1
|
Birk L, Dos Santos BP, Ossanes DS, Schwarz PDS, Bachmann SAL, Sebben VC, Eller S, de Oliveira TF. Brewer's spent grain as a potential sorbent for toxicology methods: Application to antidepressant analysis in urine. J Pharm Biomed Anal 2025; 254:116564. [PMID: 39566192 DOI: 10.1016/j.jpba.2024.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
The use of antidepressants is well-documented for several health conditions. The determination of these drugs in biological fluids is often important in intoxication cases. However, appropriate sample preparation needs to be employed, such as dispersive liquid phase microextraction (DSPME). Therefore, this study aimed to develop a method for the determination of antidepressants in urine using Brewer's spent grain (BSG) as sorbent in a DSPME procedure, followed by GC-MS analysis. In this methodology, only 500 µL of urine was required, alongside 15 mg of BSG as the sorbent for the DSPME technique. Desorption step was performed with 500 µL of ethyl acetate:MTBE solution (1:1, v/v), followed by evaporation of the organic layer, reconstitution in acetonitrile and injection into the analytical system. BSG was further characterized by several analytical techniques. The DSPME procedure was optimized using multivariate strategies, and the method was fully validated according to proper guidelines. Lower limits of quantitation (LLOQ) were set between 50 and 200 ng/mL, while linearity was achieved over the specified range of LLOQ to 5000 ng/mL, with R2 ≥ 0.99. Additionally, the method was applied to the analyses of 109 urine samples. Of these, 76 were positive for at least one antidepressant, with the most prevalent being nortriptyline, amitriptyline, and fluoxetine. This study is the first to report the use of BSG as a sorbent for DSPME, demonstrating good efficiency as indicated by the analytical figures of merit. Moreover, the method proved to be applicable in real poisoning case samples. The analytical performance, combined with advantages such as high throughput and a green profile, suggests this method as a valuable alternative for toxicological laboratories.
Collapse
Affiliation(s)
- Letícia Birk
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil.
| | - Bruno Pereira Dos Santos
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Daniela Souza Ossanes
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Patrícia de Souza Schwarz
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | | | | | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Tiago Franco de Oliveira
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
2
|
Hamad AA, Saleh SF, Mahdi WA, Alshehri S, Hamd MAE. Facile Integration of Hanztsch's Switch-Off/On Modeled Fluorogenic Probe for Feasible Tagging and Tracking of the Midodrine Drug in Different Matrices; First Evaluation of the Method's Greenness, Whiteness, Blueness, Quantum Yield, and Tablets' Content Homogeneity. J Fluoresc 2024:10.1007/s10895-024-03839-x. [PMID: 39102112 DOI: 10.1007/s10895-024-03839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024]
Abstract
The proposed investigation follows a certain methodology to guarantee that the procedure employed is sustainable and green. It is noteworthy to mention that various tools have been implemented as potential indicators of environmental sustainability (greenness and whiteness). From a novelty viewpoint, a new tool, BAGI, for the method's blueness evaluation was applied to the planned method and showed a high applicability score. Fortunately, the WAC concept, which combines ecological and functional variables using the Green/Red/Blue design (RBG 12 tool), identifies the established analytical approach as white. In the planned study, a new, green, simple, nano-trace-sensitive, original fluorimetric methodology was established to analyze and assess midodrine hydrochloride content in different matrices. Midodrine's primary amine moiety reacts with Diacetylmethane/Oxymethylene reagent in an acetate buffer, which leads to generating a fluorescent dihydrolutidine derivative (Hantzsch-named reaction). Consequently, the signal strength of this compound was quantified at 487 nm, with an excitation wavelength of 426 nm. This analysis indicated that the technique exhibited linearity within the range of 0.05 to 1.1 µg mL-1 concentrations, accompanied by remarkably good sensitivity values (LOD and LOQ). The methodology employed in this examination was subjected to validation following the rules recognized by ICH. From the perspective of pharmacy and chemistry, the method presented in this study was successfully employed to analyze commercially available tablets, oral drops, and human fluids. The outcomes obtained demonstrated satisfactory recovery rates without any interference from excipients. Following the USP recommendations, the intended technique was finally implemented to explore the content homogeneity evaluation.
