1
|
Bellassai N, D'Agata R, Giordani E, Ziccheddu G, Corradini R, Spoto G. A novel method for detecting genetic biomarkers in blood-based liquid biopsies using surface plasmon resonance imaging and magnetic beads shows promise in cancer diagnosis and monitoring. Talanta 2025; 286:127543. [PMID: 39798415 DOI: 10.1016/j.talanta.2025.127543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/18/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Directly detecting biomarkers in liquid biopsy for diagnosis and personalized treatment plays a crucial role in managing cancer relapse and increasing survival rates. Typically, the standard analysis of circulating tumour DNA requires lengthy isolation, extraction, and amplification steps, leading to sample contamination, longer turnaround time and higher assay costs. Surface plasmon resonance is an emerging and promising technology for rapid and real-time dynamic biomarker monitoring in liquid biopsy. Here, we propose a new SPR imaging biosensing approach to detect tumour DNA circulating in the blood of colorectal cancer patients by exploiting the unique properties of superparamagnetic particles. Micrometer beads functionalized with a biotinylated oligonucleotide can directly capture DNA target sequences bearing single-nucleotide variations of KRAS oncogene in human blood plasma. Mutated and wild-type peptide nucleic acid probes immobilized on an SPR gold surface recognize complementary and non-complementary DNA targets by discriminating a single nucleotide mismatch. The new assay allows for detecting p.G13D mutated DNA in buffer and spiked human plasma at attomolar level (down to 300 copies mL-1) with minimal sample manipulation and in just a few microliters. The assay was validated using plasma samples from colorectal cancer patients and healthy donors, by discriminating mutated DNA circulating in patients and wild-type DNA found in healthy blood donors. This feature underscores the potential of the liquid biopsy assay as a valuable tool for the diagnosis and monitoring of cancer.
Collapse
Affiliation(s)
- Noemi Bellassai
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d'Oro, 305, 00136, Roma, Italy
| | - Roberta D'Agata
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d'Oro, 305, 00136, Roma, Italy
| | - Elena Giordani
- Oncogenomics and Epigenetics, IRCSS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Giovanna Ziccheddu
- Oncogenomics and Epigenetics, IRCSS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze, 17/A, 43124, Parma, Italy
| | - Giuseppe Spoto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d'Oro, 305, 00136, Roma, Italy.
| |
Collapse
|
2
|
Olson AM, Wood RC, Weigel KM, Yan AJ, Lochner KA, Dragovich RB, Luabeya AK, Yager P, Hatherill M, Cangelosi GA. High-sensitivity detection of Mycobacterium tuberculosis DNA in tongue swab samples. J Clin Microbiol 2025; 63:e0114024. [PMID: 39745422 PMCID: PMC11837540 DOI: 10.1128/jcm.01140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/09/2024] [Indexed: 02/20/2025] Open
Abstract
Tongue swab (TS) sampling combined with quantitative PCR (qPCR) to detect Mycobacterium tuberculosis (MTB) DNA is a promising alternative to sputum testing for tuberculosis (TB) diagnosis. In prior studies, the sensitivity of tongue swabbing has usually been lower than sputum. In this study, we evaluated two strategies to improve sensitivity. In one, centrifugation was used to concentrate tongue dorsum bacteria from 2-mL suspensions eluted from high-capacity foam swab samples. The pellets were resuspended as 500-µL suspensions, and then mechanically lysed prior to dual-target qPCR to detect MTB insertion elements IS6110 and IS1081. Fractionation experiments demonstrated that most of the MTB DNA signal in clinical swab samples (99.22% ± 1.46%) was present in the sedimentable fraction. When applied to archived foam swabs collected from 124 South Africans with presumptive TB, this strategy exhibited 83% sensitivity (71/86) and 100% specificity (38/38) relative to sputum microbiological reference standard (MRS; sputum culture and/or Xpert Ultra). The second strategy used sequence-specific magnetic capture (SSMaC) to concentrate DNA released from MTB cells. This protocol was evaluated on archived Copan FLOQSwabs flocked swab samples collected from 128 South African participants with presumptive TB. Material eluted into 500 µL buffer was mechanically lysed. The suspensions were digested by proteinase K, hybridized to biotinylated dual-target oligonucleotide probes, and then concentrated ~20-fold using magnetic separation. Upon dual-target qPCR testing of concentrates, this strategy exhibited 90% sensitivity (83/92) and 97% specificity (35/36) relative to sputum MRS. These results point the way toward automatable, high-sensitivity methods for detecting MTB DNA in TS. IMPORTANCE Improved testing for tuberculosis (TB) is needed. Using a more accessible sample type than sputum may enable the detection of more cases, but it is critical that alternative samples be tested appropriately. Here, we describe two new, highly accurate methods for testing tongue swabs for TB DNA.
Collapse
Affiliation(s)
- Alaina M. Olson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Rachel C. Wood
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Kris M. Weigel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Alexander J. Yan
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Katherine A. Lochner
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Rane B. Dragovich
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Angelique K. Luabeya
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Rondebosch, Western Cape, South Africa
| | - Paul Yager
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Rondebosch, Western Cape, South Africa
| | - Gerard A. Cangelosi
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Ju Z, Guo X, Li L, Tang Y, Qiu M, Zhang W, Ouyang Z, Ma Q. Improved Point-of-Care Mass Spectrometry Analysis with Thin-Layer Chromatography-Based Two-Dimensional Separation and Spray Ionization. Anal Chem 2025; 97:712-720. [PMID: 39722213 DOI: 10.1021/acs.analchem.4c05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Point-of-care testing (POCT) involves administering rapid on-site analysis to provide fast biochemical testing results. POCT reduces delays in clinical decision-making and eliminates the need to transport and prepare clinical samples for immediate diagnosis or clinical intervention by healthcare professionals. Herein, a novel methodology integrating thin-layer chromatography-based two-dimensional separation with miniature mass spectrometry was developed for rapid on-site clinical analysis. As a proof-of-concept demonstration, γ-aminobutyric acid, 2-hydroxyglutarate, and N-acetyl-l-aspartic acid, which are widely known as biomarkers for brain gliomas, were selected as model analytes for method development and validation. The proposed approach exhibited satisfactory analytical performance, with 1 ng/mL limits of detection, 2 ng/mL limits of quantitation, and recoveries in the range of 85.9-107.2%. Additionally, on-TLC derivatization and reactive spray ionization strategies were utilized to enhance the mass spectrometric signals compared to underivatized analysis. This method was applied to analyze clinical samples, showcasing its attractive potential outside the laboratory.
