1
|
Chen Z, Xie J, Mei J. A Review on Analytical Techniques for Quantitative Detection of Biogenic Amines in Aquatic Products. CHEMOSENSORS 2024; 12:274. [DOI: 10.3390/chemosensors12120274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Aquatic products contain a large amount of protein, which can promote the production of a variety of biogenic amines through the function of microorganisms. Biogenic amines are a broad category of organic substances that contain nitrogen and have a low molecular weight. The presence of biogenic amines can cause the deterioration and excessive accumulation of aquatic products, which can cause damage to human health. Therefore, it is essential to discover a fast, convenient, and easy to operate method for the determination of biogenic amines in aquatic products. In this paper, the function and research significance of biogenic amines are analyzed from the aspects of their formation, toxicological properties, harm to the human body, and control methods. Several common direct detection techniques and indirect techniques for biogenic amines are briefly introduced especially sensors. This review provides references for efficient detection in the future.
Collapse
Affiliation(s)
- Zixin Chen
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Mei
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Su Y, Xia C, Zhang H, Gan W, Zhang GQ, Yang Z, Li D. Emerging biosensor probes for glycated hemoglobin (HbA1c) detection. Mikrochim Acta 2024; 191:300. [PMID: 38709399 DOI: 10.1007/s00604-024-06380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Glycated hemoglobin (HbA1c), originating from the non-enzymatic glycosylation of βVal1 residues in hemoglobin (Hb), is an essential biomarker indicating average blood glucose levels over a period of 2 to 3 months without external environmental disturbances, thereby serving as the gold standard in the management of diabetes instead of blood glucose testing. The emergence of HbA1c biosensors presents affordable, readily available options for glycemic monitoring, offering significant benefits to small-scale laboratories and clinics. Utilizing nanomaterials coupled with high-specificity probes as integral components for recognition, labeling, and signal transduction, these sensors demonstrate exceptional sensitivity and selectivity in HbA1c detection. This review mainly focuses on the emerging probes and strategies integral to HbA1c sensor development. We discussed the advantages and limitations of various probes in sensor construction as well as recent advances in diverse sensing strategies for HbA1c measurement and their potential clinical applications, highlighting the critical gaps in current technologies and future needs in this evolving field.
Collapse
Affiliation(s)
- Yang Su
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengen Xia
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Gan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo-Qi Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Zi Yang
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Dapeng Li
- Key Laboratory of DrugTargeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Zhang Y, Li L, Li J, Ma Q. Integrating aptasensor with an explosive mass-tag signal amplification strategy for ultrasensitive and multiplexed analysis using a miniature mass spectrometer. Biosens Bioelectron 2024; 249:116010. [PMID: 38215638 DOI: 10.1016/j.bios.2024.116010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Mass probes attached with aptamers and mass tags offer excellent specificity and sensitivity for multiplexed detection, wherein the dissociation of mass tags from the mass probes is as important as their labeling. Herein, aggregation-induced emission luminogen (AIEgen)-tagged mass probes (AIEMPs) were established to analyze estrogens, which integrated aptasensor with an explosive mass-tag signal amplification strategy via a simple ultrasound-assisted emulsification of nanoliposomes. The AIEMPs were assembled by the hybridization of aptamer-modified Fe3O4 nanoparticles (Fe NPs@Apt) and nanoliposomes loaded with massive AIEgen mass tags and partially complementary DNA strands (AIE NLs@cDNA). The aptamer was preferentially and specifically bound to estrogen, resulting in the detachment of AIE NLs from AIEMPs. Subsequently, the AIEMPs were deposited with electrospray solvents for explosive release of mass tags. Using nanoelectrospray ionization mass spectrometry (nanoESI-MS), the AIEMP-based aptasensor achieved ultrasensitive analysis of estrogens with limits of detection of 0.168-0.543 pg/mL and accuracies in the range of 87.9-114.0%. Compared to direct nanoESI-MS detection, the AIEMP-based aptasensor provides a signal amplification of four orders of magnitude. Furthermore, the utilization of different AIEMPs enables multiplexed detection of three estrogens with a miniature mass spectrometer, showing promising potential for on-site detection. This work expands the diversity of mass-tagging strategy and provides a versatile mass probe-based aptasensor platform for routine MS detection of trace analytes.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Linsen Li
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jingjing Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qiang Ma
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
4
|
Liu C, Guan C, Li Y, Li Z, Wang Y, Han G. Advances in Electrochemical Biosensors for the Detection of Common Oral Diseases. Crit Rev Anal Chem 2024:1-21. [PMID: 38366356 DOI: 10.1080/10408347.2024.2315112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Limiting and preventing oral diseases remains a major challenge to the health of populations around the world, so finding ways to detect early-stage diseases (e.g., caries, periodontal disease, and oral cancer) and aiding in their prevention has always been an important clinical treatment concept. The development and application of electrochemical detection technology can provide important support for the early detection and non-invasive diagnosis of oral diseases and make up for the shortcomings of traditional diagnostic methods, which are highly sensitive, non-invasive, cost-effective, and less labor-intensive. It detects specific disease markers in body fluids through electrochemical reactions, discovers early warning signals of diseases, and realizes rapid and reliable diagnosis. This paper comprehensively summarizes the development and application of electrochemical biosensors in the detection and diagnosis of common oral diseases in terms of application platforms, sensing types, and disease detection, and discusses the challenges faced by electrochemical biosensors in the detection of oral diseases as well as the great prospects for future applications, in the hope of providing important insights for the future development of electrochemical biosensors for the early detection of oral diseases.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Changjun Guan
- School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanchun Wang
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
5
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
6
|
Munir MA, Rahmawati F, Jamal JA, Ibrahim S, Said MM, Ahmad MS. Inspecting Histamine Isolated from Fish through a Highly Selective Molecularly Imprinted Electrochemical Sensor Approach. ACS OMEGA 2023; 8:13352-13361. [PMID: 37065053 PMCID: PMC10099418 DOI: 10.1021/acsomega.3c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Numerous analytical approaches have been developed to determine histamine levels in food samples due to its health consequences. Consuming histamine over the Food and Drug Administration (FDA)-regulated 50 mg kg-1 limit would result in chronic toxicity. Consequently, the present study discusses a novel electrochemical approach to evaluate histamine levels in fish products via a molecularly imprinted polymer (MIP) on an electrode surface. The film was produced with electropolymerized polyurethane (PU), which maintained the histamine compound. Fourier-transform infrared (FTIR) spectroscopy was applied to verify the MIP manufactured in this study. The capability of the polymer was measured by assessing its electron shifts with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was also employed to validate the sensing method. The MIP/screen-printed electrode (SPE) and non-imprinted polymer (NIP)/SPE recorded a linear response ranging from 1 to 1000 nmol L-1 at the 1.765 and 709 nmol L-1 detection limits. The sensing technique was subsequently utilized to determine the histamine levels in selected samples at room temperature (25 °C). Generally, the sensor allowed the accurate and precise detection of histamine in the fish samples. Furthermore, the approach could be categorized as a simple technique that is low-cost and suitable for on-site detections.