Collapse
Affiliation(s)
- Ahmed Abdulhafez Hamad
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Safaa F Saleh
- Pharmaceutical Chemistry Department, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| | - Wael A Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed A El Hamd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
3
|
Jankech T, Gerhardtova I, Majerova P, Piestansky J, Jampilek J, Kovac A. Derivatization of carboxylic groups prior to their LC analysis - A review. Anal Chim Acta 2024; 1300:342435. [PMID: 38521569 DOI: 10.1016/j.aca.2024.342435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Carboxylic acids (CAs) represent a large group of important molecules participating in various biologically significant processes. Analytical study of these compounds is typically performed by liquid chromatography (LC) combined with various types of detection. However, their analysis is often accompanied by a wide variety of problems depending on used separation system or detection method. The dominant ones are: i) poor chromatographic behavior of the CAs in reversed-phase LC; ii) absence of a chromophore (or fluorophore); iii) weak ionization in mass spectrometry (MS). To overcome these problems, targeted chemical modification, and derivatization, come into play. Therefore, derivatization still plays an important and, in many cases, irreplaceable role in sample preparation, and new derivatization methods of CAs are constantly being developed. The most commonly used type of reaction for CAs derivatization is amidation. In recent years, an increased interest in the isotopic labeling derivatization method has been observed. In this review, we comprehensively summarize the possibilities and actual trends in the derivatization of CAs that have been published over the past decade.
Collapse
Affiliation(s)
- Timotej Jankech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
| | - Ivana Gerhardtova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic
| | - Juraj Piestansky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic; Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojarov 10, 832 32 Bratislava, Slovak Republic
| | - Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic.
| |
Collapse
|
4
|
Liao FY, Weng JR, Lin YC, Feng CH. Molecularly imprinted dispersive micro solid-phase extraction and tandem derivatization for the determination of histamine in fermented wines. Anal Bioanal Chem 2024; 416:945-957. [PMID: 38051414 DOI: 10.1007/s00216-023-05083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Histamine causes allergic reactions and can serve as an indicator for assessing food quality. This study designed and developed a dispersive micro solid-phase extraction (D-μSPE) method that combined the advantages of dispersive liquid-liquid extraction and solid-phase extraction (SPE). Molecularly imprinted polymers (MIPs) were employed as the solid phase in the D-μSPE method to extract histamine in wine samples. We used microwave energy to significantly reduce the synthesis time, achieving an 11.1-fold shorter synthesis time compared to the conventional MIP synthetic method. Under optimized D-μSPE conditions, our results showed that the dispersive solvent could effectively increase the adsorption performance of MIPs in wine samples by 97.7%. To improve the sensitivity of histamine detection in gas chromatography-mass spectrometry, we employed the microwave-assisted tandem derivatization method to reuse excess derivatization reagents and reduce energy consumption and reaction time. Calibration curves were constructed for wine samples spiked with 0-400 nmol histamine using the standard addition method, resulting in good linearity with a coefficient of determination of 0.999. The intra- and inter-batch relative standard deviations of the slope and intercept were < 0.7% and < 5.3%, respectively. The limits of quantitation and detection were 0.4 nmol and 0.1 nmol, respectively. The developed method was successfully applied to analyze the histamine concentration in 10 commercial wine samples. In addition, the AGREEprep tool was used to evaluate the greenness performance of the developed method, which obtained a higher score than the other reported methods.
