a type of widely used antibiotic in agriculture and aquaculture, and exposure to low doses of FQs may result in the transfer of resistance between animal and human pathogens. Based on the optimization of the operating parameters, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) standard curve was constructed for the simultaneous detection of 13 FQs, including enrofloxacin (ENR), ciprofloxacin (CIP), sarafloxacin (SAR), ofloxacin (OFL), norfloxacin (NOR), pefloxacin mesylate (PM), pefloxacin (PEF), enoxacin (ENX), marbofloxacin (MAR), fleroxacin (FLE), lomefloxacin (LOM), danofloxacin (DAN), and difloxacin (DIF). The limit of detection (LOD, computed as IC10) and sensitivity (IC50) of the ic-ELISA for ENR were 0.59 μg/L and 19.23 μg/L, respectively. The precision and dependability of the detection results of this ic-ELISA were properly verified by HPLC in Rana catesbeianus samples. This indicated that the established ic-ELISA approach could be utilized to determine the FQs in Rana catesbeianus. In addition, this ic-ELISA, based on a broad-spectrum antibody, provides a technical reference and potential strategy for an immunoassay of hazard factors with similar structure.
Collapse
Affiliation(s)
- Biao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | - Yihan Lang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | - Bowen Guo
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | - Zhengyang Cao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | - Jin Cheng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | - Danfeng Cai
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| |
Collapse
|
6
|
Khongkla S, Nurerk P, Udomsri P, Jullakan S, Bunkoed O. A monolith graphene oxide and mesoporous carbon composite sorbent in polyvinyl alcohol cryogel to extract and enrich fluoroquinolones in honey. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Pan Y, Yang H, Wen K, Ke Y, Shen J, Wang Z. Current advances in immunoassays for quinolones in food and environmental samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Chen J, Tan L, Cui Z, Qu K, Wang J. Graphene Oxide Molecularly Imprinted Polymers as Novel Adsorbents for Solid-Phase Microextraction for Selective Determination of Norfloxacin in the Marine Environment. Polymers (Basel) 2022; 14:polym14091839. [PMID: 35567008 PMCID: PMC9101591 DOI: 10.3390/polym14091839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, a novel sample pretreatment strategy of solid-phase microextraction using graphene oxide molecularly imprinted polymers as adsorbents coupled with high-performance liquid chromatography was developed to detect norfloxacin in the marine environment. As a carrier, the imprinted polymers were synthesized by precipitation polymerization with graphene oxide. Compared with graphene oxide non-imprinted polymers, the graphene oxide molecularly imprinted polymers exhibited higher adsorption capacity towards norfloxacin. The synthesized polymeric materials were packed into a molecularly imprinted solid-phase microextraction cartridge, and critical parameters affecting the extraction process were optimized. Under the optimized molecular imprinted solid-phase microextraction condition, the proposed method was applied to the analysis of norfloxacin for seawater and fish with satisfactory recovery (90.1–102.7%) and low relative standard deviation (2.06–5.29%, n = 3). The limit of detection was 0.15 μg L−1 and 0.10 μg kg−1 for seawater and fish, respectively. The study revealed that the proposed molecularly imprinted solid-phase microextraction represents an attractive sample pretreatment strategy for the analysis of norfloxacin in the marine environment.
Collapse
Affiliation(s)
- Jianlei Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.); (K.Q.)
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
| | - Zhengguo Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.); (K.Q.)
- Correspondence: (Z.C.); (J.W.); Tel.: +86-532-85836341 (Z.C.); +86-532-66782506 (J.W.)
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.C.); (K.Q.)
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
- Correspondence: (Z.C.); (J.W.); Tel.: +86-532-85836341 (Z.C.); +86-532-66782506 (J.W.)
| |
Collapse
|
9
|
Yang Y, Li Y, Tao Y, Feng X, Ma Y, Ji W, Sun Y, chen Y, chen T. Preparation of 3D flower-like double oxide hydrotalcite composite using pollen as a biotemplate and their effective adsorption for quinolone antibiotics. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Huang Y, Wang C, Wei Q, Song Y, Chen P, Wang L, Yang X, Chen X. A sensitive aptasensor based on rolling circle amplification and G-rich ssDNA/terbium (III) luminescence enhancement for ofloxacin detection in food. Talanta 2021; 235:122783. [PMID: 34517641 DOI: 10.1016/j.talanta.2021.122783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
As the light-harvesting "antenna", G-rich oligonucleotides (such as the G-quadruplex) can interact with lanthanide (III) to bring a luminescent enhancement response. In this study, phenomenon of luminescent enhancement of G-triplex/terbium (III) (G3/Tb3+) and interaction between G3 and Tb3+ were first reported and characterized. Based on G3/Tb3+ luminescence, a label-free aptasensor for the detection of ofloxacin (OFL) residues in the food was developed. The OFL triggered the action of rolling circle amplification (RCA) allowed for the amplification product of G3-forming sequences in the single-stranded DNA, which promoted the conformational transition of the G3/Tb3+ complexes once the addition of Tb3+. Under the optimal conditions, the logarithmic correlation between the G3/Tb3+ luminescence intensity and the concentration of OFL was found to be linear in the range of 5-1000 pmol L-1 (R2 = 0.9949). The limit of detection was 0.18 pmol L-1 (3σ/slope). Additionally, the good recoveries of 90.19-108.89 % and the relative standard deviations values of 0.59-5.87 % were obtained in the application of the aptasensor detecting OFL in the practical samples. These results confirmed that the present aptasensor has a good analytical performance and bright prospect for detecting ofloxacin residues in food.
Collapse
Affiliation(s)
- Yukun Huang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China; Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin, Sichuan, 644004, China.
| | - Chong Wang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Qiming Wei
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Yaning Song
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Pengfei Chen
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Lijun Wang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Xiao Yang
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Xianggui Chen
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China; Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute, Yibin, Sichuan, 644004, China.
| |
Collapse
|
11
|
Synthesis of molecularly imprinted polymers for extraction of fluoroquinolones in environmental, food and biological samples. J Pharm Biomed Anal 2021; 208:114447. [PMID: 34740088 DOI: 10.1016/j.jpba.2021.114447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
In recent years, fluoroquinolones have been found present in important water resources and food sources which compromises the food quality and availability, thereby, causing risks to the consumer. Despite the recent advancement in the development of analytical instrumentation for routine monitoring of fluoroquinolones in water, food, and biological samples, sample pre-treatment is still a major bottleneck of the analytical methods. Therefore, fast, selective, sensitive, and cost-effective sample preparation methods prior to instrumental analysis for fluoroquinolones residues in environmental, food and biological samples are increasingly important. Solid-phase extraction using different adsorbents is one of the most widely used pre-concentration/clean-up techniques for analysis of fluoroquinolones. Molecularly imprinted polymers (MIPs) serve as excellent effective adsorbent materials for selective extraction, separation, clean-up and preconcentration of various pollutants in different complex matrices. Therefore, synthesis of MIPs remains crucial for their applications in sample preparation as this offers much-needed selectivity in the extraction of compounds in complex samples. In this study, the progress made in the synthesis of MIPs for fluoroquinolones and their applications in water, food and biological samples were reviewed. The present review discusses the selection of all the elements of molecular imprinting for fluoroquinolones, polymerization processes and molecular recognition mechanisms. In conclusion, the related challenges and gaps are given to offer ideas for future research focussing on MIPs for fluoroquinolones.