Collapse
Affiliation(s)
- Zisheng Ju
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiangyu Guo
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Linsen Li
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yao Tang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
4
|
Cangelosi GA, Salfinger M. Casting a wider net for tuberculosis cases. Eur Respir J 2025; 65:2402245. [PMID: 39746770 DOI: 10.1183/13993003.02245-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Gerard A Cangelosi
- University of Washington, Department of Environmental and Occupational Health Sciences, Seattle, WA, USA
| | - Max Salfinger
- University of South Florida, College of Public Health and Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
5
|
Sivasubramanian PD, Unnikrishnan G, Kolanthai E, Muthuswamy S. Engineered nanoparticle systems: A review on emerging strategies for enhanced cancer therapeutics. NEXT MATERIALS 2025; 6:100405. [DOI: 10.1016/j.nxmate.2024.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Fortunati S, Giannetto M, Pedrini F, Nikolaou P, Donofrio G, Bertucci A, Careri M. A novel magnetic ligand-based assay for the electrochemical determination of BRD4. Talanta 2024; 279:126577. [PMID: 39032457 DOI: 10.1016/j.talanta.2024.126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The first magnetic ligand-based electrochemical assay aimed at the determination of BRD4 was developed and validated. BRD4 is an epigenetic regulator of great interest in oncology in relation to its overexpression observed in the pathogenesis of several cancer diseases. BRD4 also represents a major target for the development of innovative treatments aimed at protein inhibition or degradation. Despite the relevance of BRD4 both for diagnostics and therapeutic purposes, current methodologies for its determination are limited to commercial ELISA kits. We present a novel magnetic ligand-based assay for the electrochemical determination of BRD4. The developed assay is based on the use of a small synthetic fragment of the natural protein ligand for BRD4 as receptor, thus exploiting the intrinsic biological protein-protein recognition mechanism. In addition, the assay features the use of magnetic beads as immobilization platforms and peroxidase-conjugated monoclonal anti-BRD4 antibody for the generation of the electrochemical signal. The ligand-based assay shows outstanding performance in terms of rapidity, with results achievable in less than 20 min, no matrix effect when applied to human plasma or cell lysate samples, and excellent specificity. The proposed method exhibits a limit of detection of 2.66 nM and a response range tunable as a function of the amount of immobilized receptor. The developed ligand-based assay was successfully applied to the accurate determination of BRD4 in untreated cell lysates, as proven by the ELISA reference method. The good performance of the proposed bioassay for determination of BRD4 showed potential application of this strategy in convenient point-of-care testing.
Collapse
Affiliation(s)
- Simone Fortunati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy; Biostructures and Biosystems National Institute (I.N.B.B. Consortium), Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| | - Marco Giannetto
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy; Biostructures and Biosystems National Institute (I.N.B.B. Consortium), Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| | - Federica Pedrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Pavlos Nikolaou
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gaetano Donofrio
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Alessandro Bertucci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy; Biostructures and Biosystems National Institute (I.N.B.B. Consortium), Viale delle Medaglie d'Oro 305, 00136, Roma, Italy.
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy; Biostructures and Biosystems National Institute (I.N.B.B. Consortium), Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| |
Collapse
|
7
|
Wang N, Li Z, Zhao Y, Wu X, Zhou C, Su X. A novel robust hydrogel-assisted paper-based sensor based on fluorescence UiO-66-NH 2@ZIF-8 for the dual-channel detection of captopril. Talanta 2024; 277:126400. [PMID: 38876031 DOI: 10.1016/j.talanta.2024.126400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Captopril (CP) is commonly used as an active enzyme inhibitor for the treatment of coronary heart disease, hypertension and angina pectoris. The development of sensitive and efficient method for CP analysis is of great importance in biomedical research. Herein, we fabricated a sensitive and robust hydrogel-assisted paper-based sensor based on fluorescence UiO-66-NH2@ZIF-8 and Co, N-doped carbon nanozymes with oxidase-mimicking activity for accurate monitoring of captopril. The hydrogel-assisted paper-based sensor appeared a visible pink signal due to the catalytic oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) to oxDPD by Co, N-doped carbon-based nanozymes, and resulted in the fluorescence quenching of UiO-66-NH2@ZIF-8. In the presence of captopril, the oxidation of chromogenic substrate DPD by Co, N-doped nanozymes in the hydrogel-assisted paper-based sensor was hindered and accompanied by a change in the visible color, leading to recovery of the fluorescence of UiO-66-NH2@ZIF-8, and the change in the fluorescence color could also be observed. Therefore, the quantitative detection of captopril is achieved by taking a smartphone photograph and converting the image parameters into data information using ImageJ software. The portable hydrogel-assisted paper sensor provided sensitive detection of captopril in two modes based on visible color change as well as fluorescence color change with limits of detection of 0.45 μM and 0.47 μM, respectively. This hydrogel-assisted paper-based sensor has been successfully applied to the accurate monitoring of captopril in human serum, providing a potential avenue for in situ detection of captopril.
