1
|
Riboni N, Ribezzi E, Bianchi F, Careri M. Supramolecular Materials as Solid-Phase Microextraction Coatings in Environmental Analysis. Molecules 2024; 29:2802. [PMID: 38930867 PMCID: PMC11206577 DOI: 10.3390/molecules29122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Solid-phase microextraction (SPME) has been widely proposed for the extraction, clean-up, and preconcentration of analytes of environmental concern. Enrichment capabilities, preconcentration efficiency, sample throughput, and selectivity in extracting target compounds greatly depend on the materials used as SPME coatings. Supramolecular materials have emerged as promising porous coatings to be used for the extraction of target compounds due to their unique selectivity, three-dimensional framework, flexible design, and possibility to promote the interaction between the analytes and the coating by means of multiple oriented functional groups. The present review will cover the state of the art of the last 5 years related to SPME coatings based on metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular macrocycles used for environmental applications.
Collapse
Affiliation(s)
- Nicolò Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | | - Federica Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | |
Collapse
|
2
|
Alwael H, Alsulami AN, Abduljabbar TN, Oubaha M, El-Shahawi MS. Innovative Sol-gel functionalized polyurethane foam for sustainable water purification and analytical advances. Front Chem 2024; 12:1324426. [PMID: 38389725 PMCID: PMC10881768 DOI: 10.3389/fchem.2024.1324426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Nanomaterial combined polymeric membranes such as polyurethane foams (PUFs) have garnered enormous attention in the field of water purification due to their ease of management and surface modification, cost-effectiveness, and mechanical, chemical, and thermal properties. Thus, this study reports the use of novel Sol-gel impregnated polyurethane foams (Sol-gel/PUFs) as new dispersive solid phase microextractors (d- µ SPME) for the efficient separation and subsequent spectrophotometric detection of Eosin Y (EY) textile dye in an aqueous solution with a pH of 3-3.8. The Sol gel, PUFs, and Sol gel-impregnated PUFs were characterized using scanning electron microscopy (SEM), goniometry measurements, dynamic light scattering (DLS), energy dispersive spectroscopy (EDS), UV-Visible, and FTIR spectra. Batch experiment results displayed a remarkable removal percentage (96% ± 5.4%) of the EY from the aqueous solution, with the total sorption time not exceeding 60 min. These data indicate rate-limited sorption via diffusion and/or surface complex ion associate formations after the rapid initial sorption steps. A pseudo-second order kinetic model thoroughly explained the sorption kinetics, providing a sorption capacity (qe) of 37.64 mg g-1, a half-life time (t1/2) of 0.8 ± 0.01 min, and intrinsic penetration control dye retention. The thermodynamic results revealed a negative value for ΔG⁰ (-78.07 kJ mol-1 at 293 K), clearly signifying that the dye uptake was spontaneous, as well as a negative value for ΔH⁰ (-69.58 kJ mol-1) and a positive value for ΔS⁰ (147.65 J mol-1 K-1), making clear the exothermic nature of EY adsorption onto the sorbent, with a growth in randomness at the molecular level. A ternary retention mechanism is proposed, involving the "weak base anion exchanger" of {(-CH2-OH+ -CH2-) (Dye anion)-}Sol-gel/PUF and/or {(-NH2 + -COO-) (Dye anion)-}Sol-gel/PUF via solvent extraction and "surface adsorption" of the dye anion on/in the Sol-gel/PUFs membranes in addition to H-bonding, including surface complexation and electrostatic π-π interaction, between the dye and the silicon/zirconium oxide (Si-O-Zr) and siloxane (Si-O-Si) groups on the sorbent. Complete extraction and recovery (93.65 ± 0.2, -102.28 ± 2.01) of EY dye with NaOH (0.5 M) as a proper eluting agent was achieved using a sorbent-packed mini column. In addition, the established extractor displayed excellent reusability and does not require organic solvents for EY enrichment in water samples, making it a talented nominee as a novel sorbent for EY sorption from wastewater. This study is of great consequence for expanding the applicatio1n of Sol-gel/PUFs in developing innovative spectrophotometric sensing strategies for dye determination. In view of this, it would also be remarkable to perform future studies to explore the analytical implications of this extractor regarding safety and environmental and public health issues associated to the pollutant.
Collapse
Affiliation(s)
- H Alwael
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A N Alsulami
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - T N Abduljabbar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Oubaha
- Centre for Research in Engineering Surface Technologies (CREST), FOCAS Institute, Technological University Dublin, Dublin, Ireland
| | - M S El-Shahawi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Guo W, Tao H, Tao H, Shuai Q, Huang L. Recent progress of covalent organic frameworks as attractive materials for solid-phase microextraction: A review. Anal Chim Acta 2024; 1287:341953. [PMID: 38182358 DOI: 10.1016/j.aca.2023.341953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 01/07/2024]
Abstract
Solid-phase microextraction (SPME) is a green, environmentally friendly, and efficient technique for sample pre-treatment. Covalent organic frameworks (COFs), a class of porous materials formed by covalent bonds, have gained prominence owing to their remarkable attributes, including large specific surface area, tunable pore size, and robust thermal/chemical stability. These characteristics have made COFs highly appealing as potential coatings for SPME fiber over the past decades. In this review, various methods used to prepare SPME coatings based on COFs are presented. These methods encompass physical adhesion, sol-gel processes, in situ growth, and chemical cross-linking strategies. In addition, the applications of COF-based SPME coating fibers for the preconcentration of various targets in environmental, food, and biological samples are summarized. Moreover, not only their advantages but also the challenges they pose in practical applications are highlighted. By shedding light on these aspects, this review aims to contribute to the continued development and utilization of COF materials in the field of sample pretreatment.