Collapse
|
12
|
Belenguer-Sapiña C, Pellicer-Castell E, Pottanam Chali S, Ravoo BJ, Amorós P, Simó-Alfonso EF, Mauri-Aucejo AR. Host-guest interactions for extracting antibiotics with a γ-cyclodextrin poly(glycidyl-co-ethylene dimethacrylate) hybrid sorbent. Talanta 2021; 232:122478. [PMID: 34074446 DOI: 10.1016/j.talanta.2021.122478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/28/2022]
Abstract
A procedure for the solid-phase extraction of antibiotics (enoxacin, ofloxacin, norfloxacin, ciprofloxacin, and sparfloxacin) in water has been developed. The sorbent used is based on a poly(glycidyl-co-ethylene dimethacrylate) network, whose previously modified surface has been functionalized with γ-cyclodextrin through a click-chemistry reaction. The architecture of the material has been characterized by thermogravimetric analysis, N2 adsorption-desorption, Raman spectroscopy, confocal microscopy, and scanning electron microscopy, showing good capability to be used as a filler for extraction cartridges. The optimization of the extraction methodology shows good intra-day and inter-day repeatability of the extraction procedure, with coefficients of variation between 2.5 and 5.1% and the possibility of reusing the material at least five times. The detection limits of the method have been established at the μg L-1 level, confirming the possibility of quantifying trace levels. To end, real groundwater samples have been analyzed and the results are comparable with those obtained with a reference method. The proposed material can be used for assessing the presence of antibiotics in aqueous environments through an extraction procedure taking advantage of the presence of γ-cyclodextrin on its structure.
Collapse
Affiliation(s)
- Carolina Belenguer-Sapiña
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Enric Pellicer-Castell
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Sharafudheen Pottanam Chali
- Organic Chemistry Institute and Centre for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Centre for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Pedro Amorós
- Institute of Materials Science (ICMUV), University of Valencia, Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Ernesto Francisco Simó-Alfonso
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Adela R Mauri-Aucejo
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
13
|
Wang H, Zhao X, Xu J, Shang Y, Wang H, Wang P, He X, Tan J. Determination of quinolones in environmental water and fish by magnetic metal organic frameworks based magnetic solid-phase extraction followed by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1651:462286. [PMID: 34090056 DOI: 10.1016/j.chroma.2021.462286] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/24/2021] [Accepted: 05/20/2021] [Indexed: 12/01/2022]
Abstract
The widespread use of quinolones has become an increasing global public health threat. In this study, IRMOF-3 coated SiO2/Fe3O4 were prepared via a facile room-temperature method. The prepared IRMOF-3 coated SiO2/Fe3O4 was used as a sorbent for magnetic solid phase extraction, and then combined with high-performance liquid chromatography-tandem mass spectrometry for the determination of 10 quinolines. The extraction conditions of magnetic solid phase extraction were studied in detail, and the optimal conditions were established. Under the optimal experimental conditions, the limits of quantification of 10 quinolones were in the range of 0.005-0.01 μg L-1, the relative standard deviations were 6.58-10.6% (n=7), the enrichment factors were 21.0-23.8 for water samples. The limits of quantification of 10 quinolones were in the range of 0.10-0.20 μg kg-1, the relative standard deviations were 5.95-14.5% (n=7), the enrichment factors were 1.08-1.24 for fish samples. The proposed method was applied for the determination of 10 quinolones in river water, aquacultural water and a fish sample, and enrofloxacin and ciprofloxacin were found in the fish sample.
Collapse
Affiliation(s)
- Han Wang
- Wuhan Customs District of China, Wuhan 430020, China.
| | - Xiaoya Zhao
- Wuhan Customs District of China, Wuhan 430020, China
| | - Jiawen Xu
- Wuhan Customs District of China, Wuhan 430020, China
| | - Yinzhu Shang
- Wuhan Customs District of China, Wuhan 430020, China
| | - Hui Wang
- Wuhan Customs District of China, Wuhan 430020, China
| | - Peng Wang
- Wuhan Customs District of China, Wuhan 430020, China
| | - Xitong He
- Wuhan Customs District of China, Wuhan 430020, China
| | - Jie Tan
- Wuhan Customs District of China, Wuhan 430020, China
| |
Collapse
|
14
|
Manjula N, Chen TW, Chen SM, Lou BS. Facile synthesis of hexagonal-shaped zinc doped cobalt oxide: Application for electroanalytical determination of antibacterial drug ofloxacin in urine samples. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Xu G, Dong X, Hou L, Wang X, Liu L, Ma H, Zhao RS. Room-temperature synthesis of flower-shaped covalent organic frameworks for solid-phase extraction of quinolone antibiotics. Anal Chim Acta 2020; 1126:82-90. [DOI: 10.1016/j.aca.2020.05.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
|
16
|
Kergaravat SV, Nagel OG, Althaus RL, Hernández SR. Magneto Immunofluorescence Assay for Quinolone Detection in Bovine Milk. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01749-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Valat C, Hirchaud E, Drapeau A, Touzain F, de Boisseson C, Haenni M, Blanchard Y, Madec JY. Overall changes in the transcriptome of Escherichia coli O26:H11 induced by a subinhibitory concentration of ciprofloxacin. J Appl Microbiol 2020; 129:1577-1588. [PMID: 32506645 DOI: 10.1111/jam.14741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/27/2020] [Accepted: 06/02/2020] [Indexed: 11/29/2022]
Abstract
AIMS The goal was to explore the effects of subinhibitory concentration (SIC) (0·5 MIC = 20 µg l-1 ) of ciprofloxacin on the transcriptome of enterohaemorrhagic Escherichia coli O26:H11 isolate by 60 minutes of exposure. MATERIALS AND RESULTS We used a combination of comparative genomic and transcriptomic (RNAseq) analyses. The whole genome of the E. coli O26:H11 #30934 strain of bovine origin was sequenced and assembled. This genome was next used as reference for the differential gene expression analysis. A whole-genome-based analysis of 36 publicly available E. coli O26:H11 genomes was performed to define the core and the accessory transcriptome of E. coli O26:H11. Using RNAseq and RT-qPCR analysis we observed overexpression of the SOS response and of T3SS effectors, together with the inhibition of specific motility-associated genes. Among the large set of transposases present, only three were activated, suggesting moderate transposition of genes with low doses of ciprofloxacin. Our results illustrated that transcriptional repressors, such as the CopG family protein, belonging to the core genome of E. coli O26:H11, are altered in response to fluoroquinolone exposure. The gene ontology enrichment analysis showed SIC of ciprofloxacin induced binding functions and catalytic activities, including mostly transferase and hydrolase proteins. The amino acid pathways involved in metabolic processes were significantly enhanced after the treatment. CONCLUSIONS Although the core genome of E. coli O26:H11 constituted only 54·5% of the whole genome, we demonstrated that most differentially expressed genes were associated with the core genome of E. coli O26:H11, and that effects on the mobile genetic element, phage, and plasmid-related genes were rare. SIGNIFICANCE AND IMPACT OF THE STUDY For the first time the effect of low dose of ciprofloxacin on the core transcriptome of E. coli O26:H11 was described. The effects on the main biological functions and protein classes including transcriptional regulators were illustrated.