Collapse
Affiliation(s)
- Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| | - Zhengxuan Li
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, PR China
| | - Yihan Zhao
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xushuo Wu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
8
|
Olson AM, Wood RC, Weigel KM, Yan AJ, Lochner KA, Dragovich RB, Luabeya AK, Yager P, Hatherill M, Cangelosi GA. High-sensitivity detection of Mycobacterium tuberculosis DNA in tongue swab samples. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.26.24311064. [PMID: 39108520 PMCID: PMC11302704 DOI: 10.1101/2024.07.26.24311064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Tongue swab (TS) sampling combined with qPCR to detect Mycobacterium tuberculosis (MTB) DNA is a promising alternative to sputum testing for tuberculosis (TB) diagnosis. In prior studies, the sensitivity of tongue swabbing has usually been lower than sputum. In this study, we evaluated two strategies to improve sensitivity. In one, centrifugation was used to concentrate tongue dorsum bacteria from 2-mL suspensions eluted from high-capacity foam swab samples. The pellets were resuspended as 500-μL suspensions, and then mechanically lysed prior to dual-target qPCR to detect MTB insertion elements IS6110 and IS1081. Fractionation experiments demonstrated that most of the MTB DNA signal in clinical swab samples (99.22% ± 1.46%) was present in the sedimentable fraction. When applied to archived foam swabs collected from 124 South Africans with presumptive TB, this strategy exhibited 83% sensitivity (71/86) and 100% specificity (38/38) relative to sputum MRS (microbiological reference standard; sputum culture and/or Xpert® Ultra). The second strategy used sequence-specific magnetic capture (SSMaC) to concentrate DNA released from MTB cells. This protocol was evaluated on archived Copan FLOQSwabs® flocked swab samples collected from 128 South African participants with presumptive TB. Material eluted into 500 μL buffer was mechanically lysed. The suspensions were digested by proteinase K, hybridized to biotinylated dual-target oligonucleotide probes, and then concentrated ~20-fold using magnetic separation. Upon dual-target qPCR testing of concentrates, this strategy exhibited 90% sensitivity (83/92) and 97% specificity (35/36) relative to sputum MRS. These results point the way toward automatable, high-sensitivity methods for detecting MTB DNA in TS. Importance Improved testing for tuberculosis (TB) is needed. Using a more accessible sample type than sputum may enable the detection of more cases, but it is critical that alternative samples be tested appropriately. Here, we describe two new, highly accurate methods for testing tongue swabs for TB DNA.
Collapse
Affiliation(s)
- Alaina M. Olson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Rachel C. Wood
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Kris M. Weigel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Alexander J. Yan
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Katherine A. Lochner
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Rane B. Dragovich
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Angelique K. Luabeya
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Paul Yager
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease & Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Gerard A. Cangelosi
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
9
|
Araújo EV, Carneiro SV, Neto DMA, Freire TM, Costa VM, Freire RM, Fechine LMUD, Clemente CS, Denardin JC, Dos Santos JCS, Santos-Oliveira R, Rocha JS, Fechine PBA. Advances in surface design and biomedical applications of magnetic nanoparticles. Adv Colloid Interface Sci 2024; 328:103166. [PMID: 38728773 DOI: 10.1016/j.cis.2024.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Despite significant efforts by scientists in the development of advanced nanotechnology materials for smart diagnosis devices and drug delivery systems, the success of clinical trials remains largely elusive. In order to address this biomedical challenge, magnetic nanoparticles (MNPs) have gained attention as a promising candidate due to their theranostic properties, which allow the simultaneous treatment and diagnosis of a disease. Moreover, MNPs have advantageous characteristics such as a larger surface area, high surface-to-volume ratio, enhanced mobility, mass transference and, more notably, easy manipulation under external magnetic fields. Besides, certain magnetic particle types based on the magnetite (Fe3O4) phase have already been FDA-approved, demonstrating biocompatible and low toxicity. Typically, surface modification and/or functional group conjugation are required to prevent oxidation and particle aggregation. A wide range of inorganic and organic molecules have been utilized to coat the surface of MNPs, including surfactants, antibodies, synthetic and natural polymers, silica, metals, and various other substances. Furthermore, various strategies have been developed for the synthesis and surface functionalization of MNPs to enhance their colloidal stability, biocompatibility, good response to an external magnetic field, etc. Both uncoated MNPs and those coated with inorganic and organic compounds exhibit versatility, making them suitable for a range of applications such as drug delivery systems (DDS), magnetic hyperthermia, fluorescent biological labels, biodetection and magnetic resonance imaging (MRI). Thus, this review provides an update of recently published MNPs works, providing a current discussion regarding their strategies of synthesis and surface modifications, biomedical applications, and perspectives.
Collapse
Affiliation(s)
- E V Araújo
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - S V Carneiro
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - D M A Neto
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - T M Freire
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - V M Costa
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - R M Freire
- Universidad Central de Chile, Santiago 8330601, Chile.
| | - L M U D Fechine
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - C S Clemente
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE 60440-900, Brazil.
| | - J C Denardin
- Physics Department and CEDENNA, University of Santiago of Chile (USACH), Santiago 9170124, Chile.
| | - J C S Dos Santos
- Engineering and Sustainable Development Institute, International Afro-Brazilian Lusophone Integration University, Campus das Auroras, Redenção 62790970, CE, Brazil; Chemical Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 709, Fortaleza 60455760, CE, Brazil.
| | - R Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of Novel Radiopharmaceuticals, R. Helio de Almeida, 75, Rio de Janeiro 21941906, RJ, Brazil; Zona Oeste State University, Laboratory of Nanoradiopharmacy, Av Manuel Caldeira de Alvarenga, 1203, Campo Grande 23070200, RJ, Brazil.
| | - Janaina S Rocha
- Industrial Technology and Quality Center of Ceará, R. Prof. Rômulo Proença, s/n - Pici, 60440-552 Fortaleza, CE, Brazil.
