1
|
Zhang Y, Guo Y, Yang H, Miao X, Feng Q. DNA tetrahedral scaffold-corbelled self-feedback circuit for dual-mode ratiometric biosensing with Ru@COF-LZU1 accelerator. Biosens Bioelectron 2024; 261:116520. [PMID: 38924812 DOI: 10.1016/j.bios.2024.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Sensitive, reliable, and specific detection of microRNAs (miRNAs) is a key objective for disease diagnosis and prognosis. Here, a ratiometric fluorescent/electrochemiluminescent (FL/ECL) sensor was designed for the dual-mode detection of miRNA-122, a hepatocellular carcinoma biomarker. The strong ECL emission was achieved from imine-linked covalent organic framework (COF-LZU1) accelerator enriched Ru(bpy)32+ molecules (Ru@COF-LZU1), which was applied as a delimited reaction micro-reactor to enhance ECL emission. Impressively, to construct an efficient sensing platform, self-feedback circuit was grafted at the vertex of DNA tetrahedral scaffold (DTS), which could provide a solution-phase-like environment and transform miRNA-122 into abundant single-stranded DNAs on the disposable electrode. Simultaneously, the carboxyfluorescein (FAM) tagged DNA segment was cleaved and released into the reaction solution, bringing in the recovery of FL response (FL on). Finally, the introduction of glucose oxidase (GOD) could generate H2O2 by in situ catalyzing GOD to glucose, resulting in the decrease of ECL signal (ECL off). Relying on FL/ECL ratio value, miRNA-122 was quantified with high sensitivity, well selectivity, stability and favorable practicability, suggesting that the proposed biosensor hold great potential for clinical diagnosis.
Collapse
Affiliation(s)
- Yan Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, PR China.
| | - Yuehua Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Huan Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| |
Collapse
|
2
|
Xia T, Zuo Y, Liu L, Feng X, Xiong M, Zhang J, Long L, Wang K, Hao N. A potential-controlled electrochromic visual biosensor based on distance readout for zearalenone detection. Biosens Bioelectron 2024; 260:116455. [PMID: 38824702 DOI: 10.1016/j.bios.2024.116455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
In this work, a potential-controlled electrochromic visual biosensor was developed for detecting zearalenone (ZEN) using a distance readout strategy. The sensor chip includes a square detection area and a folded signal output area created with laser etching technology. The detection area is modified with graphene oxide and ZEN aptamer, while Prussian blue (PB) is electrodeposited onto the signal output channel. When an appropriate voltage is applied, PB in the signal output area is reduced to colorless Prussian white (PW). The target ZEN molecules have the capability to release aptamers from graphene oxide (GO) surface in the detection area, resulting in a subsequent change in the potential of the visual signal output channel. This change determines the length of the channel that changes from blue to colorless, with the color change distance being proportional to the ZEN concentration. Using this distance readout strategy, ZEN detection within the range of 1 ng/mL to 300 ng/mL was achieved, with a detection limit of 0.29 ng/mL.
Collapse
Affiliation(s)
- Tiantian Xia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yanli Zuo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Liqi Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xujing Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Meng Xiong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Jiadong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, School of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Nan Hao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China.
| |
Collapse
|
3
|
Gorgani L, Mohammadi M, Najafpour Darzi G, Raoof JB. Metal-organic framework (MOF)-based biosensors for miRNA detection. Talanta 2024; 273:125854. [PMID: 38447342 DOI: 10.1016/j.talanta.2024.125854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/31/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNAs) play several crucial roles in the physiological and pathological processes of the human body. They are considered as important biomarkers for the diagnosis of various disorders. Thus, rapid, sensitive, selective, and affordable detection of miRNAs is of great importance. However, the small size, low abundance, and highly similar sequences of miRNAs impose major challenges to their accurate detection in biological samples. In recent years, metal-organic frameworks (MOFs) have been applied as promising sensing materials for the fabrication of different biosensors due to their distinctive characteristics, such as high porosity and surface area, tunable pores, outstanding adsorption affinities, and ease of functionalization. In this review, the applications of MOFs and MOF-derived materials in the fabrication of fluorescence, electrochemical, chemiluminescence, electrochemiluminescent, and photoelectrochemical biosensors for the detection of miRNAs and their detection principle and analytical performance are discussed. This paper attempts to provide readers with a comprehensive knowledge of the fabrication and sensing mechanisms of miRNA detection platforms.
Collapse
Affiliation(s)
- Leila Gorgani
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Maedeh Mohammadi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran; School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Ghasem Najafpour Darzi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
4
|
Cao L, Zhou Y, Gao L, Yin H, Zhang M, Zhang H, Ju P, Dou K, Ai S. Ascorbic Acid Induced the Improved Oxygen Vacancy Defects of Bi 4O 5Br 2 and Its Application on Photoelectrochemical Detection of DNA Demethylase MBD2 with Improved Detection Sensitivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306365. [PMID: 38009777 DOI: 10.1002/smll.202306365] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Oxygen vacancy defects (OVs) are one of the main strategies for nanomaterials modification to improve the photoactivity, but current methods for fabricating OVs are usually complicated and harsh. It is important to develop simple, rapid, safe, and mild methods to fabricate OVs. By studying the effects of different weak reducing agents, the concentration of the reducing agent and the reaction time on fabrication of OVs, it is found that L-ascorbic acid (AA) gently and rapidly induces the increase of OVs in Bi4O5Br2 at room temperature. The increased OVs not only improve the adsorption of visible light, but also enhance the photocurrent response. Based on this, the preparation of OVs in Bi4O5Br2 is employed to the development of a photoelectrochemical biosensor for the detection of DNA demethylase of methyl-CpG binding domain protein 2 (MBD2). The biosensor shows a wide linear range of 0.1-400 ng mL-1 and a detection limit as low as 0.03 ng mL-1 (3σ). In addition, the effect of plasticizers on MBD2 activity is evaluated using this sensor. This work not only provides a novel method to prepare OVs in bismuth rich materials, but also explores a new novel evaluation tool for studying the ecotoxicological effects of contaminants.
