1
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
2
|
Bonaccorso G, Renai L, Checchini L, Del Bubba M. A Novel Apparatus for the Fully Automated Extraction and Online Liquid Chromatographic Analysis of Solid Environmental Samples: Application to the Pressurized Hot Water Extraction of Pharmaceuticals in Soil. Anal Chem 2024; 96:11390-11396. [PMID: 38965040 DOI: 10.1021/acs.analchem.4c01479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
A new self-assembled apparatus for the extraction of solid samples was designed and implemented to perform a recirculated pressurized hot water extraction (R-PHWE) directly coupled to liquid chromatography-tandem mass spectrometry. To investigate the potential of this new extraction apparatus, 34 target pharmaceutical compounds were analyzed in loam, silt-loam, and silty-clay-loam soils. The target analytes were characterized by heterogeneous physicochemical properties (e.g., -1.60 ≤ log D ≤ 5.91 at pH = 7.2, i.e., at the mean pH values of the three soils). Design of experiments (DoE) was used to identify the best extraction conditions for the target analytes by studying temperature, pressure, and number of extraction cycles. The results of DoE optimization pointed out the significant influence of the number of cycles on recovery. The application of DoE set point to the three reference soils provided recoveries ≥60% for 21-25 out the 34 target analytes, depending on soil. Good recovery precision (<25%) and moderate suppressive matrix effect (≤40%) were found for most target analytes, regardless of the soil considered. The optimized R-PHWE procedure evidenced statistically higher recoveries for 16 out of 34 target analytes when compared to conventional off-line dynamic PHWE.
Collapse
Affiliation(s)
- Giulia Bonaccorso
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Lapo Renai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Leonardo Checchini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Massimo Del Bubba
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
3
|
Hurkul MM, Cetinkaya A, Kaya SI, Yayla S, Ozkan SA. Investigation of Health Effects of Major Phenolic Compounds in Foods: Extraction Processes, Analytical Approaches and Applications. Crit Rev Anal Chem 2024:1-35. [PMID: 38650305 DOI: 10.1080/10408347.2024.2336981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The escalating costs of healthcare services and a growing awareness of personal health responsibilities have led individuals to explore natural methods alongside conventional medicines for health improvement and disease prevention. The aging global population is experiencing increased health needs, notably related to conditions like diabetes, heart disease, and hypertension. Lifestyle-related diseases, poor dietary habits, and sedentary lifestyles underscore the importance of foods containing nutrients that can aid in preventing and managing these diseases. Phenolic compounds, a fundamental group of phytochemicals, are prominent in the chemical diversity of the natural world and are abundant in functional foods. Widely distributed in various plant parts, these compounds exhibit important functional and sensory properties, including color, taste, and aroma. Their diverse functionalities, particularly antioxidant activity, play a crucial role in mitigating cellular oxidative stress, potentially reducing damage associated with serious health issues such as cardiovascular disease, neurodegenerative disea23ses, and cancer. Phenolic compounds exist in different forms, some combined with glycosides, impacting their biological effects and absorption. Approximately 8000 polyphenols isolated from plants offer significant potential for natural medicines and nutritional supplements. Therefore, their extraction process and selective and sensitive food determination are very important. This review focuses on the extraction processes, analytical methods, and health effects of major phenolic compounds in foods. The examination encompasses a comprehensive analysis of analytical approaches and their applications in elucidating the presence and impact of these compounds on human health.
Collapse
Affiliation(s)
- M Mesud Hurkul
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Seyda Yayla
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
Yabalak E, Aminzai MT, Gizir AM, Yang Y. A Review: Subcritical Water Extraction of Organic Pollutants from Environmental Matrices. Molecules 2024; 29:258. [PMID: 38202840 PMCID: PMC10780272 DOI: 10.3390/molecules29010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Most organic pollutants are serious environmental concerns globally due to their resistance to biological, chemical, and photolytic degradation. The vast array of uses of organic compounds in daily life causes a massive annual release of these substances into the air, water, and soil. Typical examples of these substances include pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Since they are persistent and hazardous in the environment, as well as bio-accumulative, sensitive and efficient extraction and detection techniques are required to estimate the level of pollution and assess the ecological consequences. A wide variety of extraction methods, including pressurized liquid extraction, microwave-assisted extraction, supercritical fluid extraction, and subcritical water extraction, have been recently used for the extraction of organic pollutants from the environment. However, subcritical water has proven to be the most effective approach for the extraction of a wide range of organic pollutants from the environment. In this review article, we provide a brief overview of the subcritical water extraction technique and its application to the extraction of PAHs, PCBs, pesticides, pharmaceuticals, and others form environmental matrices. Furthermore, we briefly discuss the influence of key extraction parameters, such as extraction time, pressure, and temperature, on extraction efficiency and recovery.