| | - P B A Fechine
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| |
Collapse
|
10
|
Shukhratovich Abdullaev S, H Althomali R, Raza Khan A, Sanaan Jabbar H, Abosoda M, Ihsan A, Aggarwal S, Mustafa YF, Hammoud Khlewee I, Jabbar AM. Integrating of analytical techniques with enzyme-mimicking nanomaterials for the fabrication of microfluidic systems for biomedical analysis. Talanta 2024; 273:125896. [PMID: 38479027 DOI: 10.1016/j.talanta.2024.125896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Bioanalysis faces challenges in achieving fast, reliable, and point-of-care (POC) determination methods for timely diagnosis and prognosis of diseases. POC devices often display lower sensitivity compared to laboratory-based methods, limiting their ability to quantify low concentrations of target analytes. To enhance sensitivity, the synthesis of new materials and improvement of the efficiency of the analytical strategies are necessary. Enzyme-mimicking materials have revolutionized the field of the fabrication of new high-throughput sensing devices. The integration of microfluidic chips with analytical techniques offers several benefits, such as easy miniaturization, need for low biological sample volume, etc., while also enhancing the sensitivity of the probe. The use enzyme-like nanomaterials in microfluidic systems can offer portable strategies for real-time and reliable detection of biological agents. Colorimetry and electrochemical methods are commonly utilized in the fabrication of nanozyme-based microfluidic systems. The review summarizes recent developments in enzyme-mimicking materials-integrated microfluidic analytical methods in biomedical analysis and discusses the current challenges, advantages, and potential future directions.
Collapse
Affiliation(s)
- Sherzod Shukhratovich Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan; Scientific and Innovation Department, Tashkent State Pedagogical University Named After Nizami, Tashkent, Uzbekistan.
| | - Raed H Althomali
- Department of Chemistry, Prince Sattam Bin Abdulaziz University,College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Ahmad Raza Khan
- Department of Industrial and Manufacturing Engineering (Rachna College), University of Engineering and Technology, Lahore, 54700, Pakistan
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq.
| | - Munther Abosoda
- Chemistry department, the Islamic University, Najaf, Iraq; Chemistry department, the Islamic University of Al Diwaniyah, Iraq; Chemistry department, the Islamic University of Babylon, Iraq
| | - Ali Ihsan
- Chemistry department, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Saurabh Aggarwal
- Department of Mechanical Engineering, Uttaranchal Institute of Technology, Uttaranchal University, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | - Ibrahim Hammoud Khlewee
- Department of Prosthodontics, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Abeer Mhussan Jabbar
- college of pharmacy/ National University of Science and Technology, Dhi Qar, Iraq
| |
Collapse
|
11
|
Karkhaneh F, Sadr ZK, Rad AM, Divsalar A. Detection of tetanus toxoid with iron magnetic nanobioprobe. Biomed Phys Eng Express 2024; 10:045030. [PMID: 38479000 DOI: 10.1088/2057-1976/ad33a8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/13/2024] [Indexed: 05/26/2024]
Abstract
Diagnosis of diseases with low facilities, speed, accuracy and sensitivity is an important matter in treatment. Bioprobes based on iron oxide nanoparticles are a good candidate for early detection of deadly and infectious diseases such as tetanus due to their high reactivity, biocompatibility, low production cost and sample separation under a magnetic field. In this study, silane groups were coated on surface of iron oxide nanoparticles using tetraethoxysilane (TEOS) hydrolysis. Also, NH2groups were generated on the surface of silanized nanoparticles using 3-aminopropyl triethoxy silane (APTES). Antibody was immobilized on the surface of silanized nanoparticles using TCT trichlorothriazine as activator. Silanization and stabilized antibody were investigated by using of FT-IR, EDX, VSM, SRB technique. UV/vis spectroscopy, fluorescence, agglutination test and ELISA were used for biosensor performance and specificity. The results of FT-IR spectroscopy showed that Si-O-Si and Si-O-Fe bonds and TCT chlorine and amine groups of tetanus anti-toxoid antibodies were formed on the surface of iron oxide nanoparticles. The presence of Si, N and C elements in EDX analysis confirms the silanization of iron oxide nanoparticles. VSM results showed that the amount of magnetic nanoparticles after conjugation is sufficient for biological applications. Antibody stabilization on nanoparticles increased the adsorption intensity in the uv/vis spectrometer. The fluorescence intensity of nano bioprobe increased in the presence of 10 ng ml-1. Nanobio probes were observed as agglomerates in the presence of tetanus toxoid antigen. The presence of tetanus antigen caused the formation of antigen-nanobioprobe antigen complex. Identification of this complex by HRP-bound antibody confirmed the specificity of nanobioprobe. Tetanus magnetic nanobioprobe with a diagnostic limit of 10 ng ml-1of tetanus antigen in a short time can be a good tool in LOC devices and microfluidic chips.
Collapse
Affiliation(s)
- Farzaneh Karkhaneh
- Institute for Convergence Science & Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Ziba Karimi Sadr
- Institute for Convergence Science & Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Ahmad Molai Rad
- Institute for Convergence Science & Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Adele Divsalar
- Faculty of Biological Science, Kharazmi University, Tehran, Iran
| |
Collapse
|
12
|
Hosseine M, Naghib SM, Khodadadi A. Label-free electrochemical biosensor based on green-synthesized reduced graphene oxide/Fe 3O 4/nafion/polyaniline for ultrasensitive detection of SKBR3 cell line of HER2 breast cancer biomarker. Sci Rep 2024; 14:11928. [PMID: 38789508 PMCID: PMC11126587 DOI: 10.1038/s41598-024-62231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer stands as one of the most impactful illnesses in the modern world, primarily owing to its lethal consequences. The fundamental concern in this context likely stems from delayed diagnoses in patients. Hence, detecting various forms of cancer is imperative. A formidable challenge in cancer research has been the diagnosis and treatment of this disease. Early cancer diagnosis is crucial, as it significantly influences subsequent therapeutic steps. Despite substantial scientific efforts, accurately and swiftly diagnosing cancer remains a formidable challenge. It is well known that the field of cancer diagnosis has effectively included electrochemical approaches. Combining the remarkable selectivity of biosensing components-such as aptamers, antibodies, or nucleic acids-with electrochemical sensor systems has shown positive outcomes. In this study, we adapt a novel electrochemical biosensor for cancer detection. This biosensor, based on a glassy carbon electrode, incorporates a nanocomposite of reduced graphene oxide/Fe3O4/Nafion/polyaniline. We elucidated the modification process using SEM, TEM, FTIR, RAMAN, VSM, and electrochemical methods. To optimize the experimental conditions and monitor the immobilization processes, electrochemical techniques such as CV, EIS, and SWV were employed. The calibration graph has a linear range of 102-106 cells mL-1, with a detection limit of 5 cells mL-1.