Collapse
Affiliation(s)
- Fang-Yi Liao
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Ying-Chi Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Chia-Hsien Feng
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, 100, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
5
|
He B, Feng J, Liu J, Zhong Q, Zhou T. Inline phase transition trapping-selective supercritical fluid extraction-supercritical fluid chromatography: A green and efficient integrated method for determining prohibited substances in cosmetics. Anal Chim Acta 2023; 1279:341831. [PMID: 37827647 DOI: 10.1016/j.aca.2023.341831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Developing an environmentally friendly and efficient integrated analytical approach is a cutting-edge topic in current analytical science. Due to the unique properties of supercritical carbon dioxide (sc-CO2), online supercritical fluid extraction-supercritical fluid chromatography (SFE-SFC) is developing rapidly and has been widely applied in many fields. However, it still faces several challenges such as peak broadening and matrix interference. In order to solve the problems, we developed an inline phase transition trapping-selective supercritical fluid extraction-supercritical fluid chromatography (PTT-SSFE-SFC)-tandem mass spectrometry (MS/MS) method in this study. RESULTS This method integrated extraction, purification, separation, and detection, which was applied to determine 114 prohibited substances in cosmetics within 33 min, covering ten categories. The PTT strategy trapped the extracts on the head of the column by transforming CO2 from a supercritical state to a gaseous state, preventing peak spreading and improving sensitivity. Several adsorbents were tested when analyzing aqueous samples to reduce matrix interference and absorb water. Compared with conventional online SFE-SFC, this method improved the matrix effects of 93 and 87 target substances in the toner and mask matrix, respectively. Because the integrated method reduced sample loss, it achieved high sensitivity with LODs ranging from 0.00104 μg L-1 to 3.09 μg L-1. Furthermore, compared with other reported green methods, the inline method showed advantages in automation, efficiency, sample amount, and waste volume. SIGNIFICANCE AND NOVELTY With the introduction of the PTT strategy and the adsorbent, the system obtained good peak shapes, high sensitivity, low matrix effect, and good recovery. Based on the results, inline PTT-SSFE-SFC-MS/MS as a green and efficient integrated method has great potential for analyzing low abundance and multiple categories of targets in complex samples.
Collapse
Affiliation(s)
- Binhong He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jieqing Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jiaqi Liu
- Guangzhou Analytical Center, Analytical & Measuring Instruments Division, Shimadzu (China) Co., LTD, Guangzhou, 510010, China
| | - Qisheng Zhong
- Guangzhou Analytical Center, Analytical & Measuring Instruments Division, Shimadzu (China) Co., LTD, Guangzhou, 510010, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Manousi N, Ntorkou M, Tzanavaras PD, Zacharis CK. A review of bioanalytical applications of microextraction techniques combined with derivatization. Bioanalysis 2023; 15:937-954. [PMID: 37638635 DOI: 10.4155/bio-2023-0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Microextraction techniques have attracted the attention of many researchers working in the field of bioanalysis due to their unique advantages, mainly in downsizing the scale of sample preparation steps. In parallel, analytical derivatization offers a powerful combination in terms of additional sensitivity, selectivity and compatibility with modern separation techniques. The aim of this review is to discuss the most recent advances in bioanalytical sample preparation based on the combination of microextraction and analytical derivatization. Both innovative fundamental reports and analyte-targeted applications are included and discussed. Dispersive liquid-liquid extraction and solid-phase microextraction are the most common techniques that typically combined with derivatization, while the development of novel and greener protocols is receiving substantial consideration in the field of analytical chemistry.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Marianna Ntorkou
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| |
Collapse
|
7
|
Jastrzębska A, Gralak Z, Brzuzy K, Kmieciak A, Krzemiński MP, Burdziński R, Kurzawa M, Szłyk E. Simple and Effective Derivatization of Amino Acids with 1-Fluoro-2-nitro-4-(trifluoromethyl)benzene in a Microwave Reactor for Determination of Free Amino Acids in Kombucha Beverages. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7365. [PMID: 36295430 PMCID: PMC9611567 DOI: 10.3390/ma15207365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Kombucha is a fermentation product of sweetened tea with a symbiotic culture of acetic acid and yeast bacteria, consumed worldwide for its health-promoting properties. Few reports can be found about free amino acids among the health-promoting compounds found and determined in kombucha. These compounds influence the sensory properties of kombucha, and they are precursors of bioactive compounds, which have a significant role as neurotransmitters and are involved in biological functions. The presented studies proposed a convenient, simple, and "more green" procedure of the synthesis of amino acid derivatives, assisted by microwave energy, followed by chromatographic determination. The structure of 1-Fluoro-2-nitro-4-(trifluoromethyl)benzene was used as a suitable reagent for the derivatization of free amino acids in fermented kombucha beverages prepared from selected dry fruit such as Crataegus L., Morus alba L., Sorbus aucuparia L., Berberis vulgaris L., Rosa canina L., and black tea. The obtained results were discussed regarding the tested beverages' application as a source of amino acids in one's daily diet. The obtained results point out that the proposed microwave-assisted derivatization procedure prior to HPLC analyses allows for a significant time reduction and the limitation of using organic reagents.