Collapse
Affiliation(s)
- C Valat
- Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon, Lyon, France
| | - E Hirchaud
- Anses, Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale et Biosécurité, Ploufrangan, France
| | - A Drapeau
- Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon, Lyon, France
| | - F Touzain
- Anses, Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale et Biosécurité, Ploufrangan, France
| | - C de Boisseson
- Anses, Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale et Biosécurité, Ploufrangan, France
| | - M Haenni
- Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon, Lyon, France
| | - Y Blanchard
- Anses, Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale et Biosécurité, Ploufrangan, France
| | - J-Y Madec
- Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon, Lyon, France
| |
Collapse
|
18
|
Paul TK, Hasan MM, Haque MA, Talukder S, Sarker YA, Sikder MH, Khan MAHNA, Sakib MN, Kumar A. Dietary supplementation of Neem ( Azadirachta indica) leaf extracts improved growth performance and reduced production cost in broilers. Vet World 2020; 13:1050-1055. [PMID: 32801554 PMCID: PMC7396339 DOI: 10.14202/vetworld.2020.1050-1055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/27/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Global trend to remove the antibiotic growth promoter (AGP) from animals contributes to the exploration of successful measures to sustain production and reduces the intestinal diseases in the post-AGP era. Plant extracts, therefore, have been used to improve performance and intestinal health. Here, we conducted a study to evaluate the effects of neem (Azadirachta indica) leaf extracts (NLE) as alternatives to AGPs in broiler chickens. Materials and Methods Sixty day-old broiler chicks were assigned to 12-floor pens, each stocked with five birds and divided into three treatment groups of four pens per treatment. The groups were: Negative control, basal diet without additives; positive control, basal diet with antibiotics and vitamins; and NLE treated group, basal diet supplemented with 0.1% aqua extract of neem leaves. Results Overall feed intake was significantly (p≤0.05) highest in the positive control. Higher body weight, higher dressing percentage, and lower feed conversion ratio were observed in birds treated with NLE compared to the negative control group (p≤0.05) but not the positive control group (p>0.05). There was no significant variation in hematology between different groups. Furthermore, the economic evaluation indicated that the NLE treatment was found cheaper than control and antibiotic treatment in cost-benefit analysis. Conclusion We suggest NLE might be a cheaper alternative to antibiotics in broiler production as indicated by improved body weight and feed efficiency.
Collapse
Affiliation(s)
- Torun Kumar Paul
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md Mehedi Hasan
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md Anowarul Haque
- Department of Surgery and Theriogenology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Sudipta Talukder
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Yousuf Ali Sarker
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | | | - Mohammed Nazmus Sakib
- Department of Animal Science, Faculty of Animal Husbandry, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Alip Kumar
- Department of Animal Science, School of Environmental and Rural Science, University of New England, Australia
| |
Collapse
|
19
|
Quinolone Complexes with Lanthanide Ions: An Insight into their Analytical Applications and Biological Activity. Molecules 2020; 25:molecules25061347. [PMID: 32188087 PMCID: PMC7144119 DOI: 10.3390/molecules25061347] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/01/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Quinolones comprise a series of synthetic bactericidal agents with a broad spectrum of activity and good bioavailability. An important feature of these molecules is their capacity to bind metal ions in complexes with relevant biological and analytical applications. Interestingly, lanthanide ions possess extremely attractive properties that result from the behavior of the internal 4f electrons, behavior which is not lost upon ionization, nor after coordination. Subsequently, a more detailed discussion about metal complexes of quinolones with lanthanide ions in terms of chemical and biological properties is made. These complexes present a series of characteristics, such as narrow and highly structured emission bands; large gaps between absorption and emission wavelengths (Stokes shifts); and long excited-state lifetimes, which render them suitable for highly sensitive and selective analytical methods of quantitation. Moreover, quinolones have been widely prescribed in both human and animal treatments, which has led to an increase in their impact on the environment, and therefore to a growing interest in the development of new methods for their quantitative determination. Therefore, analytical applications for the quantitative determination of quinolones, lanthanide and miscellaneous ions and nucleic acids, along with other applications, are reviewed here.
Collapse
|
20
|
β-Cyclodextrin functionalized N,Zn codoped carbon dots for specific fluorescence detection of fluoroquinolones in milk samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Egunova OR, Reshetnikova IS, Kazimirova KO, Shtykov SN. Magnetic Solid-Phase Extraction and Fluorimetric Determination of Some Fluoroquinolones. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820010062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Alla AEA. Residues of Tetracycline, Chloramphenicol and Tylosin Antibiotics in the Egyptian Bee Honeys Collected from Different Governorates. Pak J Biol Sci 2020; 23:385-390. [DOI: 10.3923/pjbs.2020.385.390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Luan F, Wang Y, Zhang S, Zhuang X, Tian C, Fu X, Chen L. Facile synthesis of a cyclodextrin-metal organic framework decorated with Ketjen Black and platinum nanoparticles and its application in the electrochemical detection of ofloxacin. Analyst 2020; 145:1943-1949. [DOI: 10.1039/c9an02575h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An electrochemical sensor for ofloxacin detection based on cyclodextrin-metal organic framework, Ketjen Black, and platinum nanoparticles.