Collapse
Affiliation(s)
- LuLu Cao
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Lanlan Gao
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Miao Zhang
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Haowei Zhang
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, P. R. China
| | - Kunpeng Dou
- College of Information Science and Engineering, Ocean University of China, Qingdao, 266061, P. R. China
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, 271018, P. R. China
| |
Collapse
|
5
|
Wen SH, Zhang H, Yu S, Ma J, Zhu JJ, Zhou Y. Complementary Homogeneous Electrochemical and Photothermal Dual-Modal Sensor for Highly Sensitive Detection of Organophosphorus Pesticides via Stimuli-Responsive COF/Methylene Blue@MnO 2 Composite. Anal Chem 2023; 95:14914-14924. [PMID: 37769195 DOI: 10.1021/acs.analchem.3c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Credible and on-site detection of organophosphorus pesticides (OPs) in complex matrixes is significant for food security and environmental monitoring. Herein, a novel COF/methylene blue@MnO2 (COF/MB@MnO2) composite featured abundant signal loading, a specific recognition unit, and robust oxidase-like activity was successfully prepared through facile assembly processes. The multifunctional composite acted as a homogeneous electrochemical and photothermal dual-mode sensing platform for OPs detection through stimuli-responsive regulation. Without the presence of OPs, the surface MnO2 coating could recognize thiocholine (TCh), originating from acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylthiocholine (ATCh), and exhibited a distinctly amplified diffusion current due to the release of plentiful MB; while the residual MnO2 nanosheets could only catalyze less TMB into oxidized TMB (oxTMB) with a typical near-infrared (NIR) absorption, enabling NIR-driven photothermal assay with a low temperature using a portable thermometer. Based on the inhibitory effect of OPs on AChE activity and OP-regulated generation of TCh, chlorpyrifos as a model target can be accurately detected with a low limit of detection of 0.0632 and 0.108 ng/mL by complementary electrochemical and photothermal measurements, respectively. The present dual-mode sensor was demonstrated to be excellent for application to the reliable detection of OPs in complex environmental and food samples. This work can not only provide a complementary dual-mode method for convenient and on-site detection of OPs in different scenarios but also expand the application scope of the COF-based multifunctional composite in multimodal sensors.
Collapse
Affiliation(s)
- Shao-Hua Wen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hengyuan Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sha Yu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junping Ma
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
6
|
Xia N, Cheng J, Tian L, Zhang S, Wang Y, Li G. Hybridization Chain Reaction-Based Electrochemical Biosensors by Integrating the Advantages of Homogeneous Reaction and Heterogeneous Detection. BIOSENSORS 2023; 13:543. [PMID: 37232904 PMCID: PMC10216504 DOI: 10.3390/bios13050543] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
The conventional hybridization chain reaction (HCR)-based electrochemical biosensors usually require the immobilization of probes on the electrode surface. This will limit the applications of biosensors due to the shortcomings of complex immobilization processes and low HCR efficiency. In this work, we proposed astrategy for the design of HCR-based electrochemical biosensors by integrating the advantages of homogeneous reaction and heterogeneous detection. Specifically, the targets triggered the autonomous cross-opening and hybridization oftwobiotin-labeled hairpin probes to form long-nicked dsDNA polymers. The HCR products with many biotin tags were then captured by a streptavidin-covered electrode, thus allowing for the attachment of streptavidin-conjugated signal reporters through streptavidin-biotin interactions. By employing DNA and microRNA-21 as the model targets and glucose oxidase as the signal reporter, the analytical performances of the HCR-based electrochemical biosensors were investigated. The detection limits of this method were found to be 0.6 fM and 1 fM for DNA and microRNA-21, respectively. The proposed strategy exhibited good reliability for target analysis in serum and cellular lysates. The strategy can be used to develop various HCR-based biosensors for a wide range of applications because sequence-specific oligonucleotides exhibit high binding affinity to a series of targets. In light of the high stability and commercial availability of streptavidin-modified materials, the strategy can be used for the design of different biosensors by changing the signal reporter and/or the sequence of hairpin probes.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | | | | | | | | | | |
Collapse
|
7
|
Kurup CP, Ahmed MU. Nanozymes towards Personalized Diagnostics: A Recent Progress in Biosensing. BIOSENSORS 2023; 13:bios13040461. [PMID: 37185536 PMCID: PMC10136715 DOI: 10.3390/bios13040461] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
This review highlights the recent advancements in the field of nanozymes and their applications in the development of point-of-care biosensors. The use of nanozymes as enzyme-mimicking components in biosensing systems has led to improved performance and miniaturization of these sensors. The unique properties of nanozymes, such as high stability, robustness, and surface tunability, make them an attractive alternative to traditional enzymes in biosensing applications. Researchers have explored a wide range of nanomaterials, including metals, metal oxides, and metal-organic frameworks, for the development of nanozyme-based biosensors. Different sensing strategies, such as colorimetric, fluorescent, electrochemical and SERS, have been implemented using nanozymes as signal-producing components. Despite the numerous advantages, there are also challenges associated with nanozyme-based biosensors, including stability and specificity, which need to be addressed for their wider applications. The future of nanozyme-based biosensors looks promising, with the potential to bring a paradigm shift in biomolecular sensing. The development of highly specific, multi-enzyme mimicking nanozymes could lead to the creation of highly sensitive and low-biofouling biosensors. Integration of nanozymes into point-of-care diagnostics promises to revolutionize healthcare by improving patient outcomes and reducing costs while enhancing the accuracy and sensitivity of diagnostic tools.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| |
Collapse
|
8
|
Theyagarajan K, Kim YJ. Recent Developments in the Design and Fabrication of Electrochemical Biosensors Using Functional Materials and Molecules. BIOSENSORS 2023; 13:bios13040424. [PMID: 37185499 PMCID: PMC10135976 DOI: 10.3390/bios13040424] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Electrochemical biosensors are superior technologies that are used to detect or sense biologically and environmentally significant analytes in a laboratory environment, or even in the form of portable handheld or wearable electronics. Recently, imprinted and implantable biosensors are emerging as point-of-care devices, which monitor the target analytes in a continuous environment and alert the intended users to anomalies. The stability and performance of the developed biosensor depend on the nature and properties of the electrode material or the platform on which the biosensor is constructed. Therefore, the biosensor platform plays an integral role in the effectiveness of the developed biosensor. Enormous effort has been dedicated to the rational design of the electrode material and to fabrication strategies for improving the performance of developed biosensors. Every year, in the search for multifarious electrode materials, thousands of new biosensor platforms are reported. Moreover, in order to construct an effectual biosensor, the researcher should familiarize themself with the sensible strategies behind electrode fabrication. Thus, we intend to shed light on various strategies and methodologies utilized in the design and fabrication of electrochemical biosensors that facilitate sensitive and selective detection of significant analytes. Furthermore, this review highlights the advantages of various electrode materials and the correlation between immobilized biomolecules and modified surfaces.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
9
|
Guan Y, Wang FP, Chen ZX, Yang YH, Yang T, Hu R. Ratiometrically homogeneous electrochemical biosensor based on the signal amplified strategy of dual DNA nanomachines for microRNA analysis. Talanta 2023; 254:124191. [PMID: 36525866 DOI: 10.1016/j.talanta.2022.124191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Precise and sensitive microRNA (miRNA) analysis is very significant for early disease diagnosis. In this work, a dual DNA nanomachines-based homogeneous electrochemical biosensor was constructed for the sensitively ratiometric detection of miRNA by a nicking enzyme (Nt.AlwI)-assisted cycling signal amplification strategy. The Co-based metal organic frameworks (Co-MOFs) and toluidine blue (TB) were employed as signal probes and internal reference probes, respectively. The introduction of internal reference probes can actually calibrate the interferent factors of the analytical system to improve the stability in detection procedure. In addition, with the help of the magnetic separation technique, the homogeneous electrochemical biosensor provides a more simpler way for the development of immobilization-free electrochemical miRNA biosensors, avoiding the complex modification procedure of traditional electrochemical biosensing interfaces. Consequently, taking advantages of this proposed dual DNA nanomachines-based homogeneous electrochemical biosensor, the highly sensitive and selective detection of miRNA-141 as model could be accomplished in ranging from 1 fM to 10 nM with detection limit of 0.46 fM. This strategy exhited good sensitivity and stability to integrate the nicking enzyme-powered dual DNA nanomachines with the ratiometric electrochemical output modes, which open new opportunities for the sensitive and reliable diagnosis of miRNA-related diseases.
