1
|
Temiz Ş, Ulusoy S, Ulusoy Hİ, Durgun E, Polat Ü, Sarp G. Synthesis and use of new magnetic adsorbent for sensitive, practical and simultaneous analysis Ibuprofen and Ketoprofen molecules in urine samples. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1251:124404. [PMID: 39689395 DOI: 10.1016/j.jchromb.2024.124404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
A new sample preparation and determination method, including HPLC-DAD analysis after Magnetic Solid Phase Extraction (MSPE), was developed to monitor the trace amounts of two types of nonsteroidal anti-inflammatory drugs (NSAIDs), Ibuprofen (IBP) and Ketoprofen (KP). In the proposed method, IBP and KP analytes were extracted from newly synthesized magnetic-based sorbent in a pH 4.0 buffer medium and enriched by desorbing again with ethanol to a smaller volume before chromatographic determinations. The samples were filtered and transferred to HPLC vials before analysis. The experimental variables were optimized step by step such as adsorption time, desorption solvent, pH, etc. After preconcentration of IBP and KP molecules by MSPE, determination of target molecules was carried out by isocratic elution of 30 % Methyl alcohol, 40 % Trifluoro Acetic Acid (TFA) (0.1 %, v:v), 30 % Acetonitrile. By using optimized conditions, the detection limits of target molecules were calculated as 3.43 ng mL-1 and 3.48 ng mL-1 for IBP and KP, respectively. The triplicate measurements made with model solutions containing 100 ng mL-1 of target molecules, RSD %values were found below 3.50 %. The developed method was successfully applied to synthetic urine and pooling urine samples. Finally, the practicality and suitability for green analytical chemistry of the proposed method was evaluated by using Blue Applicability Grade Index (BAGI) and Green Analytical Procedure Index (GAPI).
Collapse
Affiliation(s)
- Şule Temiz
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Songül Ulusoy
- Department of Pharmacy, Vocational School of Health Service, Sivas Cumhuriyet University, Sivas, Turkiye.
| | - Halil İbrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Esra Durgun
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Ümmügülsüm Polat
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkiye
| | - Gökhan Sarp
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkiye
| |
Collapse
|
2
|
Park J, Cho YS, Seo DW, Choi JY. An update on the sample preparation and analytical methods for synthetic food colorants in food products. Food Chem 2024; 459:140333. [PMID: 38996638 DOI: 10.1016/j.foodchem.2024.140333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Colorants, especially synthetic colorants, play a crucial role in enhancing the aesthetic qualities of food owing to their cost-effectiveness and stability against environmental factors. Ensuring the safe and regulated use of colorants is essential for maintaining consumer trust in food safety. Various preparation and analytical technologies, which are continuously undergoing improvement, are currently used to quantify of synthetic colorants in food products. This paper reviews recent developments in analytical techniques for synthetic food colorants, detection and compares the operational principles, advantages, and disadvantages of each technology. Additionally, it also explores advancements in these technologies, discussing several invaluable tools of analysis, such as high-performance liquid chromatography, liquid chromatography-tandem mass spectrometry, electrochemical sensors, digital image analysis, near-infrared spectroscopy, and surface-enhanced Raman spectroscopy. This comprehensive overview aims to provide valuable insights into current progress and research in the field of food colorant analysis.
Collapse
Affiliation(s)
- Juhee Park
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Yong Sun Cho
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Dong Won Seo
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Ji Yeon Choi
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
3
|
Frišták V, Beliančínová K, Polťáková L, Moreno-Jimenéz E, Zimmerman AR, Ďuriška L, Černičková I, Laughinghouse Iv HD, Pipíška M. Engineered Mg-modified biochar-based sorbent for arsenic separation and pre-concentration. Sci Rep 2024; 14:28680. [PMID: 39562658 PMCID: PMC11576902 DOI: 10.1038/s41598-024-79446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024] Open
Abstract
The utilization of biochar as a relatively efficient sorbent or stationary phase for the separation and preconcentration of a wide range of analytes represents an innovative approach in current sample pretreatment methods. Appropriate pre- and post-pyrolysis modification of the input precursor and pyrolysis product, respectively, allows targeted design of the physicochemical properties and sorption characteristics of the resulting sorbent. The present work deals with the preparation of pyrolysis materials based on unmodified cattail leaf biomass (BC) and its Mg-modified analogue (MgBC) by a slow pyrolysis process at 500 °C and a residence time of 1 h in a pyrolysis reactor. Physicochemical characterization of BC and MgBC carried out by pH, total C, N, surface size analysis (SSA), 13C NMR, SEM-EDX and XRD confirmed significant morphological and mineralogical differences between the prepared sorbents. By performing sorption experiments using a model anionic analyte (As) and application of Langmuir isotherm, we found that the predicted maximum sorption capacity of MgBC for As is 13.5-fold higher than that of BC. The sorption process of As by both sorbents is best described by the Sips adsorption isotherm (R2 ≥ 0.995) and a pseudo-nth order kinetic model (R2 ≥ 0.997). The optimum pH for As sorption by BC and MgBC sorbents is in the interval 5-6. The presence of competitive phosphate anions (equimolar concentration of 1:1) in the solution significantly reduces the sorption capacity of MgBC for As by 40% for BC by 70%. The presence of Cl- ions showed no significant effect on the sorption capacity of Bc and MgBC for As. Both sorbents were best recovered using 0.1 mol/L NaOH solution when the desorption efficiency for both sorbents was more than 95%. The MgBC sorbent showed 35% retention of As from the real sample in the model SPE column at a flow rate of 0.12 mL/s. Based on the obtained knowledge, it is evident that biochar-based sorbent prepared from Mg-modified precursor represents an effective sorbent for anionic forms of analytes and opens the possibility of its use also in preconcentration and separation techniques.
Collapse
Affiliation(s)
- Vladimír Frišták
- Department of Chemistry, Faculty of Education, Trnava University in Trnava, Priemyselná 4, P.O.BOX 9, Trnava, SK- 91843, Slovakia.
| | - Kristína Beliančínová
- Department of Chemistry, Faculty of Education, Trnava University in Trnava, Priemyselná 4, P.O.BOX 9, Trnava, SK- 91843, Slovakia
| | - Lucia Polťáková
- Department of Chemistry, Faculty of Education, Trnava University in Trnava, Priemyselná 4, P.O.BOX 9, Trnava, SK- 91843, Slovakia
| | - Eduardo Moreno-Jimenéz
- Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida, 241 Williamson Hall, P.O.BOX 112120, Gainesville, FL, 32611, USA
| | - Libor Ďuriška
- Institute of Materials Science, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, J. Bottu 25, Trnava, SK-917 24, Slovakia
| | - Ivona Černičková
- Institute of Materials Science, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, J. Bottu 25, Trnava, SK-917 24, Slovakia
| | - Haywood Dail Laughinghouse Iv
- Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida-IFAS, Davie, FL, 33314, USA
| | - Martin Pipíška
- Department of Chemistry, Faculty of Education, Trnava University in Trnava, Priemyselná 4, P.O.BOX 9, Trnava, SK- 91843, Slovakia
| |
Collapse
|
4
|
Bian Y, Zhang Y, Ruan LY, Feng XS. Phytosterols in Plant-Derived Foods: Recent Updates in Extraction and Analysis Methods. Crit Rev Anal Chem 2024:1-19. [PMID: 39556048 DOI: 10.1080/10408347.2024.2427128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The physiological and officinal functions of phytosterols are of great significance, and recent dietary guidelines have underscored the significance of incorporating them into a balanced diet. Furthermore, it exhibits inhibitory effects on tumor growth, stimulates cellular immunity, possesses anti-inflammatory, antioxidant, and antidiabetic properties. To gain a more comprehensive understanding of the role of phytosterols in public health, it is crucial to establish simple, rapid, eco-conscious, efficient, and highly sensitive techniques for their extraction and determination across various matrices. This review presents a thorough overview of various techniques used for extracting and analyzing phytosterols in diverse plant-derived foods, encompassing a range of advanced technologies like solid-phase extraction, microextraction, supercritical fluid extraction, QuEChERS, alongside traditional approaches. The detection techniques include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography, and other methodologies. Additionally, we conduct a thorough examination and comparison of various techniques while proposing future prospects.
Collapse
Affiliation(s)
- Yu Bian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Ling-Yun Ruan
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Dakova I, Veleva O, Karadjova I. Selective Sorption of Noble Metals on Polymer Gel Modified with Ionic Liquid. Molecules 2024; 29:4970. [PMID: 39459339 PMCID: PMC11510461 DOI: 10.3390/molecules29204970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The solid phase extraction of Au, Ir, Pd, Pt, and Rh on a polymer gel modified with ionic liquid containing methylimidazolium groups (MIA-PG) has been investigated. The positively charged surface of the sorbent is highly suitable for the sorption of stable chlorido complexes of the studied analytes, while the retention of base metals Cu, Fe, Ni, Zn, and Mn is negligible. Optimization experiments performed showed that, at 0.05 M HCl, the degree of sorption of Au, Ir, Pd, and Pt is above 95%, and only for Rh, the maximum degree is 65%; complete elution is achieved in the mixture of thiourea in HCl. The results obtained from the equilibrium adsorption studies are fitted in various adsorption models, such as Langmuir and Freundlich, and the model parameters have been evaluated. The kinetics analysis indicated that the adsorption of Au, Ir, Pd, Pt, and Rh onto the sorbent follows the pseudo-second-order model. Intraparticle diffusion and ion exchange reactions were the rate-limiting steps. Analytical procedures were developed for Pd, Pt, and Rh determination in road dust and soil and for Au determination in copper ore and copper concentrate. The procedures are validated by the analysis of certified reference materials. Analytical figures of merit confirmed their applicability in routine laboratory practice.