Collapse
Affiliation(s)
- Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, TR-33343 Mersin, Türkiye
| | - Mohammad Tahir Aminzai
- Department of Organic Chemistry, Faculty of Chemistry, Kabul University, Kabul 1006, Afghanistan;
| | - Ahmet Murat Gizir
- Department of Chemistry, Faculty of Science, Mersin University, TR-33343 Mersin, Türkiye;
| | - Yu Yang
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
5
|
Steiner J, Kupetz M, Becker T. Influence of Hydrothermal Treatment of Brewer's Spent Grain on the Concentration and Molecular Weight Distribution of 1,3-1,4-β-D-Glucan and Arabinoxylan. Foods 2023; 12:3778. [PMID: 37893671 PMCID: PMC10606534 DOI: 10.3390/foods12203778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Brewer's spent grain (BSG) is the most abundant residual in the brewing process. Non-starch polysaccharides such as 1,3-1,4-β-D-glucan (β-glucan) and arabinoxylan (AX) with proven beneficial effects on human health remain in this by-product in high amounts. Incorporating the valuable dietary fiber into the food industry could contribute to a healthy diet. However, a major challenge is extracting these dietary fibers (i.e., β-glucan and AX) from the solid residue. In this study, hydrothermal treatment (HT) was applied to dissolve the remaining water-insoluble carbohydrates from BSG with the aim to extract high amounts of β-glucan and AX. Particular focus was placed on the molecular weight (MW) range above 50 kDa and 20 kDa, respectively, as these are considered to have health-promoting effects. Different treatment temperatures, reaction times, and internal reactor pressures were tested to determine the best process settings to achieve high yields of β-glucan and AX and to examine the influence on their molecular weight distribution (MWD). Overall, 85.1% β-glucan and 77.3% AX were extracted corresponding to 6.3 g per kg BSG at 160 °C and 178.3 g kg-1 at 170 °C, respectively. However, less than 20% of both fiber substances were in the desirable MW range above 50 kDa and 20 kDa, respectively. When lower temperatures of 140 and 150 °C were applied, yields of only 3.0 g kg-1 β-glucan and 128.8 g kg-1 AX were obtained, whereby the proportion of desirable fiber fractions increased up to 45%. Further investigations focused on the heat-induced degradation of monosaccharides and the formation of undesirable by-products (i.e., HMF and furfural) that might pose a health risk.
Collapse
Affiliation(s)
- Julia Steiner
- Research Group Beverage and Cereal Biotechnology, Institute of Brewing and Beverage Technology, Technical University of Munich, 85354 Freising, Germany
| | | | | |
Collapse
|
6
|
Li F, Muhmood A, Tavakoli S, Park S, Kong L, Zhu H, Wei Y, Wei Y. Subcritical low temperature extraction of bioactive ingredients from foods and food by-products and its applications in the agro-food industry. Crit Rev Food Sci Nutr 2023; 64:8218-8230. [PMID: 37039080 DOI: 10.1080/10408398.2023.2198009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Bioactive ingredients are part of the food chain and are responsible for numerous health benefits. Subcritical low temperature extraction has been employed to acquire bioactive ingredients because of its excellent properties, such as energy conservation, low temperature, elimination of residual solvent, and high extraction yield and quality. This review aims to provide a clear picture of the basics of subcritical-temperature extraction, its bioactive ingredient extraction efficiency, and possible applications in the agro-food industry. This review suggested that the extraction temperature, time, co-solvents, solid-fluid ratio, and pressure impacted the extraction efficiency of bioactive ingredients from foods and food by-products. Subcritical solvents are appropriate for extracting low polar ingredients, while the inclusion of co-solvents could extract medium and high polar substances. Bioactive ingredients from foods and food by-products can be used as antioxidants, colorants, and nutritional supplements. Additionally, this technology could remove pesticide residues in tea, concentrate edible proteins, and reduce cigarette tar. A new trend toward using subcritical low temperature extraction in extracting bioactive ingredients will acquire momentum.
Collapse
Affiliation(s)
- Fei Li
- College of Life Science, Qingdao University, Qingdao, China
| | - Atif Muhmood
- Institure of Soil Chemistry & Environmental Sciences, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Samad Tavakoli
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Solju Park
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lingyao Kong
- College of Life Science, Qingdao University, Qingdao, China
| | - Hongguang Zhu
- College of Life Science, Qingdao University, Qingdao, China
| | - Yuxi Wei
- College of Life Science, Qingdao University, Qingdao, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
7
|
Adeeyo AO, Oyetade JA, Alabi MA, Adeeyo RO, Samie A, Makungo R. Tuning water chemistry for the recovery of greener products: pragmatic and sustainable approaches. RSC Adv 2023; 13:6808-6826. [PMID: 36865581 PMCID: PMC9972008 DOI: 10.1039/d2ra06596g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
The environmental impact and denaturing propensity of organic solvents in the extraction of plant bioactives pose great challenges in extraction systems. As a result, proactive consideration of procedures and evidence for tuning water properties for better recovery and positive influence on the green synthesis of products become pivotal. The conventional maceration approach takes a longer duration (1-72 h) for product recovery while percolation, distillation, and Soxhlet extractions take about 1 to 6 h. An intensified modern hydro-extraction process was identified for tuning water properties with an appreciable yield similar to organic solvents within 10-15 min. The percentage yield of tuned hydro-solvents achieved close to 90% recovery of active metabolites. The additional advantage of using tuned water over organic solvents is in the preservation of the bio-activities and forestalling the possibility of contamination of the bio-matrices during extractions with an organic solvent. This advantage is based on the fast extraction rate and selectivity of the tuned solvent when compared to the traditional approach. This review uniquely approaches the study of biometabolite recovery through insights from the chemistry of water under different extraction techniques for the very first time. Current challenges and prospects from the study are further presented.