Collapse
Affiliation(s)
- Feng Luan
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Yunfei Wang
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Shuang Zhang
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Xiuli Fu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Lingxin Chen
- Shandong Key Laboratory of Coastal Environmental Processes
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
| |
Collapse
|
24
|
Yu H, Wang Z, Wu R, Chen X, Chan TWD. Water-dispersible pH/thermo dual-responsive microporous polymeric microspheres as adsorbent for dispersive solid-phase extraction of fluoroquinolones from environmental water samples and food samples. J Chromatogr A 2019; 1601:27-34. [DOI: 10.1016/j.chroma.2019.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/22/2019] [Accepted: 05/03/2019] [Indexed: 12/25/2022]
|
25
|
Guo X, Zhang L, Wang Z, Sun Y, Liu Q, Dong W, Hao A. Fluorescent carbon dots based sensing system for detection of enrofloxacin in water solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:15-22. [PMID: 31030043 DOI: 10.1016/j.saa.2019.02.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/18/2019] [Accepted: 02/10/2019] [Indexed: 05/26/2023]
Abstract
Enrofloxacin (ENR) is one of the environmental pollutants need to remove in many wastewater treatment processes. Traditional methods for measuring ENR are often complex and time-consuming. Due to their low cost and high efficiency, fluorescent carbon dots can be used for detecting many pharmaceuticals. In this contribution, nitrogen doped fluorescent carbon dots (N-CDs) were firstly synthesized with a fluorescence quantum yield of 20.5%. The N-CDs can emit strong blue fluorescence when excited at 368 nm and there exist a large amount of carboxyl, hydroxyl and amine groups on their surfaces. In addition, the fluorescence of N-CDs could be quenched in the presence of Cu2+, which could be gradually restored upon adding ENR. Thereby, a rapid and sensitive fluorescent sensing strategy based on the fluorescence recovery of the N-CDs-Cu2+ system was designed for selective detection of ENR. The possible sensing mechanism was also proposed in terms of the results of resonance Rayleigh scattering, UV-vis absorption and Fourier transform infrared (FITR) spectra. Under the optimal condition, a good linear relationship was obtained for ENR determination with concentrations ranging from 1.0 to 15.0 μg·mL-1 and the detection limit of 0.16 μg·mL-1 was achieved. Finally the proposed sensing system was applied for the detection of ENR in real water samples with satisfactory results.
Collapse
Affiliation(s)
- Xingjia Guo
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Lizhi Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Zuowei Wang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Yuting Sun
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Qingshi Liu
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Wei Dong
- Department of Chemistry, Shenyang Medical College, Shenyang 110034, PR China.
| | - Aijun Hao
- College of Pharmacy, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
26
|
De Paepe E, Wauters J, Van Der Borght M, Claes J, Huysman S, Croubels S, Vanhaecke L. Ultra-high-performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry for multi-residue screening of pesticides, (veterinary) drugs and mycotoxins in edible insects. Food Chem 2019; 293:187-196. [PMID: 31151600 DOI: 10.1016/j.foodchem.2019.04.082] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
Abstract
A generic extraction and UHPLC-Q-Orbitrap™-HRMS method was developed for four insect species (mealworm, grasshopper, house cricket and black soldier fly) analyzing a large spectrum of organic chemical contaminants, including pesticides (n = 25), (veterinary) drugs (n = 29), and mycotoxins (n = 23). To prove the method as 'fit-for-purpose', a successful validation was performed, both qualitatively, by determining the screening detection limit (SDL), selectivity and specificity, as well as semi-quantitatively, by assessing the within-day precision (relative standard deviation (RSD)) and recovery. For both the mealworm, grasshopper, house cricket and black soldier fly, 64, 61, 59 and 62 compounds were detected at the respective SDL levels (1-100 μg kg-1), predominantly below existing maximum residue limits for other edible matrices. Mean recoveries ranged between 70% and 120% and RSD-values were in line with European regulations (CD 2002/657/EC; SANCO). Finally, the potential of the screening methodology was demonstrated on real insect samples, revealing minor to no contamination.
Collapse
Affiliation(s)
- Ellen De Paepe
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Jella Wauters
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Mik Van Der Borght
- Department of Microbial and Molecular Systems (M(2)S), Lab4food, Faculty of Engineering Technology, KU Leuven, Kleinhoefstraat 4, 2240 Geel, Belgium.
| | - Johan Claes
- Department of Microbial and Molecular Systems (M(2)S), Lab4food, Faculty of Engineering Technology, KU Leuven, Kleinhoefstraat 4, 2240 Geel, Belgium.
| | - Steve Huysman
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom.
| |
Collapse
|
27
|
Harrabi M, Alexandrino DAM, Aloulou F, Elleuch B, Liu B, Jia Z, Almeida CMR, Mucha AP, Carvalho MF. Biodegradation of oxytetracycline and enrofloxacin by autochthonous microbial communities from estuarine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:962-972. [PMID: 30144764 DOI: 10.1016/j.scitotenv.2018.08.193] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 05/22/2023]
Abstract
This work investigated the potential of microbial communities native to an estuarine environment to biodegrade enrofloxacin (ENR) and oxytetracycline (OXY). Sediments collected from two sites in the Douro river estuary (Porto, Portugal) were used as inocula for the biodegradation experiments. Experiments were carried out for one month, during which ENR and OXY (1 mg L-1) were supplemented individually or in mixture to the cultures at 10-day intervals. Acetate (400 mg L-1) was added to the cultures every 3 days to support microbial growth. A series of experimental controls were established in parallel to determine the influence of abiotic breakdown and adsorption in the removal of the antibiotics. Removal of antibiotics was followed by measuring their concentration in the culture medium. Additionally, next-generation sequencing of the 16S rRNA gene amplicon was employed to understand how microbial communities responded to the presence of the antibiotics. At the end of the biodegradation experiments, microbial cultures derived from the two estuarine sediments were able to remove up to 98% of ENR and over 95% of OXY. The mixture of antibiotics did not affect their removal. ENR was removed mainly by biodegradation, while abiotic mechanisms were found to have a higher influence in the removal of OXY. Both antibiotics adsorbed at different extents to the estuarine sediments used as inocula but exhibited a higher affinity to the sediment with finer texture and higher organic matter content. The presence of ENR and OXY in the culture media influenced the dynamics of the microbial communities, resulting in a lower microbial diversity and richness and in the predominance of bacterial species belonging to the phylum Proteobacteria. Therefore, microbial communities native from estuarine environments have potential to respond to the contamination caused by antibiotics and may be considered for the recovering of impacted environments through bioremediation.
