1
|
Arshad A, Ding L, Akram R, Long L, Wang K. Single-Ligand Modulated Size-Dependent Multi-Color Au/Os Nanoclusters for Multi-Analyte Detection. Anal Chem 2025; 97:5179-5190. [PMID: 39994204 DOI: 10.1021/acs.analchem.4c06475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The development of nanoclusters (NCs) capable of multicolor emissions for simultaneous detection of multiple analytes has aroused tremendous interest. However, the current methods for synthesizing NCs with multicolor emissions mainly depend on a multiple ligand strategy, which not only compromises the stability of the NCs but also alters their physicochemical properties. Herein, we propose a novel strategy for designing single-ligand capped bimetallic Au/Os NCs with multicolor fluorescence by adjusting the size of the NCs. This size-controlled, single-ligand encapsulation strategy not only enhances their stability and compatibility but also ensures uniformity in their physicochemical properties, thereby overcoming limitations inherent in multiligand systems. By meticulously modulating the reaction parameters, we achieved precise tuning of the NCs size, resulting in the synthesis of multicolor fluorescent NCs displaying blue (465 nm), green (507 nm), and yellow (560 nm) emissions. These multicolor Au/Os NCs were then incorporated into an array system for the differentiation of tetracyclines (TCs) by virtue of their interaction with TCs through the inner filter effect (IFE). Finally, each TC elicited a unique fluorescent response, which was subsequently analyzed by principal component analysis. The sensor array has been successfully employed for detection of TCs in milk, urine, and water, demonstrating its practical application potential. The strategy developed in this work holds great promise for the development of multicolor NCs.
Collapse
Affiliation(s)
- Anila Arshad
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijun Ding
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Raheel Akram
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
2
|
Dutta C, Nataraajan RV, Kumar J. Intrinsically chiral thermoresponsive assemblies from achiral clusters: enhanced luminescence and optical activity through tailor-made chiral additives. Chem Sci 2025; 16:1722-1729. [PMID: 39720133 PMCID: PMC11665439 DOI: 10.1039/d4sc07227h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
Chiral metal clusters, due to their intriguing optical properties and unique resemblance in size to biomolecules, have attracted a lot of attention in recent times as potential candidates for application in bio-detection and therapy. While several strategies are reported for the synthesis of optically active clusters, a facile approach that enhances a multitude of properties has remained a challenge. Herein, we report a simple strategy wherein the use of a chiral cationic surfactant, during the synthesis of achiral clusters, leads to the fabrication of chiral assemblies possessing enhanced luminescence and optical activity. The structural resemblance of the capping ligand, mercaptoundecanoic acid (MUA) to the co-surfactant, (+/-)-N-dodecyl-N-methylephedrinium bromide (DMEB), assisted specific interactions that led to the formation of chiral assemblies exhibiting unique thermoresponsive behavior and tunable optical activity. The symmetry breaking in the aggregates driven by the electrostatic interaction between the positively charged chiral surfactant and negatively charged clusters led to enhanced luminescence through aggregation induced enhanced emission (AIEE). The work highlighting the generation and tuning of cluster chirality provides newer insights into the fundamental understanding of nanocluster optical activity thereby opening newer avenues for the development of materials for application in the field of chiral biosensing and enantioselective catalysis.
Collapse
Affiliation(s)
- Camelia Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Andhra Pradesh 517619 India
| | - Ragul Vivaz Nataraajan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Andhra Pradesh 517619 India
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Andhra Pradesh 517619 India
| |
Collapse
|
3
|
Cantons JM, Bachhuka A, Marsal LF. Sensing Platform Based on Gold Nanoclusters and Nanoporous Anodic Alumina for Preeclampsia Detection. BIOSENSORS 2024; 14:610. [PMID: 39727876 DOI: 10.3390/bios14120610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Preeclampsia is a pregnancy-specific hypertensive syndrome recognized as the leading cause of maternal and fetal morbidity worldwide. Early diagnosis is crucial for mitigating its adverse effects, and recent investigations have identified endoglin as a potential biomarker for this purpose. Here, we present the development of a hybrid biosensor platform for the ultrasensitive detection of endoglin, aimed at enabling the early diagnosis of preeclampsia. This platform integrates the high surface area properties of nanoporous anodic alumina (NAA) with the unique optical characteristics of gold nanoclusters (AuNCs) to achieve enhanced detection capabilities. The NAA surface functionalized to promote attachment of AuNCs, which then was functionalized with specific antibodies to confer selectivity towards endoglin. Photoluminescence (PL) analysis of the biosensor demonstrated a linear detection range of 10-50 ng/mL, with a detection limit of 5.4 ng/mL and a sensitivity of 0.004 a.u./(ng/mL). This proof-of-concept study suggests that the NAA-AuNCs-based biosensing platform holds significant potential for the development of ultrasensitive, portable, and cost-effective diagnostic tools for preeclampsia, offering a promising avenue for advancing prenatal care.
Collapse
Affiliation(s)
- Josep Maria Cantons
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), 43007 Tarragona, Spain
| | - Akash Bachhuka
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), 43007 Tarragona, Spain
- Institute of Chemical Research of Catalonia (ICIQ), 43007 Tarragona, Spain
| | - Lluis F Marsal
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), 43007 Tarragona, Spain
| |
Collapse
|
4
|
Guo Z, Jiang H, Song A, Liu X, Wang X. Progress and challenges in bacterial infection theranostics based on functional metal nanoparticles. Adv Colloid Interface Sci 2024; 332:103265. [PMID: 39121833 DOI: 10.1016/j.cis.2024.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The rapid proliferation and infection of bacteria, especially multidrug-resistant bacteria, have become a great threat to global public health. Focusing on the emergence of "super drug-resistant bacteria" caused by the abuse of antibiotics and the insufficient and delayed early diagnosis of bacterial diseases, it is of great research significance to develop new technologies and methods for early targeted detection and treatment of bacterial infection. The exceptional effects of metal nanoparticles based on their unique physical and chemical properties make such systems ideal for the detection and treatment of bacterial infection both in vitro and in vivo. Metal nanoparticles also have admirable clinical application prospects due to their broad antibacterial spectrum, various antibacterial mechanisms and excellent biocompatibility. Herein, we summarized the research progress concerning the mechanism of metal nanoparticles in terms of antibacterial activity together with the detection of bacterial. Representative achievements are selected to illustrate the proof-of-concept in vitro and in vivo applications. Based on these observations, we also give a brief discussion on the current problems and perspective outlook of metal nanoparticles in the diagnosis and treatment of bacterial infection.
Collapse
Affiliation(s)
- Zengchao Guo
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 210023, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
5
|
Svačinová V, Halili A, Ostruszka R, Pluháček T, Jiráková K, Jirák D, Šišková K. Trimetallic nanocomposites developed for efficient in vivo bimodal imaging via fluorescence and magnetic resonance. J Mater Chem B 2024; 12:8153-8166. [PMID: 39072712 DOI: 10.1039/d4tb00655k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Despite several attempts, in vivo bimodal imaging still represents a challenge. Generally, it is accepted that dual-modality in imaging can improve sensitivity and spatial resolution, namely, when exploiting fluorescence (FI) and magnetic resonance imaging (MRI), respectively. Here, a newly developed combination of (i) protein-protected luminescent Au-Ag nanoclusters (LGSN) manifesting themselves by fluorescent emission at 705 nm and (ii) superparamagnetic iron oxide nanoparticles (SPION) embedded within the same protein and creating contrast in MR images, has been investigated in phantoms and applied for in vivo bimodal imaging of a mouse as a proof of principle. Unique LGSN-SPION nanocomposites were synthesized in a specific sequential one-pot green preparation procedure and characterized thoroughly using many physicochemical experimental techniques. The influence of LGSN-SPION samples on the viability of healthy cells (RPE-1) was tested using a calcein assay. Despite the presence of Ag (0.12 mg mL-1), high content of Au (above 0.75 mg mL-1), and moderate concentrations of Fe (0.24 mg mL-1), LGSN-SPION samples (containing approx. 15 mg mL-1 of albumin) were revealed as biocompatible (cell viability above 80%). Simultaneously, these concentration values of all components in the LGSN-SPION nanocomposite were used for achieving both MRI and fluorescence signals in phantoms as well as in a living mouse with sufficiently high resolution. Thus, the LGSN-SPION samples can serve as new efficient bimodal FI and MRI probes for in vivo imaging.