Collapse
Affiliation(s)
- Muhammad Abdurrahman Munir
- Department
of Pharmacy, Faculty of Health Sciences, Alma Ata University, 55184, Bantul, Yogyakarta, Indonesia
| | - Fitria Rahmawati
- Research
Group of Solid State Chemistry and Catalysis, Chemistry Department,
Faculty of Mathematics and Natural Sciences, Sebelas Maret University, 57126 Surakarta, Indonesia
| | - Jamia Azdina Jamal
- Drug
and Herbal Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50330 Kuala Lumpur, Malaysia
| | | | - Mazlina Mohd Said
- Drug
and Herbal Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50330 Kuala Lumpur, Malaysia
| | - Mohamad Syahrizal Ahmad
- Faculty
of Science and Mathematics, Universiti Pendidikan
Sultan Idris, 35900 Tanjung Malim, Malaysia
| |
Collapse
|
7
|
Pazuki D, Ghosh R, Howlader MMR. Nanomaterials-Based Electrochemical Δ 9-THC and CBD Sensors for Chronic Pain. BIOSENSORS 2023; 13:384. [PMID: 36979596 PMCID: PMC10046734 DOI: 10.3390/bios13030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Chronic pain is now included in the designation of chronic diseases, such as cancer, diabetes, and cardiovascular disease, which can impair quality of life and are major causes of death and disability worldwide. Pain can be treated using cannabinoids such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) due to their wide range of therapeutic benefits, particularly as sedatives, analgesics, neuroprotective agents, or anti-cancer medicines. While little is known about the pharmacokinetics of these compounds, there is increasing interest in the scientific understanding of the benefits and clinical applications of cannabinoids. In this review, we study the use of nanomaterial-based electrochemical sensing for detecting Δ9-THC and CBD. We investigate how nanomaterials can be functionalized to obtain highly sensitive and selective electrochemical sensors for detecting Δ9-THC and CBD. Additionally, we discuss the impacts of sensor pretreatment at fixed potentials and physiochemical parameters of the sensing medium, such as pH, on the electrochemical performance of Δ9-THC and CBD sensors. We believe this review will serve as a guideline for developing Δ9-THC and CBD electrochemical sensors for point-of-care applications.
Collapse
Affiliation(s)
- Dadbeh Pazuki
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4K1, Canada;
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4LS, Canada;
| | - Matiar M. R. Howlader
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4K1, Canada;
| |
Collapse
|
8
|
Low fouling aptasensing of rivaroxaban in real samples using poly (toluidine blue) decorated by silver nanoparticle: A new platform for the cardiovascular disease analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
9
|
Wei Z, Zhou Y, Wang R, Wang J, Chen Z. Aptamers as Smart Ligands for Targeted Drug Delivery in Cancer Therapy. Pharmaceutics 2022; 14:2561. [PMID: 36559056 PMCID: PMC9781707 DOI: 10.3390/pharmaceutics14122561] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Undesirable side effects and multidrug tolerance are the main holdbacks to the treatment of cancer in conventional chemotherapy. Fortunately, targeted drug delivery can improve the enrichment of drugs at the target site and reduce toxicity to normal tissues and cells. A targeted drug delivery system is usually composed of a nanocarrier and a targeting component. The targeting component is called a "ligand". Aptamers have high target affinity and specificity, which are identified as attractive and promising ligands. Therefore, aptamers have potential application in the development of smart targeting systems. For instance, aptamers are able to efficiently recognize tumor markers such as nucleolin, mucin, and epidermal growth factor receptor (EGFR). Besides, aptamers can also identify glycoproteins on the surface of tumor cells. Thus, the aptamer-mediated targeted drug delivery system has received extensive attention in the application of cancer therapy. This article reviews the application of aptamers as smart ligands for targeted drug delivery in cancer therapy. Special interest is focused on aptamers as smart ligands, aptamer-conjugated nanocarriers, aptamer targeting strategy for tumor microenvironment (TME), and aptamers that are specified to crucial cancer biomarkers for targeted drug delivery.
Collapse
Affiliation(s)
| | | | | | - Jin Wang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Zhenhua Chen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
10
|
Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, García-Hernández M, Martín ME, García-Sacristán A, González VM, Herrero-Martínez JM. Selection and characterization of DNA aptamers for highly selective recognition of the major allergen of olive pollen Ole e 1. Anal Chim Acta 2022; 1192:339334. [PMID: 35057930 DOI: 10.1016/j.aca.2021.339334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023]
Abstract
In this study, single-stranded DNA aptamers with binding affinity to Ole e 1, the major allergen of olive pollen, were selected using systematic evolution of ligands by exponential enrichment (SELEX) method. Binding of the aptamers was firstly established by enzyme-linked oligonucleotide assay (ELONA) and aptaprecipitation assays. Additionally, aptamer-modified monolithic capillary chromatography was used in order to evaluate the recognition of this allergenic protein against other non-target proteins. The results indicated that AptOle1#6 was the aptamer that provided the highest affinity for Ole e 1. The selected aptamer showed good selective recognition of this protein, being not able to retain other non-target proteins (HSA, cyt c, and other pollen protein such as Ole e 9). The feasibility of the affinity monolithic column was demonstrated by selective recognition of Ole e 1 in an allergy skin test. The stability and reproducibility of this monolithic column was suitable, with relative standard deviations (RSDs) in retention times and peak area values of 7.8 and 9.3%, respectively (column-to-column reproducibility). This is the first study that describes the design of an efficient DNA aptamer for this relevant allergen.
Collapse
Affiliation(s)
- María Vergara-Barberán
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain
| | - María Jesús Lerma-García
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain
| | - Ernesto F Simó-Alfonso
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain
| | - Marta García-Hernández
- Grupo de Aptámeros. Departamento de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal (IRYCIS), Carretera de Colmenar Viejo Km.9.100, CP-28034, Madrid, Spain
| | - M Elena Martín
- Grupo de Aptámeros. Departamento de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal (IRYCIS), Carretera de Colmenar Viejo Km.9.100, CP-28034, Madrid, Spain
| | | | - Víctor M González
- Grupo de Aptámeros. Departamento de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal (IRYCIS), Carretera de Colmenar Viejo Km.9.100, CP-28034, Madrid, Spain; Aptus Biotech SL, Av. Cardenal Herrera Oria 298, CP-28035, Madrid, Spain
| | - José Manuel Herrero-Martínez
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain.
| |
Collapse
|
11
|
Kordasht HK, Hasanzadeh M, Seidi F, Alizadeh PM. Poly (amino acids) towards sensing: Recent progress and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Iannazzo D, Espro C, Celesti C, Ferlazzo A, Neri G. Smart Biosensors for Cancer Diagnosis Based on Graphene Quantum Dots. Cancers (Basel) 2021; 13:3194. [PMID: 34206792 PMCID: PMC8269110 DOI: 10.3390/cancers13133194] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/29/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The timely diagnosis of cancer represents the best chance to increase treatment success and to reduce cancer deaths. Nanomaterials-based biosensors containing graphene quantum dots (GQDs) as a sensing platform show great promise in the early and sensitive detection of cancer biomarkers, due to their unique chemical and physical properties, large surface area and ease of functionalization with different biomolecules able to recognize relevant cancer biomarkers. In this review, we report different advanced strategies for the synthesis and functionalization of GQDs with different agents able to selectively recognize and convert into a signal specific cancer biomarkers such as antigens, enzymes, hormones, proteins, cancer related byproducts, biomolecules exposed on the surface of cancer cells and changes in pH. The developed optical, electrochemical and chemiluminescent biosensors based on GQDs have been shown to ensure the effective diagnosis of several cancer diseases as well as the possibility to evaluate the effectiveness of anticancer therapy. The wide linear range of detection and low detection limits recorded for most of the reported biosensors highlight their great potential in clinics for the diagnosis and management of cancer.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy; (C.E.); (C.C.); (A.F.); (G.N.)