Collapse
Affiliation(s)
- Ivanka Dakova
- Faculty of Chemistry and Pharmacy, University of Sofia St. Kliment Ohridski, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Olga Veleva
- Geological Institute, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. BL 24, 1113 Sofia, Bulgaria;
| | - Irina Karadjova
- Faculty of Chemistry and Pharmacy, University of Sofia St. Kliment Ohridski, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
6
|
Xiang Y, Yan X, Chen C, Guo Y, Liu H, Li Y, Wu D. Low flow-resistance solid phase extraction of fluoroquinolones in water and food samples by high-pressure wet spinning porous polyimide microfibers. J Chromatogr A 2024; 1729:465040. [PMID: 38838450 DOI: 10.1016/j.chroma.2024.465040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/08/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
In this work, porous polyimide microfibers (PI-μF) were prepared by high-pressure wet spinning method, and successfully applied as adsorbents for solid phase extraction (SPE) of fluoroquinolones (FQs) in water and food samples. The PI-μFs of ∼10, 25, 50, 100 μm in diameter could be controlled by the inner diameter of quartz capillary nozzles. The flow resistance of SPE cartridges packed with 10 μm PI microfiber (10-PI-μF) and 25-PI-μF was comparable to or even lower than that of commercial SPE cartridges, while the flow resistance of 50-PI-μF and 100-PI-μF SPE cartridges was increased obviously due to tiny broken pieces. The 10-PI-μF and 25-PI-μF have a specific surface area of 102 m2 g-1 and 76 m2 g-1, mesopores of 22-32 nm, and large breakthrough volume of 110 mL/5 mg and 85 mL/5 mg for FQs, while the 50-PI-μF and 100-PI-μF had much lower specific surface area and hardly had retention for FQs. FQs from tap water, egg and milk samples were then extracted by PI-μF SPE, and analyzed by high performance liquid chromatography-fluorescence detector (HPLC-FLD). SPE parameters as type of elution solvent, elution solvent volume, pH value of sample solution, flow rate of sample solution, and breakthrough volume were first optimized in detail. Under the optimal conditions, the PI-μF SPE/HPLC-FLD method showed high recoveries (96.8%-107%), wide linearity (0.05-50 μg L-1, or 0.01-10 μg L-1), high determination coefficients (R2 ≥0.9992), and low limits of detection (LODs, 0.005-0.014 μg L-1). For the real tap water, egg and milk samples, the recoveries and RSDs were 81-119% and 0.8-9.8%, respectively. The results show that porous microfiber up to 25 μm in diameter is a promising solid-phase extraction adsorbent with the lowest flow resistance that can be used for trace organic pollutants in water and food samples.
Collapse
Affiliation(s)
- Yuqian Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xiaohui Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Cheng Chen
- Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, Zhejiang, China
| | - Yaoshen Guo
- Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, Zhejiang, China
| | - Hongxing Liu
- Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, Zhejiang, China
| | - Yanshuo Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Dapeng Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
7
|
Li W, Ren N, Shi Y, Wang R, Li G. The magnetic layered double hydroxide/zeolitic imidazolate framework-8 nanocomposite coupled with HPLC-MS/MS for the detection of heterocyclic aromatic amines in thermally processed meat. J Chromatogr A 2024; 1727:464988. [PMID: 38749348 DOI: 10.1016/j.chroma.2024.464988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
In this research, a novel magnetic nanocomposite (Fe3O4@Zn/Al-LABSA-LDH/ZIF-8) was synthesized using Fe3O4 as the magnetic core, layered double hydroxide (LDH) with linear alkylbenzene sulfonic acid (LABSA) intercalation and zeolitic imidazolate framework-8 (ZIF-8) as the shell. Benefiting from the intercalation of LABSA into LDH combined with ZIF-8, the multiple interactions, including π-π stacking, hydrogen bonding, and electrostatic interactions, conferred high selectivity and good extraction capability to the material towards heterocyclic aromatic amines (HAAs). Fe3O4@Zn/Al-LABSA-LDH@ZIF-8 was used as an adsorbent for magnetic solid-phase extraction (MSPE) to enrich HAAs in thermally processed meat samples, followed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) detection. The method exhibited a low detection limit (0.021-0.221 ng/g), good linearity (R2 ≥ 0.9999), high precision (RSD < 7.2 %), and satisfactory sample recovery (89.7 % -107.5 %). This research provides a promising approach for developing novel adsorbents in sample preparation and improving analytical performance.
Collapse
Affiliation(s)
- Wenrui Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nanjiang Ren
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ruihong Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
8
|
Minaberry YS, Medina LS, Cataneo D, Stripeikis J, Tudino M. Bifunctional magnetic nanoparticles with ion imprinting for improving the flow through determination of ultratraces of Cd(II) using magnetic preconcentration. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4178-4186. [PMID: 38874550 DOI: 10.1039/d3ay02047a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
A novel bifunctional magnetic sorbent with mercapto and amino groups and ion imprinting (MBII) was synthesized using a one-step aqueous sol-gel process for preconcentration and determination of Cd(II) ions. MBII was employed as a microcolumn (MC) filler in a flow-through system coupled to GFAAS. The magnetic properties of the solid allowed microcolumn magnetic solid-phase extraction (MCMSPE) to be performed by simply including a single circular magnet around the MC. This assembly enabled complete attachment of the solid to the MC wall leaving a central void to facilitate higher sample flow rates without blockage or material loss. For comparison, a bifunctional magnetic solid without imprinting (MBNI) was also synthesized and evaluated. Both MBII and MBNI were characterized by FTIR, SEM, EDX, BET and magnetization measurements. The results showed the preservation of the magnetic core, its superparamagnetism and the functional groups in the solid. Batch studies revealed a maximum adsorption capacity for both materials at pH around 6 with equilibrium reached within 5 minutes. The advantages were reflected in the maximum adsorption capacity of MBII, which was found to be 2.5 times greater than that of MBNI. Both adsorbents were compared as MC fillers for dynamic preconcentration in MCMSPE systems. Under optimized conditions, MBNI showed a PCF of 125 and MBII of 250. The higher selectivity of MBII was corroborated by interfering ion studies. The analytical performance parameters for the proposed method using MBII as an adsorbent showed a detection limit of 0.05 ng L-1, a linear range of 2.0-80 ng L-1, an RSD% of 2.2 (n = 7; 20 ng L-1) and a lifetime of more than 300 preconcentration-elution cycles without loss of sensitivity or need for refilling. The method was successfully applied to the determination of trace Cd(II) in osmosis, lake and tap water with recoveries ranging from 98 to 105%. Comparison of these results with those of similar reported methods showed a considerable improvement primarily attributed to the combined effect of MBII's higher retention capacity and its magnetic properties that allowed higher sample flow rates and, thus, enhanced figures of merit.
Collapse
Affiliation(s)
- Yanina Susana Minaberry
- DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Ciudad de Buenos Aires, C1428EHA, Argentina.
- Instituto Tecnológico de Buenos Aires, ITBA, Iguazú 341, Ciudad de Buenos Aires, Argentina
| | - Leila Saleh Medina
- DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Ciudad de Buenos Aires, C1428EHA, Argentina.
- INQUIMAE, Instituto de Química Inorgánica Analítica y Química Física, Ciudad Universitaria Pab. II, Ciudad de Buenos Aires, C1428EHA, Argentina
| | - Daiana Cataneo
- DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Ciudad de Buenos Aires, C1428EHA, Argentina.
| | - Jorge Stripeikis
- Instituto Tecnológico de Buenos Aires, ITBA, Iguazú 341, Ciudad de Buenos Aires, Argentina
| | - Mabel Tudino
- DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Ciudad de Buenos Aires, C1428EHA, Argentina.
| |
Collapse
|
9
|
Çiçek Özkul SL, Kaba İ, Ozdemir Olgun FA. Unravelling the potential of magnetic nanoparticles: a comprehensive review of design and applications in analytical chemistry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3620-3640. [PMID: 38814019 DOI: 10.1039/d4ay00206g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The study of nanoparticles has emerged as a prominent research field, offering a wide range of applications across various disciplines. With their unique physical and chemical properties within the size range of 1-100 nm, nanoparticles have garnered significant attention. Among them, magnetic nanoparticles (MNPs) exemplify promising super-magnetic characteristics, especially in the 10-20 nm size range, making them ideal for swift responses to applied magnetic fields. In this comprehensive review, we focus on MNPs suitable for analytical purposes. We investigate and classify them based on their analytical applications, synthesis routes, and overall utility, providing a detailed literature summary. By exploring a diverse range of MNPs, this review offers valuable insights into their potential application in various analytical scenarios.
Collapse
Affiliation(s)
- Serra Lale Çiçek Özkul
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak Campus, Sariyer, Istanbul, Turkey
| | - İbrahim Kaba
- Marmara University, Faculty of Engineering, Department of Chemical Engineering, Maltepe, Istanbul, Turkey
| | - Fatos Ayca Ozdemir Olgun
- Istanbul Health and Technology University, Faculty of Engineering and Natural Sciences, Department of Chemical Engineering, Sutluce, Beyoglu, Istanbul, Turkey.
| |
Collapse
|
10
|
Birolli WG, Lanças FM, dos Santos Neto ÁJ, Silveira HCS. Determination of pesticide residues in urine by chromatography-mass spectrometry: methods and applications. Front Public Health 2024; 12:1336014. [PMID: 38932775 PMCID: PMC11199415 DOI: 10.3389/fpubh.2024.1336014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/22/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Pollution has emerged as a significant threat to humanity, necessitating a thorough evaluation of its impacts. As a result, various methods for human biomonitoring have been proposed as vital tools for assessing, managing, and mitigating exposure risks. Among these methods, urine stands out as the most commonly analyzed biological sample and the primary matrix for biomonitoring studies. Objectives This review concentrates on exploring the literature concerning residual pesticide determination in urine, utilizing liquid and gas chromatography coupled with mass spectrometry, and its practical applications. Method The examination focused on methods developed since 2010. Additionally, applications reported between 2015 and 2022 were thoroughly reviewed, utilizing Web of Science as a primary resource. Synthesis Recent advancements in chromatography-mass spectrometry technology have significantly enhanced the development of multi-residue methods. These determinations are now capable of simultaneously detecting numerous pesticide residues from various chemical and use classes. Furthermore, these methods encompass analytes from a variety of environmental contaminants, offering a comprehensive approach to biomonitoring. These methodologies have been employed across diverse perspectives, including toxicological studies, assessing pesticide exposure in the general population, occupational exposure among farmers, pest control workers, horticulturists, and florists, as well as investigating consequences during pregnancy and childhood, neurodevelopmental impacts, and reproductive disorders. Future directions Such strategies were essential in examining the health risks associated with exposure to complex mixtures, including pesticides and other relevant compounds, thereby painting a broader and more accurate picture of human exposure. Moreover, the implementation of integrated strategies, involving international research initiatives and biomonitoring programs, is crucial to optimize resource utilization, enhancing efficiency in health risk assessment.
Collapse
Affiliation(s)
- Willian Garcia Birolli
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Chromatography Group, São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fernando Mauro Lanças
- Chromatography Group, São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
11
|
Kadadou D, Tizani L, Alsafar H, Hasan SW. Analytical methods for determining environmental contaminants of concern in water and wastewater. MethodsX 2024; 12:102582. [PMID: 38357632 PMCID: PMC10864661 DOI: 10.1016/j.mex.2024.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Control and prevention of environmental pollution have emerged as paramount global concerns. Anthropogenic activities, such as industrial discharges, agricultural runoff, and improper waste disposal, introduce a wide range of contaminants into various ecosystems. These pollutants encompass organic and inorganic compounds, particulates, microorganisms, and disinfection by-products, posing severe threats to human health, ecosystems, and the environment. Effective monitoring methods are indispensable for assessing environmental quality, identifying pollution sources, and implementing remedial measures. This paper suggests that the development and utilization of highly advanced analytical tools are both essential for the analysis of contaminants in water samples, presenting a foundational hypothesis for the review. This paper comprehensively reviews the development and utilization of highly advanced analytical tools which is mandatory for the analysis of contaminants in water samples. Depending on the specific pollutants being studied, the choice of analytical methods widely varies. It also reveals insights into the diverse applications and effectiveness of these methods in assessing water quality and contaminant levels. By emphasizing the critical role of the reviewed monitoring methods, this review seeks to deepen the understanding of pollution challenges and inspire innovative monitoring solutions that contribute to a cleaner and more sustainable global environment.•Urgent global concerns: control and prevention of pollution from diverse sources.•Varied contaminants, diverse methods: comprehensive review of analytical tools.•Inspiring a sustainable future: innovative monitoring for a cleaner environment.