Collapse
Affiliation(s)
- Veronika Svačinová
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic.
| | - Aminadav Halili
- Institute for Clinical and Experimental Medicine, Videnska 9, 140 21 Prague, Czech Republic
| | - Radek Ostruszka
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic.
| | - Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic
| | - Klára Jiráková
- Institute for Clinical and Experimental Medicine, Videnska 9, 140 21 Prague, Czech Republic
- Department of Histology and Embryology, The Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Videnska 9, 140 21 Prague, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic
| | - Karolína Šišková
- Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic.
| |
Collapse
|
6
|
Moosavi R, Alizadeh N. Silver Nanoclusters as Label Free Non-enzymatic Fast Glucose Assay with the Fluorescent Enhancement Signal. J Fluoresc 2024; 34:1865-1876. [PMID: 37656303 DOI: 10.1007/s10895-023-03407-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
A simple and low-cost green preparation method was used for BSA capped silver nanoclusters (BSA-Ag NCs) as turn on fluorescent probe for glucose. Non-enzymatic fast glucose detection assay with a widest concentration range was proposed which requires neither nanoclusters (NCs) modification nor complicated enzyme immobilization. The DLS analysis, HRTEM patterns, fluorescence and UV-visible measurement well supported the synthesis product. The advantages of the fabricated glucose sensor based on fluorescence increasing of probe compared to other established optical techniques was inspected and summarized as well. The glucose sensor exhibited a high sensitivity, fast response time (in seconds), satisfactory selectivity, well stability (at least two months), low detection limit (31 µmol L- 1) and a wide concentration response (three orders of magnitudes) to glucose between 0.1 and 92 mmol L- 1 as calibration plot. A theoretical model of the sensing mechanism based on the binding interaction of glucose to BSA-Ag NCs is proposed and data fitting demonstrated a good agreement between the experimental and theoretically calculated fluorescence data. The facile preparation and excellent sensing performance of BSA-Ag NCs in the real samples (plasma and juice) make sure that synthesized probe material is a promising candidate for advanced enzyme-free glucose sensing approach.
Collapse
Affiliation(s)
- Razieh Moosavi
- Departmentof Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Naader Alizadeh
- Departmentof Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
7
|
Stoia D, De Sio L, Petronella F, Focsan M. Recent advances towards point-of-care devices for fungal detection: Emphasizing the role of plasmonic nanomaterials in current and future technologies. Biosens Bioelectron 2024; 255:116243. [PMID: 38547645 DOI: 10.1016/j.bios.2024.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Fungal infections are a significant global health problem, particularly affecting individuals with weakened immune systems. Moreover, as uncontrolled antibiotic and immunosuppressant use increases continuously, fungal infections have seen a dramatic increase, with some strains developing antibiotic resistance. Traditional approaches to identifying fungal strains often rely on morphological characteristics, thus owning limitations, such as struggles in identifying several strains or distinguishing between fungal strains with similar morphologies. This review explores the multifaceted impact of fungi infections on individuals, healthcare providers, and society, highlighting the often-underestimated economic burden and healthcare implications of these infections. In light of the serious constraints of traditional fungal identification methods, this review discusses the potential of plasmonic nanoparticle-based biosensors for fungal infection identification. These biosensors can enable rapid and precise fungal pathogen detection by exploiting several readout approaches, including various spectroscopic techniques, colorimetric and electrochemical assays, as well as lateral-flow immunoassay methods. Moreover, we report the remarkable impact of plasmonic Lab on a Chip technology and microfluidic devices, as they recently emerged as a class of advanced biosensors. Finally, we provide an overview of smartphone-based Point-of-Care devices and the associated technologies developed for detecting and identifying fungal pathogens.
Collapse
Affiliation(s)
- Daria Stoia
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Francesca Petronella
- National Research Council of Italy, Institute of Crystallography CNR-IC, Area della Ricerca Roma 1 Strada Provinciale 35d, n. 9, 00010, Montelibretti (RM), Italy.
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Zhang Y, Zhang X, Xu H, Zhao S, Yang Z, Pi Z, Yang X, Liao X. A Ratiometric Fluorescence Probe Based on Silver Nanoclusters and CdSe/ZnS Quantum dots for the Detection of Hydrogen Peroxide by Aggregation and Etching. J Fluoresc 2024:10.1007/s10895-024-03774-x. [PMID: 38907118 DOI: 10.1007/s10895-024-03774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
In this study, a ratiometric fluorescence nanoprobe is developed for the analysis of hydrogen peroxide (H2O2). Silver nanoclusters (AgNCs) were synthesized by chemical reduction method using sodium borohydride (NaBH4) as reducing agent, and were coupled with CdSe/ZnS quantum dots (QDs) to form the ratiometric fluorescence nanoprobe silver nanoclusters-quantum dots (AgNCs-QDs). The effect of the volume ratio of CdSe/ZnS QDs to AgNCs on the fluorescence ratio of AgNCs-QDs was investigated. The fluorescence characterization results show that two emission peaks of AgNCs-QDs are located at 473 nm and 661 nm, respectively. Transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) results show that H2O2 can cause the fluorescence probe to aggregate, while etching AgNCs to produce silver ions, which together cause the fluorescence of the QDs in the ratiometric fluorescent probe to be quenched. Based on this strategy, the fluorescence intensity ratio of the two emission peaks F473/F661 exhibits a strong linear correlation with the concentration of H2O2. The detection range is 3.32 µM ~ 2.65 mM with a detection limit of 3.32 µM. In addition, the ratiometric fluorescence probe can specifically recognize H2O2 and has excellent anti-interference performance and good fluorescence stability. Importantly, the probe was utilized for the detection of H2O2 in serum, showing the possibility of the probe in clinical detection applications.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China
| | - Xin Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China
| | - Hedan Xu
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China
| | - Sitian Zhao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China
| | - Zirui Yang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China
| | - Zijie Pi
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China
| | - Xiaoling Yang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, No. 12 East road, University town, Chongqing, 401331, P. R. China.
| |
Collapse
|
9
|
Abraham MK, Madanan AS, Varghese S, R S L, Shkhair AI, N S V, George S. Fluorescent Enzymatic Sensor Based Glucose Oxidase Modified Bovine Serum Albumin-Gold Nanoclusters for Detection of Glucose. Chempluschem 2024; 89:e202300601. [PMID: 38241333 DOI: 10.1002/cplu.202300601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/21/2024]
Abstract
An enzymatic fluorescent probe is developed for the selective detection of glucose. In this work, a Bovine Serum Albumin stabilized gold nanocluster (BSA-AuNCs) was synthesized by microwave assisted method, and it is modified with glucose oxidase, thereby a fluorescent enzymatic sensor (BSA-AuNCs@GoX) was designed for the sensitive detection of glucose with a limit of detection of 0.03 mM. The red fluorescence exhibited by the probe is quenched by the production of H2O2 on addition of glucose via. a static quenching mechanism from UV visible absorption and Fluorescence lifetime results. The developed probe exhibits good selectivity and sensitivity with other coexisting molecular species such as glycine, creatinine, methionine, histidine, uric acid, albumin, and ions such as sodium, potassium, calcium, magnesium, zinc etc. that appear in the body fluid. The practical applicability was studied in paper strip and extended its reproducibility in biological matrixes such as human serum and urine and found a good recovery percentage of 94-101 %. By this way, we have fabricated an effective fluorescent enzymatic "turn-off" sensing probe for the detection of glucose.
Collapse
Affiliation(s)
- Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapura, 695581, Kerala, India Phone
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapura, 695581, Kerala, India Phone
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapura, 695581, Kerala, India Phone
| | - Lekshmi R S
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapura, 695581, Kerala, India Phone
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapura, 695581, Kerala, India Phone
| | - Vijila N S
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapura, 695581, Kerala, India Phone
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapura, 695581, Kerala, India Phone
| |
Collapse
|
10
|
Han Y, Wang M, Xie H, Zhou Y, Wang S, Wang G. Fabrication of Au nanoclusters confined on hydroxy double salt-based intelligent biosensor for on-site monitoring of urease and its inhibitors. Talanta 2024; 271:125725. [PMID: 38295444 DOI: 10.1016/j.talanta.2024.125725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/02/2024]
Abstract
Sensitive and convenient sensing of urease and its inhibitors is exceptionally urgent in clinical diagnosis and new drug development. In this study, the gold nanoclusters (AuNCs) and hydroxyl double salt (HDS) were composited by a simple confinement effect to prepare highly fluorescent AuNCs@HDS composites to monitor urease and its drug inhibitors. HDS was used as a matrix to confine AuNCs (AuNCs@HDS), facilitating the emission intensity of AuNCs. However, acidic conditions (low pH) can disrupt the structure of HDS to break the confinement effect, and quench the fluorescence of AuNCs. Therefore, a sensing platform for pH-related enzyme urease detection was constructed based on the sensitive response of AuNCs@HDS to pH. This sensing platform had a linear response range of 0.5-22.5 U/L and a low limit of detection (LOD) of 0.19 U/L for urease. Moreover, this sensing platform was also applied to monitor urease inhibitors and urease in human saliva samples. Additionally, a portable hydrogel kit combined with a smartphone was developed for urease detection to achieve portable, low-cost, instrument-free, and on-site monitoring of urease.