| | | | | | | | | |
Collapse
|
13
|
Venkatesh S, Yeung CC, Li T, Lau SC, Sun QJ, Li LY, Li JH, Lam MHW, Roy VAL. Portable molecularly imprinted polymer-based platform for detection of histamine in aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124609. [PMID: 33257120 DOI: 10.1016/j.jhazmat.2020.124609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Histamine, which is a naturally occurring chemical in seafood, is known to cause undesirable inflammatory response when consumed in large amounts. Histamine is produced in unsafe amounts in colored seafood when improperly stored for just a few hours. Food and health regulatory bodies across the world have guidelines limiting the amount of histamine in fresh as well as processed seafood. Conventional histamine detection is performed in testing labs, which is a slow process and results in bottlenecks in the seafood supply-chain system. A system to rapidly detect the seafood histamine levels on site is very desirable for seafood suppliers. Herein, we describe an impedance-based histamine detection sensor built on a flexible substrate that can detect histamine in the range of 100-500 ppm. Moreover, our sensor discriminates histamine in the presence of DL-histidine and other biogenic amines, with the selectivity provided by molecular imprinting technology. As a proof of concept, a smartphone controlled, portable semi-quantitative histamine sensing device was fabricated that gave out reliable testing results for histamine in different test solutions as well as for real seafood. We believe this technology can be extended towards determination of other food contaminants in aqueous solutions.
Collapse
Affiliation(s)
- Shishir Venkatesh
- State Key Laboratory for Millimeter Waves and Department of Material Science & Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; Portalyze Point of Care Limited, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong, China
| | - Chi-Chung Yeung
- Portalyze Point of Care Limited, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong, China; Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Tan Li
- State Key Laboratory for Millimeter Waves and Department of Material Science & Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Siu Chuen Lau
- State Key Laboratory for Millimeter Waves and Department of Material Science & Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; Portalyze Point of Care Limited, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong, China
| | - Qi-Jun Sun
- State Key Laboratory for Millimeter Waves and Department of Material Science & Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Ling-Yi Li
- Xiamen Innov Information Technology Co. Ltd., Xiamen, Fujian, PR China
| | - Jin Hua Li
- Fisheries College, Jimei University, Xiamen, Fujian, PR China
| | - Michael H W Lam
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
14
|
Li X, Falcone N, Hossain MN, Kraatz HB, Chen X, Huang H. Development of a novel label-free impedimetric electrochemical sensor based on hydrogel/chitosan for the detection of ochratoxin A. Talanta 2021; 226:122183. [PMID: 33676715 DOI: 10.1016/j.talanta.2021.122183] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/15/2023]
Abstract
Ochratoxin A (OTA) is one of the most abundant mycotoxins that contaminate various food products. Herein, we propose a novel label-free impedimetric electrochemical sensor consisting of chitosan/dipeptide nanofibrous hydrogel and immobilized DNA probes with OTA aptamer for the detection of OTA. The thin film of chitosan/dipeptide nanofibrous hydrogel was used as sensing interface and carrier for hybridization chain reaction (HCR) of OTA aptamer and DNA2 strand to form DNA concatemer. The concatemer was dissociated to single-stranded DNA (ssDNA) in the presence of target OTA, and the signal amplification was further implemented by introducing RecJf exonuclease, which could digest the single-stranded DNA resulting in OTA recycle. Electrochemical impedance spectroscopy (EIS) has been employed to characterize the properties of the fabricated sensor. A linear detection range of 0.1-100 ng mL-1 was obtained for OTA with a low detection limit of 0.03 ng mL-1. Furthermore, the developed sensor was demonstrated in white wine to detect OTA, indicating that the proposed impedimetric sensor has a promising potential application in the food industry.
Collapse
Affiliation(s)
- Xiaoyan Li
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Natashya Falcone
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C 1A4, Canada
| | - M Nur Hossain
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, PR China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
15
|
Farshchi F, Hasanzadeh M. Nanomaterial based aptasensing of prostate specific antigen (PSA): Recent progress and challenges in efficient diagnosis of prostate cancer using biomedicine. Biomed Pharmacother 2020; 132:110878. [DOI: 10.1016/j.biopha.2020.110878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
|
16
|
Solhi E, Hasanzadeh M. Critical role of biosensing on the efficient monitoring of cancer proteins/biomarkers using label-free aptamer based bioassay. Biomed Pharmacother 2020; 132:110849. [PMID: 33068928 DOI: 10.1016/j.biopha.2020.110849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is the second most extended disease during the world with an improved death rate over the past several time. Due to the restrictions of cancer analysis methods, the patient's real survival rate is unknown. Therefore early stage diagnosis of cancer is crucial for its strong detection. Bio-analysis based on biomarkers may help to overcome this problem. Aptamers can be employed as high-affinity tools for cancer detection. The utilization of aptamer-based strategy in cancer investigation and strategy shows new opportunities in biotechnology. The label-free system is an important method to study biomolecules in different sizes, such as biomarkers in real-time because of their greatest sensitivity, selectivity, and multi examination. In this review (with 75 references), excellent features of the label-free aptasensors on the sensitive and accurate monitoring of cancer biomarkers were discussed. Also, the role of advanced of nanomaterials on the construction of label-free aptasensors were investigated. In addition, application of different detection methods such as electrochemical, optical, electronic, and photoelectrochemical (PEC), electrochemiluminescence (ECL) were surveyed. Finally, advantages and limitation of different strategies on the early stage diagnosis of cancer biomarkers were discussed. This article has been updated until July 2020.
Collapse
Affiliation(s)
- Elham Solhi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Tao Z, Wei L, Wu S, Duan N, Li X, Wang Z. A colorimetric aptamer-based method for detection of cadmium using the enhanced peroxidase-like activity of Au-MoS 2 nanocomposites. Anal Biochem 2020; 608:113844. [PMID: 32763304 DOI: 10.1016/j.ab.2020.113844] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022]
Abstract
In this work, a colorimetric aptamer-based method for detection of cadmium using gold nanoparticles modified MoS2 nanocomposites as enzyme mimic is established. In short, biotinylated Cd2+ aptamers are immobilized by biotin-avidin binding on the bottoms of the microplate, the complementary strands of Cd2+ aptamers are connected to the Au-MoS2 nanocomposites which have the function of enhanced peroxidase-like activity. The csDNA-Au-MoS2 signal probe and target Cd2+ compete for binding Cd2+ aptamer, the color change can be observed by addition of chromogenic substrate, thereby realizing visual detection of Cd2+. The absorbance of the solution at 450 nm has a clear linear relationship with the Cd2+ concentration. The linear range is 1-500 ng/mL, and the limit of detection is 0.7 ng/mL. The assay was used to test white wine samples, the results are consistent with those of atomic absorption spectrometry; which prove that this method can be used for detection of Cd2+ in real samples.