Collapse
Affiliation(s)
- Aneta Jastrzębska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Zuzanna Gralak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Kamil Brzuzy
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Anna Kmieciak
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Marek P. Krzemiński
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Rafał Burdziński
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Marzanna Kurzawa
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Edward Szłyk
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| |
Collapse
|
8
|
Sajid M. Dispersive liquid-liquid microextraction: Evolution in design, application areas, and green aspects. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Dogra R, Kumar M, Kumar A, Roverso M, Bogialli S, Pastore P, Mandal UK. Derivatization, an Applicable Asset for Conventional HPLC Systems without MS Detection in Food and Miscellaneous Analysis. Crit Rev Anal Chem 2022; 53:1807-1827. [PMID: 35201944 DOI: 10.1080/10408347.2022.2042671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One of the most valuable practices for analyzing not-so-analytical-friendly analytes in complex, heterogenous matrices is derivatization. Availability of numerous derivatizing reagents (DRs) makes the modification of analyte more exploitable in terms of an analytical perspective. A wide array of derivatization techniques like pre or post-column, in-situ, enzymatic, ultrasound-assisted, microwave-assisted, photochemical derivatization has added much-needed methodological strength in analyzing intricate analytical matrices (food, water, and soil). In recent years, analytical chemistry has achieved greater heights through the development of new sensitive methods with simple conventional instruments like High-Performance Liquid Chromatography (HPLC) devoid of Mass detectors. The prompt availability of these straightforward instruments also makes it a favorable option for routine analysis in food, environmental, bioanalytical chemistry. Analyzing food, environmental or bioanalytical specimen has some of the most problematic aspects, like the low concentration of the analytes accompanied by not too suitable analytical properties. Even though conventional HPLC lacks the required sensitivity but merger with derivatization can lead to a remarkable increase in sensitivity. In recent years there has been a lot of application of diverse derivatizations to increase the sensitivity and selectivity of the analyte for available instruments, resulting in notable findings. Therefore, this review describes the application of derivatization principles in the analysis of analytes in food and additional matrices using conventional HPLC instruments such as HPLC-UV, HPLC-DAD, and HPLC-FD. In this article, we will briefly review the different modes and multiple types of derivatizing reagents with their mechanisms and importance for encouraging the use of established HPLC instruments.
Collapse
Affiliation(s)
- Raghav Dogra
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Mohit Kumar
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Arvind Kumar
- Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Uttam Kumar Mandal
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| |
Collapse
|
10
|
Dogra R, Mandal UK. Recent Applications of Derivatization Techniques for Pharmaceutical and
Bioanalytical Analysis through High-performance Liquid Chromatography. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666211108092115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Derivatization of analytes is a quite convenient practice from an analytical perspective. Its vast prevalence is accounted by the availability of distinct reagents, primarily pragmatic for obtaining desired modifications in an analyte structure. Another reason for its handiness is typically to overcome limitations such as lack of sensitive methodology or instrumentation.The past decades have witnessed various new derivatization techniques including in-situ, enzymatic, ultrasound-assisted, microwave-assisted, and photochemical derivatization which have gain popularity recently.
Methods:
The online literature available on the utilization of derivatization as prominent analytical tools in recent years with typical advancements is reviewed. The illustrations of the analytical condition together with the structures of different derivatizing reagents (DRs) are provided to acknowledge the vast capability of derivatization to resolve analytical problems.