Collapse
Affiliation(s)
- Yaqing Han
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China; College of Medical Engineering & the Key Laboratory for Medical Functional, Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Mengke Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional, Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Han Xie
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes, School of Pharmacy, Shenyang Medical University, Shenyang, 110034, PR China
| | - Yitong Zhou
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes, School of Pharmacy, Shenyang Medical University, Shenyang, 110034, PR China
| | - Shun Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional, Nanomaterials, Jining Medical University, Jining, 272067, PR China.
| | - Guannan Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional, Nanomaterials, Jining Medical University, Jining, 272067, PR China; Shenyang Key Laboratory of Medical Molecular Theranostic Probes, School of Pharmacy, Shenyang Medical University, Shenyang, 110034, PR China.
| |
Collapse
|
11
|
Qi R, Song X, Feng R, Ren X, Ma H, Liu X, Li F, Wei Q. Ultrasensitive Electrochemiluminescence Biosensor Based on Efficient Signal Amplification of Copper Nanoclusters Induced by CaMnO 3 for CD44 Trace Detection. Anal Chem 2024; 96:4969-4977. [PMID: 38486396 DOI: 10.1021/acs.analchem.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Metal nanoclusters (Me NCs) have become a research hotspot in the field of electrochemiluminescence (ECL) sensing analysis. This is primarily attributed to their excellent luminescent properties and biocompatibility along with their easy synthesis and labeling characteristics. At present, the application of Me NCs in ECL mainly focuses on precious metals, whose high cost, to some extent, limits their widespread application. In this work, Cu NCs with cathode ECL emissions in persulfate (S2O82-) were prepared as signal probes using glutathione as ligands, which exhibited stable luminescence signals and high ECL efficiency. At the same time, CaMnO3 was introduced as a co-reaction promoter to increase the ECL responses of Cu NCs, thereby further expanding their application potential in biochemical analysis. Specifically, the reversible conversion of Mn3+/Mn4+ greatly promoted the generation of sulfate radicals (SO4•-), providing a guarantee for improving the luminescence signals of Cu NCs. Furthermore, a short peptide (NARKFYKGC) was introduced to enable the fixation of antibodies to specific targets, preventing the occupancy of antigen-binding sites (Fab fragments). Therefore, the sensitivity of the biosensor could be significantly enhanced by releasing additional Fab fragments. Considering the approaches discussed above, the constructed biosensor could achieve sensitive detection of CD44 over a broad range (10 fg/mL-100 ng/mL), with an ultralow detection limit of 3.55 fg/mL (S/N = 3), which had valuable implications for the application of nonprecious Me NCs in biosensing analysis.
Collapse
Affiliation(s)
- Rongjing Qi
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xianzhen Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Feng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xuejing Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Faying Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
12
|
Alhazzani K, Alanazi AZ, Mostafa AM, Barker J, El-Wekil MM, Ali AMBH. Selective fluorescence turn-on detection of combination cisplatin-etoposide chemotherapy based on N-CDs/GSH-CuNCs nanoprobe. RSC Adv 2024; 14:2380-2390. [PMID: 38213979 PMCID: PMC10783161 DOI: 10.1039/d3ra07844b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Cisplatin (CIS) and etoposide (ETP) combination therapy is highly effective for treating various cancers. However, the potential for pharmacokinetic interactions between these drugs necessitates selective sensing methods to quantitate both CIS and ETP levels in patient's plasma. This work develops a dual fluorescence probe strategy using glutathione-capped copper nanoclusters (GSH-CuNCs) and nitrogen-doped carbon dots (N-CDs) for the simultaneous analysis of CIS and ETP. The fluorescence signal of GSH-CuNCs at 615 nm increased linearly with CIS concentration while the N-CD emission at 480 nm remained unaffected. Conversely, the N-CD fluorescence was selectively enhanced by ETP with no interference with the CuNC fluorescence. Extensive materials characterization including UV-vis, fluorescence spectroscopy, XRD, and TEM confirmed the synthesis of the nanoprobes. The sensor showed high sensitivity with limits of detection of 6.95 ng mL-1 for CIS and 7.63 ng mL-1 for ETP along with excellent selectivity against potential interferences in rabbit plasma. Method feasibility was demonstrated with application to real rabbit plasma samples. The method was further applied to estimate the pharmacokinetic parameters of CIS before and after ETP coadministration. The dual nanoprobe sensing strategy enables rapid and selective quantitation of CIS and ETP levels to facilitate therapeutic drug monitoring and optimization of combination chemotherapy regimens.
Collapse
Affiliation(s)
- Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Aya M Mostafa
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University Kingston-upon-Thames London KT1 2EE UK
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| | - James Barker
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University Kingston-upon-Thames London KT1 2EE UK
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut Egypt
| |
Collapse
|
13
|
Aminfar P, Ferguson T, Steele E, MacNeil EM, Matus MF, Malola S, Häkkinen H, Duchesne PN, Loock HP, Stamplecoskie KG. Accelerated size-focusing light activated synthesis of atomically precise fluorescent Au 22(Lys-Cys-Lys) 16 clusters. NANOSCALE 2023; 16:205-211. [PMID: 38051125 DOI: 10.1039/d3nr04793h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Atomically precise metal nanoclusters are promising candidates for various biomedical applications, including their use as photosensitizers in photodynamic therapy (PDT). However, typical synthetic routes of clusters often result in complex mixtures, where isolating and characterizing pure samples becomes challenging. In this work, a new Au22(Lys-Cys-Lys)16 cluster is synthesized using photochemistry, followed by a new type of light activated, accelerated size-focusing. Fluorescence excitation-emission matrix spectroscopy (EEM) and parallel factor (PARAFAC) analysis have been applied to track the formation of fluorescent species, and to assess optical purity of the final product. Furthermore, excited state reactivity of Au22(Lys-Cys-Lys)16 clusters is studied, and formation of type-I reactive oxygen species (ROS) from the excited state of the clusters is observed. The proposed size-focusing procedure in this work can be easily adapted to conventional cluster synthetic methods, such as borohydride reduction, to provide atomically precise clusters.
Collapse
Affiliation(s)
- Parimah Aminfar
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Travis Ferguson
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Emily Steele
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Emerson M MacNeil
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - María Francisca Matus
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Paul N Duchesne
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Hans-Peter Loock
- Department of Chemistry, University of Victoria, Victoria, British Columbia, V8N 5C2, Canada
| | | |
Collapse
|
14
|
Mittal R, Gupta N. Towards Green Synthesis of Fluorescent Metal Nanoclusters. J Fluoresc 2023; 33:2161-2180. [PMID: 37103674 DOI: 10.1007/s10895-023-03229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023]
Abstract
In the modern development of nanoscience and nanotechnology, metal nanoclusters have emerged as a foremost category of nanomaterials exhibiting remarkable biocompatibility and photo-stability having dramatically distinctive optical, electronic, and chemical properties. This review focuses on synthesizing fluorescent metal nanoclusters in a greener way to make them suitable for biological imaging and drug delivery application. The green methodology is the desired route for sustainable chemical production and should be utilized for any form of chemical synthesis including nanomaterials. It aims to eliminate harmful waste, uses non-toxic solvents, and employs energy-efficient processes for the synthesis. This article provides an overview of conventional synthesis methods, including stabilizing nanoclusters by small organic molecules in organic solvents. Then we focus on the improvement of properties, applications of green synthesized metal nanoclusters, challenges involved, and further advancement required in the direction of green synthesis of MNCs. There are plenty of problems for scientists to solve to make nanoclusters suitable for bio-applications, chemical sensing, and catalysis synthesized by green methods. Using bio-compatible and electron-rich ligands, understanding ligand-metal interfacial interactions, employing more energy-efficient processes, and utilizing bio-inspired templates for synthesis are some immediate problems worth solving in this field that requires continued efforts and interdisciplinary knowledge and collaboration.