Collapse
Affiliation(s)
- Yan Guan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, PR China
| | - Fu Peng Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, PR China
| | - Zhi Xiong Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, PR China
| | - Yun Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, PR China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, PR China.
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan, PR China.
| |
Collapse
|
10
|
Recent progress in homogeneous electrochemical sensors and their designs and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Chang Y, Wang Y, Zhang J, Xing Y, Li G, Deng D, Liu L. Overview on the Design of Magnetically Assisted Electrochemical Biosensors. BIOSENSORS 2022; 12:bios12110954. [PMID: 36354462 PMCID: PMC9687741 DOI: 10.3390/bios12110954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/12/2023]
Abstract
Electrochemical biosensors generally require the immobilization of recognition elements or capture probes on the electrode surface. This may limit their practical applications due to the complex operation procedure and low repeatability and stability. Magnetically assisted biosensors show remarkable advantages in separation and pre-concentration of targets from complex biological samples. More importantly, magnetically assisted sensing systems show high throughput since the magnetic materials can be produced and preserved on a large scale. In this work, we summarized the design of electrochemical biosensors involving magnetic materials as the platforms for recognition reaction and target conversion. The recognition reactions usually include antigen-antibody, DNA hybridization, and aptamer-target interactions. By conjugating an electroactive probe to biomolecules attached to magnetic materials, the complexes can be accumulated near to an electrode surface with the aid of external magnet field, producing an easily measurable redox current. The redox current can be further enhanced by enzymes, nanomaterials, DNA assemblies, and thermal-cycle or isothermal amplification. In magnetically assisted assays, the magnetic substrates are removed by a magnet after the target conversion, and the signal can be monitored through stimuli-response release of signal reporters, enzymatic production of electroactive species, or target-induced generation of messenger DNA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Liu
- Correspondence: (D.D.); (L.L.)
| |
Collapse
|
12
|
Hou T, Xu N, Song X, Yang L, Li F. Label-free homogeneous photoelectrochemical aptasensing of VEGF165 based on DNA-regulated peroxidase-mimetic activity of metal-organic-frameworks. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Wang Z, Zhang Y, Wang X, Han L. Flow-homogeneous electrochemical sensing system based on 2D metal-organic framework nanozyme for successive microRNA assay. Biosens Bioelectron 2022; 206:114120. [PMID: 35240439 DOI: 10.1016/j.bios.2022.114120] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/26/2022]
Abstract
Considering DNA-based homogeneous electrochemical assay allows identification of targets to be carried out in a homogeneous solution, it would be of significance to develop the successive homogeneous assay system in dynamic solution for rapid disease diagnosis and high-throughput bioanalysis. In homogeneous assay, the work electrodes generally have capability of DNA capture but lack signal amplification, restricting its sensitivity. Here, a flow-homogeneous sensing system was proposed to realize the successive assay of microRNA, a model biomarker. Ultrathin 2D metal-organic framework (MOF) nanozymes with thickness of about 1 nm were facilely prepared by ultrasonic approach. Due to the excellent enzyme-like activity and adsorption capacity towards single-strand DNA (ssDNA), MOF nanozymes adsorbed on electrode simultaneously played two roles of ssDNA collector and signal-amplifier. To adapt the recoverable electrode to on-line monitoring, duplex-specific nuclease-assisted circle reaction was conducted to produce the turn-on amplified signal. Flow injection device was employed to realize the recycling of electrodes and the successive microRNA assay. The assay strategy showed low limit of detection (0.12 pM, S/N = 3) for microRNA, excellent renewability and acceptable reliability for real sample assay. The established system exerts the advantages of DNA-based homogeneous electrochemical sensing strategy. This work would not only expand homogeneous electrochemical assay to successive bioassay, but also provide the possibility for practical application of homogeneous sensing strategy.
Collapse
Affiliation(s)
- Zhen Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China
| | - Yucui Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China
| | - Xiuzhong Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China.
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China.
| |
Collapse
|
14
|
Yu L, Chang J, Zhuang X, Li H, Hou T, Li F. Two-Dimensional Cobalt-Doped Ti 3C 2 MXene Nanozyme-Mediated Homogeneous Electrochemical Strategy for Pesticides Assay Based on In Situ Generation of Electroactive Substances. Anal Chem 2022; 94:3669-3676. [PMID: 35166114 DOI: 10.1021/acs.analchem.1c05300] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Common homogeneous electrochemical (HEC) sensors usually suffer from the drawbacks of high background signal, low signal-to-noise ratio, and even false positive results due to the preaddition of electroactive substances. Thus, it is necessary to develop novel HEC sensors based on in situ generation of electroactive substances to overcome these shortcomings, which, however, is underexplored. In this work, two-dimensional (2D) nanozymes, i.e., cobalt-doped 2D Ti3C2 MXene nanosheets (CMNSs), with excellent peroxidase-like properties were utilized to develop HEC sensors based on the in situ generation of electroactive substances for organophosphate pesticides (OPs) detection. The 2D CMNSs were synthesized via a template-directed wet chemical approach and displayed outstanding features of hydrophilia and water dispersibility, which could catalyze the oxidation of o-phenylenediamine (OPD) to generate significantly increased reduction current. Interestingly, the 2D CMNSs with peroxidase-like properties exhibited a unique response to thiol compounds and were thus employed as highly efficient catalysts to develop HEC sensors for OPs based on the hydrolysis of acetylthiocholine (ATCh) to form thiocholine catalyzed by acetylcholinesterase (AChE) and the inhibition of AChE activity by OPs. The recovery for OPs analysis of pakchoi extract solutions ranged from 97.4% to 103.3%. The as-proposed HEC sensor based on in situ generation of electroactive substances will provide a new way for the development of high-performance electrochemical sensors and demonstrate potential applicability for the determination of pesticide residues in real samples.