Collapse
Affiliation(s)
- A O Adeeyo
- Ecology and Resource Management Unit, Faculty of Science, Engineering and Agriculture, University of Venda Thohoyandou 0950 South Africa
- Aqua Plantae Research Group, University of Venda Thohoyandou 0950 South Africa
| | - J A Oyetade
- Material Science and Engineering, School of Materials, Water, Energy and Environmental Science, Nelson Mandela African Institution of Science and Technology Arusha Tanzania
| | - M A Alabi
- Department of Microbiology, School of Life Sciences, Federal University of Technology Akure Nigeria
| | - R O Adeeyo
- Ecology and Resource Management Unit, Faculty of Science, Engineering and Agriculture, University of Venda Thohoyandou 0950 South Africa
| | - A Samie
- Department of Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda Thohoyandou 0950 South Africa
| | - R Makungo
- Department of Earth Science, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
8
|
Peng J, Abdulla R, Li Y, Liu XY, He F, Xin XL, Aisa HA. Potential anti-diabetic components of Apocynum venetum L. flowers: Optimization, chemical characterization and quality evaluation. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Alasalvar H, Kaya M, Berktas S, Basyigit B, Cam M. Pressurised hot water extraction of phenolic compounds with a focus on eriocitrin and hesperidin from lemon peel. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hamza Alasalvar
- Department of Food Engineering, Faculty of Engineering Nigde Omer Halisdemir University 51240 Niğde Turkey
| | - Murat Kaya
- Department of Food Engineering, Faculty of Engineering Erciyes University 38039 Kayseri Turkey
| | - Serap Berktas
- Department of Food Engineering, Faculty of Engineering Erciyes University 38039 Kayseri Turkey
| | - Bülent Basyigit
- Department of Food Engineering Faculty of Engineering, Harran University 63300 Sanlıurfa Turkey
| | - Mustafa Cam
- Department of Food Engineering, Faculty of Engineering Erciyes University 38039 Kayseri Turkey
| |
Collapse
|
10
|
Phenolic Compounds Recovery from Pomegranate (Punica granatum L.) By-Products of Pressurized Liquid Extraction. Foods 2022; 11:foods11081070. [PMID: 35454656 PMCID: PMC9024887 DOI: 10.3390/foods11081070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 12/22/2022] Open
Abstract
This study aimed to valorize pomegranate by-products (peel and carpelar membranes—PPCM) through their high biological potential for phenolic compounds recovery. The influence of lower temperatures (40 and 60 °C) and pressures (20, 40, 60, 80, and 100 bar) than those generally used in pressurized liquid extraction (PLE) was evaluated through global extraction yield (X0), and qualitative and quantitative composition of the phenolic compounds. Chromatographic techniques were used to analyze the two treatments with the highest X0. Temperature, pressure, and their interaction had a significant influence on X0. The best phenolic compounds extraction conditions were using pressurized ethanol at 60 °C and 40 bar (extract 1—E1, 37% on d.b.) and 60 °C and 80 bar (extract 2—E2, 45% on d.b.). Nevertheless, E1 presented a significantly higher content of α, β punicalagin, and ellagic acid (48 ± 2, 146 ± 11, and 25.6 ± 0.3 mg/100 g, respectively) than E2 (40 ± 2, 126 ± 4, and 22.7 ± 0.3 mg/100 g). Therefore, this study could validate the use of low pressures and temperatures in PLE to recover phenolic compounds from pomegranate residues, making this process more competitive and sustainable for the pomegranate industry.
Collapse
|
11
|
Mustafa YL, Keirouz A, Leese HS. Molecularly Imprinted Polymers in Diagnostics: Accessing Analytes in Biofluids. J Mater Chem B 2022; 10:7418-7449. [DOI: 10.1039/d2tb00703g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bio-applied molecularly imprinted polymers (MIPs) are biomimetic materials with tailor-made synthetic recognition sites, mimicking biological counterparts known for their sensitive and selective analyte detection. MIPs, specifically designed for biomarker analysis...