Collapse
Affiliation(s)
- Weikang Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Hui Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Haijuan Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China.
| |
Collapse
|
4
|
Ghandourah MA, Orif MI, Al-Farawati RK, El-Shahawi MS, Abu-Zied RH. Sol-Gel Functionalized Polyurethane Foam-Packed Mini-Column as an Efficient Solid Extractor for the Rapid and Ultra-Trace Detection of Textile Dyes in Water. Gels 2023; 9:884. [PMID: 37998974 PMCID: PMC10670804 DOI: 10.3390/gels9110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Textile dyes widely used in industrial products are known as a major threat to human health and water ecological security. On the other hand, sol gel represents a principal driver of the adoption of dispersive solid-phase microextractors (d-µ SPME) for pollutants residues in water. Thus, the current study reports a new and highly rapid and highly efficient hybrid sol-gel-based sponge polyurethane foam as a dispersive solid-phase microextractor (d-µ-SPME) platform packed mini-column for complete preconcentration and subsequent spectrophotometric detection of eosin Y textile dye in wastewater. The unique porous structure of the prepared sol-gel immobilized polyurethane foams (sol-gel/PUF) has suggested its use for the complete removal of eosin Y dye (EY) from water. In the mini-column, the number (N) of plates, the height equivalent to the theoretical plates (HETP), the critical capacity (CC), and the breakthrough capacities (BC) of the hybrid sol-gel-treated polyurethane foams towards EY dye were determined via the breakthrough capacity curve at various flow rates. Under the optimum condition using the matrix match strategy, the linear range of 0.01-5 µg L-1, LODs and LOQs in the range of 0.006 µg L-1, and 0.01 µg L-1 for wastewater were achieved. The intra-day and inter-day precisions were evaluated at two different concentration levels (0.05 and 5 μg L-1 of dye) on the same day and five distinct days, respectively. The analytical utility of the absorbents packed in pulses and mini-columns to extract and recover EY dye was attained by 98.94%. The column could efficiently remove different dyes from real industrial effluents, and hence the sol-gel/PUF is a good competitor for commercial applications. The findings of this research work have strong potential in the future to be used in selecting the most suitable lightweight growing medium for a green roof based on stakeholder requirements. Therefore, this study has provided a convenient pathway for the preparation of compressible and reusable sponge materials from renewable biomass for efficient removal of EY from the water environment.
Collapse
Affiliation(s)
- Mohammed A. Ghandourah
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (M.I.O.); (R.K.A.-F.); (R.H.A.-Z.)
| | - Mohammad I. Orif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (M.I.O.); (R.K.A.-F.); (R.H.A.-Z.)
| | - Radwan K. Al-Farawati
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (M.I.O.); (R.K.A.-F.); (R.H.A.-Z.)
| | - Mohammad S. El-Shahawi
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia;
| | - Ramadan H. Abu-Zied
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (M.I.O.); (R.K.A.-F.); (R.H.A.-Z.)
| |
Collapse
|
5
|
Foroutan F, Ahmadzadeh H, Davardoostmanesh M, Amiri A. Water desalination using stainless steel meshes coated with layered double hydroxide/graphene oxide nanocomposite. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10925. [PMID: 37691327 DOI: 10.1002/wer.10925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/18/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Coated stainless steel meshes with layered double hydroxides and graphene oxide nanocomposites (LDH/GO) were used as desalination membranes. The nature of stainless steel mesh allows a greater amount of sorbent to be coated on the surface using sol-gel technique and increases the adsorption capacity of ions and the efficiency of desalination. These substrates improve the contact surface area so that approximately 5 min is required for the desalination process. The LDH/GO stainless steel mesh exhibited excellent corrosion resistance and tensile strength of 99.9% and 112 MPa, respectively. To achieve the best desalination efficiency, different parameters were optimized, including the ratio of GO to LDH in the nanocomposites, the number of mesh layers, NaCl concentrations, and process cycles. The maximum adsorption capacity for the NaCl was 555.5 mg g-1 . The results revealed that LDH/GO nanocomposite was able to remove (94.3 ± 0.5) % of the NaCl under the optimum conditions. The proposed method was used to successfully remove Na+ , Mg+2 , Ca+2 , and K+ cations from seawater, with the yields of 92.3%, 92.5%, 91.2%, and 90.2%, respectively. PRACTITIONER POINTS: The salts are removed via interaction between salt ions and functional groups on the LDH/GO nanocomposite surface. A high amount of adsorbent loaded on the surface of steel mesh leads to an improvement in the adsorption capacity. The sol-gel technique strengthens the LDH/GO nanocomposites on the surface of steel mesh.
Collapse
Affiliation(s)
- Fahimeh Foroutan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Ahmadzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Amirhassan Amiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Chen S, Yu Z, Zhang W, Chen H, Ding Q, Xu J, Yu Q, Zhang L. Carboxylated mesoporous carbon hollow spheres for the efficient solid-phase microextraction of aromatic amines. Analyst 2023; 148:2527-2535. [PMID: 37140019 DOI: 10.1039/d3an00376k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An efficient and stable fiber coating is of great importance for solid-phase microextraction (SPME). In this study, carboxylated mesoporous carbon hollow spheres (MCHS-COOH) were developed as an efficient SPME coating of polar aromatic amines (AAs) for the first time. The MCHS-COOH coating material with high specific surface area (1182.32 m2 g-1), large pore size (10.14 nm), and rich oxygen-containing groups was fabricated via a facile H2O2 post-treatment. The as-prepared MCHS-COOH-coated fiber exhibited fast adsorption rate and excellent extraction properties, mainly due to its π-π interactions, hollow structure, and abundant affinity sites (carboxyl groups). Subsequently, coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS), a sensitive method with low limits of detection (0.08-2.0 ng L-1), a wide linear range (0.3-500.0 ng L-1), and good repeatability (2.0-8.8%, n = 6) was developed for the analysis of AAs. The developed method was validated against three river water samples, with satisfactory relative recoveries being obtained. The above results demonstrated that the prepared MCHS-COOH-coated fiber exhibited good adsorption capacity, suggesting a promising application to monitor trace polar compounds in real environment.
Collapse
Affiliation(s)
- Shixiang Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Zejun Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Wenmin Zhang
- Department of Chemical and Biological Technology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Hui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Jinhua Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Qidong Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
7
|
Zhang Y, Zhang X, Wang S. Recent advances in the removal of emerging contaminants from water by novel molecularly imprinted materials in advanced oxidation processes-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163702. [PMID: 37105485 DOI: 10.1016/j.scitotenv.2023.163702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Recently, there has been a global focus on effectively treating emerging contaminants (ECs) in water bodies. Advanced oxidation processes (AOPs) are the primary technology used for ECs removal. However, the low concentrations of ECs make it difficult to overcome the interference of background substances in complex water quality, which limits the practical application of AOPs. To address this limitation, many researchers are developing new catalysts with preferential adsorption. Molecular imprinting technology (MIT) combined with conventional catalysts has been found to effectively enhance the selectivity of catalysts for the targeted catalytic degradation of pollutants. This review presents a comprehensive summary of the progress made in research on molecularly imprinted polymers (MIPs) in the selective oxidation of ECs in water. The preparation methods, principles, and control points of novel MIP catalysts are discussed. Furthermore, the performance and mechanism of the catalysts in photocatalytic oxidation, electrocatalytic oxidation, and persulfate activation are analyzed with examples. The possible ecotoxicological risks of MIP catalysts are also discussed. Finally, the challenges and prospects of applying MIP catalysts in AOP are presented along with proposed solutions. This review provides a better understanding of using MIP catalysts in AOPs to target the degradation of ECs.