Collapse
Affiliation(s)
- Ritika Mittal
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India
| | - Nancy Gupta
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India.
| |
Collapse
|
15
|
Shu W, Zhang X, Tang H, Wang L, Cheng M, Xu J, Li R, Ran X. Catalytic probes based on aggregation-induced emission-active Au nanoclusters for visualizing MicroRNA in living cells and in vivo. Anal Chim Acta 2023; 1268:341372. [PMID: 37268339 DOI: 10.1016/j.aca.2023.341372] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 06/04/2023]
Abstract
Highly sensitive monitoring of cancer-related miRNAs is of great significance for tumor diagnosis. Herein, catalytic probes based on DNA-functionalized Au nanoclusters (AuNCs) were prepared in this work. The aggregation-induced emission-active Au nanoclusters showed an interesting phenomenon of aggregation induced emission (AIE) affected by the aggregation state. Leveraging this property, the AIE-active AuNCs were used to develop catalytic turn-on probes for detecting in vivo cancer-related miRNA based on a hybridization chain reaction (HCR). The target miRNA triggered the HCR and induced aggregation of AIE-active AuNCs, leading to a highly luminescent signal. The catalytic approach demonstrated a remarkable selectivity and a low detection limit in comparison to noncatalytic sensing signals. In addition, the excellent delivery the ability of MnO2 carrier made it possible to use the probes for intracellular imaging and in vivo imaging. Effective in situ visualization of miR-21 was achieved not only in living cells but also in tumors in living animals. This approach potentially offers a novel method for obtaining information for tumor diagnosis via highly sensitive cancer-related miRNA imaging in vivo.
Collapse
Affiliation(s)
- Wenhao Shu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Xuetao Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Hongmei Tang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Linna Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Manxiao Cheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Jingwen Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China.
| | - Xiang Ran
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
16
|
Bi N, Xi YH, Hu MH, Xu J, Gou J, Li YX, Zhang LN, Jia L. A sensitive multicolor fluorescence sensing strategy for chlorotetracycline based on bovine serum albumin-stabilized copper nanocluster. Colloids Surf B Biointerfaces 2023; 228:113404. [PMID: 37356140 DOI: 10.1016/j.colsurfb.2023.113404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Fluorescent probes with on-site visual detection function have received extensive attention in the detection of chlortetracycline (CTC), which was widely used in aquaculture and animal husbandry. Copper nanoclusters (Cu NCs) with excellent optical properties were prepared using bovine serum albumin (BSA) as a template, and a multicolor fluorescence strategy based on BSA-stabilized Cu NCs (BSA-Cu NCs) for detecting CTC was proposed. BSA-Cu NCs had a red emission at 640 nm. After the addition of CTC, the red emission of BSA-Cu NCs gradually decreased for internal filtering effect, while the green emission of CTC was significantly enhanced under the sensitization of BSA. This simple sensing process can be achieved in real time by directly mixing the target sample with BSA-Cu NCs, and the detection limit (LOD) of the system for CTC was 12.01 nM. Based on this sensing strategy, a fluorescence film sensing detection platform was constructed to achieve ultra-fast detection of CTC within 30 s. This work provided a fluorescent film sensor with the advantages of portability, ultra-fast and low cost, which provided a feasible alternative for on-site ultra-fast screening of CTC.
Collapse
Affiliation(s)
- Ning Bi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Ya-Hua Xi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Mei-Hua Hu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Jian Gou
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yong-Xin Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Li-Na Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| |
Collapse
|
17
|
Dutta C, Maniappan S, Kumar J. Delayed luminescence guided enhanced circularly polarized emission in atomically precise copper nanoclusters. Chem Sci 2023; 14:5593-5601. [PMID: 37265730 PMCID: PMC10231326 DOI: 10.1039/d3sc00686g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Metal nanoclusters, owing to their intriguing optical properties, have captivated research interest over the years. Of special interest have been chiral nanoclusters that display optical activity in the visible region of the electromagnetic spectrum. While the ground state chiral properties of metal nanoclusters have been reasonably well studied, of late research focus has shifted attention to their excited state chiral investigations. Herein, we report the synthesis and chiral investigations of a pair of enantiomerically pure copper nanoclusters that exhibit intense optical activity, both in their ground and excited states. The synthesis of nanoclusters using l- and d-isomers of the chiral ligand led to the formation of metal clusters that displayed mirror image circular dichroism and circularly polarized luminescence signals. Structural validation using single crystal XRD, powder XRD and XPS in conjunction with chiroptical and computational analysis helped to develop a structure-property correlation that is unique to such clusters. Investigations on the mechanism of photoluminescence revealed that the system exhibits long excited state lifetimes. A combination of delayed luminescence and chirality resulted in circularly polarized delayed luminescence, a phenomenon that is rather uncommon to the field of metal clusters. The chiral emissive properties could be successfully demonstrated in free-standing polymeric films highlighting their potential for use in the field of data encryption, security tags and polarized light emitting devices. Moreover, the fundamental understanding of the mechanism of excited state chirality in copper clusters opens avenues for the exploration of similar effects in a variety of other clusters.
Collapse
Affiliation(s)
- Camelia Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Tirupati - 517507 India
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Tirupati - 517507 India
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati Tirupati - 517507 India
| |
Collapse
|
18
|
Sun H, Lv Y, Zhang J, Zhou C, Su X. A dual-signal fluorometric and colorimetric sensing platform based on gold-platinum bimetallic nanoclusters for the determination of β-galactosidase activity. Anal Chim Acta 2023; 1252:341010. [PMID: 36935161 DOI: 10.1016/j.aca.2023.341010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
Herein, a novel dual-signal sensing system for the determination of β-galactosidase (β-Gal) activity was established, which was based on a dual-emission probe assembled from gold-platinum bimetallic nanoclusters (Au-Pt NCs) and rhodamine B. Under the catalysis of β-Gal, 4-nitrophenyl β-D-galactopyranoside (PNPG) was rapidly hydrolyzed to generate p-nitrophenol (PNP), which has an obvious UV absorption peak at 400 nm. The hydrolyzed product PNP can quench the fluorescence of Au-Pt NCs effectively by inner filter effect (IFE), and PNP had no impact on the fluorescence of rhodamine B, which will change the emission intensity ratio of Au-Pt NCs and rhodamine B. Therefore, the ratiometric fluorescent and colorimetric dual-signal sensor based on Au-Pt NCs and rhodamine B was successfully constructed for sensitive detection of β-Gal activity. The linear detection range for the ratiometric fluorescence and colorimetric methods were 2.5-25 U/L and 15-55 U/L with detection limits of 1.2 U/L and 5.2 U/L, respectively. The developed assay method has been used for quantitative detection of β-Gal in spiked serum samples and showed good performance. And the detection platform has high reliability and excellent selectivity, which opens a new avenue for the further application of Au-Pt NCs in chemical sensing and biological analysis.
Collapse
Affiliation(s)
- Huilin Sun
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jiabao Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
19
|
Mulder AJ, Tilbury RD, Werrett MV, Wright PJ, Patel P, Becker T, Jones F, Stagni S, Jia G, Massi M, Buntine MA. Ligand-Mediated Control of the Surface Oxidation States of Copper Nanoparticles Produced by Laser Ablation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5156-5168. [PMID: 36995293 DOI: 10.1021/acs.langmuir.3c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We report on studies that demonstrate how the chemical composition of the surface of copper nanoparticles (CuNPs) - in terms of percentage copper(I/II) oxides - can be varied by the presence of N-donor ligands during their formation via laser ablation. Changing the chemical composition thus allows systematic tuning of the surface plasmon resonance (SPR) transition. The trialed ligands include pyridines, tetrazoles, and alkylated tetrazoles. CuNPs formed in the presence of pyridines, and alkylated tetrazoles exhibit a SPR transition only slightly blue shifted with respect to CuNPs formed in the absence of any ligand. On the other hand, the presence of tetrazoles results in CuNPs characterized by a significant blue shift of the order of 50-70 nm. By comparing these data also with the SPR of CuNPs formed in the presence of carboxylic acids and hydrazine, this work demonstrates that the blue shift in the SPR is due to tetrazolate anions providing a reducing environment to the nascent CuNPs, thus preventing the formation of copper(II) oxides. This conclusion is further supported by the fact that both AFM and TEM data indicate only small variations in the size of the nanoparticles, which is not enough to justify a 50-70 nm blue-shift of the SPR transition. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) studies further confirm the absence of Cu(II)-containing CuNPs when prepared in the presence of tetrazolate anions.