Collapse
|
12
|
Progress in the Valorization of Fruit and Vegetable Wastes: Active Packaging, Biocomposites, By-Products, and Innovative Technologies Used for Bioactive Compound Extraction. Polymers (Basel) 2021; 13:polym13203503. [PMID: 34685262 PMCID: PMC8539143 DOI: 10.3390/polym13203503] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
According to the Food Wastage Footprint and Climate Change Report, about 15% of all fruits and 25% of all vegetables are wasted at the base of the food production chain. The significant losses and wastes in the fresh and processing industries is becoming a serious environmental issue, mainly due to the microbial degradation impacts. There has been a recent surge in research and innovation related to food, packaging, and pharmaceutical applications to address these problems. The underutilized wastes (seed, skin, rind, and pomace) potentially present good sources of valuable bioactive compounds, including functional nutrients, amylopectin, phytochemicals, vitamins, enzymes, dietary fibers, and oils. Fruit and vegetable wastes (FVW) are rich in nutrients and extra nutritional compounds that contribute to the development of animal feed, bioactive ingredients, and ethanol production. In the development of active packaging films, pectin and other biopolymers are commonly used. In addition, the most recent research studies dealing with FVW have enhanced the physical, mechanical, antioxidant, and antimicrobial properties of packaging and biocomposite systems. Innovative technologies that can be used for sensitive bioactive compound extraction and fortification will be crucial in valorizing FVW completely; thus, this article aims to report the progress made in terms of the valorization of FVW and to emphasize the applications of FVW in active packaging and biocomposites, their by-products, and the innovative technologies (both thermal and non-thermal) that can be used for bioactive compounds extraction.
Collapse
|
13
|
Temerdashev ZA, Chubukina TK, Vinitskaya EA, Nagalevskii MV, Kiseleva NV. Assessment of the Concentrations of Isoflavonoids in Red Clover (Trifolium pratense L.) of the Fabaceae Family Using Extraction by Different Methods. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821090112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Taylor BM, Thurbide KB. Characteristics of a novel on-line micro pressurized liquid extraction method. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel on-line micro pressurized liquid extraction (μPLE) method is introduced, which directly interfaces miniaturized solid sample preparation with HPLC for fast analysis. The technique employs rapid heating to remove analytes from 5–10 mg samples in typically 20–40 s using only about 300 μL of solvent. The resulting extract is then internally transferred to an HPLC injector for chromatographic analysis. Results show that good analyte recoveries can be achieved, similar to conventional PLE and off-line μPLE approaches, without manual sample handling. For example, 103% ± 3% (n = 4) of the acetylsalicylic acid present in pharmaceutical tablets was extracted into methanol after 20 s at 180 °C. Further, 105% ± 9% (n = 4) of the caffeine present in a green tea sample was extracted into methanol after 40 s at 275 °C. Typical time to analysis was about 95 s total for most samples, and solvents could also be easily alternated during trials to increase extract selectivity. The on-line μPLE system was applied to the extraction of model PAHs from a biochar matrix and was found to extract 97% ± 5% (n = 4) of anthracene present in the sample after a 30 s static and 60 s dynamic extraction at 220 °C. This yield is much better than results obtained by previous approaches and is attributed to the small size, high temperature, low thermal mass, and dynamic flow of the system. Findings indicate that the on-line μPLE system can greatly assist in such extractions and provide a useful method for rapidly preparing solid samples for analysis using little solvent.
Collapse
Affiliation(s)
- Bradley M. Taylor
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Kevin B. Thurbide
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
15
|
Samadi M, Zainal Abidin Z, Yoshida H, Yunus R, Awang Biak DR. Towards Higher Oil Yield and Quality of Essential Oil Extracted from Aquilaria malaccensis Wood via the Subcritical Technique. Molecules 2020; 25:molecules25173872. [PMID: 32858782 PMCID: PMC7503260 DOI: 10.3390/molecules25173872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
A method that delivers a high yield and excellent quality of essential oil, which retains most of its value-added compounds, and undergoes least change after the extraction process, is greatly sought after. Although chemical free methods are acceptable, they call for an extensive processing time, while the yield and quality from these methods are often disappointing. This work utilizes subcritical water technology to address these issues. In this undertaking, essential oil was extracted from Aquilaria malaccensis wood by way of subcritical conditions, and characterized through gas chromatography/mass spectroscopy (GC/MS). Optimization through response surface methodology revealed temperature to be the most critical factor for the extraction process, while the optimum conditions for temperature, sample-to-solvent ratio, and time for subcritical water extraction was revealed as 225 °C, 0.2 gr/mL, and 17 min, respectively. The subcritical water extraction technique involves two simultaneous processes, which are based on good fitting to the two-site kinetic and second order model. In comparison to the hydrodistillation method, GC/MS results indicated that the quality of A. malaccensis’ wood oils, derived through the subcritical water technique, are of significantly better quality, while containing many constructive value-added compounds, such as furfural and guaiacol, which are useful for the production of pesticides and medicines. Pore size, functional groups, and morphology analysis revealed the occurrence of substantial damage to the samples, which facilitated an improved extraction of bio-products. In comparison to conventional methods, the use of the subcritical method not only involves a shorter processing time, but also delivers a higher oil yield and quality.