Collapse
Affiliation(s)
- Malek Harrabi
- National School of Engineer of Sfax, Soukra Km 3.5 B.P. 1173-3038 Sfax,Tunisia
| | - Diogo A M Alexandrino
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fatma Aloulou
- National School of Engineer of Sfax, Soukra Km 3.5 B.P. 1173-3038 Sfax,Tunisia
| | - Boubaker Elleuch
- National School of Engineer of Sfax, Soukra Km 3.5 B.P. 1173-3038 Sfax,Tunisia
| | - Bei Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China
| | - C Marisa R Almeida
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Ana P Mucha
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Maria F Carvalho
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
28
|
Pagani AP, Ibañez GA. Analytical approach for the simultaneous determination of quinolones in edible animal products. Modeling pH–modulated fluorescence excitation–emission matrices four–way arrays. Talanta 2019; 192:52-60. [DOI: 10.1016/j.talanta.2018.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 11/16/2022]
|
29
|
Zhu S, Cao H, Yan X, Sun J, Qiu J, Qu X, Zuo YN, Wang X, Zhao XE. A convenient fluorescent assay for quinolones based on their inhibition towards the oxidase-like activity of Cu2+. NEW J CHEM 2019. [DOI: 10.1039/c8nj06285d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports on a novel and convenient fluorescent assay for four quinolones including nalidixic acid, cinoxacin, ciprofloxacin and moxifloxacin, with Cu2+-triggered and quinolone-inhibited oxidation of o-phenylenediamine.
Collapse
Affiliation(s)
- Shuyun Zhu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- China
| | - Han Cao
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- China
| | - Xiaolu Yan
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources
- Northwest Institute of Plateau Biology
- Chinese Academy of Sciences
- Xining City
- China
| | - Jiayi Qiu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- China
| | - Xiaoqing Qu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- China
| | - Ya-Nan Zuo
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- China
| | - Xiao Wang
- Shandong Key Laboratory of TCM Quality Control Technology
- Shandong Analysis and Test Center
- Qilu University of Technology (Shandong Academy of Sciences)
- 19 Keyuan Street
- Jinan 250014
| | - Xian-En Zhao
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City
- China
| |
Collapse
|
30
|
Barrasso R, Bonerba E, Savarino AE, Ceci E, Bozzo G, Tantillo G. Simultaneous Quantitative Detection of Six Families of Antibiotics in Honey Using A Biochip Multi-Array Technology. Vet Sci 2018; 6:E1. [PMID: 30597843 PMCID: PMC6466162 DOI: 10.3390/vetsci6010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 01/14/2023] Open
Abstract
Chemical residues of veterinary drugs such as streptomycin, chloramphenicol, macrolides, sulphonamides, tetracyclines, quinolones and aminoglycosides and other contaminants such as pesticides and heavy metals have been found in honey, leading to concerns for human health. Indeed, there is a growing interest in their presence and persistence in the environment because low levels of antibiotics may favour the proliferation of antibiotic-resistant bacteria. Moreover, antibiotics present in honey may produce residues in foodstuffs, causing adverse effects on humans such as allergic reactions, toxic effects and damage to the central nervous systems. For food and health/safety reasons, antibiotic drugs are not authorized for the treatment of honey bees in the EU, even though these antimicrobial drugs have been approved in many third-party countries. For this reason, contaminated honey products can still be found in European markets. Therefore, there is a need to develop a precise, accurate and sensitive analytical method that may be used to simply and rapidly detect these compounds in honey. The aim of our study was to detect the presence of antibiotics in Apulian honey using the Anti-Microbial array II (AM II) as an innovative screening method to test the health quality of honey and honey products.
Collapse
Affiliation(s)
- Roberta Barrasso
- Department of Veterinary Medicine, University of Bari Aldo Moro, strada Provinciale per Casamassima km 3, 70010 Valenzano (BA), Italy.
| | - Elisabetta Bonerba
- Department of Veterinary Medicine, University of Bari Aldo Moro, strada Provinciale per Casamassima km 3, 70010 Valenzano (BA), Italy.
| | - Alessandra Emilia Savarino
- Department of Veterinary Medicine, University of Bari Aldo Moro, strada Provinciale per Casamassima km 3, 70010 Valenzano (BA), Italy.
| | - Edmondo Ceci
- Department of Veterinary Medicine, University of Bari Aldo Moro, strada Provinciale per Casamassima km 3, 70010 Valenzano (BA), Italy.
| | - Giancarlo Bozzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, strada Provinciale per Casamassima km 3, 70010 Valenzano (BA), Italy.
| | - Giuseppina Tantillo
- Department of Veterinary Medicine, University of Bari Aldo Moro, strada Provinciale per Casamassima km 3, 70010 Valenzano (BA), Italy.
| |
Collapse
|
31
|
Wu H, Liu Y, Chang J, Zhao B, Huo Y, Wang Z, Shi Y. Extraction of Five Fluoroquinolones in Eggs by Magnetic Solid-Phase Extraction with Fe3O4–MoS2 and Determination by HPLC-UV. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1404-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Li J, Ming M, Huai W, Cai Z, Sun Z, Ye N. Fast and simple determination of moroxydine residues in pig and chicken samples by ultra-performance liquid chromatography-tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2111-2119. [PMID: 30211663 DOI: 10.1080/19440049.2018.1512756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A general solid-phase extraction (SPE) method using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the determination of moroxydine residues in pig and chicken samples has been developed. After extraction and purification of real samples, moroxydine residues were detected using a hydrophobic interaction liquid chromatography column with an optimised mobile phase composition. The extraction reagents, the kind of SPE columns and the type of eluents were optimised to achieve the maximum extraction efficiency. The matrix effects from the animal tissue influenced the quality of the quantitative data obtained. Under the optimised conditions, the moroxydine residues in pig and chicken samples spiked at three levels (1.0 μg/kg, 5.0 μg/kg and 10.0 μg/kg) were determined with good recoveries (61.5%-105.4%) and adequate relative standard deviations (3.2%-13.0%). In pig and chicken samples, the limit of detection (LOD) was 0.3 μg/kg, and the limit of quantification (LOQ) was 1.0 μg/kg. A sufficiently linear relationship in the range of 1.0 μg/kg-20.0 μg/kg was achieved with a good correlation coefficient (R2 ≥ 0.99).