Collapse
Affiliation(s)
- Mojtaba Hosseine
- School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran, Iran
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, 1517964311, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), P.O. Box 16846-13114, Tehran, Iran.
| | - Abbasali Khodadadi
- School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran, Iran
| |
Collapse
|
13
|
Fabiani L, Fiore L, Fillo S, D'Amore N, De Santis R, Lista F, Arduini F. Smartphone-assisted paper-based electrochemical immunosensor for SARS-CoV-2 detection in saliva. Bioelectrochemistry 2024; 156:108619. [PMID: 38128441 DOI: 10.1016/j.bioelechem.2023.108619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
Herein, we developed a new waste solution-free paper-based electrochemical immunosensor for SARS-CoV-2 detection in saliva, by combining vertical and lateral flow. In detail, the device was constituted of a reservoir containing all reagents for the construction of the immunological chain onto the magnetic beads and a lateral flow holder which contained a polyester-based electrode, a magnet, and an adsorbent pad. The measurement was carried out by adding the saliva sample into the reservoir, followed by the addition of this solution in the hole present in the lateral flow holder. The successive additions of washing buffer and TMB solution in the lateral flow holder allowed the detection of N protein in saliva in the range of 0.06 to 4 µg/mL with a detection limit equal to 30 ng/mL. The analysis of several saliva samples with the sensing tool and the reference method, demonstrated the effectiveness of this device, being able to identify positive patients with high values of CT e.g. 35. This new configuration paves the way for the realization of any magnetic beads-based immunosystem without waste solution production, enlarging the application of paper-based devices.
Collapse
Affiliation(s)
- Laura Fabiani
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Luca Fiore
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy; SENSE4MED, Via Bitonto 139, 00133, Rome, Italy
| | - Silvia Fillo
- Defence Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Nino D'Amore
- Defence Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Riccardo De Santis
- Defence Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Florigio Lista
- Defence Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Fabiana Arduini
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy; SENSE4MED, Via Bitonto 139, 00133, Rome, Italy.
| |
Collapse
|
14
|
Rezaei B, Yari P, Sanders SM, Wang H, Chugh VK, Liang S, Mostufa S, Xu K, Wang JP, Gómez-Pastora J, Wu K. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304848. [PMID: 37732364 DOI: 10.1002/smll.202304848] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Nowadays, magnetic nanoparticles (MNPs) are applied in numerous fields, especially in biomedical applications. Since biofluidic samples and biological tissues are nonmagnetic, negligible background signals can interfere with the magnetic signals from MNPs in magnetic biosensing and imaging applications. In addition, the MNPs can be remotely controlled by magnetic fields, which make it possible for magnetic separation and targeted drug delivery. Furthermore, due to the unique dynamic magnetizations of MNPs when subjected to alternating magnetic fields, MNPs are also proposed as a key tool in cancer treatment, an example is magnetic hyperthermia therapy. Due to their distinct surface chemistry, good biocompatibility, and inducible magnetic moments, the material and morphological structure design of MNPs has attracted enormous interest from a variety of scientific domains. Herein, a thorough review of the chemical synthesis strategies of MNPs, the methodologies to modify the MNPs surface for better biocompatibility, the physicochemical characterization techniques for MNPs, as well as some representative applications of MNPs in disease diagnosis and treatment are provided. Further portions of the review go into the diagnostic and therapeutic uses of composite MNPs with core/shell structures as well as a deeper analysis of MNP properties to learn about potential biomedical applications.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Sean M Sanders
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Haotong Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Lubbock, MN, 55455, USA
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Lubbock, MN, 55455, USA
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kanglin Xu
- Department of Computer Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Lubbock, MN, 55455, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Lubbock, MN, 55455, USA
| | | | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
15
|
Ding M, Xiao X, Yang Y, Yao Z, Dong Z, Gao Q, Tian B. AND-Logic Cascade Rolling Circle Amplification for Optomagnetic Detection of Dual Target SARS-CoV-2 Sequences. Anal Chem 2024; 96:455-462. [PMID: 38123506 DOI: 10.1021/acs.analchem.3c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
DNA logic operations are accurate and specific molecular strategies that are appreciated in target multiplexing and intelligent diagnostics. However, most of the reported DNA logic operation-based assays lack amplifiers prior to logic operation, resulting in detection limits at the subpicomolar to nanomolar level. Herein, a homogeneous and isothermal AND-logic cascade amplification strategy is demonstrated for optomagnetic biosensing of two different DNA inputs corresponding to a variant of concern sequence (containing spike L452R) and a highly conserved sequence from SARS-CoV-2. With an "amplifiers-before-operator" configuration, two input sequences are recognized by different padlock probes for amplification reactions, which generate amplicons used, respectively, as primers and templates for secondary amplification, achieving the AND-logic operation. Cascade amplification products can hybridize with detection probes grafted onto magnetic nanoparticles (MNPs), leading to hydrodynamic size increases and/or aggregation of MNPs. Real-time optomagnetic MNP analysis offers a detection limit of 8.6 fM with a dynamic detection range spanning more than 3 orders of magnitude. The accuracy, stability, and specificity of the system are validated by testing samples containing serum, salmon sperm, a single-nucleotide variant, and biases of the inputs. Clinical samples are tested with both quantitative reverse transcription-PCR and our approach, showing highly consistent measurement results.