Collapse
|
16
|
Recovery of phenolic antioxidants from green kiwifruit peel using subcritical water extraction. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
17
|
Paulo F, Santos L. Deriving valorization of phenolic compounds from olive oil by-products for food applications through microencapsulation approaches: a comprehensive review. Crit Rev Food Sci Nutr 2020; 61:920-945. [PMID: 32274929 DOI: 10.1080/10408398.2020.1748563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nowadays, olive oil consumption is correlated to many health benefits, essentially due to the presence of antioxidants, especially phenolic compounds, which fostered its intensive production worldwide. During olive oil extraction, through continuous or discontinuous processes, many olive oil by-products are generated. These by-products constitute an environmental problem regarding its management and disposal. They are phytotoxic and biotoxic due to their high content of phenolic compounds, presenting contrastingly relevant health benefits due to their potent radical scavenging activities. In the framework of the disposal and management of olive oil by-products, treatment, and valorization approaches are found. As currently, the majority of the valorization techniques applied have a null market value, alternative strategies for the obtainment of innovative products as fortified foods are being investigated. The recovery and valorization strategies of olive oil by-products may comprise extraction and further encapsulation of bioactive compounds, as an innovative valorization blueprint of phenolic compounds present in these by-products. The majority of phenolic compounds present in olive oil by-products possess limited application on the food industry since they are promptly amended by environmental factors like temperature, pH, and light. Consequently, they must be protected previously ending in the final formulation. Prior to foods fortification with phenolic-rich extracts obtained from olive oil by-products, they should be protected through microencapsulation approaches, allowing a sustained release of phenolic compounds in the fortified foods, without losing their physicochemical properties. The combined strategies of extraction and microencapsulation will contribute to promoting the sustainability of the olive oil sector and aid the food industry to obtain reinvented added-value products.
Collapse
Affiliation(s)
- Filipa Paulo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Nuapia Y, Al-Hamimi S, Matshediso PG, Cukrowska E, Tutu H, Turner C, Chimuka L. Selective pressurized hot water extraction of nutritious macro-nutrients vs. micro-nutrients in Moringa oleifera leaves-a chemometric approach. Anal Bioanal Chem 2020; 412:2495-2503. [PMID: 32034455 DOI: 10.1007/s00216-020-02472-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 11/29/2022]
Abstract
Moringa oleifera leaves are widely used in traditional medicine as a food supplement because they are high in essential and nutritious content. Pressurized hot water extraction (PHWE), which is a green approach, was used for the recovery of the macro-nutrient and micro-nutrient elements from dried leaf powder of Moringa oleifera. In this study, response surface methodology was applied to assess the influence of temperature (50-200 °C) and time (5-60 min) on the extractability pattern of macro-nutrient and micro-nutrient elements from the leaves of Moringa oleifera when processed by PHWE. The quantification of macro-nutrient elements such as Ca, K and Mg and micro-nutrient elements like Al, Co, Cr, Cu, Fe, Ni and Zn from the leaves was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES). Obtained results revealed that the extraction of macro-nutrient elements from the Moringa oleifera leaves was enhanced by increasing the extraction time more than the extraction temperature. On the contrary, the amounts of extractable micro-nutrient elements were increased by increasing the extraction temperature. Hence, the recovery for macro-nutrient elements ranged from 88 to 98% while for micro-nutrients it ranged from 21 to 46%. This implies that macro-nutrient elements are extracted with relatively high selectivity in relation to micro-nutrient elements in Moringa dried leaf powder using the PHWE technique.
Collapse
Affiliation(s)
- Yannick Nuapia
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Said Al-Hamimi
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Phatsimo G Matshediso
- Natural Resources and Materials, Botswana Institute for Technology Research and Innovation, Maranyane House Plot 50654, Machel Drive, Private Bag 0082, Gaborone, Botswana
| | - Ewa Cukrowska
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Hlanganani Tutu
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Charlotta Turner
- Department of Chemistry, Centre for Analysis and Synthesis, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa.
| |
Collapse
|
19
|
Zhang J, Wen C, Zhang H, Duan Y, Ma H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Hu Y, Jia G. Molecular dynamics simulation investigation of the microwave heating supercritical water. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Nguyen TMT, Cho EJ, Song Y, Oh CH, Funada R, Bae HJ. Use of coffee flower as a novel resource for the production of bioactive compounds, melanoidins, and bio-sugars. Food Chem 2019; 299:125120. [DOI: 10.1016/j.foodchem.2019.125120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022]
|
22
|
Mohd Thani N, Mustapa Kamal SM, Sulaiman A, Taip FS, Omar R, Izhar S. Sugar Recovery from Food Waste via Sub-critical Water Treatment. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1636815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nurfatimah Mohd Thani
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Mazlina Mustapa Kamal
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - Alifdalino Sulaiman
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - Farah Saleena Taip
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - Rozita Omar
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - Shamsul Izhar
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
23
|
Shin DM, Kim DH, Yune JH, Kwon HC, Kim HJ, Seo HG, Han SG. Oxidative Stability and Quality Characteristics of Duck, Chicken, Swine and Bovine Skin Fats Extracted by Pressurized Hot Water Extraction. Food Sci Anim Resour 2019; 39:446-458. [PMID: 31304473 PMCID: PMC6612790 DOI: 10.5851/kosfa.2019.e41] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to investigate the oxidative status and quality characteristics of four animal skin-derived fats extracted using an identical extraction method. Pressurized hot water extraction, a green extraction method, was used to extract animal skin fats (duck, chicken, swine, and bovine skin). Multiple experiments were performed during accelerated storage at 60°C for 90 days. Quality characteristics, such as extraction yield, iodine value (IV), fatty acid composition, and fat viscosity were determined. In addition, indicators for oxidative status, including acid value (AV), peroxide value (PV), p-anisidine value (p-AV), thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD), and total oxidation (totox) values were evaluated. The fat extraction yield was highest in bovine fat, followed by duck, swine, and chicken fats. The IV was higher in duck and chicken fats. Duck fats contained the most unsaturated fats and the least saturated fats. Fat oxidation indicators, such as PV, TBARS, and totox values, were relatively higher in duck fats during storage compared to the other fats. Other indicators, including AV, p-AV, and CD, were similar in duck, chicken, and swine fats. Viscosity was similar in all the tested fats but markedly increased after 70 days of storage in duck fats. Our data indicate that duck skin fat was more vulnerable to oxidative changes in accelerated storage conditions and this may be due to its higher unsaturated fatty acid content. Supplementation with antioxidants might be a reasonable way to solve the oxidation issue in duck skin fats.