Collapse
Affiliation(s)
- Dana Kadadou
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Lina Tizani
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Emirates Bio-research Center, Ministry of Interior, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Fathi AA, Farajzadeh MA, Shahedi A, Afshar Mogaddam MR, Houshyar J, Jouyban A. Development of a hollow fiber-liquid phase microextraction method using tissue culture oil for the extraction of free metoprolol from plasma samples. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1237:124089. [PMID: 38547699 DOI: 10.1016/j.jchromb.2024.124089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
In this research, a method known as a hollow fiber-liquid-phase microextraction was employed to extract and concentrate free metoprolol from plasma samples. The extracted analyte was subsequently determined using high-performance liquid chromatography coupled with a diode-array detector. Several parameters, including hollow fiber length, sonication time, extraction temperature, and salt addition, were investigated and optimized to enhance extraction efficiency. After extracting the analyte under optimum conditions from plasma samples, the enrichment factor and extraction recovery were 50 and 86 %, respectively. Moreover, the method exhibited detection and quantification limits of 0.41 and 1.30 ng mL-1, respectively. The analysis of real samples demonstrated satisfactory relative recoveries in the range of 91-99 %.
Collapse
Affiliation(s)
- Ali Akbar Fathi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | - Ali Shahedi
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Jalil Houshyar
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Wleklinski M, Carpenter PM, Dykstra KD, Donofrio A, Nowak T, Krska SW, Ferguson RD. Parallel purification of microscale libraries via automated solid phase extraction. SLAS Technol 2024; 29:100126. [PMID: 38423211 DOI: 10.1016/j.slast.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/30/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
High-throughput experimentation (HTE) has become more widely utilized in drug discovery for rapid reaction optimization and generation of large synthetic compound arrays. While this has accelerated medicinal chemistry design, make, test (DMT) iterations, the bottleneck of purification persists, consuming time and resources. Herein we describe a general parallel purification approach based on solid phase extraction (SPE) that provides a more efficient and sustainable workflow producing compound libraries with significantly upgraded purity. This robust, user-friendly workflow is fully automated and integrated with HTE library synthesis, as demonstrated by its application to a diverse parallel library compound array generated via amide-bond coupling in HTE microscale format.
Collapse
Affiliation(s)
- Michael Wleklinski
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Paige M Carpenter
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Kevin D Dykstra
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Anthony Donofrio
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Timothy Nowak
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Shane W Krska
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Ronald D Ferguson
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
14
|
Nejabati F, Ebrahimzadeh H. A novel sorbent based on electrospun for electrically-assisted solid phase microextraction of six non-steroid anti-inflammatory drugs, followed by quantitation with HPLC-UV in human plasma samples. Anal Chim Acta 2024; 1287:341839. [PMID: 38182332 DOI: 10.1016/j.aca.2023.341839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Although NSAIDs possess notable therapeutic and pharmaceutical qualities, it's essential to acknowledge that excessive doses can result in toxicity within the human body. Moreover, the importance lies in identifying and measuring their trace amounts. Due to their existence within intricate matrices, the creation of novel electrospun nanofibers as sorbents for electrically-assisted solidphase microextraction (EA-SPME) becomes vital. This innovation caters to the requirement for the effective pre-treatment of NSAID samples, providing a strategic approach to managing the complexities associated with trace quantities found in various matrices. RESULTS First, polyvinylalcohol/casein/tannic acid/polyaniline/titanium dioxide nanoparticles (PVA/CAS/TA/PANI/TiO2 NPs) electrospun nanofibers were prepared for EA-SPME on pewter rode and then, trace amounts of six NSAIDs (Acetaminophen, Caffeine, Naproxen, Celecoxib, Ibuprofen and mefenamic acid) were adsorbed chemically on these nanofibers. In the next step, the desorption of six NSAIDs was electrochemically done from prepared electrospun nanofibers on a pewter rod which was as working electrode at three electrodes system. Finally, these drugs were quantified from different human plasma samples with HPLC-UV. The synthesis of electrospun nanofibers was confirmed through a series of analytical techniques including field emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy with elemental mapping analysis (EDX-Mapping), X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR). The optimal percentage of additive compounds to PVA/CAS for electrospinning, as well as the factors influencing adsorption and desorption processes, were determined through both of Design Expert software and MATLAB programming language. SIGNIFICANCE Under optimum conditions, the wide linear range was 27-8000 ng mL-1 with R2≥ 0.9897, low detection limits were ranged from 8 to 27.3 ng mL-1 based on S/N = 3 and significant enrichment factors were acquired. The intra-day and inter-day RSDs% were obtained within the 4.51% - 5.68% and 4.28%-5.45%, respectively. Finally, The effectiveness of the EA-SPME-HPLC-UV method was assessed for determining NSAIDs in plasma samples, demonstrating good recoveries ranging from 90.2% to 105.2%.
Collapse
Affiliation(s)
- Fatemeh Nejabati
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
15
|
Drabińska N, Marcinkowska MA, Wieczorek MN, Jeleń HH. Application of Sorbent-Based Extraction Techniques in Food Analysis. Molecules 2023; 28:7985. [PMID: 38138475 PMCID: PMC10745519 DOI: 10.3390/molecules28247985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
This review presents an outline of the application of the most popular sorbent-based methods in food analysis. Solid-phase extraction (SPE) is discussed based on the analyses of lipids, mycotoxins, pesticide residues, processing contaminants and flavor compounds, whereas solid-phase microextraction (SPME) is discussed having volatile and flavor compounds but also processing contaminants in mind. Apart from these two most popular methods, other techniques, such as stir bar sorptive extraction (SBSE), molecularly imprinted polymers (MIPs), high-capacity sorbent extraction (HCSE), and needle-trap devices (NTD), are outlined. Additionally, novel forms of sorbent-based extraction methods such as thin-film solid-phase microextraction (TF-SPME) are presented. The utility and challenges related to these techniques are discussed in this review. Finally, the directions and need for future studies are addressed.
Collapse
Affiliation(s)
| | | | | | - Henryk H. Jeleń
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (N.D.); (M.A.M.); (M.N.W.)
| |
Collapse
|
16
|
Braun G, Krauss M, Escher BI. Recovery of 400 Chemicals with Three Extraction Methods for Low Volumes of Human Plasma Quantified by Instrumental Analysis and In Vitro Bioassays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19363-19373. [PMID: 37987701 DOI: 10.1021/acs.est.3c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Human biomonitoring studies are important for understanding adverse health outcomes caused by exposure to chemicals. Complex mixtures of chemicals detected in blood - the blood exposome - may serve as proxies for systemic exposure. Ideally, several analytical methods are combined with in vitro bioassays to capture chemical mixtures as diverse as possible. How many and which (bio)analyses can be performed is limited by the sample volume and compatibility of extraction and (bio)analytical methods. We compared the extraction efficacy of three extraction methods using pooled human plasma spiked with >400 organic chemicals. Passive equilibrium sampling (PES) with polydimethylsiloxane (PDMS) followed by solid phase extraction (PES + SPE), SPE alone (SPE), and solvent precipitation (SolvPrec) were compared for chemical recovery in LC-HRMS and GC-HRMS as well as effect recovery in four mammalian cell lines (AhR-CALUX, SH-SY5Y, AREc32, PPARγ-BLA). The mean chemical recoveries were 38% for PES + SPE, 27% for SPE, and 61% for SolvPrec. PES + SPE enhanced the mean chemical recovery compared to SPE, especially for neutral hydrophobic chemicals. PES + SPE and SolvPrec had effect recoveries of 100-200% in all four cell lines, outperforming SPE, which had 30-100% effect recovery. Although SolvPrec has the best chemical recoveries, it does not remove matrix like inorganics or lipids, which might pose problems for some (bio)analytical methods. PES + SPE is the most promising method for sample preparation in human biomonitoring as it combines good recoveries with cleanup, enrichment, and potential for high throughput.
Collapse
Affiliation(s)
| | - Martin Krauss
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| |
Collapse
|
17
|
Zheng K, Benedetti MF, van Hullebusch ED. Recovery technologies for indium, gallium, and germanium from end-of-life products (electronic waste) - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119043. [PMID: 37776794 DOI: 10.1016/j.jenvman.2023.119043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023]
Abstract
Advanced high-tech applications for communication, renewable energy, and display, heavily rely on technology critical elements (TCEs) such as indium, gallium, and germanium. Ensuring their sustainable supply is a pressing concern due to their high economic value and supply risks in the European Union. Recovering these elements from end-of-life (EoL) products (electronic waste: e-waste) offers a potential solution to address TCEs shortages. The review highlights recent advances in pre-treatment and hydrometallurgical and biohydrometallurgical methods for indium, gallium, and germanium recovery from EoL products, including spent liquid crystal displays (LCDs), light emitting diodes (LEDs), photovoltaics (PVs), and optical fibers (OFs). Leaching methods, including strong mineral and organic acids, and bioleaching, achieve over 95% indium recovery from spent LCDs. Recovery methods emphasize solvent extraction, chemical precipitation, and cementation. However, challenges persist in separating indium from other non-target elements like Al, Fe, Zn, and Sn. Promising purification involves solid-phase extraction, electrochemical separation, and supercritical fluid extraction. Gallium recovery from spent GaN and GaAs LEDs achieves 99% yield via leaching with HCl after annealing and HNO3, respectively. Sustainable gallium purification techniques include solvent extraction, ionic liquid extraction, and nanofiltration. Indium and gallium recovery from spent CIGS PVs achieves over 90% extraction yields via H2SO4 with citric acid-H2O2 and alkali. Although bioleaching is slower than chemical leaching (several days versus several hours), indirect bioleaching shows potential, achieving 70% gallium extraction yield. Solvent extraction and electrolysis exhibit promise for pure gallium recovery. HF or alkali roasting leaches germanium with a high yield of 98% from spent OFs. Solvent extraction achieves over 90% germanium recovery with minimal silicon co-extraction. Solid-phase extraction offers selective germanium recovery. Advancements in optimizing and implementing these e-waste recovery protocols will enhance the circularity of these TCEs.