Collapse
Affiliation(s)
- Yang Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xiaodong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
8
|
Rahimi M, Bahar S. Preparation of a New Solid-Phase Microextraction Fiber Based on Molecularly Imprinted Polymers for Monitoring of Phenobarbital in Urine Samples. J Chromatogr Sci 2022; 61:87-95. [PMID: 35088078 DOI: 10.1093/chromsci/bmac001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/31/2021] [Indexed: 01/11/2023]
Abstract
A simple solid-phase microextraction technique using molecularly imprinted polymers (MIP-SPME) was prepared to monitor phenobarbital in urine samples. In this technique, the fiber was prepared via insertion of the modified stainless-steel wire in the reaction solution including 3-aminopropyltriethoxysilane and tetraethyl orthosilicate in the presence of an acidic catalyst (acetic acid). The fabricated MIP-SPME fiber was utilized to selectively extract phenobarbital from urine samples and prepare it for detection through high-performance liquid chromatography with ultraviolet detection. The synthesized MIPs were characterized by several techniques such as Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, and thermal gravimetric analysis. The effects of various influencing factors on the extraction yield of phenobarbital were considered and optimized. The conditions that yielded the maximum extraction efficiency were as follows: pH of 5, 25 min extraction time, 500 rpm stirring rate, 15 min desorption time and using methanol as elution solvent. Within the range of concentrations of 0.02 to 100 μg mL-1, the method had linear characteristics, with a suitable coefficient of determination (0.9983). We determined limits of detection and limits of quantification to be 9.88 and 32.9 ng mL-1, respectively. The repeatability and reproducibility of the prepared fibers were 4.6 and 6.5%, respectively.
Collapse
Affiliation(s)
- Marzieh Rahimi
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Soleiman Bahar
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
9
|
Improving the In Vitro Removal of Indoxyl Sulfate and p-Cresyl Sulfate by Coating Diatomaceous Earth (DE) and Poly-vinyl-pyrrolidone-co-styrene (PVP-co-S) with Polydopamine. Toxins (Basel) 2022; 14:toxins14120864. [PMID: 36548761 PMCID: PMC9781211 DOI: 10.3390/toxins14120864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Polydopamine (PDA) is a synthetic eumelanin polymer mimicking the biopolymer secreted by mussels to attach to surfaces with a high binding strength. It exhibits unique adhesive properties and has recently attracted considerable interest as a multifunctional thin film coating. In this study, we demonstrate that a PDA coating on silica- and polymer-based materials improves the entrapment and retention of uremic toxins produced in specific diseases. The low-cost natural nanotextured fossil diatomaceous earth (DE), an abundant source of mesoporous silica, and polyvinylpyrrolidone-co-Styrene (PVP-co-S), a commercial absorbent comprising polymeric particles, were easily coated with a PDA layer by oxidative polymerization of dopamine at mild basic aqueous conditions. An in-depth chemical-physical investigation of both the resulting PDA-coated materials was performed by SEM, AFM, UV-visible, Raman spectroscopy and spectroscopic ellipsometry. Finally, the obtained hybrid systems were successfully tested for the removal of two uremic toxins (indoxyl sulfate and p-cresyl sulfate) directly from patients' sera.
Collapse
|
10
|
Selective enrichment and determination of polychlorinated biphenyls in milk by solid-phase microextraction using molecularly imprinted phenolic resin fiber coating. Anal Chim Acta 2022; 1227:340328. [DOI: 10.1016/j.aca.2022.340328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
|
11
|
Mussel Inspired Polydopamine as Silica Fibers Coating for Solid-Phase Microextraction. SEPARATIONS 2022. [DOI: 10.3390/separations9080194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Commercial solid-phase microextraction fibers are available in a limited number of expensive coatings, which often contain environmentally harmful substances. Consequently, several different approaches have been used in the attempt to develop new sorbents that should possess intrinsic characteristics such as duration, selectivity, stability, and eco-friendliness. Herein we reported a straightforward, green, and easy coating method of silica fibers for solid-phase microextraction with polydopamine (PDA), an adhesive, biocompatible organic polymer that is easily produced by oxidative polymerization of dopamine in mild basic aqueous conditions. After FT-ATR and SEM characterization, the PDA fibers were tested via chromatographic analyses performed on UHPLC system using biphenyl and benzo(a)pyrene as model compounds, and their performances were compared with those of some commercial fibers. The new PDA fiber was finally used for the determination of selected PAHs in soot samples and the results compared with those obtained using the commercial PA fiber. Good reproducibility, extraction stability, and linearity were obtained using the PDA coating, which proved to be a very promising new material for SPME.