Collapse
Affiliation(s)
- Dong-Min Shin
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University,
Seoul 05029, Korea
| | - Do Hyun Kim
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University,
Seoul 05029, Korea
| | - Jong Hyeok Yune
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University,
Seoul 05029, Korea
| | - Hyuk Cheol Kwon
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University,
Seoul 05029, Korea
| | - Hyo Juong Kim
- Taekyung Food and Processing R&D
Center, Seoul 07057, Korea
| | - Han Geuk Seo
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University,
Seoul 05029, Korea
| | - Sung Gu Han
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University,
Seoul 05029, Korea
| |
Collapse
|
24
|
Extraction Efficiency of a Commercial Espresso Machine Compared to a Stainless-Steel Column Pressurized Hot Water Extraction (PHWE) System for the Determination of 23 Pharmaceuticals, Antibiotics and Hormones in Sewage Sludge. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two green chemistry extraction systems, an in-house stainless-steel column Pressurized Hot Water Extraction system (PHWE) and a commercially available Espresso machine were applied for analysing 23 active pharmaceutical ingredients (APIs) in sewage sludge. Final analysis was performed on UPLC-MS/MS using two different chromatographic methods: acid and basic. When analysing all 23 APIs in sewage sludge both extraction methods showed good repeatability. The PHWE method allowed for a more complete extraction of APIs that were more tightly bound to the matrix, as exemplified by much higher concentrations of e.g., ketoconazole, citalopram and ciprofloxacin. In total, 19 out of 23 investigated APIs were quantified in sewage sludge, and with a few exceptions the PHWE method was more exhaustive. Mean absolute recoveries of 7 spiked labelled APIs were lower for the PHWE method than the Espresso method. Under acid chromatographic conditions mean recoveries were 16% and 24%, respectively, but increased to 24% and 37% under basic conditions. The difference between the PHWE method and the Espresso method might be interpreted as the Espresso method giving higher extraction efficiency; however, TIC scans of extracts revealed a much higher matrix co-extraction for the PHWE method. Attempts were made to correlate occurrence of compounds in sewage sludge with chemical properties of the 23 APIs and there are strong indications that both the number of aromatic rings and the presence of a positive charge is important for the sorption processes to sewage sludge.
Collapse
|
25
|
Hernández-Hernández C, Aguilar C, Rodríguez-Herrera R, Flores-Gallegos A, Morlett-Chávez J, Govea-Salas M, Ascacio-Valdés J. Rambutan(Nephelium lappaceum L.):Nutritional and functional properties. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
The role of supercritical fluids in the fractionation pretreatments of a wheat bran-based biorefinery. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
A comparison between pressurized hot water and pressurized liquid extraction for optimizing phenolic and antioxidants capacity of the wooden layer between of walnut seed. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Speciation analysis of arsenic in seafood and seaweed: Part I-evaluation and optimization of methods. Anal Bioanal Chem 2018; 410:5675-5687. [PMID: 29455284 DOI: 10.1007/s00216-018-0906-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/12/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
Abstract
Several extraction and chromatographic methods were evaluated to identify optimum conditions for arsenic speciation analysis in seafood and seaweed. The extraction systems, which include aqueous, aqueous-organic, acidic, basic, and enzymatic solutions, were examined for their efficiency in extracting arsenic from finfish, crustaceans, molluscs, and seaweed keeping the chemical forms of the native arsenicals intact. While dilute solutions of nitric acid, hydrochloric acid, and tetramethylammonium hydroxide (TMAH) extract high fractions of arsenic from most of the matrices, the extractants oxidized arsenite (As3+) to arsenate (As5+) and converted some arsenosugars and non-polar arsenicals to known and/or unknown forms. Hot water (90 °C) effectively maintained the integrity of the native arsenic species and enabled analysis of the extracts with no further manipulation than filtration and dilution. Stepwise extraction of water-soluble and non-polar arsenic with hot water and a mixture of dichloromethane and methanol, respectively, resulted in sufficiently quantitative (> 75%) arsenic extraction from seafood and seaweed. Anion and cation exchange chromatographic methods were optimized for separation and quantitation of the arsenicals extracted into hot water. The non-polar arsenicals were collectively determined after digesting the extract in acid. The application of the optimum extraction and chromatographic conditions was demonstrated by analyzing certified reference materials of tuna fish tissue (BCR 627), lobster hepatopancreas (TORT-2) and oyster tissue (SRM 1566b), and a sample of hijiki seaweed. For all the matrices, good agreement (80-92%) was found between the total water-soluble arsenic and the sum of the concentrations of the chromatographed species. Limits of quantification (LOQ) were in the range 4-11 ng g-1 for 16 arsenicals.