Collapse
Affiliation(s)
- Zui Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, PR China
| | - Liting Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, PR China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, PR China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, PR China
| | - Xiang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
18
|
Kordasht HK, Hasanzadeh M. Aptamer based recognition of cancer cells: Recent progress and challenges in bioanalysis. Talanta 2020; 220:121436. [PMID: 32928438 DOI: 10.1016/j.talanta.2020.121436] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023]
Abstract
Rapid and accurate monitoring of cancer cells with high sensitivity is essential for a successful cancer treatment. As high-affinity nucleic acid ligands, aptamers can improve the properties of detection methods by conjugating with intracellular or extracellular cancer biomarkers. Despite the advances in the early detection and treatment of cancer cells, lacking effective early detection tools is one of the causes of a high mortality rate. Aptasensors, which are based on the specificity of aptamer-target recognition, with transduction for analytical purposes have received particular attention due to their high sensitivity and selectivity, simple instrumentation, as well as low production cost. In this review, some selective and sensitive methods were summarized based on advanced nanomaterials towards aptasensing of cancer cells, such as blood, breast, cervical, colon, gastric, liver, and lung cancer cells. This review summarizes advances from 2010 to June 2020 in the development of aptasensors for cancer cell detection. Various aptasensing strategies are assessed according to their potential for reaching relevant limits of sensitivity, specificity, and degrees of multiplexing. Furthermore, we address the remaining challenges and opportunities to integrate aptasensing platforms into point-of-care solutions. Finally, the advantages and limitations of aptamer-based aptasensing strategies were reviewed.
Collapse
Affiliation(s)
- Houman Kholafazad Kordasht
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Kholafazad Kordasht H, Hasanzadeh M. Biomedical analysis of exosomes using biosensing methods: recent progress. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2795-2811. [PMID: 32930202 DOI: 10.1039/d0ay00722f] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exosomes are membrane-bound extracellular vesicles (EVs) that are produced in the endosomal compartments of most eukaryotic cells; they play important roles in intercellular communication in diverse cellular processes and transmit different types of biomolecules. Endocytic pathways release exosomes, which have diameters ranging from 50 to 200 nm. The unique functions of exosomes have been introduced as cancer bio-markers due to the cargo (protein, DNA and RNA) of external exosomes (tetraspanin) and internal exosomes (syntenin). The early detection of cancer by exosomes can be an excellent method for the treatment of cancer. Although detection methods based on exosomes are important, they require extensive sample purification, have high false-positive rates, and encounter labeling difficulties due to the small size of exosomes. Here, we have reviewed three major types of biosensors, namely, electrochemical biosensors, optical biosensors and electrochemiluminescence biosensors for the detection of exosomes released from breast, ovarian, pancreatic, lung, and cervical cancer cells. In addition, the importance of nanomaterials and their applications in the biomedical analysis of exosomes are discussed. Although exosomes can be used to identify various types of external and internal biomarkers by conjugating with recognition elements, most designed biosensors are based on CD9 and CD63. Therefore, the development of novel biosensors for the selective and sensitive detection of exosomes is a current challenge. We hope that this review will serve as a beneficial study for improving exosome detection in clinical samples.
Collapse
Affiliation(s)
- Houman Kholafazad Kordasht
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Díaz-Fernández A, Lorenzo-Gómez R, Miranda-Castro R, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Electrochemical aptasensors for cancer diagnosis in biological fluids - A review. Anal Chim Acta 2020; 1124:1-19. [PMID: 32534661 DOI: 10.1016/j.aca.2020.04.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
The tunability of SELEX procedure is an essential feature to supply bioaffinity receptors (aptamers) almost on demand for analytical and therapeutic purposes. This longstanding ambition is, however, not straightforward. Non-invasive cancer diagnosis, so called liquid biopsy, requires collection of body fluids with minimal or no sample pretreatment. In those raw matrices, aptamers must recognize minute amounts of biomarkers that are not unique entities but large sets of variants evolving with the disease stage. The susceptibility of aptasensors to assay conditions has driven the selection of aptamers to natural environments to ensure their optimum performance in clinical samples. We present herein a compilation of the SELEX procedures in natural milieus. By revising the electrochemical aptasensors applied to clinical samples for cancer diagnosis and tracing back to the original SELEX we analyze whether aptamers raised using these SELEX strategies are being incorporated to the diagnostic devices and how aptasensors are finding their way to a market dominated by antibody-based assays.
Collapse
Affiliation(s)
- Ana Díaz-Fernández
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| | - Ramón Lorenzo-Gómez
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| | - Rebeca Miranda-Castro
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| | - Noemí de-Los-Santos-Álvarez
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| | - María Jesús Lobo-Castañón
- Dpto. Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| |
Collapse
|
21
|
|
22
|
Yu Z, Han X, Li F, Tan X, Shi W, Fu C, Yan H, Zhang G. Lengthening the aptamer to hybridize with a stem-loop DNA assistant probe for the electrochemical detection of kanamycin with improved sensitivity. Anal Bioanal Chem 2020; 412:2391-2397. [PMID: 32076786 DOI: 10.1007/s00216-020-02481-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 11/25/2022]
Abstract
By adding 6 thymines to lengthen the parent aptamer combined with the change of "on" and "off" induced by the target for an assistant stem-loop DNA probe (ASP-SLP-MB), a new folding-type electrochemical kanamycin (Kana) aptamer-engineering dual-probe-based sensor (sensor d) was developed. By purposefully reducing the background current and increasing the electron transfer efficiency of methylene blue (MB), the sensor obtained significantly enhanced detection sensitivity compared with non-aptamer-engineering one-probe-based sensor (sensor a). Such efficacy was validated by a big decrease from 530.6 to 210.2 nA for the background current signal and from 360 to 0.3 nM for the detection limit. In addition to the improved sensitivity, the sensor also exhibited good selectivity, anti-fouling detection performance, and potential quantitative analysis ability, showing a feasible potential practical analytical application in real-life complicated samples, for example, milk and serum. The released results prove that the aptamer-engineering method is effective in improving the analytical performance of folding-type sensors and provides a methodological guidance for the design and fabrication of other high-performance folding-type aptasensors. Graphical abstract.
Collapse
Affiliation(s)
- Zhigang Yu
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China.