Collapse
Affiliation(s)
- Mingming Ding
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xiaozhou Xiao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yulin Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Ziyang Yao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Zhuxin Dong
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| | - Qian Gao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bo Tian
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| |
Collapse
|
16
|
Du B, Zhang Y, Wang J, Liu Z, Mu X, Xu J, Tong Z, Liu B. A novel strategy for bioaerosol rapid detection based on broad-spectrum high-efficiency magnetic enrichment and separation combined with ATP bioluminescence. Biosens Bioelectron 2023; 240:115627. [PMID: 37647683 DOI: 10.1016/j.bios.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Bioaerosol detection technology represented by laser-induced fluorescence (LIF) cannot effectively detect bioaerosols in the presence of interferents such as plant-derived smoke, industrial waste gas, pollen and pollen debris which can produce strong non-biological fluorescence interference. To overcome this drawback, in this study, a novel method based on broad-spectrum high-efficiency magnetic enrichment and separation combined with adenosine triphosphate (ATP) bioluminescence was proposed for Escherichia coli (E. coli) bioaerosols rapid detection. First, E. coli bioaerosols mixed with interferents were collected. Core-shell Fe3O4@Polydopamine@Polyethyleneimine magnetic particles were used as bioaerosol enrichment materials to enrich E. coli bioaerosol sampling solutions. Subsequently, an ATP bioluminescence assay was performed to determine the concentration of E. coli. A linear relationship was observed between ATP bioluminescence intensity after enrichment and the E. coli bioaerosol concentration in the range of 870-49,098 particles per liter; the bioluminescence intensity measured after enrichment was significantly higher than that before enrichment, and this enrichment method provide a 6-fold better sensitivity in bioaerosol detection. More importantly, this method efficiently enriched and detected bioaerosols in plant-derived smoke. This method can effectively improve the sensitivity of ATP bioluminescence detection, and possesses the advantages of convenient operation and strong anti-interference ability. It also provides a foundation for the effective detection of bioaerosols mixed with interfering substances, and a reference for evaluating the sensitivity and anti-interference of LIF-based instruments.
Collapse
Affiliation(s)
- Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yueqi Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jianjie Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
17
|
Xu J, Wang M, Li M, Yang J, Yang L. Paper-based chiral biosensors using enzyme encapsulation in hydrogel network for point-of-care detection of lactate enantiomers. Anal Chim Acta 2023; 1279:341834. [PMID: 37827649 DOI: 10.1016/j.aca.2023.341834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Chiral analysis is of pivotal importance in a variety of fields due to the different biological activities and functions of enantiomers. Here, we develop a simple paper-based chiral biosensor that can perform sample-to-answer simultaneous analysis of lactate enantiomers in human serum samples. By modification of alginate hydrogel with "egg-box" three-dimensional network structure on a glass microfiber paper, reagents of enantiomer-selective enzymatic reactions are efficiently encapsulated forming the sensing regions for chiral analysis. Dual enzyme catalytic system (lactate dehydrogenase and glutamic pyruvic transaminase) is utilized to enhance the response of the biosensor. A smartphone with color analysis software is used to collect and analyze the fluorescence signal from the product nicotinamide adenine dinucleotide. The results show that the sensor has excellent selectivity toward lactate enantiomers with low limit-of-detection of (30.0 ± 0.7) μM for L-lactate and (3.0 ± 0.2) μM for D-lactate, and wide linear detection range of 0.1-3.0mM and 0.01-0.5 mM for L-lactate and D-lactate respectively. The proposed method is successfully applied to the simultaneous detection of L-/D-lactate concentrations in human serum with satisfactory accuracy. Our study provides a robust approach for developing chiral biosensors, which would have promising application prospect in point-of-care testing (POCT) analysis of various biological and food samples.
Collapse
Affiliation(s)
- Jia Xu
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China; College of Science, Shenyang University of Chemical Technology, Shenyang, Liaoning Province, 110142, China
| | - Meng Wang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Minmin Li
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Jinlan Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Li Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
18
|
Liu CW, Tsutsui H. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technol 2023; 28:302-323. [PMID: 37302751 DOI: 10.1016/j.slast.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Efficient sample preparation and accurate disease diagnosis under field conditions are of great importance for the early intervention of diseases in humans, animals, and plants. However, in-field preparation of high-quality nucleic acids from various specimens for downstream analyses, such as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and nucleic acid extraction protocols suitable for portable formats have drawn significant attention. Similarly, various nucleic acid amplification techniques and detection methods have also been explored. Combining these functions in an integrated platform has resulted in emergent sample-to-answer sensing systems that allow effective disease detection and analyses outside a laboratory. Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and distributed surveillance of diseases in food and agriculture industries, environmental monitoring, and defense against biological warfare and terrorism. This paper reviews recent advances in portable sample preparation technologies and facile detection methods that have been / or could be adopted into novel sample-to-answer devices. In addition, recent developments and challenges of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
19
|
Khanthaphixay B, Wu L, Yoon JY. Microparticle-Based Detection of Viruses. BIOSENSORS 2023; 13:820. [PMID: 37622906 PMCID: PMC10452130 DOI: 10.3390/bios13080820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
Surveillance of viral pathogens in both point-of-care and clinical settings is imperative to preventing the widespread propagation of disease-undetected viral outbreaks can pose dire health risks on a large scale. Thus, portable, accessible, and reliable biosensors are necessary for proactive measures. Polymeric microparticles have recently gained popularity for their size, surface area, and versatility, which make them ideal biosensing tools. This review cataloged recent investigations on polymeric microparticle-based detection platforms across eight virus families. These microparticles were used as labels for detection (often with fluorescent microparticles) and for capturing viruses for isolation or purification (often with magnetic microparticles). We also categorized all methods by the characteristics, materials, conjugated receptors, and size of microparticles. Current approaches were compared, addressing strengths and weaknesses in the context of virus detection. In-depth analyses were conducted for each virus family, categorizing whether the polymeric microparticles were used as labels, for capturing, or both. We also summarized the types of receptors conjugated to polymeric microparticles for each virus family.