Collapse
|
29
|
Borisova DR, Statkus MA, Tsizin GI, Zolotov YA. Subcritical water: Use in chemical analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817080044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Maheshwari G, Sowrirajan S, Joseph B. Extraction and Isolation of β-Glucan from Grain Sources-A Review. J Food Sci 2017; 82:1535-1545. [DOI: 10.1111/1750-3841.13765] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/17/2017] [Accepted: 04/27/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Gunjan Maheshwari
- Dept. of Research; Hindustan Inst. of Technology and Science; Padur Chennai 603103 India
| | - Sumathi Sowrirajan
- Dept. of Chemistry; Hindustan Inst. of Technology and Science; Padur Chennai 603103 India
| | - Baby Joseph
- Dept. of Research; Hindustan Inst. of Technology and Science; Padur Chennai 603103 India
| |
Collapse
|
31
|
Selvamuthukumaran M, Shi J. Recent advances in extraction of antioxidants from plant by-products processing industries. FOOD QUALITY AND SAFETY 2017. [DOI: 10.1093/fqs/fyx004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Evaluation of transfer rates of multiple pesticides from green tea into infusion using water as pressurized liquid extraction solvent and ultra-performance liquid chromatography tandem mass spectrometry. Food Chem 2017; 216:1-9. [DOI: 10.1016/j.foodchem.2016.07.175] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 01/20/2023]
|
33
|
Plaza M, Turner C. Pressurized Hot Water Extraction of Bioactives. COMPREHENSIVE ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/bs.coac.2016.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Pilot-scale subcritical water extraction of flavonoids from satsuma mandarin ( Citrus unshiu Markovich) peel. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Asofiei I, Calinescu I, Trifan A, David IG, Gavrila AI. Microwave-Assisted Batch Extraction of Polyphenols from Sea Buckthorn Leaves. CHEM ENG COMMUN 2016. [DOI: 10.1080/00986445.2015.1134518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ioana Asofiei
- Department of Bioresources and Polymer Science, University Politehnica of Bucharest, Bucharest, Romania
| | - Ioan Calinescu
- Department of Bioresources and Polymer Science, University Politehnica of Bucharest, Bucharest, Romania
| | - Adrian Trifan
- Department of Bioresources and Polymer Science, University Politehnica of Bucharest, Bucharest, Romania
| | | | - Adina Ionuta Gavrila
- Department of Bioresources and Polymer Science, University Politehnica of Bucharest, Bucharest, Romania
| |
Collapse
|
36
|
Antiviral-guided fractionation and isolation of phenolic compounds from Limonium densiflorum hydroalcoholic extract. CR CHIM 2016. [DOI: 10.1016/j.crci.2016.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Benito-Román Ó, Alonso E, Cocero MJ, Goto M. β-Glucan recovery from Ganoderma lucidum by means of pressurized hot water and supercritical CO 2. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2015.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Ahmad Kurnin NA, Shah Ismail MH, Yoshida H, Izhar S. Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water. J Oleo Sci 2016; 65:283-9. [DOI: 10.5650/jos.ess15209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nor Azrin Ahmad Kurnin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia
| | - Mohd Halim Shah Ismail
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia
| | - Hiroyuki Yoshida
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia
| | - Shamsul Izhar
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia
| |
Collapse
|
39
|
Wang X, Wu J, Liu B. Pressurized liquid extraction of chlorinated polycyclic aromatic hydrocarbons from soil samples using aqueous solutions. RSC Adv 2016. [DOI: 10.1039/c6ra13973f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pressurized liquid extraction of chlorinated polycyclic aromatic hydrocarbons from soil samples using aqueous solutions.