Collapse
Affiliation(s)
- Kun Zheng
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| | - Marc F Benedetti
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| | - Eric D van Hullebusch
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France.
| |
Collapse
|
18
|
Jin P, Zhu F, Zhou W, Liu C, Li N, Liu H. Developing magnetic functionalized dendritic fibrous mesoporous silica as advanced adsorbent for quaternary ammonium alkaloids. Mikrochim Acta 2023; 190:481. [PMID: 37999777 DOI: 10.1007/s00604-023-06053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
A novel π-conjugated polymer-modified magnetic dendritic fibrous mesoporous silica adsorbent (MB@KCC-1@π-CP) is reported for the accurate determination of quaternary ammonium alkaloids (QAAs) in complex body fluid matrices. It is demonstrated that the magnetic dendritic fibrous mesoporous silica (MB@KCC-1) is an excellent carrier combining magnetism, high specific surface area, unique hierarchical pore structure, and fast mass transfer rate. The π-conjugated polymer (π-CP) can efficiently retain QAAs (berberine, coptisine, palmatine, jatrorrhizine) by multiple interactions. In addition, the adsorption kinetics and adsorption mechanism were also studied and discussed. Under optimized extraction conditions, MB@KCC-1@π-CP-based magnetic solid-phase extraction (MSPE) and high-performance liquid chromatography (HPLC) method affords a wide linear range (0.5-20000 ng mL-1), low limits of detection (0.2-2 ng mL-1), and satisfactory relative standard deviations (RSD) of inter-day (< 2.4%) and intra-day (< 3.1%) for QAAs. Trace QAAs in complex human blood plasma samples were successfully detected by the established method.
Collapse
Affiliation(s)
- Pian Jin
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fucheng Zhu
- The Third Affiliated Hospital of Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, 250117, China
| | - Wen Zhou
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chen Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Na Li
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Jinan, Shandong, 250014, China
| | - Houmei Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
19
|
Song F, Zhang Z, Xu X, Lin X. Online highly selective recognition of domoic acid by an aptamer@MOFs affinity monolithic column coupled with HPLC for shellfish safety monitoring. RSC Adv 2023; 13:30876-30884. [PMID: 37869383 PMCID: PMC10588371 DOI: 10.1039/d3ra05901d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Enabling cost-effective safety monitoring of shellfish is an important measure for the healthy development of the coastal marine economy. Herein, a new aptamer@metal-organic framework (MOF)-functionalized affinity monolithic column was proposed and applied in selective in-tube solid-phase microextraction (IT-SPME) coupled with HPLC for the accurate recognition of domoic acid (DA) in shellfish. Using a surface engineering strategy, ZIF-8 MOF was grown in situ inside the poly(epoxy-MA-co-POSS-MA) hybrid monolith. A high BET surface area and abundant metal reactive sites of the MOF framework were obtained for anchoring massive aptamers with terminal-modified phosphate groups. Various characterizations, such as SEM, elemental mapping, XRD, and BET, were performed, and the affinity performance was also studied. The presence of a massive amount of aptamers with a super coverage density of 3140 μmol L-1 bound on ZIF-8 MOF activated a high-performance bionic-affinity interface, and perfect specificity was exhibited with little interference of tissue matrixes, thus assuring the highly selective capture of DA from the complex matrixes. Under the optimal conditions, DA toxins in shellfish were detected with the limit of detection (LOD) of 7.0 ng mL-1 (equivalent to 14.0 μg kg-1), representing a 5-28 fold enhancement in detection sensitivity over traditional SPE or MIP adsorbents reported previously. The recoveries of fortified mussel and clam samples were achieved as 91.8 ± 1.2%-94.1 ± 1.9% (n = 3) and 91.2 ± 1.1%-94.5 ± 3.6% (n = 3), respectively. This work sheds light on a cost-effective method for online selective IT-SPME and the accurate monitoring of DA toxins using an aptamer@MOF-mediated affinity monolith system coupled with the inexpensive HPLC-UV technique.
Collapse
Affiliation(s)
- Fang Song
- College of Economics and Management, Fujian Agriculture and Forestry University Fuzhou 350001 China
| | - Zhexiang Zhang
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, Fuzhou University Fuzhou 350108 China
| | - Xuerong Xu
- College of Economics and Management, Fujian Agriculture and Forestry University Fuzhou 350001 China
| | - Xucong Lin
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
20
|
Ma M, Lu X, Wang L, Guo Y, Ding H, Wang S, Liang X. A stable core-shell metal-organic framework@covalent organic framework composite as solid-phase extraction adsorbent for selective enrichment and determination of flavonoids. J Chromatogr A 2023; 1707:464324. [PMID: 37634259 DOI: 10.1016/j.chroma.2023.464324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Hydrophobization and stability is crucial for the practical application of most metal-organic frameworks (MOFs) in extraction technique. In this study, a stable core-shell MOF@COF composite (NH2-MIL-101(Fe)@TAPB-FPBA-COF) was successfully prepared by Schiff base reaction and applied to solid-phase extraction (SPE) of hydrophobic flavonoids. Notably, the TAPB-FPBA-COF shell acts as a hydrophobic "shield", which not only improves the hydrophobicity and stability of hydrophilic NH2-MIL-101(Fe), but also makes the extraction efficiency of flavonoids from MOF@COF composite significantly higher than that of pure NH2-MIL-101(Fe) and TAPB-FPBA-COF. In addition, a sensitive analytical method with excellent linearities (0.1-500 ng mL-1, R2 ≥ 0.9967), low limits of detection (0.02-0.04 ng mL-1 for water; 0.04-0.07 ng mL-1 for grape juice; 0.06-0.08 ng mL-1 for honey), good repeatability (intra-day/inter-day precision are 1.86-5.37%/1.82-7.79%, respectively) and only 5 mg of adsorbent per cartridge was established by optimizing the SPE process combined with high performance liquid chromatography with ultraviolet-visible detector (HPLC-UV). Meanwhile, selectivity study and comparative experiments with the commercial C18 adsorbent showed that the MOF@COF adsorbent exhibited satisfactory extraction efficiency for flavonoids due to multiple interactions such as hydrogen bonding, hydrophobic, and π-π interactions. Finally, the good recoveries in grape juice (84.5-102.5%) and honey (87.5-104.6%) samples further validated the applicability of the proposed method in complex samples.
Collapse
Affiliation(s)
- Mingcai Ma
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hui Ding
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation, Lanzhou Institute for Food and Drug Control, Lanzhou 730050, China
| | - Shuai Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
21
|
García-Moll M, García-Moll L, Carrasco-Correa EJ, Oliver M, Simó-Alfonso EF, Miró M. Biomimetic Dispersive Solid-Phase Microextraction: A Novel Concept for High-Throughput Estimation of Human Oral Absorption of Organic Compounds. Anal Chem 2023; 95:13123-13131. [PMID: 37615399 PMCID: PMC10483468 DOI: 10.1021/acs.analchem.3c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
There is a quest for a novel in vitro analytical methodology that is properly validated for the prediction of human oral absorption and bioaccumulation of organic compounds with no need of animal models. The traditional log P parameter might not serve to predict bioparameters accurately inasmuch as it merely accounts for the hydrophobicity of the compound, but the actual interaction with the components of eukaryotic cells is neglected. This contribution proposes for the first time a novel biomimetic microextraction approach capitalized on immobilized phosphatidylcholine as a plasma membrane surrogate onto organic polymeric sorptive phases for the estimation of human intestinal effective permeability of a number of pharmaceuticals that are also deemed contaminants of emerging concern in environmental settings. A comprehensive exploration of the conformation of the lipid structure onto the surfaces is undertaken so as to discriminate the generation of either lipid monolayers or bilayers or the attachment of lipid nanovesicles. The experimentally obtained biomimetic extraction data is proven to be a superb parameter against other molecular descriptors for the development of reliable prediction models of human jejunum permeability with R2 = 0.76, but the incorporation of log D and the number of aromatic rings in multiple linear regression equations enabled improved correlations up to R2 = 0.88. This work is expected to open new avenues for expeditious in vitro screening methods for oral absorption of organic contaminants of emerging concern in human exposomics.
Collapse
Affiliation(s)
- Maria
Pau García-Moll
- FI-TRACE
Group, Department of Chemistry, University
of the Balearic Islands, Carretera de Valldemossa, km 7.5, Palma de
Mallorca E-07122, Spain
| | - Llucia García-Moll
- FI-TRACE
Group, Department of Chemistry, University
of the Balearic Islands, Carretera de Valldemossa, km 7.5, Palma de
Mallorca E-07122, Spain
| | - Enrique Javier Carrasco-Correa
- CLECEM
Group, Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner, 50, Burjassot, Valencia 46100, Spain
| | - Miquel Oliver
- FI-TRACE
Group, Department of Chemistry, University
of the Balearic Islands, Carretera de Valldemossa, km 7.5, Palma de
Mallorca E-07122, Spain
| | - Ernesto Francisco Simó-Alfonso
- CLECEM
Group, Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner, 50, Burjassot, Valencia 46100, Spain
| | - Manuel Miró
- FI-TRACE
Group, Department of Chemistry, University
of the Balearic Islands, Carretera de Valldemossa, km 7.5, Palma de
Mallorca E-07122, Spain
| |
Collapse
|
22
|
Talio MC, Muñoz V, Acosta M, Fernández LP. Copper Traces Quantification in Bee's Products by Solid Surface Fluorescence. A Green Analytical Proposal. J Fluoresc 2023; 33:1803-1812. [PMID: 36826728 DOI: 10.1007/s10895-023-03191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
A new methodology based on the fluorescence of Cu(II) ternary system with o-phenanthroline (o-Phen) and eosin (Eo) dyes is proposed. The metal was selectively retained on Nylon membranes and the solid surface fluorescence (SSF) was used for anayte quantification. Experimental variables that influence the formation of Cu(II)-o-Phen-eo system and retention step were studied and optimized. At optimal experimental conditions, an adequate tolerance to foreign species was shown with a LOD of 1.18 ng L-1 and a LOQ of 3.57 ng L-1. The methodology was evaluated for their greenness profile and successfully applied to analyte determination in bee's products of West-Center Argentina. Recovery studies showed values near to 100% being satisfactorily validated by ICP-MS.
Collapse
Affiliation(s)
- Maria Carolina Talio
- INQUISAL-CONICET, Almirante Brown 907 (CP: D5700HHW), San Luis, Argentina.