Collapse
|
12
|
Shahhoseini F, Azizi A, S.Bottaro C. A critical evaluation of molecularly imprinted polymer (MIP) coatings in solid phase microextraction devices. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Zhang XW, Chu YJ, Li YH, Li XJ. Matrix compatibility of typical sol-gel solid-phase microextraction coatings in undiluted plasma and whole blood for the analysis of phthalic acid esters. Anal Bioanal Chem 2022; 414:2493-2503. [PMID: 35171297 PMCID: PMC8853384 DOI: 10.1007/s00216-022-03890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022]
Abstract
Sol-gel materials have been widely used for solid-phase microextraction (SPME) coatings due to their outstanding performance; in contrast, sol-gel SPME coatings have seldom been used for in vivo sampling. The main reason is that their matrix compatibility is unclear. In order to promote the application of this type of coating and accelerate the development of in vivo SPME, in this study, the matrix compatibility of several typical sol-gel coatings was assessed in plasma and whole blood using phthalic acid esters as analytes. The service life of five kinds of sol-gel coatings was among 20-35 times in undiluted plasma, while it was 27 times for a homemade commercial polydimethylsiloxane coating, which indicates good matrix compatibility of sol-gel coatings in untreated plasma. The sol-gel hydroxy-terminated silicone oil/methacrylic acid fiber achieved the highest extraction ability among all of the fibers, and it was tested in pig whole blood. It could be continuously used for at least 22 times, demonstrating good potential for in vivo sampling. Subsequently, a direct-immersion SPME/gas chromatography-flame ionization detection method was established for the determination of 5 phthalic acid esters in blood. Compared with other methods reported in the literature, this method is rapid, simple, sensitive, and accurate, and does not need expensive instruments or tedious procedures. A simulation system of animal blood circulation was constructed to verify the practicability of sol-gel SPME coatings in animal vein sampling. The result illustrated the feasibility of that coating for in vivo blood sampling, but a more accurate quantification calibration approach needs to be explored.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science &Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao-Juan Chu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science &Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Hao Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science &Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiu-Juan Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science &Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Abdar A, Amiri A, Mirzaei M. Semi-automated solid-phase extraction of polycyclic aromatic hydrocarbons based on stainless steel meshes coated with metal-organic framework/graphene oxide. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Kalogiouri NP, Kabir A, Olayanju B, Furton KG, Samanidou VF. Development of highly hydrophobic fabric phase sorptive extraction membranes and exploring their applications for the rapid determination of tocopherols in edible oils analyzed by high pressure liquid chromatography-diode array detection. J Chromatogr A 2021; 1664:462785. [PMID: 34992043 DOI: 10.1016/j.chroma.2021.462785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022]
Abstract
Α novel, green, and facile fabric phase sorptive extraction (FPSE) prior to high pressure liquid chromatography with diode array detection (HPLC-DAD) methodology was developed for the efficient extraction and quantitative determination of tocopherols (α-, sum of (β+γ), and δ-) in edible oils. Among several highly hydrophobic FPSE membranes, sol-gel polycaprolactone-polydimethylsiloxane-polycaprolactone (sol-gel PCAP-PDMS-PCAP) coated polyester FPSE membrane was found as the most efficient in extracting tocopherol homologues from edible oil samples. To maximize the extraction efficiency of FPSE membrane, major parameters of FPSE including the membrane size, sample loading time, the choice of the appropriate elution solvent and the elution solvent volume, desorption time, and the influence of stirring were systematically optimized. The developed FPSE-HPLC-DAD methodology was validated and presented adequately low limits of detection (LODs) and limits of quantification (LOQs) over the ranges 0.05-0.10 μg/g, and 0.17-0.33 μg/g, respectively. The RSD% of the within-day and between-day assays were lower than 1.3, and 11.8, respectively, demonstrating good method precision. The trueness of the method was assessed by means of relative percentage of recovery and ranged between 90.8 and 95.1% for within-day assay, and between 88.7-92.8% for between-day assay. The developed methodology was applied in the analysis of edible oils.
Collapse
Affiliation(s)
- Natasa P Kalogiouri
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA; Department of Pharmacy, Faculty of Allied Health Science, Daffodil International University, Dhaka-1207, Bangladesh
| | - Basit Olayanju
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Kenneth G Furton
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
16
|
Shi W, Shahri EE, Es’hagi Z, Zhao J. Preyssler heteropolyacid supported on magnetic silica for hollow fiber solid-phase microextraction of anti-hypertensive drugs in human hair. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Akbari M, Mirzaei M, Amiri A. Synergistic effect of lacunary polyoxotungstates and carbon nanotubes for extraction of organophosphorus pesticides. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Bagheri AR, Aramesh N, Haddad PR. Applications of covalent organic frameworks and their composites in the extraction of pesticides from different samples. J Chromatogr A 2021; 1661:462612. [PMID: 34844738 DOI: 10.1016/j.chroma.2021.462612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/07/2022]
Abstract
Pesticides are used extensively in a wide range of applications and due to their high rate of consumption, they are ubiquitous in the different media and samples like environment, water sources, air, soil, biological materials, wastes (liquids, solids or sludges), vegetables and fruits, where they can persist for long periods. Pesticides often have hazardous side effects and can cause a range of harmful diseases like Parkinson, Alzheimer, asthma, depression and anxiety, cancer, etc, even at low concentrations. To this end, extraction, pre-concentration and determination of pesticides from various samples presents significant challenges caused by sample complexity and the low concentrations of them in many samples. Often, direct extraction and determination of pesticides are impossible due to their low concentrations and the complexity of samples. The main goals of sample preparation are removing interfering species, pre-concentrating target analyte/s and converting the analytes into more stable forms (when needed). The most popular approach is solid-phase extraction due to its simplicity, efficiency, ease of operation and low cost. This method is based on using a wide variety of materials, among which covalent organic frameworks (COFs) can be identified as an emerging class of highly versatile materials exhibiting advantageous properties, such as a porous and crystalline structure, pre-designable structure, high physical and chemical stability, ease of modification, high surface area and high adsorption capacity. The present review will cover recent developments in synthesis and applications of COFs and their composites for extraction of pesticides, different synthesis approaches of COFs, possible mechanisms for interaction of COFs-based adsorbents with pesticides and finally, future prospects and challenges in the fabrication and utilization of COFs and their composites for extraction of pesticides.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Chemistry Department, Isfahan University, Isfahan 81746-73441, Iran.
| | - Paul R Haddad
- Australian Center for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
19
|
Magnetic dispersive micro-solid-phase extraction for the preconcentration and extraction of lead (II) and cadmium ions from environmental samples using magnetic CoFe2O4 @ SiO2@4-aminobenzoic acid-functionalized graphene oxide as a green and efficient sorbent. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01833-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Determination of benzene, toluene, ethylbenzene, and p-xylene with headspace-hollow fiber solid-phase microextraction-gas chromatography in wastewater and Buxus leaves, employing a chemometric approach. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01663-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Yang Y, Lin Y, Deng Y, Hou X, Yang L, Zheng C. In-site and solvent-free exfoliation of porous graphene oxide from pencil lead fiber for solid-phase microextraction of cadmium ion before GF-AAS determination. Mikrochim Acta 2021; 188:172. [PMID: 33893562 DOI: 10.1007/s00604-021-04823-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Graphene oxide (GO)-functionalized pencil lead fiber was prepared for the first time by in situ oxidation and exfoliation of graphite contained in pencil lead fiber to porous graphene oxide structure via a one-step solvent-free dielectric barrier discharge (DBD) microplasma treatment. This new fiber was demonstrated as a highly efficient and low-cost solid-phase microextraction (SPME) fiber for the determination of toxic metal ions. The fiber extraction performance was evaluated by using cadmium as a model analyte in a direct immersing SPME mode. Unlike most commercially available and other lab-built fibers, the preparation of the graphene oxidized pencil lead fiber is environmentally friendly, low cost, and non-toxic without using any organic solvents. The fiber is robust due to its coating-free configuration. Furthermore, high extraction efficiency and high sensitivity for cadmium can be obtained due to the abundant oxygen-containing functional groups on the surface of the novel fiber. After extraction, the cadmium adsorbed on the fiber was desorbed to 150-μL solution. Graphite furnace atomic absorption spectrometry (GF-AAS) with low sample consumption was used to determine cadmium. The calibration curve for cadmium ions was linear in a range 0.04-0.26 μg L-1 with a detection limit of 0.005 μg L-1. A relative standard deviation (RSD, n = 5) of 2.1% was obtained at 0.1 μg L-1 of cadmium. The sensitivity enhancement factor (EF) value of the proposed SPME method was 25. The SPME fiber was successfully applied to determine cadmium in tap water, river water, and pond water with spike recoveries ranging from 94 to 105%. Pipe network water samples were also analyzed to evaluate the cadmium release to drinking water due to the corrosion of tubes.