Collapse
Affiliation(s)
- Ashley J Mulder
- Department of Chemistry, Curtin University, GPO Box U1987 Perth, WA 6845, Australia
| | - Rhys D Tilbury
- Department of Chemistry, Curtin University, GPO Box U1987 Perth, WA 6845, Australia
| | - Melissa V Werrett
- Department of Chemistry, Curtin University, GPO Box U1987 Perth, WA 6845, Australia
| | - Phillip J Wright
- Department of Chemistry, Curtin University, GPO Box U1987 Perth, WA 6845, Australia
| | - Payal Patel
- Department of Chemistry, Curtin University, GPO Box U1987 Perth, WA 6845, Australia
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Thomas Becker
- Department of Chemistry, Curtin University, GPO Box U1987 Perth, WA 6845, Australia
| | - Franca Jones
- Department of Chemistry, Curtin University, GPO Box U1987 Perth, WA 6845, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, viale del Risorgimento 4, Bologna 40136, Italy
| | - Guohua Jia
- Department of Chemistry, Curtin University, GPO Box U1987 Perth, WA 6845, Australia
| | - Massimiliano Massi
- Department of Chemistry, Curtin University, GPO Box U1987 Perth, WA 6845, Australia
| | - Mark A Buntine
- Department of Chemistry, Curtin University, GPO Box U1987 Perth, WA 6845, Australia
| |
Collapse
|
20
|
Suo Z, Niu X, Wei M, Jin H, He B. Latest strategies for rapid and point of care detection of mycotoxins in food: A review. Anal Chim Acta 2023; 1246:340888. [PMID: 36764774 DOI: 10.1016/j.aca.2023.340888] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Mycotoxins contaminated in agricultural products are often highly carcinogenic and genotoxic to humans. With the streamlining of the food industry chain and the improvement of food safety requirements, the traditional laboratory testing mode is constantly challenged due to the expensive equipment, complex operation steps, and lag in testing results. Therefore, rapid detection methods are urgently needed in the food safety system. This review focuses on the latest strategies that can achieve rapid and on-site testing, with particular attention to the nanomaterials integrated biosensors. To provide researchers with the latest trends and inspiration in the field of rapid detection, we summarize several strategies suitable for point of care testing (POCT) of mycotoxins, including enzyme-linked immunoassay (ELISA), lateral flow assay (LFA), fluorescence, electrochemistry, and colorimetry assay. POCT-based strategies are all developing towards intelligence and portability, especially when combined with smartphones, making it easier to read signals for intuitive access and analysis of test data. Detection performance of the devices has also improved considerably with the integration of biosensors and nanomaterials.
Collapse
Affiliation(s)
- Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
| | - Xingyuan Niu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
21
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
22
|
Zou J, Xu F, Zheng J, Xiang Y, Li M, Zhou Q, Xia H. Recyclable fluorescence sensing based on copper clusters for simultaneous determination of copper ions and ammonia. Analyst 2023; 148:1068-1074. [PMID: 36752351 DOI: 10.1039/d3an00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A one-step strategy for synthesizing fluorescent copper clusters stabilized by L-cysteine has been successfully established in aqueous solutions. The direct determination of copper ions was realized by the fluorescence enhancement phenomenon caused by the preparation and aggregation process. At the same time, ammonia treatment can lead to rapid fluorescence quenching, resulting from the influence on the aggregation behavior of Cu clusters, while the fluorescence can be recovered by the continuous addition of copper ions. Therefore, a recyclable fluorescence sensing system is constructed for the simultaneous determination of copper ions and ammonia. This method is simple, anti-interference and has been successfully applied to the determination of environmental samples.
Collapse
Affiliation(s)
- Jie Zou
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China. .,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Fujian Xu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China. .,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jishi Zheng
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China. .,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yuhao Xiang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China. .,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Mengtian Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China. .,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qinghan Zhou
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China. .,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Hui Xia
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China. .,Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
23
|
Chua MH, Chin KLO, Loh XJ, Zhu Q, Xu J. Aggregation-Induced Emission-Active Nanostructures: Beyond Biomedical Applications. ACS NANO 2023; 17:1845-1878. [PMID: 36655929 DOI: 10.1021/acsnano.2c10826] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The discovery of aggregation-induced emission (AIE) phenomenon in 2001 has had a significant impact on materials development across different research disciplines. AIE-active materials have been widely exploited for various applications in optoelectronics, sensing, biomedical, and stimuli-responsive systems, etc. This is made possible by integrating AIE features with other fields of science and engineering, such as nanoscience and nanotechnology. AIE has been extensively employed, particularly for biomedical applications, such as biosensing, bioimaging, and theranostics. However, development of AIE-based nanotechnology for other applications is comparatively less, although there have been increasing research activities in recent years. Given the significance and potential of the marriage between AIE hallmark and nanotechnology in AIE-active materials development, this review article summarizes and showcases the latest research efforts in AIE-based nanomaterials, including nanomaterials synthesis and their nonbiomedical applications, such as sensing, optoelectronics, functional coatings, and stimuli-responsive systems. A perspective on the outlook of AIE-based nanostructured materials and relevant nanotechnology for nonbiomedical applications will be provided, giving an insight into how to design AIE-active nanostructures as well as their applications beyond the biomedical domain.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Kang Le Osmund Chin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Xian Jun Loh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
- Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore 117575
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Block S8 Level 3, Singapore 117543
| |
Collapse
|
24
|
Li J, Peng G, Yu Y, Lin B, Zhang L, Guo M, Cao Y, Wang Y. Cu 2+-mediated turn-on fluorescence biosensor based on DNA-templated silver nanoclusters for label-free and sensitive detection of adenosine triphosphate. Mikrochim Acta 2022; 190:41. [PMID: 36585965 DOI: 10.1007/s00604-022-05617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/07/2022] [Indexed: 01/01/2023]
Abstract
A Cu2+-mediated turn-on fluorescence biosensor based on the DNA-templated green-emitting silver nanoclusters (DNA@g-AgNCs) was developed for label-free and sensitive detection of adenosine 5'-triphosphate (ATP). Cu2+ was able to quench the bright green fluorescence of DNA@g-AgNCs because of the coordination and photoinduced electron transfer between DNA@g-AgNCs and Cu2+. Therefore, a unique and effective fluorescence biosensor can be constructed with the formation of DNA@g-AgNCs/Cu2+/ATP ternary-competition system. With the introduction of ATP, the DNA@g-AgNCs/Cu2+ fluorescence sensing system will be disrupted and the fluorescence of DNA@g-AgNCs was recovered due to higher affinity of ATP towards Cu2+. On the basis of this feature, the DNA@g-AgNCs/Cu2+ fluorescence sensing system demonstrated quantitative determination of ATP in the range 0.05 - 3 μM and a detection limit of 16 nM. Moreover, the fluorescence sensing system was successfully applied to the quantitative determination of ATP in human urine and serum samples with recoveries ranging from 98.6 to 106.5%, showing great promise to provide a label-free, cost-efficient, and rapid platform for ATP-related clinical disease diagnosis.
Collapse
Affiliation(s)
- Jingze Li
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
- School of Materials Engineering, Jiangxi College of Applied Technology, Ganzhou, Jiangxi, 341000, People's Republic of China
| | - Guibin Peng
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Ying Yu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China.
| | - Bixia Lin
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Li Zhang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Manli Guo
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yujuan Cao
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yumin Wang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China.
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, 541004, People's Republic of China.
| |
Collapse
|
25
|
Yang Y, Ren MY, Xu XG, Han Y, Zhao X, Li CH, Zhao ZL. Recent advances in simultaneous detection strategies for multi-mycotoxins in foods. Crit Rev Food Sci Nutr 2022; 64:3932-3960. [PMID: 36330603 DOI: 10.1080/10408398.2022.2137775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination has become a challenge in the field of food safety testing, given the increasing emphasis on food safety in recent years. Mycotoxins are widely distributed, in heavily polluted areas. Food contamination with these toxins is difficult to prevent and control. Mycotoxins, as are small-molecule toxic metabolites produced by several species belonging to the genera Aspergillus, Fusarium, and Penicillium growing in food. They are considered teratogenic, carcinogenic, and mutagenic to humans and animals. Food systems are often simultaneously contaminated with multiple mycotoxins. Due to the additive or synergistic toxicological effects caused by the co-existence of multiple mycotoxins, their individual detection requires reliable, accurate, and high-throughput techniques. Currently available, methods for the detection of multiple mycotoxins are mainly based on chromatography, spectroscopy (colorimetry, fluorescence, and surface-enhanced Raman scattering), and electrochemistry. This review provides a comprehensive overview of advances in the multiple detection methods of mycotoxins during the recent 5 years. The principles and features of these techniques are described. The practical applications and challenges associated with assays for multiple detection methods of mycotoxins are summarized. The potential for future development and application is discussed in an effort, to provide standards of references for further research.