Collapse
Affiliation(s)
- Lei Yu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jiafu Chang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xinyu Zhuang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
15
|
Xia N, Sun T, Liu L, Tian L, Sun Z. Heterogeneous sensing of post-translational modification enzymes by integrating the advantage of homogeneous analysis. Talanta 2022; 237:122949. [PMID: 34736675 DOI: 10.1016/j.talanta.2021.122949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022]
Abstract
Heterogeneous analysis has great application prospects in the detection of post-translational modification (PTM) enzymes with the advantages of signal enhancement, less sample demand, and high sensitivity and selectivity. Nevertheless, once the substrate was fixed on a solid interface, the steric hindrance might limit the approaching of catalytic center to the substrate, thus reducing the efficiency of PTM. Herein, we suggested that the avidin-modified interface could be used to develop heterogeneous sensing platforms with biotin-labeled substrates as the probes, in which the enzymatic PTM was performed in solution and the heterogeneous assay was conducted on a solid surface. The sensing strategy integrates the advantages but overcomes the defects of both homogeneous and heterogeneous assays. Protein kinase A (PKA) and histone acetyltransferase (HAT) were determined as the examples by using sequence-specific peptide substrates. The signal changes were monitored by HRP-based colorimetric assay and antibody-amplified surface plasmon resonance (SPR). The methods were used for analysis of cell lysates and evaluation of inhibition efficiency with satisfactory results. The strategy can be used for the detection of a variety of biological enzymes and provide a new idea for the design of various heterogeneous biosensors. Thus, this work should be of great significance to the popularization and practical application of biosensors.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Ting Sun
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, PR China; School of Chemistry and Materials Science, Guizhou Education University, GaoXin Road 115, Wudang District, Guizhou, 550000, PR China
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, PR China.
| | - Linxu Tian
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, PR China
| | - Zhifang Sun
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan, 455000, PR China.
| |
Collapse
|
16
|
Zhao Y, Li L, Yan X, Wang L, Ma R, Qi X, Wang S, Mao X. Emerging roles of the aptasensors as superior bioaffinity sensors for monitoring shellfish toxins in marine food chain. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126690. [PMID: 34315019 DOI: 10.1016/j.jhazmat.2021.126690] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Shellfish toxins are derived from harmful algae and are easily accumulated in environment and marine food through the food chain, exposing high risks on human health. Preliminary rapid screening is one of the most effective monitoring ways to reduce the potential risks; however, the traditional methods encounter with many limitations, such as complicated procedures, low sensitivity and specificity, and ethical problems. Alternatively, bioaffinity sensors are proposed and draw particular attention. Among them, the aptasensors are springing up and emerging as superior alternatives in recent years, exhibiting high practicability to analyze shellfish toxins in real samples in the marine food chain. Herein, the latest research progresses of aptasensors towards shellfish toxins in the marine food chain in the past five years was reviewed for the first time, in terms of the aptamers applied in these aptasensors, construction principles, signal transduction techniques, response types, individual performance properties, practical applications, and advantages/disadvantages of these aptasensors. Synchronously, critical discussions were given and future perspectives were prospected. We hope this review can serve as a powerful reference to promote further development and application of aptasensors to monitor shellfish toxins, as well as other analytes with similar demands.
Collapse
Affiliation(s)
- Yinglin Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ling Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaochen Yan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lele Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Rui Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoyan Qi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
17
|
Physical Surface Modification of Carbon-Nanotube/Polydimethylsiloxane Composite Electrodes for High-Sensitivity DNA Detection. NANOMATERIALS 2021; 11:nano11102661. [PMID: 34685103 PMCID: PMC8541392 DOI: 10.3390/nano11102661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
The chemical modification of electrode surfaces has attracted significant attention for lowering the limit of detection or for improving the recognition of biomolecules; however, the chemical processes are complex, dangerous, and difficult to control. Therefore, instead of the chemical process, we physically modified the surface of carbon-nanotube/polydimethylsiloxane composite electrodes by dip coating them with functionalized multi-walled carbon nanotubes (F-MWCNTs). These electrodes are used as working electrodes in electrochemistry, where they act as a recognition layer for sequence-specific DNA sensing through π-π interactions. The F-MWCNT-modified electrodes showed a limit of detection of 19.9 fM, which was 1250 times lower than that of pristine carbon/polydimethylsiloxane electrodes in a previous study, with a broad linear range of 1-1000 pM. The physically modified electrode was very stable during the electrode regeneration process after DNA detection. Our method paves the way for utilizing physical modification to significantly lower the limit of detection of a biosensor system as an alternative to chemical processes.
Collapse
|
18
|
Saadati A, Kholafazad kordasht H, Ehsani M, Hasanzadeh M, Seidi F, Shadjou N. An innovative flexible and portable DNA based biodevice towards sensitive identification of Haemophilus influenzae bacterial genome: A new platform for the rapid and low cost recognition of pathogenic bacteria using point of care (POC) analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Zhou Y, Chen Y, Liu W, Fang H, Li X, Hou L, Liu Y, Lai W, Huang X, Xiong Y. Development of a rapid and sensitive quantum dot nanobead-based double-antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS-CoV-2 total antibodies. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 343:130139. [PMID: 34035562 DOI: 10.1016/j.snb.2021.130169] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 05/28/2023]
Abstract
Owing to the over-increasing demands in resisting and managing the coronavirus disease 2019 (COVID-19) pandemic, development of rapid, highly sensitive, accurate, and versatile tools for monitoring total antibody concentrations at the population level has been evolved as an urgent challenge on measuring the fatality rate, tracking the changes in incidence and prevalence, comprehending medical sequelae after recovery, as well as characterizing seroprevalence and vaccine coverage. To this end, herein we prepared highly luminescent quantum dot nanobeads (QBs) by embedding numerous quantum dots into polymer matrix, and then applied it as a signal-amplification label in lateral flow immunoassay (LFIA). After covalently linkage with the expressed recombinant SARS-CoV-2 spike protein (RSSP), the synthesized QBs were used to determine the total antibody levels in sera by virtue of a double-antigen sandwich immunoassay. Under the developed condition, the QB-LFIA can allow the rapid detection of SARS-CoV-2 total antibodies within 15 min with about one order of magnitude improvement in analytical sensitivity compared to conventional gold nanoparticle-based LFIA. In addition, the developed QB-LFIA performed well in clinical study in dynamic monitoring of serum antibody levels in the whole course of SARS-CoV-2 infection. In conclusion, we successfully developed a promising fluorescent immunological sensing tool for characterizing the host immune response to SARS-CoV-2 infection and confirming the acquired immunity to COVID-19 by evaluating the SRAS-CoV-2 total antibody level in the crowd.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yuan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi YeLi Medical Device Co., Ltd, Nanchang 330096, PR China
| | - Wenjuan Liu
- Jiangxi Weibang Biological Technology Co. Ltd, Nanchang 330096, PR China
| | - Hao Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Li Hou
- Jiangxi YeLi Medical Device Co., Ltd, Nanchang 330096, PR China
| | - Yuanjie Liu
- College of Information and Electrical Engineering, China Agricultural University, Haidian, Beijing 100083, PR China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| |
Collapse
|
20
|
Zhu L, Yu L, Yang X. Electrochemical-Based DNA Logic Devices Regulated by the Diffusion and Intercalation of Electroactive Dyes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42250-42257. [PMID: 34452580 DOI: 10.1021/acsami.1c12650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical-based logic gates are simple to operate, sensitive, controllable, and easy to integrate with silicon-based semiconductor logic devices, showing great application prospects and remaining largely unexplored. Herein, an immobilization-free dual-output electrochemical molecular logic system based on the different diffusivity of electroactive dyes ferrocene (Fc) and methylene blue (MB) toward an indium tin oxide (ITO) electrode under different DNA hybridization reactions was developed. In this system, the hybridization of the catalytic strand IN1 with Fc-modified hairpin DNA H1 triggered an exonuclease III (Exo III) cleavage cycle to obtain free Fc and produce a large number of long double-stranded DNAs via the hybridization chain reaction for intercalating MB, which was previously in the free state. Such a hybridization reaction caused a significant change in the diffusion capacity of MB and Fc toward the ITO electrode, resulting in two electrochemical signals with opposite changes. On this basis, a contrary logic pair library, a parity generator/checker system for differentiating the erroneous bits during data transmission, a parity checker to identify the even/odd natural numbers from 0 to 9, and a series of concatenated logic circuits for meeting the needs of computational complexity were developed. The proposed electrochemical-based molecular logic system greatly expanded the application of the electrochemical method in the construction of logic circuits and provided a conceptual prototype for the development of more advanced and complicated logic devices.