Collapse
Affiliation(s)
- Yuan Yang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yao Lin
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yurong Deng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China.,Analytical & Testing Center, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Lu Yang
- National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
22
|
Li Q, Zhang W, Guo Y, Chen H, Ding Q, Zhang L. Oxygenated carbon nanotubes cages coated solid-phase microextraction fiber for selective extraction of migrated aromatic amines from food contact materials. J Chromatogr A 2021; 1646:462031. [PMID: 33857834 DOI: 10.1016/j.chroma.2021.462031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
In this study, an oxygenated carbon nanotubes cages (OCNTCs) material was prepared by calcinating zeolitic imidazole framework-67 (ZIF-67) and then oxidizing the resulting material. The OCNTCs was used as a high efficient solid-phase microextraction (SPME) coating to extract aromatic amines (AAs). The obtained fiber exhibited high selectivity for AAs over other organic compounds in food contact materials (FCMs) due to matched pore size and abundant oxygen-containing groups. Subsequently, coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS), a sensitive method with low limits of detection (0.1-2.0 ng L-1), wide linear ranges (0.5-500 ng L -1) and good precision (RSDs ≤ 8.6%) was developed for analysis of AAs. The specific migrated AAs from food simulants that prepared by standardized migration and thermal migration test were successfully analysed by this developed method with satisfactory recoveries (81.6% - 118.1%) and precision (RSDs, 2.1-9.5%). The results demonstrated that the prepared OCNTCs-coated fibers displayed excellent extraction performance, suggesting a promising application to investigate the migration behaviors of AAs.
Collapse
Affiliation(s)
- Qingqing Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Division of Chemical and Biological Engineering, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Yuheng Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Hui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
23
|
Tsalbouris A, Kalogiouri NP, Kabir A, Furton KG, Samanidou VF. Bisphenol A migration to alcoholic and non-alcoholic beverages – An improved molecular imprinted solid phase extraction method prior to detection with HPLC-DAD. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Bagheri AR, Aramesh N, Bilal M. New frontiers and prospects of metal-organic frameworks for removal, determination, and sensing of pesticides. ENVIRONMENTAL RESEARCH 2021; 194:110654. [PMID: 33359702 DOI: 10.1016/j.envres.2020.110654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Pesticides have been widely used in agriculture to control, reduce, and kill insects. Humans are also being using pesticides to control insidious animals in daily life. By these practices, a huge volume of pesticides is introduced to the environment. Despite broad-spectrum applicability, pesticides also have hazardous effects on both humans and animals at high and low concentrations. Long-term exposure to pesticides can cause different diseases, like leukemia, lymphoma, and cancers of the brain, breasts, prostate, testis, and ovaries. Reproductive disorders from pesticides include birth defects, stillbirth, spontaneous abortion, sterility, and infertility. Therefore, the application of determination and treatment methods for pre-concentration and removal of these toxic materials from the environment appears a vital concern. To date, different materials and approaches have been employed for these purposes. Among these approaches, multifunctional metal-organic frameworks (MOFs)-assisted adsorption and determination processes have always been in the spotlight. These facts are due to exclusive properties of MOFs in terms of the crystallinity, large surface area, high chemical, and physical stability, and controllable structure as well as unique features of adsorption and determination process in terms of simple, easy, cheap, available method and ability to use in large and industrial scales. In the present work, we illustrate the exceptional features of MOFs as well as the possible mechanism for the adsorption of pesticides by MOFs. The use of these fantastic materials for pre-concentration and removal of pesticides are extensively explored. In addition, the performance of MOFs was compared with other adsorbents. Finally, the new frontiers and prospects of MOFs for the determination, sensing, and removal of pesticides are presented.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
25
|
Kalogiouri NP, Pritsa A, Kabir A, Furton KG, Samanidou VF. A green molecular imprinted solid-phase extraction protocol for bisphenol A monitoring with HPLC-UV to guarantee the quality and safety of walnuts under different storage conditions. J Sep Sci 2021; 44:1633-1640. [PMID: 33448130 DOI: 10.1002/jssc.202001199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/10/2023]
Abstract
Monitoring the residual toxicant concentrations in foods is the key step for minimizing potential hazards. The huge interest about food contamination and exposure to endocrine disruptors such as bisphenol A has emerged the development of sensitive analytical methodologies to guarantee the safety and quality of foods. In this work, a green molecularly imprinted solid-phase extraction protocol coupled with high-performance liquid chromatography with UV detection was optimized following the principles of green analytical chemistry. An imprinted sol-gel silica-based hybrid inorganic-organic polymeric sorbent was used to monitor the leaching of bisphenol A from different packaging materials (glass vessels, cans, and polypropylene containers) in walnuts stored within a period of 6 months at 25 and 4°C. Extraction parameters including loading time (5-20 min), solvent type (acetonitrile, ethanol, methanol, acetone, acetonitrile:methanol, 50:50, v/v), and elution flow rate (0.2-1 mL/min) were optimized with one-factor-at-a-time method. The selected extraction optimum parameters incorporated elution with acetonitrile at 0.2 mL/min flow rate, for 10 min sample holding time. The imprinting factor was equal to 4.55 ± 0.26 (n = 3). The optimized method presented high recovery (94.3 ± 4.2%, n = 3), good linearity (>0.999), intra-assay repeatability (90.2-95.6%, n = 3), and interassay precision (86.7-93.1%, n = 3).