Collapse
Affiliation(s)
- Jian Li
- a Beijing Institute of Veterinary Drugs Control , Beijing , P. R. China
| | - Meiting Ming
- b Department of Chemistry , Capital Normal University , Beijing , P. R. China
| | - Wenhui Huai
- a Beijing Institute of Veterinary Drugs Control , Beijing , P. R. China
| | - Zhimin Cai
- b Department of Chemistry , Capital Normal University , Beijing , P. R. China
| | - Zhiwen Sun
- a Beijing Institute of Veterinary Drugs Control , Beijing , P. R. China
| | - Nengsheng Ye
- b Department of Chemistry , Capital Normal University , Beijing , P. R. China
| |
Collapse
|
33
|
Mu H, Xu Z, Liu Y, Sun Y, Wang B, Sun X, Wang Z, Eremin S, Zherdev AV, Dzantiev BB, Lei H. Probing the stereoselective interaction of ofloxacin enantiomers with corresponding monoclonal antibodies by multiple spectrometry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 194:83-91. [PMID: 29328954 DOI: 10.1016/j.saa.2018.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Although stereoselective antibody has immense potential in chiral compounds detection and separation, the interaction traits between stereoselective antibody and the corresponding antigenic enantiomers are not yet fully exploited. In this study, the stereospecific interactions between ofloxacin isomers and corresponding monoclonal antibodies (McAb-WR1 and McAb-MS1) were investigated using time-resolved fluorescence, steady-state fluorescence, and circular dichroism (CD) spectroscopic methods. The chiral recognition discrepancies of antibodies with ofloxacin isomers were reflected through binding constant, number of binding sites, driving forces and conformational changes. The major interacting forces of McAb-WR1 and McAb-MS1 chiral interaction systems were hydrophobic force and van der Waals forces joined up with hydrogen bonds, respectively. Synchronous fluorescence spectra and CD spectra results showed that the disturbing of tyrosine and tryptophan micro-environments were so slightly that no obvious secondary structure changes were found during the chiral hapten binding. Clarification of stereospecific interaction of antibody will facilitate the application of immunoassay to analyze chiral contaminants in food and other areas.
Collapse
Affiliation(s)
- Hongtao Mu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University / Guangdong Provincial Engineering & Technique Research Centre of Food Safety Detection and Risk Assessment, Guangzhou 510642, China; College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University / Guangdong Provincial Engineering & Technique Research Centre of Food Safety Detection and Risk Assessment, Guangzhou 510642, China
| | - Yingju Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University / Guangdong Provincial Engineering & Technique Research Centre of Food Safety Detection and Risk Assessment, Guangzhou 510642, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University / Guangdong Provincial Engineering & Technique Research Centre of Food Safety Detection and Risk Assessment, Guangzhou 510642, China
| | - Baoling Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University / Guangdong Provincial Engineering & Technique Research Centre of Food Safety Detection and Risk Assessment, Guangzhou 510642, China
| | - Xiulan Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhanhui Wang
- College of Veterinary, China Agricultural University, Beijing 100083, China
| | - Sergei Eremin
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University / Guangdong Provincial Engineering & Technique Research Centre of Food Safety Detection and Risk Assessment, Guangzhou 510642, China.
| |
Collapse
|
34
|
Selection of specific aptamer against enrofloxacin and fabrication of graphene oxide based label-free fluorescent assay. Anal Biochem 2018; 549:124-129. [PMID: 29574118 DOI: 10.1016/j.ab.2018.03.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 01/29/2023]
Abstract
Specific ssDNA aptamers for the antibiotic enrofloxacin (ENR) were isolated from an enriched nucleotide library by SELEX (Systematic Evolution of Ligands by EXponential enrichment) method with high binding affinity. After seven rounds, five aptamers were selected and identified. Apt58 with highest affinity and sensitivity (Kd = 14.19 nM) was employed to develop a label-free fluorescent biosensing approach based on aptamer, graphene oxide (GO) and native fluorescence of ENR for determination of ENR residue in raw milk samples. Under optimized experimental conditions, the linear range was from 5 nM to 250 nM and LOD was calculated to be 3.7 nM, and the recovery rate was between 94.1% and 108.5%. The integration of aptamer and GO in this bioassay provides a promising way for rapid, sensitive and cost-effective detection of ENR in real samples like raw milk.
Collapse
|
35
|
Rodríguez-Gómez R, García-Córcoles MT, Çipa M, Barrón D, Navalón A, Zafra-Gómez A. Determination of quinolone residues in raw cow milk. Application of polar stir-bars and ultra-high performance liquid chromatography–tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1127-1138. [DOI: 10.1080/19440049.2018.1430382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Rocío Rodríguez-Gómez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, Campus of Fuentenueva, University of Granada, Granada, Spain
| | - María Teresa García-Córcoles
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, Campus of Fuentenueva, University of Granada, Granada, Spain
| | - Morsina Çipa
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, Campus of Fuentenueva, University of Granada, Granada, Spain
- Department of Chemistry, University of Tirana, Tirana, Albania
| | - Dolores Barrón
- Department of Nutrition, Food Science and Gastronomy, INSA, Torribera Campus, University of Barcelona, Barcelona, Spain
| | - Alberto Navalón
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, Campus of Fuentenueva, University of Granada, Granada, Spain
| | - Alberto Zafra-Gómez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, Campus of Fuentenueva, University of Granada, Granada, Spain
| |
Collapse
|
36
|
Simultaneous determination of five fluoroquinolones by the selective high performance liquid chromatography associating with sensitive resonance light scattering and mechanism study. Microchem J 2018. [DOI: 10.1016/j.microc.2017.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Biošić M, Škorić I, Beganović J, Babić S. Nitrofurantoin hydrolytic degradation in the environment. CHEMOSPHERE 2017; 186:660-668. [PMID: 28818593 DOI: 10.1016/j.chemosphere.2017.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/29/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Occurrence of pharmaceuticals, especially antibiotics in the environment increased attention to their environmental fate. Hydrolysis is one of two abiotic processes by which compounds are degraded in the environment. According to authors knowledge this is the first study investigating hydrolytic degradation of nitrofurantoin at pH-values normally found in the environment. Nitrofurantoin hydrolytic degradation appeared to be much slower at acidic (pH 4) solution compared to neutral (pH 7) and alkaline (pH 9) solutions at all three investigated temperatures (20 °C, 40 °C and 60 °C). In all cases nitrofurantoin hydrolysis followed the first-order kinetics with half-lives ranged from 0.5 days at pH 9 and 60 °C to 3.9 years at pH 4 and 20 °C. Temperature dependence of the hydrolysis rate constant was quantified by Arrhenius equation; obtained Ea values were as follows: 100.7 kJ mol-1 at pH 4, 111.2 kJ mol-1 at pH 7 and 102.3 kJ mol-1 at pH 9. Increase in hydrolysis rate constants for each 10 °C increase in temperature were 3.4, 3.9 and 3.5 at pH 4, pH 7 and pH 9, respectively. The structures of hydrolytic degradation products were determined and degradation pathways were suggested. Three main processes occurred depending on pH-values: protonation of the nitrofurantoin followed by cleavage of the NN single bond, heterocyclic non-aromatic ring cleavage, and reduction of the non-aromatic heterocyclic ring.
Collapse
Affiliation(s)
- Martina Biošić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia.