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, Heilongjiang, China.
| | - Xianda Han
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, Heilongjiang, China
| | - Fengqin Li
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Xiaoping Tan
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Wenbing Shi
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Cuicui Fu
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Hong Yan
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, Heilongjiang, China
| | - Guiling Zhang
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
23
|
Aberuyi N, Rahgozar S, Ghodousi ES, Ghaedi K. Drug Resistance Biomarkers and Their Clinical Applications in Childhood Acute Lymphoblastic Leukemia. Front Oncol 2020; 9:1496. [PMID: 32010613 PMCID: PMC6978753 DOI: 10.3389/fonc.2019.01496] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Biomarkers are biological molecules found in body fluids or tissues, which can be considered as indications of a normal or abnormal process, or of a condition or disease. There are various types of biomarkers based on their application and molecular alterations. Treatment-sensitivity or drug resistance biomarkers include prognostic and predictive molecules with utmost importance in selecting appropriate treatment protocols and improving survival rates. Acute lymphoblastic leukemia (ALL) is the most prevalent hematological malignancy diagnosed in children with nearly 80% cure rate. Despite the favorable survival rates of childhood ALL (chALL), resistance to chemotherapeutic agents and, as a consequence, a dismal prognosis develops in a significant number of patients. Therefore, there are urgent needs to have robust, sensitive, and disease-specific molecular prognostic and predictive biomarkers, which could allow better risk classification and then better clinical results. In this article, we review the currently known drug resistance biomarkers, including somatic or germ line nucleic acids, epigenetic alterations, protein expressions and metabolic variations. Moreover, biomarkers with potential clinical applications are discussed.
Collapse
Affiliation(s)
- Narges Aberuyi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Soheila Rahgozar
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Elaheh Sadat Ghodousi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
24
|
Sahu S, Reshma, Sharma S, Karbhal I, Ghosh KK. Thermodynamic investigation of the interaction between ionic liquid functionalized gold nanoparticles and human serum albumin for selective determination of glutamine. RSC Adv 2020; 10:31400-31410. [PMID: 35520687 PMCID: PMC9056378 DOI: 10.1039/d0ra04394j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
The excellent biocompatible and monodispersed gold nanoparticles (AuNPs) functionalized by amino based ionic liquid (IL) have been synthesized for the demonstration of their interaction with human serum albumin (HSA). Amino based IL stabilizes the surface of AuNPs and provides a colorimetric sensor platform. The size of synthesized IL–AuNPs was identified by use of transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. Molecular interaction of functionalized AuNPs with HSA have been investigated using multispectroscopic techniques, such as UV-Vis, fluorescence and Fourier transform infra-red (FT-IR) spectroscopy. The fluorescence and synchronous fluorescent intensity together indicated that IL–AuNPs exhibits a strong ability to quench the intrinsic fluorescence of HSA via a dynamic quenching mechanism. Moreover, the binding constant (Ka), Stern–Volmer quenching constant (KSV) and different thermodynamic parameters, namely Gibb's free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) have been evaluated at different temperatures. This interactive study focuses on the nature of surface modification of IL–AuNPs via HSA for selective detection of glutamine (Glu) with a lower limit of detection of 0.67 nM in the linear range of 10–100 nM for Glu. The excellent biocompatible and monodispersed gold nanoparticles (AuNPs) functionalized by amino based ionic liquid (IL) have been synthesized for the demonstration of their interaction with human serum albumin (HSA).![]()
Collapse
Affiliation(s)
- Sushama Sahu
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| | - Reshma
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| | - Srishti Sharma
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| | - Indrapal Karbhal
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| | - Kallol K. Ghosh
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| |
Collapse
|
25
|
Takke A, Shende P. Non-invasive Biodiversified Sensors: A Modernized Screening Technology for Cancer. Curr Pharm Des 2019; 25:4108-4120. [DOI: 10.2174/1381612825666191022162232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/14/2019] [Indexed: 01/30/2023]
Abstract
Background:
Biological sensors revolutionize the method of diagnoses of diseases from early to final
stages using the biomarkers present in the body. Biosensors are advantageous due to the involvement of minimal
sample collection with improved specificity and sensitivity for the detection of biomarkers.
Methods:
Conventional biopsies restrict problems like patient non-compliance, cross-infection and high cost and to
overcome these issues biological samples like saliva, sweat, urine, tears and sputum progress into clinical and diagnostic
research for the development of non-invasive biosensors. This article covers various non-invasive measurements
of biological samples, optical-based, mass-based, wearable and smartphone-based biosensors for the detection
of cancer.
Results:
The demand for non-invasive, rapid and economic analysis techniques escalated due to the modernization
of the introduction of self-diagnostics and miniature forms of devices. Biosensors have high sensitivity and
specificity for whole cells, microorganisms, enzymes, antibodies, and genetic materials.
Conclusion:
Biosensors provide a reliable early diagnosis of cancer, which results in faster therapeutic outcomes
with in-depth fundamental understanding of the disease progression.
Collapse
Affiliation(s)
- Anjali Takke
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
26
|
Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens Bioelectron 2019; 150:111933. [PMID: 31818764 DOI: 10.1016/j.bios.2019.111933] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 01/17/2023]
Abstract
Detection and identification of special cells via aptamer-based nano-conjugates sensors have been revolutionized over the past few years. These sensing platforms rely on selecting aptamers using systematic evolution of ligands by exponential enrichment (SELEX) in vitro, which allows for sensitive detection of cells. Integration of the aptamer-based sensors (aptasensors) with nanomaterials offers enhanced specificity and sensitivity, which in turn, offers great promise for numerous applications, spanning from bioanalysis to biomedical applications. Accordingly, the demand for using aptamer-conjugated nanomaterials for various applications has progressively increased over the past years. In light of this, this Review seeks to highlight the recent advances in the development of aptamer-conjugated nanomaterials and their utilization for the detection of various pathogens involved in infectious diseases and food contamination.
Collapse
|
27
|
Heydari M, Gholoobi A, Ranjbar G, Rahbar N, Sany SBT, Mobarhan MG, Ferns GA, Rezayi M. Aptamers as potential recognition elements for detection of vitamins and minerals: a systematic and critical review. Crit Rev Clin Lab Sci 2019; 57:126-144. [PMID: 31680587 DOI: 10.1080/10408363.2019.1678566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Vitamin and mineral deficiencies are prevalent globally, and extensive efforts have been made to assess their status. Most traditional methods are expensive and time-consuming; therefore, developments of rapid, simple, specific, and sensitive methods for the assessment of vitamins and minerals in biological samples are of high importance in research. Aptamers are synthetic nucleic acid single-stranded DNA or RNA that can be synthesized in vitro. They can be engineered to be analyte-specific and have been suggested as a substitute for monoclonal antibodies, due to their high sensitivity and affinity. In addition, aptamers can be chemically synthesized and readily modified for use as biosensors. These features make aptamers a promising tool for the detection of biological analytes. In this review, we provide an overview of the potential use of aptamer-based biosensors.Methods: Search terms were conducted on several online databases, including Google Scholar, PubMed, Scopus, and Science Direct from January 2000 to August 2019. Eligibility criteria were used and quality evaluation was performed. Following the review of 4349 articles, 39 articles met the inclusion criteria.Results: Aptasensors have recently been developed for the detection of vitamins by using optical methods, with a detection range from 74 pM to 204 pM, and lower limit of detection of 2.4 pM. Both electrochemical and optical methods have been used for detection of minerals, however electrochemical methods show a wider linear range and lower detection limits compared to optical methods with a wide linear range from 0.2 fM to 1.0 mM and limit of detection of 14.7 fM.Conclusion: The current report reviews recent developments in aptamer-based biosensors for detection of vitamins and minerals. Studies have shown that aptasensors' properties are suitable for the quantification of vitamins and minerals with high sensitivity, affinity, and specificity. Nevertheless, the limitations and future directions of aptamers require further research and new technological innovation.