Collapse
Affiliation(s)
| | | | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 75721, USA; (B.K.); (L.W.)
| |
Collapse
|
20
|
Xu R, Ouyang L, Shaik R, Chen H, Zhang G, Zhe J. Rapid Detection of Microparticles Using a Microfluidic Resistive Pulse Sensor Based on Bipolar Pulse-Width Multiplexing. BIOSENSORS 2023; 13:721. [PMID: 37504119 PMCID: PMC10377334 DOI: 10.3390/bios13070721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Rapid and accurate analysis of micro/nano bio-objects (e.g., cells, biomolecules) is crucial in clinical diagnostics and drug discovery. While a traditional resistive pulse sensor can provide multiple kinds of information (size, count, surface charge, etc.) about analytes, it has low throughput. We present a unique bipolar pulse-width, multiplexing-based resistive pulse sensor for high-throughput analysis of microparticles. Signal multiplexing is enabled by exposing the central electrode at different locations inside the parallel sensing channels. Together with two common electrodes, the central electrode encodes the electrical signal from each sensing channel, generating specific bipolar template waveforms with different pulse widths. Only one DC source is needed as input, and only one combined electrical output is collected. The combined signal can be demodulated using correlation analysis and a unique iterative cancellation scheme. The accuracy of particle counting and sizing was validated using mixtures of various sized microparticles. Results showed errors of 2.6% and 6.1% in sizing and counting, respectively. We further demonstrated its accuracy for cell analysis using HeLa cells.
Collapse
Affiliation(s)
- Ruiting Xu
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Leixin Ouyang
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Rubia Shaik
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA
| | - Heyi Chen
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
21
|
Mumtaz Z, Rashid Z, Ali A, Arif A, Ameen F, AlTami MS, Yousaf MZ. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches. BIOSENSORS 2023; 13:584. [PMID: 37366949 DOI: 10.3390/bios13060584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 06/28/2023]
Abstract
Conventional diagnostic techniques are based on the utilization of analyte sampling, sensing and signaling on separate platforms for detection purposes, which must be integrated to a single step procedure in point of care (POC) testing devices. Due to the expeditious nature of microfluidic platforms, the trend has been shifted toward the implementation of these systems for the detection of analytes in biochemical, clinical and food technology. Microfluidic systems molded with substances such as polymers or glass offer the specific and sensitive detection of infectious and noninfectious diseases by providing innumerable benefits, including less cost, good biological affinity, strong capillary action and simple process of fabrication. In the case of nanosensors for nucleic acid detection, some challenges need to be addressed, such as cellular lysis, isolation and amplification of nucleic acid before its detection. To avoid the utilization of laborious steps for executing these processes, advances have been deployed in this perspective for on-chip sample preparation, amplification and detection by the introduction of an emerging field of modular microfluidics that has multiple advantages over integrated microfluidics. This review emphasizes the significance of microfluidic technology for the nucleic acid detection of infectious and non-infectious diseases. The implementation of isothermal amplification in conjunction with the lateral flow assay greatly increases the binding efficiency of nanoparticles and biomolecules and improves the limit of detection and sensitivity. Most importantly, the deployment of paper-based material made of cellulose reduces the overall cost. Microfluidic technology in nucleic acid testing has been discussed by explicating its applications in different fields. Next-generation diagnostic methods can be improved by using CRISPR/Cas technology in microfluidic systems. This review concludes with the comparison and future prospects of various microfluidic systems, detection methods and plasma separation techniques used in microfluidic devices.
Collapse
Affiliation(s)
- Zilwa Mumtaz
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| | - Zubia Rashid
- Pure Health Laboratory, Mafraq Hospital, Abu Dhabi 1227788, United Arab Emirates
| | - Ashaq Ali
- State Key Laboratory of Virology, Center for Biosafety MegaScience, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Afsheen Arif
- Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Suad University, Riyadh 11451, Saudi Arabia
| | - Mona S AlTami
- Biology Department, College of Science, Qassim University, Burydah 52571, Saudi Arabia
| | - Muhammad Zubair Yousaf
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| |
Collapse
|
22
|
Huang L, Pei K, Wang X. Magnetic relaxation switch sensor based on aptamer-modified poly-L-lysine-ferroferric oxide magnetic nanoparticles and graphene oxide for the determination of insecticides in vegetables. Mikrochim Acta 2023; 190:239. [PMID: 37231283 DOI: 10.1007/s00604-023-05817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
A simple and effective graphene oxide-magnetic relaxation switch (GO-MRS) sensor that combines graphene oxide (GO) and aptamer-modified poly-L-lysine(PLL)-Fe3O4 nanoparticles (Fe3O4@PLL-Apt NPs) was designed for the detection of acetamiprid (ACE). In this sensor, Fe3O4@PLL-Apt NPs acted as a relaxation signal probe and GO facilitated the generation of relaxation signal changes (dispersion/aggregation shift), while the aptamer is a molecular component that recognizes ACE. This GO-assisted magnetic signal probe improves the stability of magnetic nanoparticles in solution and enhances their sensitivity to small molecules while avoiding cross-reactions. Under optimal conditions, the sensor exhibits a wide working range (10-80 nM) and low detection limit (8.43 nM). The spiked recoveries ranged from 96.54 to 103.17%, with a relative standard deviation (RSD) of less than 2.3%. In addition, the performance of the GO-MRS sensor matched that of the standard method (liquid chromatography-mass spectrometry (LC-MS)), indicating that the GO-MRS sensor is suitable for the detection of ACE in vegetables.