Collapse
Affiliation(s)
- Natasa P Kalogiouri
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Agathi Pritsa
- Laboratory of Chemical Biology, Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
26
|
Zhang J, Zhang B, Dang X, Song Z, Hu Y, Chen H. A polythiophene/UiO-66 composite coating for extraction of volatile organic compounds migrated from ion-exchange resins prior to their determination by gas chromatography. J Chromatogr A 2020; 1633:461627. [PMID: 33128970 DOI: 10.1016/j.chroma.2020.461627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
A Poly (3,4-ethylenedioxothiophene) (PEDOT)/UiO-66 composite was electrodeposited on an etched stainless-steel wire as head-space solid-phase microextraction (HS-SPME) coating. A robust, well controlled thickness, and uniform coating of metal organic framework composites can be realized by the electrodeposited strategy. The incorporated UiO-66 not only enhanced the uniformity and stability of the composite coating, but also effectively decreased the stacking phenomenon of PEDOT and improved its extraction efficiency, which was over 100 times higher than that of the PEDOT coating without UiO-66. The composite coating was used to enrich seven types of volatile organic compounds (VOCs) in ion-exchange resins, including methyl cyclohexane, benzene, toluene, ortho-xylene, styrene, para-xylene and divinyl-benzene. The results of adsorption isotherm analysis showed that π stacking effect played dominant role between the composite coating and VOCs in the extraction process. The composite coating was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared and thermogravimetric analysis, respectively. A determination method for seven kinds of VOCs was established by HS-SPME coupled with gas chromatography-flame ionization detection (GC-FID). Under the optimal experimental conditions, the detection linear range (LRs) was 0.09-100 ng mL-1, and the detection limit (LODs) was 0.03-0.06 ng mL-1 (S/N = 3). The method was applied for the migration detection of VOCs in four types of ion-exchange resin, which showed satisfactory recovery (84.5-117.2%).
Collapse
Affiliation(s)
- Jiayang Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Birong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xueping Dang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Zhiyong Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Huaixia Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
27
|
Mohammadi P, Masrournia M, Es'haghi Z, Pordel M. Determination of four antiepileptic drugs with solvent assisted dispersive solid phase microextraction – Gas chromatography–mass spectrometry in human urine samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Dozein SV, Masrournia M, Es’haghi Z, Bozorgmehr MR. Development of a New Magnetic Dispersive Solid-Phase Microextraction Coupled with GC-MS for the Determination of Five Organophosphorus Pesticides from Vegetable Samples. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01906-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Ramezani AM, Yamini Y. Electrodeposition of poly-ethylenedioxythiophene-graphene oxide nanocomposite in a stainless steel tube for solid-phase microextraction of letrozole in plasma samples. J Sep Sci 2020; 43:4338-4346. [PMID: 32997397 DOI: 10.1002/jssc.202000838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 01/04/2023]
Abstract
Coated stainless steel was used as an in-tube solid-phase microextraction for the extraction of letrozole from plasma samples. The coating process on the inner surface of the stainless steel was conducted by a simple electrodeposition process. The coated composite was prepared from 3,4-ethylenedioxythiophene and graphene oxide. In this composite, graphene oxide acts as an anion dopant and sorbent. The coated nanostructured polymer was characterized using different techniques. The operational factors affecting the extraction process, including pH, adsorption, and desorption time, the recycling flow rate of the sample solution, sample volume, desorption solvent type and its volume, and ionic strength were optimized to achieve the best extraction efficiency of the analyte. The total extraction time including adsorption and desorption steps was about 15.0 min. The developed method demonstrated a linear range of 5.0-1500.0 μg/L with a limit of detection of 1.0 μg/L. The repeatability of the developed extraction approach in terms of intraday, interday, and fiber to fiber was attained in the range of 4.9-8.3%. After finding the optimal conditions, the potential of the described approach for letrozole quantitation was investigated in plasma samples, and satisfactory results were obtained.
Collapse
Affiliation(s)
- Amir M Ramezani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
30
|
Kalogiouri NP, Tsalbouris A, Kabir A, Furton KG, Samanidou VF. Synthesis and application of molecularly imprinted polymers using sol–gel matrix imprinting technology for the efficient solid-phase extraction of BPA from water. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104965] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Hajializadeh A, Ansari M, Foroughi MM, Kazemipour M. Ultrasonic assisted synthesis of a novel ternary nanocomposite based on carbon nanotubes/zeolitic imidazolate framework-67/polyaniline for solid-phase microextraction of organic pollutants. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Hu J, Qian C, Zhang Y, Tian Y, Duan Y. Sol-gel fabrication and performance evaluation of graphene-based hydrophobic solid-phase microextraction fibers for multi-residue analysis of pesticides in water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3954-3963. [PMID: 32744282 DOI: 10.1039/d0ay01153c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Widespread use of organophosphorus pesticides poses serious environmental threats, and hence calls for effective analysis methods for these classes of compounds. In this study, a lab-made graphene-based solid-phase microextraction (SPME) fiber was fabricated by the sol-gel method and combined with a gas chromatography-flame photometry detector (GC-FPD) to realize the detection of trace OPPs in water samples. Compared to the commercial fiber coatings, the new sol-gel graphene fiber coatings showed advantages of good durability and solvent resistance, which were attributed to the hydrophobic and antibacterial properties of the functionalized graphene and 3-(trimethoxysilyl)propyldimethyloctadecylammonium chloride (QAS). A headspace SPME method in combination with a GC-FPD was established to evaluate the performance of the novel fibers. The proposed method showed a good linear relationship for the eight OPPs (R2≥ 0.9957) in the concentration range of 1 to 1000 μg L-1, with limits of quantification of 0.11-3.37 μg L-1 and limits of detection of 0.03-1.01 μg L-1. Furthermore, the developed method also exhibited good recoveries for the analysis of OPPs both in rainwater and lake water, which demonstrates that this method is an alternative choice for multi-residue analysis of OPPs, and it has the potential for broader applications in the future.
Collapse
Affiliation(s)
- Jiaxin Hu
- Research Center of Analytical Instrumentation, Northwest University, 1 Xuefu Ave., Xi'an, Shaanxi 710069, China.
| | | | | | | | | |
Collapse
|
33
|
Effective extraction of organophosphorus pesticides using sol–gel based coated stainless steel mesh as novel solid-phase extraction sorbent. J Chromatogr A 2020; 1620:461020. [DOI: 10.1016/j.chroma.2020.461020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 11/17/2022]
|
34
|
Ortiz-Islas E, Manríquez-Ramírez ME, Sosa-Muñoz A, Almaguer P, Arias C, Guevara P, Hernández-Cortez G, Aguirre-Cruz ML. Preparation and characterisation of silica-based nanoparticles for cisplatin release on cancer brain cells. IET Nanobiotechnol 2020; 14:191-197. [PMID: 32338626 PMCID: PMC8676590 DOI: 10.1049/iet-nbt.2019.0239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/09/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
In the present work, the preparation, characterisation, and efficiency of two different silica nanostructures as release vehicles of Cisplatin are reported. The 1-hexadeciltrimethyl-ammonium bromide templating agent was used to obtain mesoporous silica nanoparticles which were later loaded with Cisplatin. While sol-gel silica was very fast prepared using an excess of acetic acid during the hydrolysis-condensation reactions of tetraethylorthosilicate and at the same time the Cisplatin was added. Several physicochemical techniques including spectroscopies, electronic microscopy, X-ray diffraction, N2 adsorption-desorption were used to characterise the silica nanostructures. An in vitro Cisplatin release test was carried out using artificial cerebrospinal fluid. Finally, the toxicity of all silica nanostructures was tested using the C6 cancer cell line. The spectroscopic results showed the suitable stabilisation of Cisplatin into the two different silica nanostructures. A large surface area was obtained for the mesoporous silica nanoparticles, while low areas were obtained in the silica nanoparticles. Cisplatin was released faster from mesoporous silica channels than from inside of aggregates nanoparticles silica. Cisplatin alone, as well as, cisplatin released from both silica nanostructures exerted a toxic effect on cancer cells. In contrast, both silica structures without the drug did not exert any toxic effect.