Results:
The derivatization techniques have enabled analytical chemists throughout the globe to develop an enhanced sensitivity method with the simplest of the instrument like High-Performance Liquid Chromatography (HPLC). The HPLC, compared to more sensitive Liquid chromatography coupled to tandem mass spectrometer, is readily available and can be readily utilized for routine analysis in fields of pharmaceuticals, bioanalysis, food safety, and environmental contamination. A troublesome aspect of these fields is the presence of a complex matrix with trace concentrations for analyses. Liquid chromatographic methods devoid of MS detectors do not have the desired sensitivity for this. A possible solution for overcoming this is to couple HPLC with derivatization to enable the possibility of detecting trace analytes with a less expensive instrument. Running cost, enhanced sensitivity, low time consumption, and overcoming the inherent problems of analyte are critical parameters for which HPLC is quite useful in high throughput analysis.
Conclusion:
The review critically highlights various kinds of derivatization applications in different fields of analytical chemistry. The information primarily focuses on pharmaceutical and bioanalytical applications in recent years. The various modes, types, and derivatizing reagents with brief mechanisms have been ascribed briefly Additionally, the importance of HPLC coupled to fluorescence and UV detection is presented as an overview through examples accompanied by their analytical conditions.
Collapse
Affiliation(s)
- Raghav Dogra
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Uttam Kumar Mandal
- Department of Pharmaceutical
Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab, India
| |
Collapse
|
11
|
Yu S, Cai C, Zhang X, Sheng C, Jiang K. Method for the accurate determination of phytic acid in beverages by liquid chromatography-mass spectrometry after methylation with (trimethylsilyl) diazomethane. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Bodur S, Erarpat S, Günkara ÖT, Bakırdere S. One step derivatization and dispersive liquid-liquid microextraction of hydroxychloroquine sulfate for its sensitive and accurate determination using GC-MS. J Pharmacol Toxicol Methods 2021; 113:107130. [PMID: 34688871 DOI: 10.1016/j.vascn.2021.107130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/22/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022]
Abstract
In the present study, a novel analytical method for the determination of hydroxychloroquine sulfate in human serum and urine samples was established. One step derivatization and dispersive liquid-liquid microextraction (DLLME) was developed for quantitative determination of hydroxychloroquine sulfate in aqueous samples. Hydroxychloroquine sulfate was first hydrolyzed and converted to its benzoate derivative by adding benzoyl chloride in chloroform which also served as extraction solvent. Significant parameters such as type/volume of extraction and dispersive solvents, concentration/volume of sodium hydroxide, type/period of mixing and concentration of derivatizing agent were carefully optimized by one variable at a time approach. Under the optimum DLLME conditions, limit of detection (LOD), quantitation (LOQ) and dynamic range were calculated as 35.2, 117.2 and 96-1980 μg/kg (ppb), respectively. Recovery studies were conducted by spiked human serum and urine samples and the results were ranged between 93 and 107% with low standard deviations. Developed method can be easily used in hydroxychloroquine sulfate based SARS-CoV-2 and malaria treatment studies.
Collapse
Affiliation(s)
- Süleyman Bodur
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey
| | - Sezin Erarpat
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey
| | - Ömer Tahir Günkara
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey
| | - Sezgin Bakırdere
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06690 Ankara, Turkey.