Collapse
Affiliation(s)
- Liping Zhu
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Linying Yu
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiurong Yang
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
21
|
Housaindokht MR, Janati‐Fard F, Ashraf N. Recent advances in applications of surfactant‐based voltammetric sensors. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad Reza Housaindokht
- Department of Chemistry, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
- Research and Technology Center of Biomolecules, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | - Fatemeh Janati‐Fard
- Research and Technology Center of Biomolecules, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| | - Narges Ashraf
- Department of Chemistry, Faculty of Sciences Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
22
|
Otero F, Shortall K, Salaj-Kosla U, Tofail SA, Magner E. Electrochemical biosensor for the detection of a sequence of the TP53 gene using a methylene blue labelled DNA probe. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Wei G, Zhang W, Cui H, Liao F, Cheng L, Ma G, Fan H, Hong N, Zhang J. Immobilization-free electrochemical DNA sensor based on signal cascade amplification strategy. Biotechnol Appl Biochem 2021; 69:1036-1046. [PMID: 33891320 DOI: 10.1002/bab.2174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/12/2021] [Indexed: 11/09/2022]
Abstract
The development of convenient and efficient strategies without using complex nanomaterials or enzymes for signal amplification is very important for bioanalytical applications. Herein, a novel electrochemical DNA sensor was developed by harnessing the signal amplification efficiency of catalytic hairpin assembly (CHA) and a brand-new signal marker tetraferrocene. The prepared sensor had both ends of the probe H2 labeled with tetraferrocene; both ends have a large number of unhybridized T bases, which cause tetraferrocene to move closer to the electrode surface, generating a high-efficiency amplification signal. In the presence of target DNA, it induced strand exchange reactions promoting the formation of double-stranded DNA and recycling of target DNA. Under optimal conditions, the sensor showed a good linear correlation between the peak currents and logarithm of target DNA concentrations (ranging from 0.1 fM to 0.3125 pM) with a detection limit of 0.06 fM, which is obtained by a triple signal-to-noise ratio. Additionally, the prepared sensor possesses excellent selectivity, reproducibility, and stability, demonstrating efficient and stable DNA detection methodology.
Collapse
Affiliation(s)
- Guobing Wei
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Wenxing Zhang
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Hanfeng Cui
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Fusheng Liao
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Lin Cheng
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Guangqiang Ma
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Hao Fan
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Nian Hong
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Jing Zhang
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
A novel miniaturized homogeneous label-free electrochemical biosensing platform combining integrated microelectrode and functional nucleic acids. Anal Chim Acta 2021; 1158:338415. [PMID: 33863408 DOI: 10.1016/j.aca.2021.338415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
A miniaturized platform combining integrated microelectrode (IME) and functional nucleic acids was developed for homogeneous label-free electrochemical biosensing. IME was constructed with a carbon fiber microelectrode and a platinum wire in a θ type glass tube as a two-electrode system for electrochemical monitoring at microliter level. A newly reported G-triplex/methylene blue (G3/MB) complex was used as the signal generator in the homogeneous label-free electrochemical biosensor. G3 has strong affinity with MB and it can cause significant decrease of the diffusion current of MB after binding. Melamine was chosen as the model target. Since melamine can interact with nucleobase thymine (T) to form T-melamine-T structure through complementary hydrogen bonds, a single-strand functional DNA hairpin structure with poly T and G3 elaborately blocked via base pairing was designed. The presence of melamine can trigger the conformation switching of the DNA hairpin to release the G3. The released G3 combined with MB could therefore change the diffusion current, leading to a simple and rapid detection of melamine. The combination of functional DNA hairpin as target recognition element, G3/MB as signal generator, and IME as transducer provided a "Mix and Measure" miniaturized platform for the construction of homogeneous label-free electrochemical biosensors.
Collapse
|
25
|
Hai X, Li Y, Zhu C, Song W, Cao J, Bi S. DNA-based label-free electrochemical biosensors: From principles to applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Hu L, Yin H, Dong Y, Liu J, Chu X. An electrogenerated chemiluminescence aptasensor for lysozyme based on the interaction between Ru(bpy) 3 2+ and cucurbit[8]uril. LUMINESCENCE 2020; 36:418-424. [PMID: 33037741 DOI: 10.1002/bio.3958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Strong anodic Ru(bpy)3 2+ electrogenerated chemiluminescence (ECL) was obtained at a cucurbil[8]uril (CB[8]) modified electrode in neutral conditions without the need of an additional coreactant. An ECL aptasensor was fabricated based on the strong ECL emission as well as the host-guest interaction between DNA and CB[8]. Firstly, amino group-terminated complementary DNA (DNA-NH2 ) was firmly immobilized on CB[8]/glass carbon electrode, which could further increase ECL intensity. Then, a ferrocene group-terminated lysozyme aptamer (Fc-DNA) was hybridized with complementary DNA. The inhibiting effect of ferrocene on Ru(bpy)3 2+ ECL resulted in the apparent decrease in ECL signal. When the modified electrode was incubated in lysozyme, specific binding between lysozyme and its aptamer could release the ferrocene group from the electrode surface, and the ECL emission was recovered. As a result, an 'on-off-on' mode ECL aptasensor for lysozyme was fabricated. In the range 0.14-140 pg ml-1 , the increased ECL intensities exhibited excellent linearity with the logarithm of lysozyme concentrations, and the detection limit was calculated as 0.093 pg ml-1 (3σ). The proposed ECL aptasensor exhibited satisfactory analytical performance, revealing the potential application of CB[n]s in an ECL sensing field.