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Jasmina Beganović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Sandra Babić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
38
|
Almeida HFD, Freire MG, Marrucho IM. Improved Monitoring of Aqueous Samples by the Concentration of Active Pharmaceutical Ingredients using Ionic-Liquid-based Systems. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2017; 19:4651-4659. [PMID: 30271271 PMCID: PMC6157720 DOI: 10.1039/c7gc01954h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fluoroquinolones (FQs) and Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are two classes of Active Pharmaceutical Ingredients (APIs), widespreadly used in human healthcare and as veterinary drugs, and that have been found throughout the water cycle in the past years. These two classes of APIs are commonly present in aqueous streams in concentrations ranging from ng.L-1 to µg.L-1. Despite such low concentrations, these contaminants tend to bioaccumulate, leading to serious environmental and health issues after chronic exposure. The low concentrations of FQs and NSAIDs in aqueous media also render their difficult identification and quantification, wich may result in an unefficient evaluation of their environmental impact and persistence. Therefore, the development of alternative pre-treatment techniques for their extraction and concentration from aqueous samples is a crucial requirement. In this work, liquid-liquid systems, namely ionic-liquid-based aqueous biphasic systems (IL-based ABS), were tested as simultaneous extraction and concentration platforms of FQs and NSAIDs. ABS composed of imidazolium-, ammonium- and phosphonium-based ILs and a citrate-based salt (C6H5K3O7) were evaluated for the single-step extraction and concentration of three FQs (ciprofloxacin, enrofloxacin and norfloxacin) and three NSAIDs (diclofenac, naproxen and ketoprofen) from aqueous samples. Outstanding one-step extraction efficiencies of APIs close to 100% were obtained. Furthermore, concentration factors of both FQs and NSAIDs were optimized by an appropriate manipulation of the phase-forming components compositions to tailor the volumes of the coexisting phases. Concentration factors of 1000-fold of both FQS and NSAIDs were obtained in a single-step, without reaching the saturation of the IL-rich phase. The concentration of APIs up to the mg.L-1 allowed their easy and straightforward identification and quantification by High-Performance Liquid Chromatography (HPLC) coupled to an UV detector, as shown either with model aqueous samples or real wastewater effluent samples.
Collapse
Affiliation(s)
- Hugo F. D. Almeida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- CICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G. Freire
- CICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel M. Marrucho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
39
|
Development of certified reference materials for accurate determination of fluoroquinolone antibiotics in chicken meat. Food Chem 2017; 229:472-478. [DOI: 10.1016/j.foodchem.2017.02.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 01/17/2023]
|
40
|
Li Z, Qi M, Tu C, Wang W, Chen J, Wang AJ. Magnetic Metal-Organic Framework/Graphene Oxide-Based Solid-Phase Extraction Combined with Spectrofluorimetry for the Determination of Enrofloxacin in Milk Sample. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0971-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Su L, Jin Y, Huang Y, Zhao R. Surface-imprinted magnetic nanoparticles for the selective enrichment and fast separation of fluoroquinolones in human serum. J Sep Sci 2017; 40:2269-2277. [DOI: 10.1002/jssc.201700080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Liming Su
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| |
Collapse
|
42
|
Zhang Z, Cheng H. Recent Development in Sample Preparation and Analytical Techniques for Determination of Quinolone Residues in Food Products. Crit Rev Anal Chem 2017; 47:223-250. [DOI: 10.1080/10408347.2016.1266924] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhichao Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, P. R. China
| |
Collapse
|
43
|
Li Z, Li Z, Zhao D, Wen F, Jiang J, Xu D. Smartphone-based visualized microarray detection for multiplexed harmful substances in milk. Biosens Bioelectron 2017; 87:874-880. [DOI: 10.1016/j.bios.2016.09.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/04/2016] [Accepted: 09/13/2016] [Indexed: 11/24/2022]
|
44
|
Bitas D, Samanidou VF. Effective cleanup for the determination of six quinolone residues in shrimp before HPLC with diode array detection in compliance with the European Union Decision 2002/657/EC. J Sep Sci 2016; 39:4805-4811. [DOI: 10.1002/jssc.201600945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/14/2016] [Accepted: 10/16/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Dimitrios Bitas
- Laboratory of Analytical Chemistry, Department of Chemistry; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Victoria F. Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
45
|
Long C, Deng B, Sun S, Meng S. Simultaneous determination of chlortetracycline, ampicillin and sarafloxacin in milk using capillary electrophoresis with electrochemiluminescence detection. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 34:24-31. [PMID: 27805474 DOI: 10.1080/19440049.2016.1254820] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A fast, inexpensive and sensitive approach for the simultaneous determination of chlortetracycline, ampicilline and sarafloxacin in milk was developed using capillary electrophoresis coupled with an electrochemiluminescence detector. Under the optimal detection conditions, the linear ranges for chlortetracyline, ampicilline and sarafloxacin were 0.030-5.0, 0.050-5.0 and 0.0040-2.0 μg ml-1, respectively. The correlation coefficients of chlortetracycline, ampicilline and sarafloxacin were determined as 0.9997, 0.9952 and 0.9978, respectively. Detection limits (S/N = 3) of chlortetracycline, ampicilline and sarafloxacin were found as 0.017, 0.018 and 0.0013 μg ml-1, respectively. This method was successfully applied for the determination of chlortetracycline, ampicilline and sarafloxacin in milk. The recoveries were between 95.3% and 100%. The relative standard deviations of the detection limit and recovery were less than 2.6% and 3.2%, respectively.
Collapse
Affiliation(s)
- Chanjuan Long
- a Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin , China
| | - Biyang Deng
- a Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin , China
| | - Shuangjiao Sun
- a Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin , China
| | - Sa Meng
- a Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin , China
| |
Collapse
|
46
|
Almeida HFD, Freire MG, Marrucho IM. Improved extraction of fluoroquinolones with recyclable ionic-liquid-based aqueous biphasic systems. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2016; 18:2717-2725. [PMID: 27642262 PMCID: PMC5024758 DOI: 10.1039/c5gc02464a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the past few years, the improvement of advanced analytical tools allowed to confirm the presence of trace amounts of metabolized and unchanged active pharmaceutical ingredients (APIs) in wastewater treatment plants (WWTPs) as well as in freshwater surfaces. It is known that the continuous contact with APIs, even at very low concentrations (ng L-1-μg L-1), leads to serious human health problems. In this context, this work shows the feasibility of using ionic-liquid-based aqueous biphasic systems (IL-based ABS) in the extraction of quinolones present in aqueous media. In particular, ABS composed of imidazolium- and phosphonium-based ILs and aluminium-based salts (already used in water treatment plants) were evaluated in one-step extractions of six fluoroquinolones (FQs), namely ciprofloxacin, enrofloxacin, moxifloxacin, norfloxacin, ofloxacin and sarafloxacin, and extraction efficiencies up to 98% were obtained. Despite the large interest devoted to IL-based ABS as extractive systems of outstanding performance, their recyclability/reusability has seldomly been studied. An efficient extraction/cleaning process of the IL-rich phase is here proposed by FQs induced precipitation. The recycling of the IL and its further reuse without losses in the ABS extractive performance for FQs were established, as confirmed by the four consecutive removal/extraction cycles evaluated. This novel recycling strategy supports IL-based ABS as sustainable and cost-efficient extraction platforms.