Collapse
Affiliation(s)
- Maryam Heydari
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aida Gholoobi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Golnaz Ranjbar
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Medicinal Chemistry Departments, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Belin Tavakoly Sany
- Department of Health Education and Health Promotion, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Majid Rezayi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Yi J, Wu P, Li G, Xiao W, Li L, He Y, He Y, Ding P, Chen C. A composite prepared from carboxymethyl chitosan and aptamer-modified gold nanoparticles for the colorimetric determination of Salmonella typhimurium. Mikrochim Acta 2019; 186:711. [PMID: 31650251 DOI: 10.1007/s00604-019-3827-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/14/2019] [Indexed: 11/27/2022]
Abstract
An aptamer-based assay is described for the determination of Salmonella typhimurium (S. typh). Carboxymethyl chitosan was loaded with amino-modified aptamer against S. typh, and then adsorbed on gold nanoparticles by electrostatic interaction to form a composite that acts as the molecular recognition element. In the presence of S. typh, it will be bound by the aptamer, and this changes the structure of the recognition element. On addition of salt solution, the gold nanoparticles agglomerate so that the color of the solution changes from red to blue. S. typh can be detected via measurement of the absorbance at 550 nm. Absorbance increases linearly with the logarithm of the S. typh concentration in the range from 100 to 109 cfu·mL-1. The limit of detection is 16 cfu·mL-1. The specificity and practicability of the assay were evaluated. The recoveries of S. typh from spiked milk samples are between 92.4 and 97.2%. The analytical results are basically consistent with those of a plate counting method. Graphical abstract Schematic representation of the colorimetric assay for Salmonella typhimuium (S. typh) using carboxymethyl chitosan (CMCS)-aptamer (Apt)-gold nanoparticles (AuNPs) composites.
Collapse
Affiliation(s)
- Jiecan Yi
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541014, Guangxi, China
| | - Wen Xiao
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, 410000, Hunan, China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yayuan He
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yafei He
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Cuimei Chen
- School of Public Health, Xiangnan University, Chenzhou, 423000, Hunan, China.
| |
Collapse
|
29
|
Mahmoud M, Laufer S, Deigner HP. Visual aptamer-based capillary assay for ethanolamine using magnetic particles and strand displacement. Mikrochim Acta 2019; 186:690. [PMID: 31595372 DOI: 10.1007/s00604-019-3795-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022]
Abstract
This work describes an aptamer-based capillary assay for ethanolamine (EA). It is making use of strand displacement format and magnetic particles. The capillary tubes are coated with three layers, viz. (a) first with short oligonucleotides complementary to the aptamer (EA-comp.); (b) then with magnetic particles (Dynabeads) coated with EA-binding aptamer (EA-aptamer), and (c) with short oligonucleotide-coated magnetic particles (EA-comp.). On exposure to a sample containing ethanolamine, the DNA-coated magnetic particles are released and subsequently collected and spatially separated using a permanent magnet. This results in the formation of a characteristic black/brown spots. The assay has a visual limit of detection of 5 nM and only requires 5 min of incubation. Quantification is possible through capture and analysis of digital (RGB) photos in the 5 to 75 nM EA concentration range. Furthermore, results from tap water and serum spiked with EA samples showed that the platform performs well in complex samples and can be applied to real sample analysis. The combined use of plastic capillaries, visual detection and passive flow make the method suited for implementation into a point-of-care device. Graphical abstract Schematic representation of the capillary assay steps.
Collapse
Affiliation(s)
- Mostafa Mahmoud
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI, Leipzig, Schillingallee 68, D-18057, Rostock, Germany.
| |
Collapse
|
30
|
Sadighbayan D, Sadighbayan K, Khosroushahi AY, Hasanzadeh M. Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: Analytical approach. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Recent advances on the biosensing and bioimaging based on polymer dots as advanced nanomaterial: Analytical approaches. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Kurseev SA, Solovjev AM, Neumann MM, Medvedko AV, Sakharov IY. Chemiluminescent and Colorimetric Aptamer-Based Assays of Human α-Thrombin. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1640718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sergei A. Kurseev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Anton M. Solovjev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Marina M. Neumann
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | - Ivan Yu. Sakharov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
33
|
Bio-assay: The best alternative for conventional methods in detection of epidermal growth factor. Int J Biol Macromol 2019; 133:624-639. [DOI: 10.1016/j.ijbiomac.2019.04.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
|
34
|
Abrao Nemeir I, Saab J, Hleihel W, Errachid A, Jafferzic-Renault N, Zine N. The Advent of Salivary Breast Cancer Biomarker Detection Using Affinity Sensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2373. [PMID: 31126047 PMCID: PMC6566681 DOI: 10.3390/s19102373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
Breast Cancer is one of the world's most notorious diseases affecting two million women in 2018 worldwide. It is a highly heterogeneous disease, making it difficult to treat. However, its linear progression makes it a candidate for early screening programs, and the earlier its detection the higher the chance of recovery. However, one key hurdle for breast cancer screening is the fact that most screening techniques are expensive, time-consuming, and cumbersome, making them impractical for use in several parts of the world. One current trend in breast cancer detection has pointed to a possible solution, the use of salivary breast cancer biomarkers. Saliva is an attractive medium for diagnosis because it is readily available in large quantities, easy to obtain at low cost, and contains all the biomarkers present in blood, albeit in lower quantities. Affinity sensors are devices that detect molecules through their interactions with biological recognition molecules. Their low cost, high sensitivity, and selectivity, as well as rapid detection time make them an attractive alternative to traditional means of detection. In this review article, we discuss the current status of breast cancer diagnosis, its salivary biomarkers, as well as the current trends in the development of affinity sensors for their detection.
Collapse
Affiliation(s)
- Imad Abrao Nemeir
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Joseph Saab
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
| | - Walid Hleihel
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
| | - Abdelhamid Errachid
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Nicole Jafferzic-Renault
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Nadia Zine
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
35
|
Affiliation(s)
- Simona Ranallo
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Alessandro Porchetta
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| |
Collapse
|
36
|
Probing the antigen-antibody interaction towards ultrasensitive recognition of cancer biomarker in adenocarcinoma cell lysates using layer-by-layer assembled silver nano-cubics with porous structure on cysteamine caped GQDs. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Eftekhari A, Hasanzadeh M, Sharifi S, Dizaj SM, Khalilov R, Ahmadian E. Bioassay of saliva proteins: The best alternative for conventional methods in non-invasive diagnosis of cancer. Int J Biol Macromol 2018; 124:1246-1255. [PMID: 30513307 DOI: 10.1016/j.ijbiomac.2018.11.277] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022]
Abstract
Non-invasive diagnosis of cancer is often the key to effective treatment and patient survival. Saliva as a multi-constituent oral fluid comprises various disease signaling biomarkers, holds great potential for early-stage cancer diagnostics with cost-effective and easy collection, storage, transport and processing. Therefore, detection of biomarkers and proteins in the saliva samples is highly demand. The current review was performed using reliable internet database (mainly PubMed) to provide an overview of the most recent developments on non-invasive diagnosis of cancers in saliva and highlights main challenges and future prospects in sensing of the salivary biomarkers. The conventional detection methods of cancer biomarkers in saliva is discussed in the paper, however, the main focus is on non-invasive diagnosis of cancers in saliva using immunosensing (electrochemical, optical, piezoelectric), DNA based sensors, aptasensors and peptide based bio-assays The reviewed literature revealed that non-invasive cancer detection methods using the mentioned biosensors and without any processing of saliva sample offers a quick, sensitive, specific and cost effective analytical tool. Besides, salivary based detection methods can be used for simultaneous detection of panels of disease specific biomarkers in a real time manner or as home testing kits in near future.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran.