Collapse
Affiliation(s)
- Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Meng-Yu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xiao-Guang Xu
- School of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xin Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Chun-Hua Li
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zhi-Lei Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
26
|
Karimi E, Nikkhah M, Hosseinkhani S. Label-Free and Bioluminescence-Based Nano-Biosensor for ATP Detection. BIOSENSORS 2022; 12:918. [PMID: 36354427 PMCID: PMC9687858 DOI: 10.3390/bios12110918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
A bioluminescence-based assay for ATP can measure cell viability. Higher ATP concentration indicates a higher number of living cells. Thus, it is necessary to design an ATP sensor that is low-cost and easy to use. Gold nanoparticles provide excellent biocompatibility for enzyme immobilization. We investigated the effect of luciferase proximity with citrate-coated gold, silver, and gold-silver core-shell nanoparticles, gold nanorods, and BSA-Au nanoclusters. The effect of metal nanoparticles on the activity of luciferases was recorded by the luminescence assay, which was 3-5 times higher than free enzyme. The results showed that the signal stability in presence of nanoparticles improved and was reliable up to 6 h for analytes measurements. It has been suggested that energy is mutually transferred from luciferase bioluminescence spectra to metal nanoparticle surface plasmons. In addition, we herein report the 27-base DNA aptamer for adenosine-5'-triphosphate (ATP) as a suitable probe for the ATP biosensor based on firefly luciferase activity and AuNPs. Due to ATP application in the firefly luciferase reaction, the increase in luciferase activity and improved detection limits may indicate more stability or accessibility of ATP in the presence of nanoparticles. The bioluminescence intensity increased with the ATP concentration up to 600 µM with a detection limit of 5 µM for ATP.
Collapse
|
27
|
Sun H, Zhang J, Wang M, Su X. Ratiometric fluorometric and colorimetric dual-mode sensing of glucose based on gold-platinum bimetallic nanoclusters. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Yue X, Pan Q, Zhou J, Ren H, Peng C, Wang Z, Zhang Y. A simplified fluorescent lateral flow assay for melamine based on aggregation induced emission of gold nanoclusters. Food Chem 2022; 385:132670. [DOI: 10.1016/j.foodchem.2022.132670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/04/2022]
|
29
|
Lin Y, Yang C, Huang Y, Chang H. Fluorescent carbon dots and noble metal nanoclusters for sensing applications: Minireview. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu‐Feng Lin
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Cheng‐Ruei Yang
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Yu‐Fen Huang
- Institute of Analytical and Environmental Sciences College of Nuclear Science, National Tsing Hua University Hsinchu Taiwan
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu Taiwan
- School of Pharmacy College of Pharmacy, Kaohsiung Medical University Kaohsiung Taiwan
| | - Huan‐Tsung Chang
- Department of Chemistry National Taiwan University Taipei Taiwan
| |
Collapse
|
30
|
Busi KB, Kotha J, Bandaru S, Ghantasala JP, Haseena S, Bhamidipati K, Puvvada N, Ravva MK, Thondamal M, Chakrabortty S. Engineering colloidally stable, highly fluorescent and nontoxic Cu nanoclusters via reaction parameter optimization. RSC Adv 2022; 12:17585-17595. [PMID: 35765449 PMCID: PMC9194929 DOI: 10.1039/d2ra02819k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/27/2022] [Indexed: 12/29/2022] Open
Abstract
Metal nanoclusters (NCs) composed of the least number of atoms (a few to tens) have become very attractive for their emerging properties owing to their ultrasmall size. Preparing copper nanoclusters (Cu NCs) in an aqueous medium with high emission properties, strong colloidal stability, and low toxicity has been a long-standing challenge. Although Cu NCs are earth-abundant and inexpensive, they have been comparatively less explored due to their various limitations, such as ease of surface oxidation, poor colloidal stability, and high toxicity. To overcome these constraints, we established a facile synthetic route by optimizing the reaction parameters, especially altering the effective concentration of the reducing agent, to influence their optical characteristics. The improvement of the photoluminescence intensity and superior colloidal stability was modeled from a theoretical standpoint. Moreover, the as-synthesized Cu NCs showed a significant reduction of toxicity in both in vitro and in vivo models. The possibility of using such Cu NCs as a diagnostic probe toward C. elegans was explored. Also, the extension of our approach toward improving the photoluminescence intensity of the Cu NCs on other ligand systems was demonstrated.
Collapse
Affiliation(s)
- Kumar Babu Busi
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Jyothi Kotha
- Department of Biological Sciences, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Shamili Bandaru
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | | | - Sheik Haseena
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Keerti Bhamidipati
- Applied Biology Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
| | - Nagaprasad Puvvada
- Applied Biology Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
- Department of Chemistry, Indrashil University Rajpur Mehsana-382740 Gujarat India
| | - Mahesh Kumar Ravva
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Manjunatha Thondamal
- Department of Biological Sciences, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | | |
Collapse
|
31
|
Lin X, Yu W, Tong X, Li C, Duan N, Wang Z, Wu S. Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control. Crit Rev Anal Chem 2022; 54:355-388. [PMID: 35584031 DOI: 10.1080/10408347.2022.2076063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mycotoxins, which are toxic secondary metabolites produced by fungi, are harmful to humans. Mycotoxin-induced contamination has drawn attention worldwide. Consequently, the development of reliable and sensitive detection methods and high-efficiency control strategies for mycotoxins is important to safeguard food industry safety and public health. With the rapid development of nanotechnology, many novel nanomaterials that provide tremendous opportunities for greatly improving the detection and control performance of mycotoxins because of their unique properties have emerged. This review comprehensively summarizes recent trends in the application of nanomaterials for detecting mycotoxins (fluorescence, colorimetric, surface-enhanced Raman scattering, electrochemical, and point-of-care testing) and controlling mycotoxins (inhibition of fungal growth, mycotoxin absorption, and degradation). These detection methods possess the advantages of high sensitivity and selectivity, operational simplicity, and rapidity. With research attention on the control of mycotoxins and the gradual excavation of the properties of nanomaterials, nanomaterials are also employed for the inhibition of fungal growth, mycotoxin absorption, and mycotoxin degradation, and impressive controlling effects are obtained. This review is expected to provide the readers insight into this state-of-the-art area and a reference to design nanomaterials-based schemes for the detection and control of mycotoxins.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Wenyan Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xinyu Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Changxin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
32
|
Zhang CX, Wang Y, Duan X, Chen K, Li HW, Wu Y. Development of cytidine 5′-monophosphate-protected gold-nanoclusters to be a direct luminescent substrate via aggregation-induced emission enhancement for ratiometric determination of alkaline phosphatase and inhibitor evaluation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Najdian A, Amanlou M, Beiki D, Bitarafan-Rajabi A, Mirzaei M, Shafiee Ardestani M. Amino-Modified-Silica-Coated Gadolinium-Copper Nanoclusters, Conjugated to AS1411 aptamer and Radiolabeled with Technetium-99m as a Novel Multimodal Imaging Agent. Bioorg Chem 2022; 125:105827. [DOI: 10.1016/j.bioorg.2022.105827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
|
34
|
Li T, Hu Z, Yu S, Liu Z, Zhou X, Liu R, Liu S, Deng Y, Li S, Chen H, Chen Z. DNA Templated Silver Nanoclusters for Bioanalytical Applications: A Review. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Due to their unique programmability, biocompatibility, photostability and high fluorescent quantum yield, DNA templated silver nanoclusters (DNA Ag NCs) have attracted increasing attention for bioanalytical application. This review summarizes the recent developments in fluorescence
properties of DNA templated Ag NCs, as well as their applications in bioanalysis. Finally, we herein discuss some current challenges in bioanalytical applications, to promote developments of DNA Ag NCs in biochemical analysis.
Collapse
Affiliation(s)
- Taotao Li
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Zhiyuan Hu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Songlin Yu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Zhanjun Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Xiaohong Zhou
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Rong Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Shiquan Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
35
|
Zhan S, Jiang J, Zeng Z, Wang Y, Cui H. DNA-templated coinage metal nanostructures and their applications in bioanalysis and biomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Supramolecular Self-Assembly of Atomically Precise Silver Nanoclusters with Chiral Peptide for Temperature Sensing and Detection of Arginine. NANOMATERIALS 2022; 12:nano12030424. [PMID: 35159774 PMCID: PMC8839151 DOI: 10.3390/nano12030424] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
Abstract
Metal nanoclusters (NCs) as a new type of fluorescent material have attracted great interest due to their good biocompatibilities and outstanding optical properties. However, most of the studies on metal NCs focus on the synthesis, atomic or molecular assembly, whereas metal NCs ability to self-assemble to higher-level hierarchical nanomaterials through supramolecular interactions has rarely been reported. Herein, we investigate atomic precise silver NCs (Ag9-NCs, [Ag9(mba)9], where H2mba = 2-mercaptobenzoic acid) and peptide DD-5 were used to induce self-assembly, which can trigger an aggregation-induced luminescence (AIE) effect of Ag9-NCs through non-covalent forces (H-bond, π–π stacking) and argentophilic interactions [Ag(I)–Ag(I)]. The large Stokes shift (~140 nm) and the microsecond fluorescence lifetime (6.1 μs) indicate that Ag9-NCs/DD-5 hydrogel is phosphor. At the same time, the chirality of the peptide was successfully transferred to the achiral Ag9-NCs because of the supramolecular self-assembly, and the Ag9-NCs/DD-5 hydrogel also has good circularly polarized luminescence (CPL) properties. In addition, Ag9-NCs/DD-5 luminescent hydrogel is selective and sensitive to the detection of small biological molecule arginine. This work shows that DD-5 successfully induces the self-assembly of Ag9-NCs to obtain high luminescent gel, which maybe become a candidate material in the fields of sensors and biological sciences.