Collapse
Affiliation(s)
- LiQiao Hu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, China
| | - Hao Yin
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, China
| | - YongPing Dong
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, China
| | - JingXin Liu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, China
| | - XiangFeng Chu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, China
| |
Collapse
|
27
|
Ning T, Liao F, Cui H, Yin Z, Ma G, Cheng L, Hong N, Xiong J, Fan H. A homogeneous electrochemical DNA sensor on the basis of a self-assembled thiol layer on a gold support and by using tetraferrocene for signal amplification. Mikrochim Acta 2020; 187:340. [PMID: 32440708 DOI: 10.1007/s00604-020-04274-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/11/2020] [Indexed: 11/29/2022]
Abstract
An unmodified electrochemical biosensor has been constructed, which can directly detect DNA in homogeneous solution. The synthesized new compound tetraferrocene was used for signal amplification. The dual-hairpin probe DNA was tagged with a tetraferrocene at the 3' terminal and a thiol at the 5' terminal. Without being hybridized with target DNA, the loop of probe prevented the thiol from contacting the exposed gold electrode surface with an applied potential. After hybridization with the target DNA, the loop-stem structure of the probe was opened, which led to the formation of the hairpin DNA structure. Afterwards, the thiol easily contacted the electrode and accomplished potential-assisted Au-S self-assembly. Its current signal depends on the concentration of target DNA in the 1.8 × 10-13 to 1.8 × 10-9 M concentration range, and the detection limit is 0.14 pM. The technique is a meaningful study because of its high selectivity and sensitivity. Graphical abstract Schematic diagram of the electrochemical DNA sensor operation. Target DNA and probe DNA hybridization, resulting in the disappearance of the steric hindrance of the probe stem ring. A higher signal was generated when tetraferrocene reached the electrode. The electrochemical signals were determined by differential voltammetric pulses (DPV).
Collapse
Affiliation(s)
- Tianjiao Ning
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Fusheng Liao
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Hanfeng Cui
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Zhaojiang Yin
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Guangqiang Ma
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Lin Cheng
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Nian Hong
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jun Xiong
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| | - Hao Fan
- Department of Pharmacy, The Affiliated Hospital, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
28
|
Sensors design based on hybrid gold-silica nanostructures. Biosens Bioelectron 2020; 153:112054. [DOI: 10.1016/j.bios.2020.112054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 01/11/2020] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
|
29
|
Feng Z, Zhao RJ, Lu ZH, Jia LP, Ma RN, Zhang W, Shang L, Xue QW, Wang HS. Construction of aptasensors for sensitive detection of 8-OH-dG based on a diffusion mediated electrochemiluminescence quenching effect. Chem Commun (Camb) 2020; 56:11074-11077. [DOI: 10.1039/d0cc04492j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A DNA immobilization-free electrochemiluminescence aptasensor was developed for the detection of 8-hydroxy-2′-deoxygunosine based on the diffusion mediated electrochemiluminescence quenching effect and dual signal amplification strategies.
Collapse
Affiliation(s)
- Zhe Feng
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| | - Rui-Juan Zhao
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| | - Ze-Hua Lu
- Liaocheng Veterans Hospital
- Liaocheng 252000
- China
| | - Li-ping Jia
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| | - Rong-Na Ma
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| | - Wei Zhang
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| | - Lei Shang
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| | - Qing-Wang Xue
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| | - Huai-Sheng Wang
- Department of Chemistry
- Liaocheng University
- Liaocheng 252000
- China
| |
Collapse
|
30
|
Song X, Hou T, Lu F, Wang Y, Liu J, Li F. Homogeneous photoelectrochemical biosensing via synergy of G-quadruplex/hemin catalysed reactions and the inner filter effect. Chem Commun (Camb) 2020; 56:1811-1814. [DOI: 10.1039/c9cc09280c] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We develop a label-free homogeneous photoelectrochemical biosensing strategy for microRNA quantification based on the synergy of G-quadruplex/hemin catalyzed electron donor consumption and the inner filter effect.
Collapse
Affiliation(s)
- Xin Song
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Fangfang Lu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Yuze Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Junjie Liu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| |
Collapse
|
31
|
An ultrasensitive electrochemical DNA sensing strategy free from pre-immobilization via G-quadruplex based homogenous proximity hybridization. Talanta 2019; 210:120628. [PMID: 31987201 DOI: 10.1016/j.talanta.2019.120628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 01/10/2023]
Abstract
Motivated by the desire for simple, rapid and highly sensitive DNA detection, we presented a signal-on electrochemical DNA (E-DNA) sensing strategy utilizing cooperative proximity hybridization based on a G-quadruplex (G4) probe labeled with the SH, which could specifically hybridize with its target DNA in homogenous solution. In the presence of target DNA, proximity hybridization was triggered to form a Y-shaped complex and the SH was released from G4 probe stem, companied by chemisorption on the electrode surface through Au-S binding when applied a positive potential, which brought Fc labeled on the signal probe close to the electrode surface. Thus, electrochemical signal dramatically increased, ensuring the highly sensitive "signal-on" assay. Such an E-DNA sensing strategy allows for ultrasensitive DNA detection with a detection limit as low as 2.82 × 10-15 M and a wide linear response from 1.0 × 10-9 to 1.0 × 10-15 M. In addition, the powerful discriminating ability of the mismatched DNA from the perfect matched target DNA was also demonstrated. More importantly, this homogenous proximity hybridization strategy could expand to colorimetric assay by incorporating G4 probe with hemin to form DNAzyme, which could effectively catalyze ABTS to generate a visual color change. Taking the joint advantages of G4 stem-loop probe and homogenous proximity hybridization, this sensing strategy exhibits greatly enhanced sensitivity and excellent specificity, making it a promising strategy for point-of-care testing.