Collapse
Affiliation(s)
- Emma Ortiz-Islas
- Nanotechnology Laboratory, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, 14269 México City, Mexico.
| | - María Elena Manríquez-Ramírez
- ESIQIE-National Polytechnic Institute, Instituto Politécnico Nacional s/n, Col. Zacatenco, 07738 México City, Mexico
| | - Amarilis Sosa-Muñoz
- Nanotechnology Laboratory, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, 14269 México City, Mexico
| | - Paola Almaguer
- ESIQIE-National Polytechnic Institute, Instituto Politécnico Nacional s/n, Col. Zacatenco, 07738 México City, Mexico
| | - Carlos Arias
- ESIQIE-National Polytechnic Institute, Instituto Politécnico Nacional s/n, Col. Zacatenco, 07738 México City, Mexico
| | - Patricia Guevara
- Neuroimmunology Laboratory, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, 14269 México City, Mexico
| | - Gonzalo Hernández-Cortez
- Gerencia de materiales y productos químicos, Instituto Mexicano del Petróleo, Eje Lázaro Cárdenas 152, 07730 México City, Mexico
| | - Ma Lucinda Aguirre-Cruz
- Laboratory of Neuroimmunoendocrinology, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, 14269 México City, Mexico
| |
Collapse
|
35
|
Mirhashemi A, Ghorbani Y, Sadighi S. Synthesis and evaluation of Fe3O4–Al2O3/SDS–DMG adsorbent for extraction and preconcentration of Pd(II) from real samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01912-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Graphene oxide/polydimethylsiloxane-coated stainless steel mesh for use in solid-phase extraction cartridges and extraction of polycyclic aromatic hydrocarbons. Mikrochim Acta 2020; 187:213. [DOI: 10.1007/s00604-020-4193-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/24/2020] [Indexed: 11/26/2022]
|
37
|
Nasiri M, Ahmadzadeh H, Amiri A. Sample preparation and extraction methods for pesticides in aquatic environments: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115772] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Wang W, Gong Z, Yang S, Xiong T, Wang D, Fan M. Fluorescent and visual detection of norfloxacin in aqueous solutions with a molecularly imprinted polymer coated paper sensor. Talanta 2020; 208:120435. [DOI: 10.1016/j.talanta.2019.120435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
|
39
|
Dowlatshah S, Saraji M. A silica-based three-dimensional molecularly imprinted coating for the selective solid-phase microextraction of difenoconazole from wheat and fruits samples. Anal Chim Acta 2020; 1098:37-46. [DOI: 10.1016/j.aca.2019.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Accepted: 11/06/2019] [Indexed: 11/15/2022]
|
40
|
Pelit L, Pelit F, Ertaş H, Ertaş FN. Electrochemically Fabricated Solid Phase Microextraction Fibers and Their Applications in Food, Environmental and Clinical Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411015666190314155440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background:Designing an analytical methodology for complicated matrices, such as biological and environmental samples, is difficult since the sample preparation procedure is the most demanding step affecting the whole analytical process. Nowadays, this step has become more challenging by the legislations and environmental concerns since it is a prerequisite to eliminate or minimize the use of hazardous substances in traditional procedures by replacing with green techniques suitable for the sample matrix.Methods:In addition to the matrix, the nature of the analyte also influence the ease of creating green analytical techniques. Recent developments in the chemical analysis provide us new methodologies introducing microextraction techniques and among them, solid phase microextraction (SPME) has emerged as a simple, fast, low cost, reliable and portable sample preparation technique that minimizes solvent consumption.Results:The use of home-made fibers is popular in the last two decades since the selectivity can be tuned by changing the surface characteristics through chemical and electrochemical modifications. Latter technique is preferred since the electroactive polymers can be coated onto the fiber under controlled electrochemical conditions and the film thicknesses can be adjusted by simply changing the deposition parameters. Thermal resistance and mechanical strength can be readily increased by incorporating different dopant ions into the polymeric structure and selectivity can be tuned by inserting functional groups and nanostructures. A vast number of analytes with wide range of polarities extracted by this means can be determined with a suitable chromatographic detector coupled to the system. Therefore, the main task is to improve the physicochemical properties of the fiber along with the extraction efficiency and selectivity towards the various analytes by adjusting the electrochemical preparation conditions.Conclusion:This review covers the fine tuning conditions practiced in electrochemical preparation of SPME fibers and in-tube systems and their applications in environmental, food and clinical analysis.