Collapse
|
37
|
Li S, Ma Q, Wang C, Yang K, Hong Z, Chen Q, Song J, Song X, Yang H. Near-Infrared II Gold Nanocluster Assemblies with Improved Luminescence and Biofate for In Vivo Ratiometric Imaging of H 2S. Anal Chem 2022; 94:2641-2647. [PMID: 35085437 DOI: 10.1021/acs.analchem.1c05154] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ultrasmall gold nanoclusters (AuNCs) are emerging as promising luminescent nanoprobes for bioimaging due to their fantastic photoluminescence (PL) and renal-clearable ability. However, it remains a great challenge to design them for in vivo sensitive molecular imaging in desired tissues. Herein, we have developed a strategy to tailor the PL and biofate of near-infrared II (NIR-II)-emitting AuNCs via ligand anchoring for improved bioimaging. By optimizing the ligand types in AuNCs and using Er3+-doped lanthanide (Ln) nanoparticles as models, core-satellite Ln@AuNCs assemblies were rationally constructed, which enabled 2.5-fold PL enhancement of AuNCs at 1100 nm and prolonged blood circulation compared to AuNCs. Significantly, Ln@AuNCs with dual intense NIR-II PL (from AuNCs and Er3+) can effectively accumulate in the liver for ratiometric NIR-II imaging of H2S, facilitated by H2S-mediated selective PL quenching of AuNCs. We have then demonstrated the real-time imaging evaluation of liver delivery efficacy and dynamics of two H2S prodrugs. This shows a paradigm to visualize liver H2S delivery and its prodrug screening in vivo. Note that Ln@AuNCs are body-clearable via the hepatobiliary excretion pathway, thus reducing potential long-term toxicity. Such findings may propel the engineering of AuNC nanoprobes for advancing in vivo bioimaging analysis.
Collapse
Affiliation(s)
- Shihua Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.,Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China
| | - Qiuping Ma
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chenlu Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Kaidong Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhongzhu Hong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.,Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
38
|
Babu Busi K, Palanivel M, Kanta Ghosh K, Basu Ball W, Gulyás B, Padmanabhan P, Chakrabortty S. The Multifarious Applications of Copper Nanoclusters in Biosensing and Bioimaging and Their Translational Role in Early Disease Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:301. [PMID: 35159648 PMCID: PMC8839130 DOI: 10.3390/nano12030301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023]
Abstract
Nanoclusters possess an ultrasmall size, amongst other favorable attributes, such as a high fluorescence and long-term colloidal stability, and consequently, they carry several advantages when applied in biological systems for use in diagnosis and therapy. Particularly, the early diagnosis of diseases may be facilitated by the right combination of bioimaging modalities and suitable probes. Amongst several metallic nanoclusters, copper nanoclusters (Cu NCs) present advantages over gold or silver NCs, owing to their several advantages, such as high yield, raw abundance, low cost, and presence as an important trace element in biological systems. Additionally, their usage in diagnostics and therapeutic modalities is emerging. As a result, the fluorescent properties of Cu NCs are exploited for use in optical imaging technology, which is the most commonly used research tool in the field of biomedicine. Optical imaging technology presents a myriad of advantages over other bioimaging technologies, which are discussed in this review, and has a promising future, particularly in early cancer diagnosis and imaging-guided treatment. Furthermore, we have consolidated, to the best of our knowledge, the recent trends and applications of copper nanoclusters (Cu NCs), a class of metal nanoclusters that have been gaining much traction as ideal bioimaging probes, in this review. The potential modes in which the Cu NCs are used for bioimaging purposes (e.g., as a fluorescence, magnetic resonance imaging (MRI), two-photon imaging probe) are firstly delineated, followed by their applications as biosensors and bioimaging probes, with a focus on disease detection.
Collapse
Affiliation(s)
- Kumar Babu Busi
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Gunntur, Andhra Pradesh 522502, India;
| | - Mathangi Palanivel
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522502, India;
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Gunntur, Andhra Pradesh 522502, India;
| |
Collapse
|
39
|
Wong ZW, Ng JF, New SY. Ratiometric Detection of microRNA Using Hybridization Chain Reaction and Fluorogenic Silver Nanoclusters. Chem Asian J 2021; 16:4081-4086. [PMID: 34668337 DOI: 10.1002/asia.202101145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/18/2021] [Indexed: 12/30/2022]
Abstract
miRNA (miR)-155 is a potential biomarker for breast cancers. We aimed at developing a nanosensor for miR-155 detection by integrating hybridization chain reaction (HCR) and silver nanoclusters (AgNCs). HCR serves as an enzyme-free and isothermal amplification method, whereas AgNCs provide a built-in fluorogenic detection probe that could simplify the downstream analysis. The two components were integrated by adding a nucleation sequence of AgNCs to the hairpin of HCR. The working principle was based on the influence of microenvironment towards the hosted AgNCs, whereby unfolding of hairpin upon HCR has manipulated the distance between the hosted AgNCs and cytosine-rich toehold region of hairpin. As such, the dominant emission of AgNCs changed from red to yellow in the absence and presence of miR-155, enabling a ratiometric measurement of miR with high sensitivity. The limit of detection (LOD) of our HCR-AgNCs nanosensor is 1.13 fM in buffered solution. We have also tested the assay in diluted serum samples, with comparable LOD of 1.58 fM obtained. This shows the great promise of our HCR-AgNCs nanosensor for clinical application.
Collapse
Affiliation(s)
- Zheng Wei Wong
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Jeck Fei Ng
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Siu Yee New
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
40
|
Xiao D, Qi H, Teng Y, Pierre D, Kutoka PT, Liu D. Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. NANOSCALE RESEARCH LETTERS 2021; 16:167. [PMID: 34837561 PMCID: PMC8626755 DOI: 10.1186/s11671-021-03613-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 05/18/2023]
Abstract
With the rapid development of nanotechnology, new types of fluorescent nanomaterials (FNMs) have been springing up in the past two decades. The nanometer scale endows FNMs with unique optical properties which play a critical role in their applications in bioimaging and fluorescence-dependent detections. However, since low selectivity as well as low photoluminescence efficiency of fluorescent nanomaterials hinders their applications in imaging and detection to some extent, scientists are still in search of synthesizing new FNMs with better properties. In this review, a variety of fluorescent nanoparticles are summarized including semiconductor quantum dots, carbon dots, carbon nanoparticles, carbon nanotubes, graphene-based nanomaterials, noble metal nanoparticles, silica nanoparticles, phosphors and organic frameworks. We highlight the recent advances of the latest developments in the synthesis of FNMs and their applications in the biomedical field in recent years. Furthermore, the main theories, methods, and limitations of the synthesis and applications of FNMs have been reviewed and discussed. In addition, challenges in synthesis and biomedical applications are systematically summarized as well. The future directions and perspectives of FNMs in clinical applications are also presented.
Collapse
Affiliation(s)
- Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Haixiang Qi
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Teng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Dramou Pierre
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Dong Liu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, School of Biological and Pharmaceutical Engineering, West Anhui University, West of Yunlu Bridge, Moon Island, Lu'an, 237012, Anhui, China.
| |
Collapse
|
41
|
Zhang Z, Jiang W, Xie X, Liang H, Chen H, Chen K, Zhang Y, Xu W, Chen M. Recent Developments of Nanomaterials in Hydrogels: Characteristics, Influences, and Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202103528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zongzheng Zhang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Wenqing Jiang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Xinmin Xie
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Haiqing Liang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Hao Chen
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Kun Chen
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Ying Zhang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Wenlong Xu
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Mengjun Chen
- School of Qilu Transportation Shandong University Jinan 250002 China
| |
Collapse
|
42
|
AIE materials for lysosome imaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021. [PMID: 34749972 DOI: 10.1016/bs.pmbts.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The aggregation-induced emission (AIE) active bioprobes are known for their high photostability and extraordinary signal to noise ratio. In view of this, research efforts to synthesize new AIE bioimaging probes are at an incredible speed. In this chapter, we have summarized the various lysosome specific AIE active "turn-on" bioprobes having applications in lysosome imaging, monitoring of lysosome bioactivity and evaluation of their therapeutic effects. By discussing their design and operational mechanisms, we hope to provide more insight into designing new AIE bioprobes for specific sensing and imaging of lysosome having flexibility for broad range of biomedical applications.