- Área de Química General e Inorgánica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis e Instituto de Química de San Luis (INQUISAL- CCT San Luis -CONICET), Chacabuco y Pedernera, (CP: D5700HHW), San Luis, Argentina.
| | - Vanesa Muñoz
- INQUISAL-CONICET, Almirante Brown 907 (CP: D5700HHW), San Luis, Argentina
- Área de Química Física, Facultad de Química, Bioquímica y Farmacia, UNSL, Chacabuco y Pedernera, (CP: D5700HHW), San Luis, Argentina
| | - Mariano Acosta
- INQUISAL-CONICET, Almirante Brown 907 (CP: D5700HHW), San Luis, Argentina
- Área de Química General e Inorgánica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis e Instituto de Química de San Luis (INQUISAL- CCT San Luis -CONICET), Chacabuco y Pedernera, (CP: D5700HHW), San Luis, Argentina
| | - Liliana Patricia Fernández
- INQUISAL-CONICET, Almirante Brown 907 (CP: D5700HHW), San Luis, Argentina
- Área de Química Analítica, Facultad de Química, Bioquímica y Farmacia, UNSL, Chacabuco y Pedernera, (CP: D5700HHW), San Luis, Argentina
| |
Collapse
|
23
|
Tanveer ZI, Ahmad K, Dong Z, Chen Y, Liu X, Wu Y, Xu T. Evaluation of reduced graphene oxide-based nanomaterial as dispersive solid phase extraction sorbent for isolation and purification of aflatoxins from poultry feed, combined with UHPLC-MS/MS analysis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1035-1048. [PMID: 37459595 DOI: 10.1080/19440049.2023.2232896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/12/2023]
Abstract
Poultry feed comprises cereals and their by-products and is vulnerable to aflatoxins contamination. This study utilised reduced graphene oxide-titanium dioxide (rGO-TiO2) nanomaterial as a dispersive solid phase extraction (d-SPE) adsorbent to extract, enrich and purify aflatoxins (aflatoxin B1, aflatoxin B2, aflatoxin G1 and aflatoxin G2). The synthesis of rGO-TiO2 nanomaterials through hydrothermal process and characterisation by transmission electron microscopy, scanning electron microscopy, Brunauer-Emmett-Teller (BET) and X-ray diffraction reveals that the nanomaterials have a single-layer structure embedded with TiO2 nanoparticles. The matrix-spiked technique was employed for the extraction process, optimisation of d-SPE, and analytical method validation. The most appropriate extraction solvent was acetonitrile/water/formic acid (79/20/1, v/v/v), with 30 min of extraction time assisted by ultra-sonication. The optimised d-SPE parameters were: 50 mg of rGO-TiO2 as sorbent amount, 2% methanol as the sample loading solvent, 30 min as adsorption time, and absolute ethanol as the washing reagent. The d-SPE method exhibited good desorption efficiency with 3 mL of acetonitrile/formic acid (99/1, v/v) and 20 min desorption time. After validation, the UHPLC-MS/MS analytical method has an acceptable range of specificity, linearity (R2 ≥ 0.999), sensitivity (LOQ 0.04-0.1 µg kg-1), recoveries (74-105% at three matrix-spiked levels) and precision (RSD 1.5-9.6%). Poultry feed samples (n = 12) were pretreated by this method to extract, enrich and analyse aflatoxins, which were detected in all poultry feed samples. The contamination levels were within the permissible limits.
Collapse
Affiliation(s)
- Zafar Iqbal Tanveer
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National Veterinary Laboratories, Ministry of National Food Security and Research, Islamabad, Pakistan
| | - Khurshid Ahmad
- National Veterinary Laboratories, Ministry of National Food Security and Research, Islamabad, Pakistan
| | - Ziliang Dong
- Chongqing Taiji Industry (Group) Co., Ltd., Chongqing, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuesong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tenfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Bugyi F, Turiák L, Drahos L, Tóth G. Optimization of reversed-phase solid-phase extraction for shotgun proteomics analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4965. [PMID: 37464559 DOI: 10.1002/jms.4965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
Reversed-phase solid-phase extraction (SPE) is the method of choice for the purification of proteomics samples. Even though the efficacy of SPE methods is sample type-dependent, the manufacturers' protocols are used in most studies. Using an optimized SPE method can lead to a substantial gain in identification and recovery. In this tutorial, we give a brief introduction to the most important parameters influencing SPE performance, and we present a short workflow (16 measurements) for optimizing the SPE procedure. This is complemented by method performance assessment instructions and a short troubleshooting guide to help users further understand and investigate their SPE methods.
Collapse
Affiliation(s)
- Fanni Bugyi
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, Budapest, 1117, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| |
Collapse
|
25
|
Sugiura J, Tsuchiyama T, Taniguchi M, Fukatsu K, Miyazaki H. Novel SPE purification approach using the direct adsorption of vaporised propionic acid in food for rapid HPLC determination. Food Chem 2023; 428:136799. [PMID: 37429237 DOI: 10.1016/j.foodchem.2023.136799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
Solid phase extraction (SPE) is a technique widely used in food analysis for the isolation of analytes. Herein, we proposed a novel application of SPE to extract vaporised propionic acid, a common preservative, from a heated sample solution. A sample was heated under acidified conditions and the resulting steam was directly passed through an SPE column to extract the propionic acid, followed by elution and HPLC analysis. Here, the extraction on the SPE column ensures direct capture of propionic acid. The results demonstrated excellent linearity (R2 greater than 0.999) and recoveries of 89.9%-97.6% with intra- and inter-day precisions lower than 3.9%. To the best of our knowledge, no study has investigated the applicability of SPE to an analyte vaporised in the headspace of food products. The proposed method is promising in its application to various volatile compounds and in the routine analysis of propionic acid in food.
Collapse
Affiliation(s)
- Jun Sugiura
- Food Department, Nagoya City Public Health Research Institute, 4-207, Sakurazaka, Moriyama-ku, Nagoya 463-8585, Japan.
| | - Tomoyuki Tsuchiyama
- Food Department, Nagoya City Public Health Research Institute, 4-207, Sakurazaka, Moriyama-ku, Nagoya 463-8585, Japan
| | - Masaru Taniguchi
- Food Department, Nagoya City Public Health Research Institute, 4-207, Sakurazaka, Moriyama-ku, Nagoya 463-8585, Japan
| | - Kosuke Fukatsu
- Food Department, Nagoya City Public Health Research Institute, 4-207, Sakurazaka, Moriyama-ku, Nagoya 463-8585, Japan
| | - Hitoshi Miyazaki
- Food Department, Nagoya City Public Health Research Institute, 4-207, Sakurazaka, Moriyama-ku, Nagoya 463-8585, Japan
| |
Collapse
|
26
|
JAGIRANI MS, SOYLAK M. Arsenic speciation by using emerging sample preparation techniques: a review. Turk J Chem 2023; 47:991-1006. [PMID: 38173749 PMCID: PMC10760823 DOI: 10.55730/1300-0527.3590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/31/2023] [Accepted: 06/23/2023] [Indexed: 01/05/2024] Open
Abstract
Arsenic is a hazardous element that causes environmental pollution. Due to its toxicological effects, it is crucial to quantify and minimize the hazardous impact on the ecology. Despite the significant advances in analytical techniques, sample preparation is still crucial for determining target analytes in complex matrices. Several factors affect the direct analysis, such as trace-level analysis, advanced regulatory requirements, complexity of sample matrices, and incompatible with analytical instrumentation. Along with the development in the sample preparation process, microextraction methods play an essential role in the sample preparation process. Microextraction techniques (METs) are the newest green approach that replaces traditional sample preparation and preconcentration methods. METs have minimized the limitation of conventional sample preparation methods while keeping all their benefits. METs improve extraction efficacy, are fast, automated, use less amount of solvents, and are suitable for the environment. Microextraction techniques with less solvent consumption, such as solid phase microextraction (SPME) solvent-free methods, and liquid phase microextraction (LPME), are widely used in modern analytical procedures. SPME development focuses on synthesizing new sorbents and applying online sample preparation, whereas LPME research investigates the utilization of new solvents.
Collapse
Affiliation(s)
- Muhammad Saqaf JAGIRANI
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri,
Turkiye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R.
China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, P. R.
China
- National Center of Excellence in Analytical Chemistry University of Sindh, Kayseri,
Turkiye
| | - Mustafa SOYLAK
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri,
Turkiye
- Technology Research and Application Center (ERUTAUM), Erciyes University, Kayseri,
Turkiye
- Turkish Academy of Sciences (TÜBA), Ankara,
Turkiye
| |
Collapse
|
27
|
Altunay N, Ul Haq H, Castro-Muñoz R. Optimization of vortex-assisted hydrophobic magnetic deep eutectic solvent-based dispersive liquid phase microextraction for quantification of niclosamide in real samples. Food Chem 2023; 426:136646. [PMID: 37356246 DOI: 10.1016/j.foodchem.2023.136646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
In this manuscript, a green and fast vortex-assisted hydrophobic magnetic deep eutectic solvent-based dispersive liquid phase microextraction (VA-HMDES-DLPME) method was developed for the selective extraction and determination of niclosamide in read samples, including rice, medicine tablets, and water samples. Here, hydrophobic magnetic deep eutectic solvents were used as the extracting solvent without requiring any centrifugation step. In the light of preliminary experiments, important parameters, such as volume of extraction solvent, pH, acetonitrile volume and vortex time, affecting the extraction efficiency of niclosamide were optimized using a Box-Behnken design. The linear dynamic range (0.25-120 µg/L), the limit of detection (0.08 µg/L), the limit of quantitation (0.25 µg/L), preconcentration factor (180), and enrichment factor (130) of the method were determined using optimized data. In particular, the validation parameters of the optimized VA-HMDES-DLPME, including robustness, matrix effect accuracy, and precision, were investigated. In addition to this, intra- and inter-day precisions were determined as ≤3.5 % and ≤4.1%, respectively. Finally, the optimized method was successfully used for the extraction of niclosamide in the selected samples prior to spectrophotometric analysis.
Collapse
Affiliation(s)
- Nail Altunay
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Türkiye.
| | - Hameed Ul Haq
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland
| |
Collapse
|
28
|
Lazofsky A, Brinker A, Gupta R, Barrett E, Aleksunes LM, Rivera-Núñez Z, Buckley B. Optimized extraction and analysis methods using liquid chromatography-tandem mass spectrometry for zearalenone and metabolites in human placental tissue. Heliyon 2023; 9:e16940. [PMID: 37484340 PMCID: PMC10361036 DOI: 10.1016/j.heliyon.2023.e16940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Zearalenone and its metabolites, a group of endocrine disrupting mycotoxins, have been linked to adverse reproductive health effects. They cross the placental barrier, potentially reaching the fetus. In this study, we adapted and optimized our protocol previously used for urine, to measure these mycotoxins in human placentas. We combined a supported liquid extraction step using Chem Elut cartridges with solid phase extraction on Discovery® DSC-NH2 tubes. The optimized extraction efficiencies were between 68 and 80% for all metabolites. Analysis was performed by UHPLC-HRMS using a Betasil™ Phenyl-Hexyl column eluted with a gradient of acetonitrile-methanol-water. The chromatography method separated all analytes in under 15 min. Validation experiments confirmed the method's sensitivity, with LODs ranging from 0.0055 to 0.011 pg/mg tissue. The method was linear over a range of 0.0025-1.5 pg/mg tissue with R2 values ≥ 0.994. Precision and accuracy calculations ranged from 4.7-7.9% and 0.6-6.7% respectively. The method was then successfully applied to a subset of placenta samples (n = 25) collected from an ongoing prospective birth cohort. Interestingly, 92% of the samples contained at least one measurable zearalenone metabolite, providing initial indication of potentially widespread exposure during pregnancy.