Collapse
Affiliation(s)
- Levent Pelit
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Füsun Pelit
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Hasan Ertaş
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Fatma Nil Ertaş
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| |
Collapse
|
41
|
Maciel EVS, de Toffoli AL, Neto ES, Nazario CED, Lanças FM. New materials in sample preparation: Recent advances and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115633] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
|
43
|
A polyurethane-based thin film for solid phase microextraction of pyrethroid insecticides. Mikrochim Acta 2019; 186:596. [DOI: 10.1007/s00604-019-3708-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/21/2019] [Indexed: 01/07/2023]
|
44
|
Abujaber F, Ahmad S, Neng N, Rodríguez Martín-Doimeadios R, Guzmán Bernardo F, Nogueira J. Bar adsorptive microextraction coated with multi-walled carbon nanotube phases - Application for trace analysis of pharmaceuticals in environmental waters. J Chromatogr A 2019; 1600:17-22. [DOI: 10.1016/j.chroma.2019.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
|
45
|
Amiri A, Tayebee R, Abdar A, Narenji Sani F. Synthesis of a zinc-based metal-organic framework with histamine as an organic linker for the dispersive solid-phase extraction of organophosphorus pesticides in water and fruit juice samples. J Chromatogr A 2019; 1597:39-45. [DOI: 10.1016/j.chroma.2019.03.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/15/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
|
46
|
Corn-like stationary phase for solid phase microextraction prepared by electro-assisted deposition of sol-gel/silica nanoparticles composite. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Jillani SMS, Alhooshani K. Yttria‐based sol–gel coating for capillary microextraction online coupled to high‐performance liquid chromatography. J Sep Sci 2019; 42:2435-2443. [DOI: 10.1002/jssc.201900179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/28/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | - Khalid Alhooshani
- Department of ChemistryKing Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
| |
Collapse
|
48
|
Ding Y, Song X, Chen J. Analysis of Pesticide Residue in Tomatoes by Carbon Nanotubes/β-Cyclodextrin Nanocomposite Reinforced Hollow Fiber Coupled with HPLC. J Food Sci 2019; 84:1651-1659. [PMID: 31107549 DOI: 10.1111/1750-3841.14640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 11/27/2022]
Abstract
For addressing the issues of pesticide residue analysis characterized by the trace levels of target analytes and the complexity of sample matrices, a selective extracting material, carbon nanotubes (CNTs)/β-cyclodextrin (β-CD) nanocomposite reinforced hollow fiber (HF), was developed. CNTs were chemically modified with β-CD and then the resultant nanocomposite was immobilized into the wall pores and lumen of HF by sol-gel technology. The reinforced HF was applied to direct-immersion mode of solid phase microextraction for the determination of carbaryl and 1-naphthol in tomatoes, coupled with high performance liquid chromatography. The proposed method provided 240- and 215-fold enrichment factors, good linearity in the range of 0.6 to 600 ng/g and 0.2 to 600 ng/g, good repeatability with RSDs of 4.5% and 6.9%, and batch-to-batch reproducibility with RSDs of 7.4% and 8.3% for 1-naphthol and carbaryl, respectively. Moreover, the low limits of detection at 0.05 and 0.15 ng/g for 1-naphthol and carbaryl, respectively, along with the high recovery in the range of 84.2% to 108.9% were obtained. The results showed that the material combined the respective advantages of CNTs, β-CD, and HF, thus, exhibiting efficient adsorption property, outstanding molecular recognition performance, and excellent sample clean-up effect, and it is applicable for pesticide residue analysis in complex matrices. PRACTICAL APPLICATION: The developed extracting material can be used for pesticide residue analysis of tomatoes. Pesticides, carbaryl, and 1-naphthol were detected in tomatoes, the most popular vegetable grown and consumed globally. The results supported the necessity to monitor pesticide residue for public health.
Collapse
Affiliation(s)
- Yawen Ding
- School of pharmacy, Lanzhou Univ., Lanzhou, 730000, P. R. China
| | - Xinyue Song
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Linyi Univ., Linyi, 276005, P. R. China
| | - Juan Chen
- School of pharmacy, Lanzhou Univ., Lanzhou, 730000, P. R. China
| |
Collapse
|
49
|
Seyyal E, Evans-Nguyen T. Online Sol-gel Capillary Microextraction-Mass Spectrometry (CME-MS) Analysis of Illicit Drugs. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:595-604. [PMID: 30796621 DOI: 10.1007/s13361-018-02127-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Providing rapid and sensitive sample cleanup, sol-gel capillary microextraction (CME) is a form of solid phase microextraction (SPME). The capillary format of CME couples easily with mass spectrometry (MS) by employing sol-gel sorbent coatings in inexpensive fused silica capillaries. By leveraging the syringe pump and six-port valve readily available on the commercial MS, we can obviate the need for chromatography for samples as complex as urine in quantitative assays. Two different sol-gel materials were studied as microextraction sorbents: one with a single ligand of octadecyl (C18) and the other with a dual-ligand combination of C18 and phenyl (Phe) groups. The CME-MS method was optimized for flow rate and solvent desorption and studied for overall microextraction performance between the two sorbents studied. We extract illicit drugs including cocaine, heroin, amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine, and oxycodone, proving good run-to-run reproducibility (RSD% < 10%) and low detection limits (< 10 ng mL-1). The dual-ligand sorbent demonstrated superior performance due to typical hydrophobic properties of C18 as well as potential π-π interactions of the Phe functionality and the aromatic moiety common to many drugs. This study demonstrates the advantage of fine-tuning sol-gel sorbents for application-specific CME-MS. We apply our method to the analysis of various drugs in synthetic and human urine samples and show low carryover effect (~ 5%) and low matrix effect in the presence of the urine matrix. Thus, the sol-gel CME-MS technique described herein stands to be an attractive alternative to other SPME-MS techniques.
Collapse
Affiliation(s)
- Emre Seyyal
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, FL, 33620-5250, USA
| | - Theresa Evans-Nguyen
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, FL, 33620-5250, USA.
| |
Collapse
|
50
|
Ansari Dogaheh M, Behzadi M. Preparation of polypyrrole/nanosilica composite for solid-phase microextraction of bisphenol and phthalates migrated from containers to eye drops and injection solutions. J Pharm Anal 2019; 9:185-192. [PMID: 31297296 PMCID: PMC6598220 DOI: 10.1016/j.jpha.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/29/2023] Open
Abstract
This paper describes the electrodeposition of polyphosphate-doped polypyrrole/nanosilica nanocomposite coating on steel wire for direct solid-phase microextraction of bisphenol A and five phthalates. We optimized influencing parameters on the extraction efficiency and morphology of the nanocomposite such as deposition potential, concentration of pyrrole and polyphosphate, deposition time and the nanosilica amount. Under the optimized conditions, characterization of the nanocomposite was investigated by scanning electron microscopy and Fourier transform infra-red spectroscopy. Also, the factors related to the solid-phase microextraction method including desorption temperature and time, extraction temperature and time, ionic strength and pH were studied in detail. Subsequently, the proposed method was validated by gas chromatography-mass spectrometry by thermal desorption and acceptable figures of merit were obtained. The linearity of the calibration curves was between 0.01 and 50 ng/mL with acceptable correlation coefficients (0.9956-0.9987) and limits of detection were in the range 0.002-0.01 ng/mL. Relative standard deviations in terms of intra-day and inter-day by five replicate analyses from aqueous solutions containing 0.1 ng/mL of target analytes were in the range 3.3%-5.4% and 5%-7.1%, respectively. Fiber-to-fiber reproducibilities were measured for three different fibers prepared in the same conditions and the results were between 7.3% and 9.8%. Also, extraction recoveries at two different concentrations were ≥96%. Finally, the suitability of the proposed method was demonstrated through its application to the analysis of some eye drops and injection solutions.
Collapse
Affiliation(s)
- Mehdi Ansari Dogaheh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman Medical Science University, Kerman, Iran
| | - Mansoureh Behzadi
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|