Collapse
|
32
|
Nucleic acid-based ratiometric electrochemiluminescent, electrochemical and photoelectrochemical biosensors: a review. Mikrochim Acta 2019; 186:405. [DOI: 10.1007/s00604-019-3514-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
|
33
|
Xu N, Hou T, Li F. A label-free photoelectrochemical aptasensor for facile and ultrasensitive mercury ion assay based on a solution-phase photoactive probe and exonuclease III-assisted amplification. Analyst 2019; 144:3800-3806. [PMID: 31116196 DOI: 10.1039/c9an00649d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In typical photoelectrochemical (PEC) biosensing assays, electrodes are generally modified with photoactive probes and/or target recognition probes, which makes the processes complicated, time-consuming, and difficult to achieve excellent reproducibility. Hence, to overcome such shortcomings, we propose here an immobilization-free and label-free PEC aptasensor using solution-phase methylene blue (MB) as the PEC signal probe. Based on the unique T-Hg2+-T base pairs, and the diffusivity difference between free MB molecules and the MB/G-quadruplex composite towards the ITO electrode surface with negative charge, the "signal-off" approach for Hg2+ detection is developed. In the presence of target Hg2+, via the T-Hg2+-T bond formation, the two sticky ends of the hairpin DNA probe form a rigid duplex stem, which triggers the exonuclease III-facilitated target cycling amplification, and the formation of multiple G-quadruplexes. Upon the intercalation of MB in G-quadruplexes, significantly decreased photocurrent is obtained owing to the increased electrostatic repulsion between the MB/G-quadruplex composite and the ITO electrode. Therefore, highly sensitive and ultrasensitive Hg2+ determination is achieved, with a low detection limit of 1.2 pM, well below the maximum allowable Hg2+ level in drinking water defined by the WHO, China's Ministry of Health, and the US EPA. Due to the avoidance of sophisticated electrode modification and recognition probe immobilization processes, as well as an expensive labeling procedure, the PEC aptasensor proposed here demonstrates the advantages of simplicity, good reproducibility, rapidness and low cost.
Collapse
Affiliation(s)
- Ningning Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| |
Collapse
|
34
|
Liu YH, Deng HH, Li HN, Shi TF, Peng HP, Liu AL, Chen W, Hong GL. A DNA electrochemical biosensor based on homogeneous hybridization for the determination of Cryptococcus neoformans. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Khoshbin Z, Verdian A, Housaindokht MR, Izadyar M, Rouhbakhsh Z. Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection. Biosens Bioelectron 2018; 122:263-283. [PMID: 30268964 DOI: 10.1016/j.bios.2018.09.060] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/08/2018] [Accepted: 09/16/2018] [Indexed: 12/31/2022]
Abstract
Antibiotics are a type of antimicrobial drug with the ubiquitous presence in foodstuff that effectively applied to treat the diseases and promote the animal growth worldwide. Chloramphenicol as one of the antibiotics with the broad action spectrum against Gram-positive and Gram-negative bacteria is widely applied for the effective treatment of infectious diseases in humans and animals. Unfortunately, the serious side effects of chloramphenicol, such as aplastic anemia, kidney damage, nausea, and diarrhea restrict its application in foodstuff and biomedical fields. Development of the sufficiently sensitive methods to detect chloramphenicol residues in food and clinical diagnosis seems to be an essential demand. Biosensors have been introduced as the promising tools to overcome the requirement. As one of the newest types of the biosensors, aptamer-based biosensors (aptasensors) are the efficient sensing platforms for the chloramphenicol monitoring. In the present review, we summarize the recent achievements of the accessible aptasensors for qualitative detection and quantitative determination of chloramphenicol as a candidate of the antibiotics. The present chloramphenicol aptasensors can be classified in two main optical and electrochemical categories. Also, the other formats of the aptasensing assays like the high performance liquid chromatography (HPLC) and microchip electrophoresis (MCE) have been reviewed. The enormous interest in utilizing the diverse nanomaterials is also highlighted in the fabrication of the chloramphenicol aptasensors. Finally, some results are presented based on the advantages and disadvantages of the studied aptasensors to achieve a promising perspective for designing the novel antibiotics test kits.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asma Verdian
- Department of food safety and quality control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Rouhbakhsh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
36
|
Hou T, Xu N, Wang W, Ge L, Li F. Truly Immobilization-Free Diffusivity-Mediated Photoelectrochemical Biosensing Strategy for Facile and Highly Sensitive MicroRNA Assay. Anal Chem 2018; 90:9591-9597. [DOI: 10.1021/acs.analchem.8b02523] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Ningning Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Wenxiao Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Lei Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| |
Collapse
|
37
|
You M, Yang S, Tang W, Zhang F, He P. Molecularly imprinted polymers-based electrochemical DNA biosensor for the determination of BRCA-1 amplified by SiO2@Ag. Biosens Bioelectron 2018; 112:72-78. [DOI: 10.1016/j.bios.2018.04.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 11/26/2022]
|
38
|
Ni J, Yang W, Wang Q, Luo F, Guo L, Qiu B, Lin Z, Yang H. Homogeneous and label-free electrochemiluminescence aptasensor based on the difference of electrostatic interaction and exonuclease-assisted target recycling amplification. Biosens Bioelectron 2018; 105:182-187. [PMID: 29412943 DOI: 10.1016/j.bios.2018.01.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/16/2022]
Abstract
The difference of electrostatic interaction between free Ru(phen)32+ and Ru(phen)32+ embedded in double strand DNA (dsDNA) to the negatively charged indium tin oxide (ITO) electrode has been applied to develop a homogeneous and label-free electrochemiluminescence (ECL) aptasensor for the first time. Ochratoxin A (OTA) has been chosen as the model target. The OTA aptamer is first hybridized with its complementary single strand DNA (ssDNA) to form dsDNA and then interacted with Ru(phen)32+ via the grooves binding mode to form dsDNA-Ru(phen)32+ complex, which remains negatively charged feature as well as low diffusion capacity to the negatively charged ITO electrode surface owing to the electrostatic repulsion. Meanwhile, the intercalated Ru(phen)32+ in the grooves of dsDNA works as an ECL signal reporter instead of the labor-intensive labeling steps and can generate much more ECL signal than that from the labeling probe. In the presence of target, the aptamer prefers to form an aptamer-target complex in lieu of dsDNA, which induces the releasing of Ru(phen)32+ from the dsDNA-Ru(phen)32+ complex into the solution. With the assistance of RecJf exonuclease (a ssDNA specific exonuclease), the released ssDNA and the aptamer in the target-complex were digested into mononucleotides. In the meantime, the target can be also liberated from OTA-aptamer complex and induce target cycling and large amount of free Ru(phen)32+ present in the solution. Since Ru(phen)32+ contains positive charges, which can diffuses easily to the ITO electrode surface because of electrostatic attraction, causing an obviously enhanced ECL signal detected. Under the optimal conditions, the enhanced ECL of the system has a linear relationship with the OTA concentration in the range of 0.01-1.0 ng/mL with a detection limit of 2 pg/mL. This innovative system not only expands the immobilization-free sensors in the electrochemiluminescent fields, but also can be developed for the detection of different targets easily with the same strategy by changing the aptamer used.