Collapse
Affiliation(s)
- Abigail Lazofsky
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Ruby Gupta
- Department of Environmental and Occupational Health and Justice, Rutgers School of Public Health, Rutgers University, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Emily Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers University, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Lauren M. Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, 160 Frelinghuysen Road, Rutgers University, Piscataway, NJ, 08854, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, 61 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers University, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
29
|
Hadavi D, Tosheva I, Siegel TP, Cuypers E, Honing M. Technological advances for analyzing the content of organ-on-a-chip by mass spectrometry. Front Bioeng Biotechnol 2023; 11:1197760. [PMID: 37284240 PMCID: PMC10239923 DOI: 10.3389/fbioe.2023.1197760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Three-dimensional (3D) cell cultures, including organ-on-a-chip (OOC) devices, offer the possibility to mimic human physiology conditions better than 2D models. The organ-on-a-chip devices have a wide range of applications, including mechanical studies, functional validation, and toxicology investigations. Despite many advances in this field, the major challenge with the use of organ-on-a-chips relies on the lack of online analysis methods preventing the real-time observation of cultured cells. Mass spectrometry is a promising analytical technique for real-time analysis of cell excretes from organ-on-a-chip models. This is due to its high sensitivity, selectivity, and ability to tentatively identify a large variety of unknown compounds, ranging from metabolites, lipids, and peptides to proteins. However, the hyphenation of organ-on-a-chip with MS is largely hampered by the nature of the media used, and the presence of nonvolatile buffers. This in turn stalls the straightforward and online connection of organ-on-a-chip outlet to MS. To overcome this challenge, multiple advances have been made to pre-treat samples right after organ-on-a-chip and just before MS. In this review, we summarised these technological advances and exhaustively evaluated their benefits and shortcomings for successful hyphenation of organ-on-a-chip with MS.
Collapse
|
30
|
Riboni N, Bianchi F, Scaccaglia M, Bisceglie F, Secchi A, Massera C, Luches P, Careri M. A novel multiwalled carbon nanotube-cyclodextrin nanocomposite for solid-phase microextraction-gas chromatography-mass spectrometry determination of polycyclic aromatic hydrocarbons in snow samples. Mikrochim Acta 2023; 190:212. [PMID: 37171627 PMCID: PMC10181969 DOI: 10.1007/s00604-023-05799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Novel solid-phase microextraction coatings based on the use of multiwalled carbon nanotube-cyclodextrin (MWCNT-CD) nanocomposites were developed for the determination of 16-priority polycyclic aromatic hydrocarbons at ultratrace levels in snow samples. The performance of both β- and γ-CD was tested to increase the detection capabilities towards the heaviest and most lipophilic compounds, i.e., five- and six-ring PAHs. To facilitate the interactions of MWCNTs with CDs, an oxidation procedure using both HNO3 and H2O2 was applied, obtaining superior results using MWCNTs-H2O2-γ-CD fiber. Detection and quantitation limits below 0.7 and 2.3 ng/L, RSD lower than 21%, and recoveries of 88(± 2)-119.8(± 0.4)% proved the reliability of the developed method for the determination of PAHs at ultratrace levels. The complexation capability of the γ-CD was also demonstrated in solution by NMR and fluorescence spectroscopy studies and at solid state by XRD analysis. Finally, snow samples collected in the ski area of Dolomiti di Brenta were analyzed, showing a different distribution of the 16 priority PAHs, being naphthalene, phenanthrene, fluoranthene, and pyrene the only compounds detected in all the analyzed samples.
Collapse
Affiliation(s)
- N Riboni
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| | - F Bianchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
- University of Parma, Center for Energy and Environment (CIDEA), Parco Area delle Scienze 42, 43124, Parma, Italy.
| | - M Scaccaglia
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - F Bisceglie
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - A Secchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - C Massera
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - P Luches
- Nanoscience Institute, CNR, via G. Campi 213/A, 41125, Modena, Italy
| | - M Careri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
31
|
Bagheri N, Al Lawati HAJ, Hassanzadeh J, Al Lawati I. Novel amino-functionalized magnetic metal-organic framework/layered double hydroxide adsorbent for microfluidic solid phase extraction: Application for vitamin D 3. Talanta 2023; 256:124272. [PMID: 36709712 DOI: 10.1016/j.talanta.2023.124272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
Vitamin D deficiency is highly prevalent worldwide, especially with limited sun exposure and sun avoidance. Thus, reliable monitoring of vitamin D levels in food and biological samples is vital for medicinal diagnosis. Herein, a potent method for the extraction and determination of vitamin D3 is presented using a microchip-based solid-phase extraction (SPE) device followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) detection. A new magnetic adsorbent based on Fe3O4 magnetic nanoparticles (MNPs) modified ZnFe layered double hydroxide (LDH)/2-aminoterephthalic acid-Zn2+ metal-organic framework (IRMOF-3) composite (IRMOF-3@MLDH) was successfully synthesized and fixed inside a rectangular micro-column (4 × 2 × 12 mm). The porous structure and high surface area of IRMOF-3@MLDH provide abundant adsorbing sites and make it a potent SPE adsorbent, with an exceptional ability to retain vitamin D3. The adsorption isotherm showed that the composite was highly efficient at extracting vitamin D3 with an extraction capacity of 126 mg g-1. The designed extraction microchip simplified the SPE process, paving the way for automated SPE systems. The developed method presented a broad linear range of 5-2000 ng mL-1, with a detection limit of 1.4 ng mL-1. In comparison to conventional silica-based adsorbents, a higher sensitivity was obtained in the determination of vitamin D3 using the IRMOF-3@MLDH adsorbent. The selectivity of the method was also satisfactory, enabling the measurement of vitamin D3 in food and blood samples with high recovery values in the range from 95.2 to 101%. Thus, the newly developed adsorbent and method offer an efficient alternative to the commonly used C18-based approach.
Collapse
Affiliation(s)
- Nafiseh Bagheri
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod 123, Oman
| | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod 123, Oman.
| | - Javad Hassanzadeh
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod 123, Oman
| | - Iman Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod 123, Oman
| |
Collapse
|
32
|
Bosco CD, De Cesaris MG, Felli N, Lucci E, Fanali S, Gentili A. Carbon nanomaterial-based membranes in solid-phase extraction. Mikrochim Acta 2023; 190:175. [PMID: 37022492 PMCID: PMC10079727 DOI: 10.1007/s00604-023-05741-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/09/2023] [Indexed: 04/07/2023]
Abstract
Carbon nanomaterials (CNMs) have some excellent properties that make them ideal candidates as sorbents for solid-phase extraction (SPE). However, practical difficulties related to their handling (dispersion in the atmosphere, bundling phenomena, reduced adsorption capability, sorbent loss in cartridge/column format, etc.) have hindered their direct use for conventional SPE modes. Therefore, researchers working in the field of extraction science have looked for new solutions to avoid the above-mentioned problems. One of these is the design of CNM-based membranes. These devices can be of two different types: membranes that are exclusively composed of CNMs (i.e. buckypaper and graphene oxide paper) and polysaccharide membranes containing dispersed CNMs. A membrane can be used either as a filter, operating under flow-through mode, or as a rotating device, operating under the action of magnetic stirring. In both cases, the main advantages arising from the use of membranes are excellent results in terms of transport rates, adsorption capability, high throughput, and ease of employment. This review covers the preparation/synthesis procedures of such membranes and their potential in SPE applications, highlighting benefits and shortcomings in comparison with conventional SPE materials (especially, microparticles carbonaceous sorbents) and devices. Further challenges and expected improvements are addressed too.
Collapse
Affiliation(s)
- Chiara Dal Bosco
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| | | | - Nina Felli
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Elena Lucci
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Salvatore Fanali
- Teaching Committee of Ph.D. School in Nanoscience and Advanced Technologies, University of Verona, Strada Le Grazie, 15 37129, Verona, Italy
| | - Alessandra Gentili
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy.
- Hydro-Eco Research Centre, Sapienza University, Rome, Italy.
| |
Collapse
|
33
|
Poole CF. Selectivity evaluation of extraction systems. J Chromatogr A 2023; 1695:463939. [PMID: 36996617 DOI: 10.1016/j.chroma.2023.463939] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Extraction is the most common sample preparation technique prior to chromatographic analysis for samples which are too complex, too dilute, or contain matrix components incompatible with the further use of the separation system or interfere in the detection step. The most important extraction techniques are biphasic systems involving the transfer of target compounds from the sample to a different phase ideally accompanied by no more than a tolerable burden of co-extracted matrix compounds. The solvation parameter model affords a general framework to characterize biphasic extraction systems in terms of their relative capability for solute-phase intermolecular interactions (dispersion, dipole-type, hydrogen bonding) and within phase solvent-solvent interactions for cavity formation (cohesion). The approach is general and allows the comparison of liquid and solid extraction phases using the same terms and is used to explain the features important for the selective enrichment of target compounds by a specific extraction phase using solvent extraction, liquid-liquid extraction, and solid-phase extraction for samples in a gas, liquid, or solid phase. Hierarchical cluster analysis with the system constants of the solvation parameter model as variables facilitates the selection of solvents for extraction, the identification of liquid-liquid distribution systems with non-redundant selectivity, and evaluation of different approaches using liquids and solids for the isolation of target compounds from different matrices.
Collapse
|
34
|
Suseela MNL, Viswanadh MK, Mehata AK, Priya V, Setia A, Malik AK, Gokul P, Selvin J, Muthu MS. Advances in solid-phase extraction techniques: Role of nanosorbents for the enrichment of antibiotics for analytical quantification. J Chromatogr A 2023; 1695:463937. [PMID: 37019063 DOI: 10.1016/j.chroma.2023.463937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/18/2023] [Indexed: 04/05/2023]
Abstract
Antibiotics are life-saving medications for treating bacterial infections; however it has been discovered that resistance developed by bacteria against these incredible agents is the primary contributing factor to rising global mortality rates. The fundamental cause of the emergence of antibiotic resistance in bacteria is the presence of antibiotic residues in various environmental matrices. Although antibiotics are present in diluted form in environmental matrices like water, consistent exposure of bacteria to these minute levels is enough for the resistance to develop. So, identifying these tiny concentrations of numerous antibiotics in various and complicated matrices will be a crucial step in controlling their disposal in those matrices. Solid phase extraction, a popular and customizable extraction technology, was developed according to the aspirations of the researchers. It is a unique alternative technique that could be implemented either alone or in combination with other approaches at different stages because of the multitude of sorbent varieties and techniques. Initially, sorbents are utilized for extraction in their natural state. The basic sorbent has been modified over time with nanoparticles and multilayer sorbents, which have indeed helped to accomplish the desired extraction efficiencies. Among the current traditional extraction techniques such as liquid-liquid extraction, protein precipitation, and salting out techniques, solid-phase extractions (SPE) with nanosorbents are most productive because, they can be automated, selective, and can be integrated with other extraction techniques. This review aims to provide a broad overview of advancements and developments in sorbents with a specific emphasis on the applications of SPE techniques used for antibiotic detection and quantification in various matrices in the last two decades.