Collapse
|
43
|
Sequential detection of vitamin B6 cofactors and nitroaromatics by using albumin-stabilized fluorescent copper nanoclusters. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Wang X, Wang Y, Ying Y. Recent advances in sensing applications of metal nanoparticle/metal–organic framework composites. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Anand SK, Mathew MR, Girish Kumar K. A dual channel optical sensor for biliverdin and bilirubin using glutathione capped copper nanoclusters. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Hu Y, Ji W, Qiao J, Li H, Zhang Y, Luo J. Simple and Sensitive Multi-components Detection Using Synthetic Nitrogen-doped Carbon Dots Based on Soluble Starch. J Fluoresc 2021; 31:1379-1392. [PMID: 34156612 DOI: 10.1007/s10895-021-02764-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Although carbon dots (CDs) as fluorescent sensors have been widely exploited, multi-component detection using CDs without tedious surface modification is always a challenging task. Here, two kinds of nitrogen-doped CDs (NCD-m and NCD-o) based on soluble starch (SS) as carbon source were prepared through one-pot hydrothermal process using m-phenylenediamine and o-phenylenediamine as nitrogenous dopant respectively. Through fluorescence "on-off" mechanism of CDs, NCD-m and NCD-o could be used as a fluorescence sensor for detection of Fe 3+ and Ag + with LOD of 0.25 and 0.51 μM, respectively. Additionally, NCD-m could be used for indirect detection of ascorbic acid (AA) with LOD of 5.02 μM. Moreover, fluorescence intensity of NCD-m also exhibited the sensitivity to pH change from 2 to 13. More importantly, Both NCD-m and NCD-o had potential application for analysis of complicated real samples such as tap water, Vitamin C tablets and orange juice. Ultimately, the small size of NCD-m could contribute to reinforcing intracellular endocytosis, which allowed them to be used for bacteria imaging. Obviously, these easily obtainable nitrogen-doped CDs were able to be used for multi-components detection. Strategy for synthesis of nitrogen-doped carbon dots (NCDs) and a schematic for fabrication of as-prepared NCDs for detection of Fe 3+, Ag + and ascorbic acid (AA).
Collapse
Affiliation(s)
- Yuanyuan Hu
- Medical College, China Three Gorges University, Yichang, 443002, China.
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine (Approved By State Administration of Traditional Chinese Medicine of China, SATCM), China Three Gorges University, Yichang, 443002, China.
| | - Wenxuan Ji
- Medical College, China Three Gorges University, Yichang, 443002, China
| | - Jinjuan Qiao
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, China
| | - Heng Li
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, China
| | - Yun Zhang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jun Luo
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, China.
| |
Collapse
|
47
|
Zheng Y, Wei L, Duan L, Yang F, Huang G, Xiao T, Wei M, Liang Y, Yang H, Li Z, Wang D. Rapid field testing of mercury pollution by designed fluorescent biosensor and its cells-alginate hydrogel-based paper assay. J Environ Sci (China) 2021; 106:161-170. [PMID: 34210432 DOI: 10.1016/j.jes.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 06/13/2023]
Abstract
With increasing industrial activities, mercury has been largely discharged into environment and caused serious environmental problems. The growing level of mercury pollution has become a huge threat to human health due to its significant biotoxicity. Therefore, the simple and fast means for on-site monitoring discharged mercury pollution are highly necessary to protect human beings from its pernicious effects in time. Herein, a "turn off" fluorescent biosensor (mCherry L199C) for sensing Hg2+ was successfully designed based on direct modification of the chromophore environment of fluorescent protein mCherry. For rapid screening and characterization, the designed variant of mCherry (mCherry L199C) was directly expressed on outer-membrane of Escherichia coli cells by cell surface display technique. The fluorescent biosensor was characterized to have favorable response to Hg2+ at micromole level among other metal ions and over a broad pH range. Further, the cells of the fluorescent biosensor were encapsulated in alginate hydrogel to develop the cells-alginate hydrogel-based paper. The cells-alginate hydrogel-based paper could detect mercury pollution in 5 min with simple operation process and inexpensive equipment, and it could keep fluorescence and activity stable at 4 °C for 24 hr, which would be a high-throughput screening tool in preliminarily reporting the presence of mercury pollution in natural setting.
Collapse
Affiliation(s)
- Yanan Zheng
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Liudan Wei
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Linwei Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‑Bioresources, Guangxi University, Nanning 530004, China
| | - Fangfang Yang
- Guangxi-ASEAN Food Inspection and Testing Center, China
| | - Guixiang Huang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Tianyi Xiao
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Min Wei
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Yanling Liang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Huiting Yang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‑Bioresources, Guangxi University, Nanning 530004, China.
| | - Dan Wang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
48
|
Sonia, Komal, Kukreti S, Kaushik M. Gold nanoclusters: An ultrasmall platform for multifaceted applications. Talanta 2021; 234:122623. [PMID: 34364432 DOI: 10.1016/j.talanta.2021.122623] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023]
Abstract
Gold nanoclusters (Au NCs) with a core size below 2 nm form an exciting class of functional nano-materials with characteristic physical and chemical properties. The properties of Au NCs are more prominent and extremely different from their bulk counterparts. The synthesis of Au NCs is generally assisted by template or ligand, which impart excellent cluster stability and high quantum yield. The tunable and sensitive physicochemical properties of Au NCs open horizons for their advanced applications in various interdisciplinary fields. In this review, we briefly summarize the solution phase synthesis and origin of the characteristic properties of Au NCs. A vast review of recent research work introducing biosensors based on Au NCs has been presented along with their specifications and detection limits. This review also highlights recent progress in the use of Au NCs as bio-imaging probe, enzyme mimic, temperature sensing probe and catalysts. A speculation on present challenges and certain future prospects have also been provided to enlighten the path for advancement of multifaceted applications of Au NCs.
Collapse
Affiliation(s)
- Sonia
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Komal
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
49
|
Reyes-Cruzaley AP, Ochoa-Terán A, Tirado-Guízar A, Félix-Navarro RM, Alonso-Núñez G, Pina-Luis G. A fluorescent PET probe based on polyethyleneimine-Ag nanoclusters as a reversible, stable and selective broad-range pH sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2495-2503. [PMID: 34002195 DOI: 10.1039/d1ay00302j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, nanoclusters (NCs) of Cu and Ag capped with hyperbranched polyethyleneimine (PEI) were prepared using chemical reduction by a one-step hydrothermal method. The PEI coated-NCs were characterized by high-resolution transmission electron microscopy, ζ potential, thermogravimetric analysis, dynamic light scattering, Fourier-transform infrared, UV-visible, and fluorescence spectroscopy. The PEI-NCs exhibited strong absorption and fluorescence, high stability, and excellent water dispersibility. The resulting PEI-NCs showed a reversible and linear response of fluorescence intensity with pH over a wide range (3-11); however, PEI-AgNCs showed a better reversibility and sensitivity than PEI-CuNCs. Unlike several types of pH sensors based on modified NCs, which are based on a nanoparticle aggregation/disaggregation mechanism, the response of our sensor is based on a photoinduced electron transfer process, which gives it a high reversibility. This method was successfully applied in pH measurements in tap water and green tea samples, with excellent results, indicating its practical utility for these applications. A visual device was obtained by immobilizing PEI-AgNCs into agarose hydrogels at different pH values. The results show that the proposed sensor can be used as a pH visual detector. Besides, the light emission of the nanosensor was corroborated by fluorescence microscopy, confirming that the nanosensor based on PEI-AgNCs has great potential to be used in cellular imaging.
Collapse
Affiliation(s)
- Ana Patricia Reyes-Cruzaley
- Centro de Graduados e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Bulevar Alberto Limón Padilla S/N, Otay Tecnológico, 22510, Tijuana, B. C., Mexico.
| | | | | | | | | | | |
Collapse
|
50
|
Silver nanocluster-lightened catalytic hairpin assembly for enzyme-free and label-free mRNA detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|