| |
Collapse
|
13
|
|
14
|
Dmitrienko SG, Apyari VV, Tolmacheva VV, Gorbunova MV. Liquid–Liquid Extraction of Organic Compounds into a Single Drop of the Extractant: Overview of Reviews. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821080049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Saini SS, Fagan SB, Tonel MZ. A novel and green extraction strategy for sensitive determination of phthalates in aqueous samples: Analytical and computational studies. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Paiva AC, Crucello J, de Aguiar Porto N, Hantao LW. Fundamentals of and recent advances in sorbent-based headspace extractions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Analytical Methods for Determination of Non-Nutritive Sweeteners in Foodstuffs. Molecules 2021; 26:molecules26113135. [PMID: 34073913 PMCID: PMC8197393 DOI: 10.3390/molecules26113135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Sweeteners have been used in food for centuries to increase both taste and appearance. However, the consumption of sweeteners, mainly sugars, has an adverse effect on human health when consumed in excessive doses for a certain period, including alteration in gut microbiota, obesity, and diabetes. Therefore, the application of non-nutritive sweeteners in foodstuffs has risen dramatically in the last decade to substitute sugars. These sweeteners are commonly recognized as high-intensity sweeteners because, in a lower amount, they could achieve the same sweetness of sugar. Regulatory authorities and supervisory agencies around the globe have established the maximum amount of these high-intensity sweeteners used in food products. While the regulation is getting tighter on the market to ensure food safety, reliable analytical methods are required to assist the surveillance in monitoring the use of high-intensity sweeteners. Hence, it is also necessary to comprehend the most appropriate method for rapid and effective analyses applied for quality control in food industries, surveillance and monitoring on the market, etc. Apart from various analytical methods discussed here, extraction techniques, as an essential step of sample preparation, are also highlighted. The proper procedure, efficiency, and the use of solvents are discussed in this review to assist in selecting a suitable extraction method for a food matrix. Single- and multianalyte analyses of sweeteners are also described, employing various regular techniques, such as HPLC, and advanced techniques. Furthermore, to support on-site surveillance of sweeteners’ usage in food products on the market, non-destructive analytical methods that provide practical, fast, and relatively low-cost analysis are widely implemented.
Collapse
|
18
|
Zhang N, Gao Y, Xu X, Bao T, Wang S. Hydrophilic carboxyl supported immobilization of UiO-66 for novel bar sorptive extraction of non-steroidal anti-inflammatory drugs in food samples. Food Chem 2021; 355:129623. [PMID: 33799239 DOI: 10.1016/j.foodchem.2021.129623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/03/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Herein, the preparation of UiO-66 on frosted glass rod (FGR) was proposed through the coordination interaction of Zr-OH groups and carboxyl sites on FGR. The relative standard deviations (RSDs) of intra-batch and inter-batch were below 8.0% (n = 7). UiO-66-modified FGR (UiO-66@FGR) was applied to the extraction and monitoring of five non-steroidal anti-inflammatory drugs (NSAIDs) by coupling to novel bar sorptive extraction (BSE) with ultra-high performance liquid chromatography (UPLC). Sample volume, stirring rate, extraction time, sample pH value, desorption solvent, and desorption time were investigated. NSAIDs (ketoprofen, flurbiprofen, ibuprofen, naproxen, and diclofenac sodium) were determined at a low limit of detection (0.92 ng/mL) over a wide linear range (10-1500 ng/mL). The developed method was used to analyze NSAIDs in sheep muscle, chicken wing, and milk with recoveries of 80.8%-117.2%, RSDs < 6.5%. Fabricated UiO-66@FGR exhibited excellent reproducibility, stability, and good adsorption property towards NSAIDs in food samples.
Collapse
Affiliation(s)
- Nan Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Yan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Xianliang Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Tao Bao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| |
Collapse
|
19
|
Gutiérrez-Serpa A, González-Martín R, Sajid M, Pino V. Greenness of magnetic nanomaterials in miniaturized extraction techniques: A review. Talanta 2020; 225:122053. [PMID: 33592775 DOI: 10.1016/j.talanta.2020.122053] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
Green analytical chemistry principles should be followed, as much as possible, and particularly during the development of analytical sample preparation methods. In the past few years, outstanding materials such as ionic liquids, metal-organic frameworks, carbonaceous materials, molecularly imprinted materials, and many others, have been introduced in a wide variety of miniaturized techniques in order to reduce the amount of solvents and sorbents required during the analytical sample preparation step while pursuing more efficient extraction methods. Among them, magnetic nanomaterials (MNMs) have gained special attention due to their versatile properties. Mainly, their ability to be separated from the sample matrix using an external magnetic field (thus enormously simplifying the entire process) and their easy combination with other materials, which implies the inclusion of a countless number of different functionalities, highly specific in some cases. Therefore, MNMs can be used as sorbents or as magnetic support for other materials which do not have magnetic properties, the latter permiting their combination with novel materials. The greenness of these magnetic sorbents in miniaturized extractions techniques is generally demonstrated in terms of their ease of separation and amount of sorbent required, while the nature of the material itself is left unnoticed. However, the synthesis of MNMs is not always as green as their applications, and the resulting MNMs are not always as safe as desired. Is the analytical sample preparation field ready for using green magnetic nanomaterials? This review offers an overview, from a green analytical chemistry perspective, of the current state of the use of MNMs as sorbents in microextraction strategies, their preparation, and the analytical performance offered, together with a critical discussion on where efforts should go.