Collapse
Affiliation(s)
- Hugo F. D. Almeida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- CICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G. Freire
- CICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel M. Marrucho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|
47
|
Sturini M, Speltini A, Maraschi F, Profumo A, Tarantino S, Gualtieri AF, Zema M. Removal of fluoroquinolone contaminants from environmental waters on sepiolite and its photo-induced regeneration. CHEMOSPHERE 2016; 150:686-693. [PMID: 26796589 DOI: 10.1016/j.chemosphere.2015.12.127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/27/2015] [Accepted: 12/29/2015] [Indexed: 05/27/2023]
Abstract
Sepiolite is studied as sorbent for removal of Fluoroquinolone (FQ) contaminants from water. Marbofloxacin (MAR) and Enrofloxacin (ENR) were chosen as model FQs since they are the two most commonly employed veterinary FQs in livestock farming in northern Italy. Adsorption experiments on two sepiolites (SP-1 and SSE16) were carried out in tap water at pH 7.5 to better mimic real conditions. The sorption experimental data were fitted by Freundlich, Langmuir and S-Logistic1 models. The latter better described MAR and ENR adsorptions. Adsorption capacities of SP-1 and SSE16, respectively, were 132 mg g(-1) and 121 mg g(-1) for MAR, and 112 mg g(-1) and 93 mg g(-1) for ENR. X-ray powder diffraction, performed on clay samples enriched with each FQ and on the pristine clays, showed no substantial differences between the two sepiolites and evidenced no significant structural changes after FQs uptake, as also verified by infrared spectroscopy. This indicates that adsorption occurs only on the external surface of the mineral and not in the intracrystalline microporosity, likely due to the interaction between the FQ carboxylic group and the sepiolite surface. For the first time solid-state photodegradation of the adsorbed FQs was investigated for regenerating the sorbent. Results showed that the adsorbed drugs are effectively photodegraded by solar light, thus allowing sepiolite to be reused. The efficiency of this material for remediation of contaminated water was proved on ditch water, collected downstream a swine farm, containing some tens of ng L(-1) of MAR and ENR.
Collapse
Affiliation(s)
- Michela Sturini
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy.
| | - Andrea Speltini
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Federica Maraschi
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Antonella Profumo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Serena Tarantino
- Department of Earth and Environmental Sciences, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Alessandro F Gualtieri
- Department of Chemical and Earth Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Michele Zema
- Department of Earth and Environmental Sciences, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
48
|
Preparation and characterization of novel thermosensitive magnetic molecularly imprinted polymers for selective recognition of norfloxacin. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-0972-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Zeng H, Chen J, Zhang C, Huang XA, Sun Y, Xu Z, Lei H. Broad-Specificity Chemiluminescence Enzyme Immunoassay for (Fluoro)quinolones: Hapten Design and Molecular Modeling Study of Antibody Recognition. Anal Chem 2016; 88:3909-16. [PMID: 26976361 DOI: 10.1021/acs.analchem.6b00082] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
On the basis of the structural features of (fluoro)quinolones (FQs), pazufloxacin was first used as a generic immunizing hapten to raise a broad-specificity antibody. The obtained polyclonal antibody exhibited broad cross-reactivity ranging from 5.19% to 478.77% with 21 FQs. Furthermore, the antibody was able to recognize these FQs below their maximum residue limits (MRLs) in an indirect competitive chemiluminescence enzyme immunoassay (ic-CLEIA), with the limit of detection (LOD) ranging from 0.10 to 33.83 ng/mL. For simply pretreated milk samples with spiked FQs, the ic-CLEIA exhibited an excellent recovery with a range of 84.6-106.9% and an acceptable coefficient of variation below 15%, suggesting its suitability and reliability for the use of a promising tool to detect FQs. Meanwhile, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models, with statistically significant correlation coefficients (q(2)CoMFA = 0.559, r(2)CoMFA = 0.999; q(2)CoMSIA = 0.559, r(2)CoMSIA = 0.994), were established to investigate the antibody recognition mechanism. These two models revealed that in the antibody, the active cavity binding FQs' 7-position substituents worked together with another cavity (binding FQs' 1-position groups) to crucially endow the high cross-reactivity. This investigation will be significant for better exploring the recognition mechanism and for designing new haptens.
Collapse
Affiliation(s)
- Haopeng Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science, South China Agricultural University , Guangzhou, 510642, P. R. China
| | - Jiahong Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science, South China Agricultural University , Guangzhou, 510642, P. R. China
| | - Chijian Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science, South China Agricultural University , Guangzhou, 510642, P. R. China
| | - Xin-An Huang
- Tropical Medicine Institute & South China Chinese Medicine Collaborative Innovation Center, Guangzhou University of Chinese Medicine , Guangzhou, 510405, P. R. China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science, South China Agricultural University , Guangzhou, 510642, P. R. China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science, South China Agricultural University , Guangzhou, 510642, P. R. China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science, South China Agricultural University , Guangzhou, 510642, P. R. China
| |
Collapse
|
50
|
Seyhan Bozkurt S, Erdogan D, Antep M, Tuzmen N, Merdivan M. Use of ionic liquid based chitosan as sorbent for preconcentration of fluoroquinolones in milk, egg, fish, bovine, and chicken meat samples by solid phase extraction prior to HPLC determination. J LIQ CHROMATOGR R T 2016. [DOI: 10.1080/10826076.2015.1116010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Serap Seyhan Bozkurt
- Faculty of Science, Department of Chemistry, Dokuz Eylul University, Kaynaklar Campus, Izmir, Turkey
| | - Deniz Erdogan
- Faculty of Science, Department of Chemistry, Dokuz Eylul University, Kaynaklar Campus, Izmir, Turkey
| | - Mine Antep
- Faculty of Science, Department of Chemistry, Dokuz Eylul University, Kaynaklar Campus, Izmir, Turkey
| | - Nalan Tuzmen
- Faculty of Science, Department of Chemistry, Dokuz Eylul University, Kaynaklar Campus, Izmir, Turkey
| | - Melek Merdivan
- Faculty of Science, Department of Chemistry, Dokuz Eylul University, Kaynaklar Campus, Izmir, Turkey
| |
Collapse
|