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rovshan Khalilov
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan, Institute of Radiation Problems of NAS Azerbaijan, Baku, Azerbaijan
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Gonzalez J, Martinez-Ortiz F, Torralba E, Molina A. Kinetic Influence of Surface Charge Transfer Reactions Preceded by Non-Electrochemical Processes on the Response in Cyclic Voltammetry. ChemElectroChem 2018. [DOI: 10.1002/celc.201801275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joaquin Gonzalez
- Departamento de Química Física Facultad de Química Regional Campus of International Excellence “Campus Mare Nostrum”; Universidad de Murcia; 30100 Murcia Spain
| | - Francisco Martinez-Ortiz
- Departamento de Química Física Facultad de Química Regional Campus of International Excellence “Campus Mare Nostrum”; Universidad de Murcia; 30100 Murcia Spain
| | | | - Angela Molina
- Departamento de Química Física Facultad de Química Regional Campus of International Excellence “Campus Mare Nostrum”; Universidad de Murcia; 30100 Murcia Spain
| |
Collapse
|
39
|
Cross-linked chitosan/thiolated graphene quantum dots as a biocompatible polysaccharide towards aptamer immobilization. Int J Biol Macromol 2018; 123:1091-1105. [PMID: 30458193 DOI: 10.1016/j.ijbiomac.2018.11.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023]
Abstract
Chitosan has a number of commercial and possible biomedical uses. Chitosan as a polysaccharide is a bioactive polymer with a variety of applications due to its functional properties such as antibacterial activity, non-toxicity, ease of modification, and biodegradability. In this work, cross-linked chitosan/thiolated graphene quantum dot as a biocompatible polysaccharide was modified by gold nanoparticle and used for immobilization of ractopamine (RAC) aptamer. A highly specific DNA-aptamer (5'-SH-AAAAAGTGCGGGC-3'), selected to RAC was immobilized onto thiolated graphene quantum dots (GQDs)-chitosan (CS) nanocomposite modified by gold nanostructures (Au NSs) and used for quantification of RAC. Different shapes of gold nanostructures with various sizes from zero-dimensional nanoparticles to spherical structures were prepared by one-step template-assistant green electrodeposition method. Fully electrochemical methodology was used to prepare a new transducer on a glassy carbon surface which provided a high surface area to immobilize a high amount of the aptamer. Therefore, a label free electrochemical (EC) apta-assay for ultrasensitive detection of RAC was developed. A special immobilization media consisting of Au NSs/GQDs-CS/Cysteamine (CysA) was utilized to improve conductivity and performance of the biosensor. The RAC aptamer was attached on the Au NSs of the composite membrane via AuS bond. The fabrication process of the EC aptamer based assay was characterized by some electrochemical techniques. The peak currents obtained by differential pulse voltammetry decreased linearly with the increasing of RAC concentrations and the apta-assay responds approximately over a wide dynamic range of RAC concentration from 0.0044 fM to 19.55 μM. The low limit of quantification was 0.0044 fM.
Collapse
|
40
|
Cheng S, Zheng B, Yao D, Kuai S, Tian J, Liang H, Ding Y. Study of the binding way between saxitoxin and its aptamer and a fluorescent aptasensor for detection of saxitoxin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:180-187. [PMID: 29933153 DOI: 10.1016/j.saa.2018.06.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/07/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Aptamers could be used to construct simple and effective biosensor because the conformational switch of aptamer upon target binding is easy to be transferred to optical or electrochemical signals. Nevertheless, we found that the binding between saxitoxin (STX) and aptamer (M-30f) is not accompanied with conformational switch. Here, the circular dichroism spectra, fluorophore and quencher labeled aptamer, and crystal violet-based assays were used to identify the binding way between STX and aptamer. The results show that the conformation of aptamer is stabilized in PBS buffer (10 mM phosphate buffer, 2.7 mM KCl, 137 mM NaCl, pH 7.4) and this conformation may provide an exactly suitable cave for STX binding. Through the analysis of UV-melting curves and circular dichroism-melting curves, it is found that different concentrations of STX produce different unfolding extents of the aptamer under high temperature. Then, a simple temperature-assisted "turn-on" fluorescent aptasensor was developed to detect STX and the application in real sample detection demonstrates its feasibility. The proposed method provides not only an alternative for STX detection but also a strategy for simple aptasensor design using aptamers that do not switch conformation upon targets binding.
Collapse
Affiliation(s)
- Sheng Cheng
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Bin Zheng
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 230061, PR China.
| | - Dongbao Yao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Shenglong Kuai
- Anhui Technical College of Water Resources and Hydroelectric Power, Hefei, Anhui 231603, PR China
| | - Jingjing Tian
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Haojun Liang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yunsheng Ding
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
41
|
Razmi N, Hasanzadeh M. Current advancement on diagnosis of ovarian cancer using biosensing of CA 125 biomarker: Analytical approaches. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
|
43
|
Soleymani J, Hasanzadeh M, Somi MH, Jouyban A. Nanomaterials based optical biosensing of hepatitis: Recent analytical advancements. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Chen X, Shi X, Liu Y, Lu L, Lu Y, Xiong X, Liu Y, Xiong X. Impedimetric determination of Staphylococcal enterotoxin B using electrochemical switching with DNA triangular pyramid frustum nanostructure. Mikrochim Acta 2018; 185:460. [DOI: 10.1007/s00604-018-2983-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/28/2018] [Indexed: 02/04/2023]
|
45
|
Khramtsov P, Kropaneva M, Kalashnikova T, Bochkova M, Timganova V, Zamorina S, Rayev M. Highly Stable Conjugates of Carbon Nanoparticles with DNA Aptamers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10321-10332. [PMID: 30089209 DOI: 10.1021/acs.langmuir.8b01255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conjugates of carbon nanoparticles and aptamers have great potential in many areas of biomedicine. In order to be implemented in practice, such conjugates should keep their properties throughout long storage period in commonly available conditions. In this work, we prepared conjugates of carbon nanoparticles (CNP) with DNA aptamers using streptavidin-biotin reaction. Obtained conjugates possess superior stability and kept their physical-chemical and functional properties during 30 days at +4 °C and -20 °C. Proposed approach to conjugation allows loading of about 100-120 pM of biotinylated aptamer per 1 mg of streptavidin-coated CNP (CNP-Str). Aptamer-functionalized CNP-Str have zeta potential of -34 mV at pH 7, mean diameter of 168-177 nm, and polydispersity index of 0.080-0.140. High reproducibility of functionalization was confirmed by preparation of several batches of CNP-aptamer with the same size distribution and aptamer loading using independently synthesized parent CNP-Str nanoparticles. Stability of CNP-aptamer conjugates was significantly enhanced by postsynthesis addition of EDTA that prevents nuclease degradation of immobilized aptamers. Obtained nanoparticles were stable at pH ranging from 6 to 10. Optical properties of CNP-aptamer nanoparticles were also studied and their ability to quench fluorescence via Förster resonance energy transfer was shown. Taking into account properties of CNP-aptamer conjugates, we suppose they may be used in both homo- and heterogeneous colorimetric, fluorescent, and aggregation-based assays.