Collapse
Affiliation(s)
- Adrián Gutiérrez-Serpa
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain
| | - Raúl González-Martín
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain
| | - Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Verónica Pino
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| |
Collapse
|
20
|
Somboot W, Jakmunee J, Kanyanee T. Environmentally friendly liquid medium for a cost-effective long-path absorption liquid core waveguide with a gas diffusion flow analysis system. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Delove Tegladza I, Qi T, Chen T, Alorku K, Tang S, Shen W, Kong D, Yuan A, Liu J, Lee HK. Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122403. [PMID: 32126428 DOI: 10.1016/j.jhazmat.2020.122403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Single-drop microextraction (SDME) techniques are efficient approaches to pretreatment of aqueous samples. The main advantage of SDME lies in the miniaturization of the solvent extraction process, minimizing the hazards associated with the use of toxic organic solvents. Thus, SDME techniques are cost-effective, and represent less harm to the environment, subscribing to green analytical chemistry principles. In practice, two main approaches can be used to perform SDME - direct immersion (DI)-SDME and headspace (HS)-SDME. Even though the DI-SDME has been shown to be quite effective for extraction and enrichment of various organic compounds, applications of DI-SDME are normally more suitable for moderately polar and non-polar semi-volatile organic compounds (SVOCs) using organic solvents which are immiscible with water. In this review, we present a historical overview and current advances in DI-SDME, including the common analytical tools which are usually coupled with DI-SDME. The review also focuses on applications concerning SVOCs in environmental samples. Currents trends in DI-SDME and possible future direction of the procedure are discussed.
Collapse
Affiliation(s)
- Isaac Delove Tegladza
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tong Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Kingdom Alorku
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Jianfeng Liu
- Shanghai Waigaoqiao Shipbuilding Co., Ltd, Shanghai, 200137, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
22
|
Unutkan T, Borahan T, Girgin A, Bakırdere S. A sieve-conducted two-syringe-based pressurized liquid-phase microextraction for the determination of indium by slotted quartz tube-flame atomic absorption spectrometry. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:133. [PMID: 31970566 DOI: 10.1007/s10661-020-8104-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
In this study, a new liquid-phase microextraction method termed sieve-conducted two-syringe-based pressurized liquid-phase microextraction (SCTS-PLPME) was developed as a preconcentration tool for indium. Here, two syringes were connected to each other by an apparatus to produce an environment subject to pressure. The pressure created between the two syringes by simultaneous movements of the syringe plungers (to and fro) generated an efficient dispersion and this eliminated the need for dispersive solvents. Determination of indium after preconcentration was carried out with a slotted quartz tube attached flame atomic absorption spectrometer (SQT-FAAS). The detection limit (LOD) and quantification limit (LOQ) of the developed method were calculated as 19.2 and 72.2 μg L-1, respectively. The reliability and accuracy of the developed method was tested by performing recovery studies on lake water spiked at different concentrations and the obtained percent recoveries were between 101.2 and 106.9%.