Collapse
Affiliation(s)
- Jiancong Ni
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Weiqiang Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qingxiang Wang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116,China
| | - Longhua Guo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Bin Qiu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
39
|
Sun Q, Yan F, Su B. Label-free electrochemical biosensors based on 3,3',5,5'-tetramethylbenzidine responsive isoporous silica-micelle membrane. Biosens Bioelectron 2018; 105:129-136. [PMID: 29412936 DOI: 10.1016/j.bios.2018.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/21/2017] [Accepted: 01/12/2018] [Indexed: 12/18/2022]
Abstract
3,3',5,5'-Tetramethylbenzidine (TMB) has been frequently used as an indicator in G-quadruplex/hemin DNAzyme (G4zyme)-based chemical and biochemical analysis, and its oxidation products are usually monitored by electrochemical or optical methods to quantify G4zyme formation-related analytes. Herein we report a simple electrochemical approach based on isoporous silica-micelle membrane (iSMM) to measure TMB, instead of its oxidation products, in G4zyme-based detection of specific analytes. The iSMM was grown on the indium tin oxide (ITO) electrode, which was composed of highly ordered, vertically oriented silica nanochannels and cylindrical micelles of cetyltrimethylammonium. The iSMM-ITO electrode was selectively responsive to neutral TMB but not its oxidation products, thanks to the sieving and pre-concentration capacity of micellar structures in terms of molecular charge and lipophilicity. In other words, only TMB could be extracted and enriched into micelles and subsequently oxidized at the underlying ITO electrode surface (namely the micelle/ITO interface), generating an amplified anodic current. Since the depletion of TMB was catalyzed by G4zymes formed in the presence of specific analyte, the decrease of this anodic current enabled the quantitative detection of this analyte. The current variation relative to its initial value ((j0-j)/j0), termed as the current attenuation ratio, showed the obvious dependence on the analyte concentration. As proof-of-concept experiments, four substances, i.e., potassium cation (K+), adenosine triphosphate, thrombin and nucleic acid, were detected in aqueous media and the analysis of K+ in pre-treated human serum was also performed.
Collapse
Affiliation(s)
- Qinqin Sun
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Fei Yan
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
40
|
Lu JY, Zhang XX, Huang WT, Zhu QY, Ding XZ, Xia LQ, Luo HQ, Li NB. Boolean Logic Tree of Label-Free Dual-Signal Electrochemical Aptasensor System for Biosensing, Three-State Logic Computation, and Keypad Lock Security Operation. Anal Chem 2017; 89:9734-9741. [PMID: 28809114 DOI: 10.1021/acs.analchem.7b01498] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The most serious and yet unsolved problems of molecular logic computing consist in how to connect molecular events in complex systems into a usable device with specific functions and how to selectively control branchy logic processes from the cascading logic systems. This report demonstrates that a Boolean logic tree is utilized to organize and connect "plug and play" chemical events DNA, nanomaterials, organic dye, biomolecule, and denaturant for developing the dual-signal electrochemical evolution aptasensor system with good resettability for amplification detection of thrombin, controllable and selectable three-state logic computation, and keypad lock security operation. The aptasensor system combines the merits of DNA-functionalized nanoamplification architecture and simple dual-signal electroactive dye brilliant cresyl blue for sensitive and selective detection of thrombin with a wide linear response range of 0.02-100 nM and a detection limit of 1.92 pM. By using these aforementioned chemical events as inputs and the differential pulse voltammetry current changes at different voltages as dual outputs, a resettable three-input biomolecular keypad lock based on sequential logic is established. Moreover, the first example of controllable and selectable three-state molecular logic computation with active-high and active-low logic functions can be implemented and allows the output ports to assume a high impediment or nothing (Z) state in addition to the 0 and 1 logic levels, effectively controlling subsequent branchy logic computation processes. Our approach is helpful in developing the advanced controllable and selectable logic computing and sensing system in large-scale integration circuits for application in biomedical engineering, intelligent sensing, and control.
Collapse
Affiliation(s)
- Jiao Yang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Xin Xing Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Qiu Yan Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Xue Zhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Li Qiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Hong Qun Luo
- Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | - Nian Bing Li
- Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| |
Collapse
|
41
|
Peralta Muniz Moreira RDF, Humeres E, Berger C, Isabel Fernández M, Santaballa JA, Canle M. Photolytic insertion of albumin on activated carbon modified with ozone. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2017; 174:261-268. [PMID: 28806682 DOI: 10.1016/j.jphotobiol.2017.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/25/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
254nm photolyses of bovine serum albumin [BSA] in aqueous solutions, were carried out in the presence of activated carbons modified by reaction with ozone. The photolyses were monitored by fluorescence spectroscopy and UV spectrophotometry, and the products were characterized by elemental analysis, FTIR, TGA, total organic carbon analyses [TOC], and XPS. The ozonation reaction was carried out at room temperature with O3 under dry and wet conditions. The carbon characterization showed that the reaction increased the amount of epoxide and carbonyl groups on the carbon matrix. The activated carbon modified with dry O3 exhibited higher concentration of oxidized groups in its surface, smaller surface area and lower thermal stability. Characterization of the photolysis of ozonized carbons pointed to a small release of carbon organic groups during the reaction with elimination of epoxide groups and increase of carbonyl groups without change of thermal stability. Photolysis of BSA in aqueous solution occurred with fluorescence quenching due to changes of the local microenvironment and/or macromolecular conformational changes. Absorbance increase of the UV spectrum indicated a hyperchromic effect due to albumin structure modifications during photolysis. TGA analysis of the photolysed activated carbons in the presence of BSA suggested that ozonized carbon samples underwent insertion of BSA upon photolysis, in particular the sample ozonized under dry conditions. The changes observed for the FTIR and elemental analysis agreed with this conclusion, which was further supported by 13C SS-NMR, fluorescence emission and XPS.
Collapse
Affiliation(s)
| | - Eduardo Humeres
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Carolina Berger
- Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - M Isabel Fernández
- Universidade da Coruña, Grupo Reactividade Química e Fotorreactividade, Departamento de Química, Facultade de Ciencias & CICA, E-15071 A Coruña, Spain
| | - J A Santaballa
- Universidade da Coruña, Grupo Reactividade Química e Fotorreactividade, Departamento de Química, Facultade de Ciencias & CICA, E-15071 A Coruña, Spain
| | - Moisés Canle
- Universidade da Coruña, Grupo Reactividade Química e Fotorreactividade, Departamento de Química, Facultade de Ciencias & CICA, E-15071 A Coruña, Spain.
| |
Collapse
|
42
|
Liu J, Cheng H, He D, He X, Wang K, Liu Q, Zhao S, Yang X. Label-Free Homogeneous Electrochemical Sensing Platform for Protein Kinase Assay Based on Carboxypeptidase Y-Assisted Peptide Cleavage and Vertically Ordered Mesoporous Silica Films. Anal Chem 2017; 89:9062-9068. [DOI: 10.1021/acs.analchem.7b01739] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinquan Liu
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| | - Qiaoqiao Liu
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| | - Shuaiqi Zhao
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| | - Xudong Yang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| |
Collapse
|