Collapse
Affiliation(s)
- Pavel Khramtsov
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Maria Kropaneva
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Tatyana Kalashnikova
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
| | - Maria Bochkova
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Valeria Timganova
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Svetlana Zamorina
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Mikhail Rayev
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| |
Collapse
|
46
|
Hasanzadeh M, Sahmani R, Solhi E, Mokhtarzadeh A, Shadjou N, Mahboob S. Ultrasensitive immunoassay of carcinoma antigen 125 in untreated human plasma samples using gold nanoparticles with flower like morphology: A new platform in early stage diagnosis of ovarian cancer and efficient management. Int J Biol Macromol 2018; 119:913-925. [PMID: 30081127 DOI: 10.1016/j.ijbiomac.2018.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022]
Abstract
Ovarian cancer, as one of the most life-threatening malignancies among women worldwide, is usually diagnosed at the late stage despite up regulation of molecular markers such as carcinoma antigen 125 (CA 125) at the early stages of the malignancy. CA 125 is the only tumor marker recommended for clinical use in the diagnosis and management of ovarian cancer. The potential role of CA-125 for the early detection of ovarian cancer is controversial and has not yet been adopted for widespread screening efforts in asymptomatic women. Therefore, early detection of CA 125 in human biofluids is highly demanded. In the present study, a novel method was proposed for the fabrication of electrochemical immunosensor based reduced graphene oxide (RGO). Cysteamine capped gold nanoparticle (Cys-AuNPs) were deposited over the surface of ERGO probe using electrophoretic deposition method. These Cys-AuNPs/ERGO probes provide the favorable sites to attach the monoclonal antibody specific to CA 125 antigen. Cyclic voltammetry (CV), and square wave voltammetry (SWV) were applied for the electrochemical recognition of the biolayer. The represented signals demonstrates excellent figure of merits and good capability of the engineered immunosensor towards sensitive detection of CA 125. Quantitative measurements of CA 125 in human plasma samples have been demonstrated, showing the potential of the practical application of this novel immunosensor for the analysis of this biomarker in blood serum samples. This immunosensor has the ability of direct electron transfer as compared to earlier reported electrochemical immunosensors based electrochemical methods. Further, this immunosensor provides a very suitable and convenient alternative to replace the expensive commercially available methods such as immunohistochemistry. The following regression equation between the electrochemical current response and the CA 125 concentration range from 0.1 to 400 U/mL was found. The low limit of quantification for this immunosensor was 0.1 U/mL. To the best of our knowledge, this is the first reported on the direct immobilization of antibody on the surface of Cys-AuNPs/ERGO for fabrication of immunosensors.
Collapse
Affiliation(s)
- Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Rahimeh Sahmani
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Elham Solhi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Shadjou
- Department of Nanochemistry, Nano Technology Research Center, Uremia University, Uremia 57154, Iran
| | - Soltanali Mahboob
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| |
Collapse
|
47
|
|
48
|
Hasanzadeh M, Tagi S, Solhi E, Mokhtarzadeh A, Shadjou N, Eftekhari A, Mahboob S. An innovative immunosensor for ultrasensitive detection of breast cancer specific carbohydrate (CA 15-3) in unprocessed human plasma and MCF-7 breast cancer cell lysates using gold nanospear electrochemically assembled onto thiolated graphene quantum dots. Int J Biol Macromol 2018; 114:1008-1017. [DOI: 10.1016/j.ijbiomac.2018.03.183] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/17/2018] [Accepted: 03/31/2018] [Indexed: 12/27/2022]
|
49
|
Wang Y, Cui M, Jiao M, Luo X. Antifouling and ultrasensitive biosensing interface based on self-assembled peptide and aptamer on macroporous gold for electrochemical detection of immunoglobulin E in serum. Anal Bioanal Chem 2018; 410:5871-5878. [PMID: 29938372 DOI: 10.1007/s00216-018-1201-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Accurate detection of protein biomarkers in complex media remains a challenge due to severe nonspecific adsorption and biofouling, and sensing interfaces that combine the high sensitivity and antifouling ability are highly desirable. Herein, an antifouling sensing interface capable of sensitively assaying immunoglobulin E (IgE) in biological samples was constructed. The sensing interface was fabricated through the self-assembly of a zwitterionic peptide and the IgE aptamer onto a macroporous Au substrate, which was electrochemically fabricated with the aid of multilayer polystyrene nanospheres self-assembled on glassy carbon electrode. Due to the huge surface area arising from porous morphology and high specificity of aptamer, the developed electrochemical biosensor exhibits ultrahigh sensitivity and selectivity towards IgE, with the linear range of 0.1-10 pg mL-1, and a very low limit of detection down to 42 fg mL-1. Interestingly, owing to the presence of the zwitterionic peptide, the biosensing interface can satisfyingly reduce the nonspecific adsorption and fouling effect. Consequently, the biosensor was successfully applied to detect IgE in complex biological samples, indicating great promise of this peptide-based sensing interface for antifouling assays. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China.,Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China.,Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Min Cui
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Mingxia Jiao
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China. .,Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China. .,Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China.
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China.,Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China.,Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| |
Collapse
|
50
|
Development of DNA aptamer-based sensor for electrochemical detection of C-reactive protein. Talanta 2018; 189:45-54. [PMID: 30086945 DOI: 10.1016/j.talanta.2018.06.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 01/24/2023]
Abstract
C-reactive protein (CRP) is a crucial biomarker of cardiovascular diseases and for its detection both optical and electrochemical techniques were applied. This study concerns the application of DNA aptamer as recognition layer for CRP detection. For that purpose aptamer immobilization method on gold surface was selected and the content of receptor layer was optimized to ensure an efficient binding to target protein. The quality of the monolayer was verified by the application of chronocoulometry and atomic force microscopy. Using thiolated aptamers provided the formation of layers of highest density and stability. The square-wave voltammetry experiments performed in the presence of methylene blue redox indicator revealed a linear response of aptasensor towards CRP in the range from 1 to 100 pM. Moreover, a DNA aptamer - based sensor showed good selectivity towards C-reactive protein in comparison to interfering proteins including BSA and IgE. Finally, the analysis of CRP in serum sample was conducted using the developed aptasensor.
Collapse
|