Collapse
Affiliation(s)
- Tuğçe Unutkan
- Department of Chemical Engineering, Yıldız Technical University, 34349, İstanbul, Turkey
| | - Tülay Borahan
- Department of Chemistry, Yıldız Technical University, 34349, İstanbul, Turkey
| | - Ayça Girgin
- Department of Chemistry, Yıldız Technical University, 34349, İstanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, 34349, İstanbul, Turkey.
| |
Collapse
|
23
|
Basheer C, Kamran M, Ashraf M, Lee HK. Enhancing liquid-phase microextraction efficiency through chemical reactions. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
HS-SPME-GC-MS technique for FFA and hexanal analysis in different cheese packaging in the course of long term storage. Food Res Int 2019; 121:730-737. [DOI: 10.1016/j.foodres.2018.12.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/17/2018] [Accepted: 12/22/2018] [Indexed: 02/06/2023]
|
25
|
A salting-out assisted liquid-liquid microextraction procedure for determination of cysteine followed by spectrophotometric detection. Talanta 2019; 194:446-451. [DOI: 10.1016/j.talanta.2018.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 12/30/2022]
|
26
|
Comparison and validation of methods for the determination of 90Sr by Cerenkov counting in biological and sediment samples, including green chemistry metrics. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06436-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Ultrasound-assisted solvent extraction of porous membrane packed solid samples: A new approach for extraction of target analytes from solid samples. Microchem J 2019. [DOI: 10.1016/j.microc.2018.08.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Jain A, Verma KK. Strategies in liquid chromatographic methods for the analysis of biogenic amines without and with derivatization. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Zhang HY, Tan XX, Kang K, Wang W, Lian KQ, Kang WJ. Simultaneous determination of lactic acid and pyruvic acid in tissue and cell culture media by gas chromatography after in situ derivatization-ultrasound-assisted emulsification microextraction. Anal Bioanal Chem 2018; 411:787-795. [DOI: 10.1007/s00216-018-1502-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
|
30
|
Dispersive liquid-liquid microextraction based binary extraction techniques prior to chromatographic analysis: A review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Sajid M. Dispersive liquid-liquid microextraction coupled with derivatization: A review of different modes, applications, and green aspects. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Zhao S, Wang D, Zhu S, Liu X, Zhang H. 3D cryogel composites as adsorbent for isolation of protein and small molecules. Talanta 2018; 191:229-234. [PMID: 30262055 DOI: 10.1016/j.talanta.2018.08.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022]
Abstract
A green and promising sample pretreatment method was successfully established, which efficiently isolated proteins and small molecules in human serum. This method was achieved based on the multifunctional polymer, cryogel, as a solid phase extraction (SPE) monolith easily equipped in a syringe. The cryogel (pDC/GO-DE) was composed of diallyldimethyl ammonium chloride (DC) and 2-hydroxyethyl methacrylate (HE), which was further modified with graphene oxide (GO) and N-diethylethanamine hydrobromide (DE). Various proteins, including bovine serum albumin (BSA), lysozyme (Lys), γ-globulins, immunoglobulin G (IgG), transferrin, small molecules (ribavirin, adenosine, ofloxacin, estriol, rutin, amoxicillin, ibuprofen, 1-methyl-3-phenyl-propylamine, and benzylamine) and their mixtures were successively studied as model analytes to evaluate the new material and demonstrate the isolation mechanism, which was mainly dependent on mixed-mode ion-exchange and the hybrid hydrophobicity-hydrophilicity property of pDC/GO-DE cryogel. Moreover, the three-dimensional macroporous structure contributed to the underlying size-selective isolation. When 10 times diluted human serum was used as the sample, more than 95% of proteins were adsorbed within 10 min under physiological conditions, and the interference matrix in serum was also efficiently reduced. After recycling three times, the extraction ratio of proteins in human serum was still higher than 90%. When four small molecules (camptothecin, ribavirin, 1-methyl-3-phenylpropylamine and ofloxacin) were added to blank human serum, their recoveries were within 65.6-81.8%, and were comparable to those obtained by protein precipitation method (63.7-83.2%).
Collapse
Affiliation(s)
- Shuling Zhao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dongdong Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shuqiang Zhu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoyan Liu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
33
|
Sajid M, Płotka-Wasylka J. Combined extraction and microextraction techniques: Recent trends and future perspectives. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|