Collapse
Affiliation(s)
- Xianli Wang
- School of Municipal and Environmental Engineering
- Henan University of Urban Construction
- Pingdingshan
- China
| | - Junfeng Wu
- School of Municipal and Environmental Engineering
- Henan University of Urban Construction
- Pingdingshan
- China
| | - Biao Liu
- School of Municipal and Environmental Engineering
- Henan University of Urban Construction
- Pingdingshan
- China
| |
Collapse
|
40
|
Ghorani B, Tucker N, Yoshikawa M. Approaches for the assembly of molecularly imprinted electrospun nanofibre membranes and consequent use in selected target recognition. Food Res Int 2015; 78:448-464. [DOI: 10.1016/j.foodres.2015.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 12/27/2022]
|
41
|
Araújo M, Pimentel FB, Alves RC, Oliveira MBP. Phenolic compounds from olive mill wastes: Health effects, analytical approach and application as food antioxidants. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.06.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
|
43
|
Fast determination of intact glucosinolates in broccoli leaf by pressurized liquid extraction and ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Res Int 2015; 76:498-505. [PMID: 28455030 DOI: 10.1016/j.foodres.2015.06.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023]
Abstract
In this study, we investigate for the first time the efficiency of an environmentally sustainable extraction technique (pressurized liquid extraction, PLE) in conjunction with a fast separation technique (ultra-high performance liquid chromatography, UHPLC) coupled to a selective mass spectrometry (MS) detector (quadrupole time-of-flight, qTOF) to extract, separate and quantify fifteen intact-glucosinolates (GLSs) in broccoli leaves. Firstly, we have developed and optimized by means of an experimental design an efficient extraction procedure based on PLE (using ethanol/water as a solvent), giving complete extraction within 15min; meanwhile, the average analyte recoveries were between 85% and 96% in all cases. Chromatography was performed on a UHPLC BEH Shield RP18 1.7μm 110Å (2.1×100mm) analytical column with a mobile phase composed by formic acid in water (0.5%, v/v) and formic acid in acetonitrile (0.5%, v/v) in gradient elution mode at 0.3mL/min, resulted in baseline-separated peaks and a run time of 13min. The method was fully validated in terms of selectivity, limits of detection (LOD) and quantification (LOQ), linearity, precision, and trueness; meanwhile a study of the matrix effect was also performed. A good selectivity, low LODs and LOQs, ranging from 2 to 26μg/g, wide linear ranges from LOQ to 2500μg/g, and satisfactory precision and trueness with relative standard deviation and relative error values lower than or equal to 9%, were obtained for the studied GLSs. Finally, the proposed method was successfully applied to the analysis of intact-GLSs in fifteen broccoli leaf samples from three different cultivars (Parthenon, Nubia, and Naxos). Nine intact-GLSs were detected in all the varieties, although in different concentrations, which ranged between 14 and 1136μg/g, depending on the broccoli cultivar. In addition, the highest total content of GLSs was found in broccoli leaf samples from Parthenon cultivar, being the Naxos cultivar the poorest in GLS content. This study demonstrates the efficiency of PLE as an environmentally sustainable alternative to extract intact-GLS from broccoli leaves, and that UHPLC-qTOF-MS allowed a rapid, selective and sensitive determination of intact-GLSs in this matrix.
Collapse
|
44
|
Gangopadhyay N, Hossain MB, Rai DK, Brunton NP. A Review of Extraction and Analysis of Bioactives in Oat and Barley and Scope for Use of Novel Food Processing Technologies. Molecules 2015; 20:10884-909. [PMID: 26076110 PMCID: PMC6272431 DOI: 10.3390/molecules200610884] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/25/2015] [Accepted: 06/05/2015] [Indexed: 01/01/2023] Open
Abstract
Oat and barely are cereal crops mainly used as animal feed and for the purposes of malting and brewing, respectively. Some studies have indicated that consumption of oat and barley rich foods may reduce the risk of some chronic diseases such as coronary heart disease, type II diabetes and cancer. Whilst there is no absolute consensus, some of these benefits may be linked to presence of compounds such as phenolics, vitamin E and β-glucan in these cereals. A number of benefits have also been linked to the lipid component (sterols, fatty acids) and the proteins and bioactive peptides in oats and barley. Since the available evidence is pointing toward the possible health benefits of oat and barley components, a number of authors have examined techniques for recovering them from their native sources. In the present review, we summarise and examine the range of conventional techniques that have been used for the purpose of extraction and detection of these bioactives. In addition, the recent advances in use of novel food processing technologies as a substitute to conventional processes for extraction of bioactives from oats and barley, has been discussed.
Collapse
Affiliation(s)
- Nirupama Gangopadhyay
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, Dublin 15, Ireland.
- Food Science and Nutrition, School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| | - Mohammad B Hossain
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, Dublin 15, Ireland.
| | - Dilip K Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, Dublin 15, Ireland.
| | - Nigel P Brunton
- Food Science and Nutrition, School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
45
|
Vázquez MB, Comini L, Milanesio J, Montoya SN, Cabrera J, Bottini S, Martini R. Pressurized hot water extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae). J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.02.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Kallikragas DT, Plugatyr AY, Guzonas DA, Svishchev IM. Effect of confinement on the hydration and diffusion of chloride at high temperatures. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2014.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Golmakani E, Mohammadi A, Ahmadzadeh Sani T, Kamali H. Phenolic and flavonoid content and antioxidants capacity of pressurized liquid extraction and perculation method from roots of Scutellaria pinnatifida A. Hamilt. subsp alpina (Bornm) Rech. f. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Yildiz-Ozturk E, Tag O, Yesil-Celiktas O. Subcritical water extraction of steviol glycosides from Stevia rebaudiana leaves and characterization of the raffinate phase. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
49
|
Osorio-Tobón JF, Carvalho PI, Rostagno MA, Petenate AJ, Meireles MAA. Extraction of curcuminoids from deflavored turmeric (Curcuma longa L.) using pressurized liquids: Process integration and economic evaluation. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.08.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Ahmadzadeh Sani T, Golmakani E, Mohammadi A, Feyzi P, Kamali H. Optimization of pressurized hot water extraction on the extract yield and antioxidant activity from Biebersteinia multifida DC using a modified supercritical fluid extractor. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|