Collapse
Affiliation(s)
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP 522302, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Patharaj Gokul
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
35
|
Soares S, Rosado T, Barroso M, Gallardo E. Solid Phase-Based Microextraction Techniques in Therapeutic Drug Monitoring. Pharmaceutics 2023; 15:pharmaceutics15041055. [PMID: 37111541 PMCID: PMC10142207 DOI: 10.3390/pharmaceutics15041055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Therapeutic drug monitoring is an established practice for a small group of drugs, particularly those presenting narrow therapeutic windows, for which there is a direct relationship between concentration and pharmacological effects at the site of action. Drug concentrations in biological fluids are used, in addition to other clinical observation measures, to assess the patient's status, since they are the support for therapy individualization and allow assessing adherence to therapy. Monitoring these drug classes is of great importance, as it minimizes the risk of medical interactions, as well as toxic effects. In addition, the quantification of these drugs through routine toxicological tests and the development of new monitoring methodologies are extremely relevant for public health and for the well-being of the patient, and it has implications in clinical and forensic situations. In this sense, the use of new extraction procedures that employ smaller volumes of sample and organic solvents, therefore considered miniaturized and green techniques, is of great interest in this field. From these, the use of fabric-phase extractions seems appealing. Noteworthy is the fact that SPME, which was the first of these miniaturized approaches to be used in the early '90s, is still the most used solventless procedure, providing solid and sound results. The main goal of this paper is to perform a critical review of sample preparation techniques based on solid-phase microextraction for drug detection in therapeutic monitoring situations.
Collapse
Affiliation(s)
- Sofia Soares
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses-Delegação do Sul, 1169-201 Lisboa, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| |
Collapse
|
36
|
Luo Y, Yang L, Jiang L, Huang C, Shen X. Preparation of wax-based molecularly imprinted monolith for pipette-tip solid-phase extraction: a hybrid method. Mikrochim Acta 2023; 190:151. [PMID: 36952093 DOI: 10.1007/s00604-023-05726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/01/2023] [Indexed: 03/24/2023]
Abstract
The development of molecularly imprinted monolith (MIM) for pipette-tip solid-phase extraction (PT-SPE) for sample pretreatment is challenging . In this work, a wax-based molecularly imprinted monolith (WMIM) was successfully prepared with a hybrid method by integration of the traditional packing SPE column and MIM, including preparation of the salt column inside the pipette, polymerization of wax-based imprinted column (WIC) outside the pipette, and immobilization of WIC inside the pipette tip. To ensure the penetration of samples and solvents during the PT-SPE, micrometer-range interconnected macropores were tailor-made via the salt-template sacrifice method. For the production of high affinity imprinted sites within the WIC, octadecanoic acid was used as functional monomer in the paraffin matrix. In terms of the adsorption property, the synthesized WIC exhibited a specific affinity to cardiovascular drugs, with an imprinting factor (IF) of 4.8 for the target analyte. Moreover, the WMIM-based PT-SPE was coupled with fluorescence spectrophotometry for the target propranolol determination (the excitation and emission wavelengths were 294 nm and 343 nm, respectively). This analytical method showed high recovery of target detection in different real samples (R > 90%), good sensitivity, and accuracy (R2 = 0.99, LOD = 0.03 ng mL-1). We believe this work could provide a significant contribution for the fabrication of MIM and promote an emerging trend of developing elution-free materials for sample pretreatment.
Collapse
Affiliation(s)
- Yaoyu Luo
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Liuqian Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Long Jiang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China.
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
37
|
Aguinaga Martínez MV, Domini CE, Acebal CC. Preparation of a single and reusable biopolymer-based film for the extraction and preconcentration of anti-inflammatory drugs from environmental water samples. RSC Adv 2023; 13:9055-9064. [PMID: 36950076 PMCID: PMC10025811 DOI: 10.1039/d3ra00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
One of the main goals of green chemistry is to reduce the use of toxic materials and the generation of hazardous waste, both during method development and in the synthesis of the materials used. Thus, a biodegradable, single and reusable material composed of agarose and multi-walled carbon nanotubes was proposed. The film preparation was carefully optimized in order to obtain a one-piece sorbent, with high extraction efficiency and the possibility of reuse. The film was tested in the simultaneous extraction and preconcentration of three non-steroidal anti-inflammatory drugs (ketorolac, ketoprofen and piroxicam) from environmental water samples. The optimal extraction parameters were as follows: isopropyl alcohol as the activation solvent, a sample pH value of 3.0, extraction time of 30 min, 2.00 mL of acetonitrile as the eluent, an elution time of 5 minutes, and a sample volume of 250.00 mL. Under these conditions, the film was reusable 50 times without losing its extraction capacity significantly. HPLC with a photodiode array detector was used for the separation and determination. The method presented a linear range between 0.10 and 1.2 μg L-1, good sensitivity with limits of detection between 0.0075 and 0.0089 μg L-1, and quantification between 0.025 and 0.030 μg L-1. In addition, low RSD values (0.46-3.13%) were obtained demonstrating satisfactory precision. Stream water samples were analyzed, and recoveries between 82.0 and 109.0% were obtained.
Collapse
Affiliation(s)
- Maite V Aguinaga Martínez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET Av. Alem 1253 Bahía Blanca 8000 Argentina
| | - Claudia E Domini
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET Av. Alem 1253 Bahía Blanca 8000 Argentina
| | - Carolina C Acebal
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET Av. Alem 1253 Bahía Blanca 8000 Argentina
| |
Collapse
|
38
|
Wang S, Zhang L, Yang H, Li C, Wang Z, Xiong J, Xv Y, Wang Z, Shen J, Jiang H. The effects of UiO-66 ultrafine particles on the rapid detection of sulfonamides in milk: Adsorption performance and mechanism. Food Chem 2023; 417:135878. [PMID: 36917905 DOI: 10.1016/j.foodchem.2023.135878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Nanoscale MOFs particles possess both excellent adsorption and dispersion properties. In this study, ultrafine particles UiO-66 (UP/UiO-66) with a particle size below 50 nm were synthesised by a template-controlled method. UP/UiO-66 was able to achieve a maximum adsorption capacity of 139.64 mg/g for 5 methoxylated sulfonamides. Adsorption studies showed that UP/UiO-66 adsorption of sulfonamides can be classified as a pseudo-secondary kinetic adsorption model for single molecular layer adsorption. ELISA (validated by Raman and molecular docking) showed that the sulfonamide molecule was still immunoreactive with antibodies after adsorption by UP/UiO-66. In 15 min, UP/UiO-66 could be used directly in the ELISA test for sulfonamides in milk without elution and separation. The LOQ (IC20) of UP/UiO-66-ELISA for sulfonamides in milk was 0.21-2.05 ng/mL. The ultrafine particle strategy of UiO-66 is expected to be applied to other MOFs and used as a general pretreatment material for residue monitoring in complex matrices.
Collapse
Affiliation(s)
- Sihan Wang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Liang Zhang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Huijuan Yang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chenglong Li
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zile Wang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jincheng Xiong
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yuliang Xv
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
39
|
Płotka-Wasylka J, Jatkowska N, Paszkiewicz M, Caban M, Fares MY, Dogan A, Garrigues S, Manousi N, Kalogiouri N, Nowak PM, Samanidou VF, de la Guardia M. Miniaturized Solid Phase Extraction techniques for different kind of pollutants analysis: State of the art and future perspectives – PART 1. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
40
|
Magnetic Solid-Phase Extraction Based on Silica and Graphene Materials for Sensitive Analysis of Emerging Contaminants in Wastewater with the Aid of UHPLC-Orbitrap-MS. Molecules 2023; 28:molecules28052277. [PMID: 36903523 PMCID: PMC10005528 DOI: 10.3390/molecules28052277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
With the advancement of technology and nanotechnology, new extraction sorbents have been created and effectively used for the magnetic solid-phase extraction of target analytes. Some of the investigated sorbents have better chemical and physical properties, exhibiting high extraction efficiency and strong repeatability, combined with low detection and quantification limits. In this study graphene oxide (GO) magnetic composites were prepared and used as magnetic solid-phase extraction (MSPE) adsorbents along with synthesized silica based magnetic nanoparticles (MNPs) functionalized with the C18 group for the preconcentration of emerging contaminants (ECs) in wastewater samples generated from hospital and urban facilities. The sample preparation with magnetic materials was followed by UHPLC-Orbitrap MS analysis for the accurate identification and determination of trace amounts of pharmaceutical active compounds and artificial sweeteners in effluent wastewater. Optimal conditions were used for the extraction of ECs from the aqueous samples, prior to UHPLC-Orbitrap MS determination. The proposed methods achieved low quantitation limits between 1.1-33.6 ng L-1 and 1.8-98.7 ng L-1 and satisfactory recoveries in the range of 58.4%-102.6%. An intra-day precision of less than 23.1% was achieved, while inter-day RSD% values in the range of 5.6-24.8% were observed. These figures of merit suggest that our proposed methodology is suitable for the determination of target ECs in aquatic systems.
Collapse
|
41
|
Liu T, Song Y, Wang X, Shi L, Dong M. A Facile and Rapid Strategy for Quantifying PCBs in Cereals Based on Dispersive Solid-Phase Extraction and Gas Chromatography-Mass Spectrometry: A Reference for Safety Concerns in Sustainable Textiles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1698. [PMID: 36837326 PMCID: PMC9961118 DOI: 10.3390/ma16041698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Cereals and their derivative products such as starch and cyclodextrin are significant natural materials for sustainable textile processing (e.g., sizing, dispersing, etc.). However, the contamination of cereals with polychlorinated biphenyls (PCBs) is often neglected, which has led to increasing concerns due to the adverse effects on end users. Therefore, monitoring PCBs in cereals is of great importance in preventing health risks. However, high starch, protein, and fat contents make cereals a complicated matrix and can challenge the analysis of PCBs in cereals. This work describes a facile and rapid strategy for quantifying 18 PCBs in cereals that included corn, wheat, and rice through dispersive solid-phase extraction and gas chromatography with mass spectrometry. Importantly, this was the first time that carboxyl-modified, multi-walled carbon nanotubes were incorporated in the detection of PCBs in cereals. The influences of several parameters on the extraction and clean-up efficiency were investigated; these included the type and volume of extraction solvent, sonication time, and the type and dosage of the adsorbent. The matrix effects on quantification were also evaluated. This approach exhibited a better clean-up performance. All the analytes showed weak matrix effects, and thus a solvent standard plot could be prepared for their quantification. Spiking experiments in the selected matrices at three concentration levels from 0.5 to 10 μg/kg resulted in satisfactory recoveries that ranged from 79.2% to 110.5% with relative standard deviations (RSDs; n = 6) less than 10.3%. The limits of detection (LODs) and quantification (LOQs) ranged from 0.04 to 0.1 μg/kg and 0.1 to 0.4 μg/kg, respectively. The practical application of this method was investigated by analyzing actual cereal samples, which demonstrated that the proposed approach was a facile and efficient strategy for PCB determination and provided a reference for the safety evaluation of sustainable textiles. The method also could be generalized to other troublesome samples for testing of multiple PCBs.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Hangzhou 310021, China
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215105, China
| | - Ying Song
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215105, China
| | - Xiangyun Wang
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Hangzhou 310021, China
| | - Linlin Shi
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215105, China
| | - Minghui Dong
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215105, China
| |
Collapse
|
42
|
Masrura SU, Abbas T, Jones-Lepp TL, Kaewlom P, Khan E. Combining environmental, health, and safety features with a conductor like Screening Model for selecting green solvents for antibiotic analyses. ENVIRONMENTAL RESEARCH 2023; 218:114962. [PMID: 36460072 DOI: 10.1016/j.envres.2022.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Extraction and chromatographic techniques for analyzing pharmaceutically active compounds necessitate large quantities of organic solvents, resulting in a high volume of hazardous waste. The concept of green solvents focuses on protecting the environment by reducing or even eliminating the use of toxic solvents. The main objective of this critical review article is to build a framework for choosing green solvents for antibiotic analyses. The article briefly discusses the chemical properties of ciprofloxacin, sulfamethoxazole, tetracycline, and trimethoprim, and the current state of methodologies for their analyses in water and wastewater. It evaluates the greenness of solvents used for antibiotic analyses and includes insights on the comparison between conventional and green solvents for the analyses. An economic and environmental health and safety analysis combined with a Conductor-like Screening Model for Real Solvent (COSMO-RS) molecular simulation technique for predicting extraction efficiency was used in the evaluation. Methyl acetate and propylene carbonate tied for the greenest solvents from an environmental and economic perspective, whereas the COSMO-RS approach suggests dimethyl sulfoxide (DMSO) as the most suitable candidate. Although DMSO ranked third environmentally and economically, after methyl acetate and propylene carbonate, it would be an ideal replacement of hazardous solvents if it could be manufactured at a lower cost. DMSO showed the highest extraction capacity, as it can interact with antibiotics through hydrophobic interaction and hydrogen bonding. This article can be used as a green solvent selection guide for developing sustainable processes for antibiotic analyses.
Collapse
Affiliation(s)
- Sayeda Ummeh Masrura
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| | - Tauqeer Abbas
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA; Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| | - Tammy L Jones-Lepp
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| | - Puangrat Kaewlom
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
43
|
An automated micro solid phase extraction gas chromatography-mass spectrometry (μSPE-GC-MS) detection method for geosmin and 2-methylisoborneol in drinking water. Sci Rep 2023; 13:1768. [PMID: 36720961 PMCID: PMC9889310 DOI: 10.1038/s41598-023-28543-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/19/2023] [Indexed: 02/02/2023] Open
Abstract
Geosmin and 2-methylisoborneol (2-MIB) are amongst the most common earthy and musty taste and odour (T&O) compounds found in drinking water. With low odour threshold detection limits below 10 ng L-1, and the complexity of raw water matrices, these two compounds provide a significant challenge for water companies globally. In this research, for the first time, a novel and fully automated micro-solid phase-extraction (μSPE) method coupled with gas chromatography (GC)-mass spectrometry (MS) has been developed for the detection of geosmin and 2-MIB for drinking water analysis. The new automated method described herein is environmentally friendly requiring low raw water sample volumes, of 25 mL, and only 50 μL of elution solvent. Our μSPE-GC-MS method exhibits excellent linearity for both compounds (R2 > 0.999) and low limits of detection of 2.0 ng L-1 and 4.3 ng L-1 for geosmin and 2-MIB, respectively. The method showed excellent recovery rates (95.1-100.1%) and good precision (RSD < 7%) in raw sample matrices. Our approach is fully automated onto a robotic workstation which can be readily integrated into a laboratory workflow for routine water analysis. Furthermore, the method has excellent potential to be incorporated within a portable system for onsite analysis.
Collapse
|
44
|
Zhang XY, Zhang Y, Zhou Y, Liu ZF, Wei BB, Feng XS. Melatonin in different food samples: Recent update on distribution, bioactivities, pretreatment and analysis techniques. Food Res Int 2023; 163:112272. [PMID: 36596183 DOI: 10.1016/j.foodres.2022.112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Melatonin (MLT) plays a significant role on maintaining the basic physiological functions and regulating various metabolic processes in plentiful organisms. Recent years have witnessed an increase in MLT's share in global market with its affluent functions. However, the worrisome quality issues and inappropriate or excessive application of MLT take place inevitably. In addition, its photosensitive properties, oxidation, complex substrate concentration and trace levels leave exact detection of MLT doubly difficult. Therefore, it is essential to exploit precise, sensitive and stable extraction and detection methods to resolve above questions. In this study, we reviewed the distribution and bioactivities of MLT and conducted a comprehensive overview of the developments of pretreatment and analysis methods for MLT in food samples since 2010. Commonly used pretreatment methods for MLT include not only traditional techniques, but also novel ones, such as solid-phase extraction, QuEChERS, microextraction by packed sorbent, solid phase microextraction, liquid phase microextraction, and so on. Analysis methods include liquid chromatography coupled with different detectors, GC methods, capillary electrophoresis, sensors, and so on. The advantages and disadvantages of different techniques have been compared and the development tendency was prospected.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Clinical Pharmacy & Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Bin-Bin Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
45
|
Totten V, Willis J, Eddins S, Brooks B. Qualitative identification of volatile compounds in foods and flowers using passive headspace extraction with activated charcoal fabric. Food Res Int 2023; 163:112130. [PMID: 36596091 DOI: 10.1016/j.foodres.2022.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/29/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
This study investigates the application of passive headspace analysis to several different foods and flowers and compares these results to other published studies. The method demonstrates the applicability of passive headspace analysis for extraction and qualitative analysis of volatile flavor components of citrus fruits and flower blossoms. The method is simple, inexpensive, fast, and provides an alternative to analysis of volatile flavor and fragrance compounds using solid phase microextraction techniques and other extraction techniques.
Collapse
Affiliation(s)
- Venita Totten
- Department of Natural Sciences, Gardner-Webb University, 110 South Main Street, Boiling Springs, NC 28017, United States.
| | - Jacob Willis
- Department of Natural Sciences, Gardner-Webb University, 110 South Main Street, Boiling Springs, NC 28017, United States.
| | - Stefka Eddins
- Department of Natural Sciences, Gardner-Webb University, 110 South Main Street, Boiling Springs, NC 28017, United States.
| | - Benjamin Brooks
- Department of Natural Sciences, Gardner-Webb University, 110 South Main Street, Boiling Springs, NC 28017, United States.
| |
Collapse
|
46
|
Lazofsky A, Buckley B. Recent Trends in Multiclass Analysis of Emerging Endocrine Disrupting Contaminants (EDCs) in Drinking Water. Molecules 2022; 27:8835. [PMID: 36557967 PMCID: PMC9781274 DOI: 10.3390/molecules27248835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Ingestion of water is a major route of human exposure to environmental contaminants. There have been numerous studies exploring the different compounds present in drinking water, with recent attention drawn to a new class of emerging contaminants: endocrine-disrupting compounds (EDCs). EDCs encompass a broad range of physio-chemically diverse compounds; from naturally occurring to manmade. Environmentally, EDCs are found as mixtures containing multiple classes at trace amounts. Human exposure to EDCs, even at low concentrations, is known to lead to adverse health effects. Therefore, the ability to evaluate EDC contamination with a high degree of sensitivity and accuracy is of the utmost importance. This review includes (i) discussion on the perceived and actual risks associated with EDC exposure (ii) regulatory actions that look to limit EDC contamination (iii) analytical methods, including sample preparation, instrumentation and bioassays that have been advanced and employed for multiclass EDC identification and quantitation.
Collapse
Affiliation(s)
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
47
|
Favilli L, Giacomino A, Malandrino M, Inaudi P, Diana A, Abollino O. Strategies for mercury speciation with single and multi-element approaches by HPLC-ICP-MS. Front Chem 2022; 10:1082956. [PMID: 36531326 PMCID: PMC9754325 DOI: 10.3389/fchem.2022.1082956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 08/21/2023] Open
Abstract
Mercury (Hg) and its compounds are highly toxic for humans and ecosystems, and their chemical forms determine both their behavior and transportation as well as their potential toxicity for human beings. Determining the various species of an element is therefore more crucial than understanding its overall concentration in samples. For this reason, several studies focus on the development of new analytical techniques for the identification, characterization, and quantification of Hg compounds. Commercially available, hyphenated technology, such as HPLC-ICP-MS, supports the rapid growth of speciation analysis. This review aims to summarize and critically examine different approaches for the quantification of mercury species in different samples using HPLC-ICP-MS. The steps preceding the quantification of the analyte, namely sampling and pretreatment, will also be addressed. The scenarios evaluated comprehend single and multi-element speciation analysis to create a complete guide about mercury content quantification.
Collapse
Affiliation(s)
- Laura Favilli
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | - Agnese Giacomino
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | - Mery Malandrino
- Department of Chemistry, University of Torino, Torino, Italy
| | - Paolo Inaudi
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | - Aleandro Diana
- Department of Chemistry, University of Torino, Torino, Italy
| | - Ornella Abollino
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| |
Collapse
|
48
|
Sorribes-Soriano A, Albert Esteve-Turrillas F, Armenta S, Manuel Herrero-Martínez J. Molecularly imprinted polymer –stir bar sorptive extraction of diazepam from natural water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Ullah N, Tuzen M. A New Trend and Future Perspectives of the Miniaturization of Conventional Extraction Methods for Elemental Analysis in Different Real Samples: A Review. Crit Rev Anal Chem 2022; 54:1729-1747. [PMID: 36197714 DOI: 10.1080/10408347.2022.2128635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Sample preparation is one of the viable procedures to be used before analysis to enhance sensitivity and reduce the matrix effect. The current review is mainly emphasized the latest outcome and applications of microextraction techniques based on the miniaturization of the classical conventional methods based on liquid-phase and solid-phase extraction for the quantitative elemental analysis in different real samples. The limitation of the conventional sample preparation methods (liquid and solid phase extraction) has been overcome by developing a new way of reducing size as compared with the conventional system through the miniaturization approach. Miniaturization of the sample preparation techniques has received extensive attention due to its extraction at microlevels, speedy, economical, eco-friendly, and high extraction capability. The growing demand for speedy, economically feasible, and environmentally sound analytical approaches is the main intention to upgrade the conventional procedures apply for sample preparation in environmental investigation. A growing trend of research has been perceived to quantify the trace for elemental analysis in different natures of real samples. This review also recapitulates the current futuristic scenarios for the green and economically viable procedure with special overemphasis and concentrates on eco-friendly miniaturized sample-preparation techniques such as liquid-phase microextraction (LPME) and solid-phase microextraction (SPME). This review also emphasizes the latest progress and applications of the LPME and SPME approach and their future perspective.
Collapse
Affiliation(s)
- Naeem Ullah
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, Tokat, Turkey
- Department of Chemistry, University of Turbat, Balochistan, Pakistan
| | - Mustafa Tuzen
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, Tokat, Turkey
- Research Institute, Center for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
50
|
Selahle SK, Mpupa A, Nqombolo A, Nomngongo PN. A nanostructured o-hydroxyazobenzene porous organic polymer as an effective sorbent for the extraction and preconcentration of selected hormones and insecticides in river water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|