Collapse
Affiliation(s)
- Lei Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Kaili Pei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
23
|
Hou F, Sun S, Abdullah SW, Tang Y, Li X, Guo H. The application of nanoparticles in point-of-care testing (POCT) immunoassays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2154-2180. [PMID: 37114768 DOI: 10.1039/d3ay00182b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Covid-19 pandemic has led to greater recognition of the importance of the fast and timely detection of pathogens. Recent advances in point-of-care testing (POCT) technology have shown promising results for rapid diagnosis. Immunoassays are among the most extensive POCT assays, in which specific labels are used to indicate and amplify the immune signal. Nanoparticles (NPs) are above the rest because of their versatile properties. Much work has been devoted to NPs to find more efficient immunoassays. Herein, we comprehensively describe NP-based immunoassays with a focus on particle species and their specific applications. This review describes immunoassays along with key concepts surrounding their preparation and bioconjugation to show their defining role in immunosensors. The specific mechanisms, microfluidic immunoassays, electrochemical immunoassays (ELCAs), immunochromatographic assays (ICAs), enzyme-linked immunosorbent assays (ELISA), and microarrays are covered herein. For each mechanism, a working explanation of the appropriate background theory and formalism is articulated before examining the biosensing and related point-of-care (POC) utility. Given their maturity, some specific applications using different nanomaterials are discussed in more detail. Finally, we outline future challenges and perspectives to give a brief guideline for the development of appropriate platforms.
Collapse
Affiliation(s)
- Fengping Hou
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
- Lanzhou Institute of Biological Products Co., Ltd (LIBP), Subsidiary Company of China National Biotec Group Company Limited (CNBG), 730046 Lanzhou, China.
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Xiongxiong Li
- Lanzhou Institute of Biological Products Co., Ltd (LIBP), Subsidiary Company of China National Biotec Group Company Limited (CNBG), 730046 Lanzhou, China.
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
24
|
Xu R, Ouyang L, Chen H, Zhang G, Zhe J. Recent Advances in Biomolecular Detection Based on Aptamers and Nanoparticles. BIOSENSORS 2023; 13:bios13040474. [PMID: 37185549 PMCID: PMC10136534 DOI: 10.3390/bios13040474] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
The fast, accurate detection of biomolecules, ranging from nucleic acids and small molecules to proteins and cellular secretions, plays an essential role in various biomedical applications. These include disease diagnostics and prognostics, environmental monitoring, public health, and food safety. Aptamer recognition (DNA or RNA) has gained extensive attention for biomolecular detection due to its high selectivity, affinity, reproducibility, and robustness. Concurrently, biosensing with nanoparticles has been widely used for its high carrier capacity, stability and feasibility of incorporating optical and catalytic activity, and enhanced diffusivity. Biosensors based on aptamers and nanoparticles utilize the combination of their advantages and have become a promising technology for detecting of a wide variety of biomolecules with high sensitivity, reliability, specificity, and detection speed. Via various sensing mechanisms, target biomolecules have been quantified in terms of optical (e.g., colorimetric and fluorometric), magnetic, and electrical signals. In this review, we summarize the recent advances in and compare different aptamer-nanoparticle-based biosensors by nanoparticle types and detection mechanisms. We also share our views on the highlights and challenges of the different nanoparticle-aptamer-based biosensors.
Collapse
Affiliation(s)
- Ruiting Xu
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Leixin Ouyang
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Heyi Chen
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
25
|
Zhang D, Lin H, Chen L, Wu Y, Xie J, Shi X, Guo Z. Cluster-bomb type magnetic biosensor for ultrasensitive detection of Vibrio parahaemolyticus based on low field nuclear magnetic resonance. Anal Chim Acta 2023; 1248:340906. [PMID: 36813458 DOI: 10.1016/j.aca.2023.340906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Herein, a novel cluster-bomb type signal sensing and amplification strategy in low field nuclear magnetic resonance was proposed, and a magnetic biosensor for ultrasensitive homogeneous immunoassay of Vibrio parahaemolyticus (VP) was developed. The capture unit MGO@Ab was magnetic graphene oxide (MGO) immobilized by VP antibody (Ab) to capture VP. And, the signal unit PS@Gd-CQDs@Ab was polystyrene (PS) pellets covered by Ab to recognize VP and Gd-CQDs i.e. carbon quantum dots (CQDs) containing lots of magnetic signal labels Gd3+. In presence of VP, the immunocomplex signal unit-VP-capture unit could be formed and separated by magnetic force conveniently from the sample matrix. With the successive introduction of disulfide threitol and hydrochloric acid, signal units were cleaved and disintegrated, resulting in a homogeneous dispersion of Gd3+. Thus, cluster-bomb type dual signal amplification was achieved through increasing the amount and the dispersity of signal labels simultaneously. Under optimal experimental conditions, VP could be detected in the concentration range of 5-1.0 × 106 CFU/mL, with a limit of quantitation (LOQ) 4 CFU/mL. In addition, satisfactory selectivity, stability and reliability could be obtained. Therefore, this cluster-bomb type signal sensing and amplification strategy is powerful in designing magnetic biosensor and detecting pathogenic bacteria.
Collapse
Affiliation(s)
- Dongyu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Han Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Le Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Yangbo Wu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Jianjun Xie
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
26
|
Dudchenko N, Pawar S, Perelshtein I, Fixler D. Magnetite-Based Biosensors and Molecular Logic Gates: From Magnetite Synthesis to Application. BIOSENSORS 2023; 13:304. [PMID: 36979516 PMCID: PMC10046048 DOI: 10.3390/bios13030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
In the last few decades, point-of-care (POC) sensors have become increasingly important in the detection of various targets for the early diagnostics and treatment of diseases. Diverse nanomaterials are used as building blocks for the development of smart biosensors and magnetite nanoparticles (MNPs) are among them. The intrinsic properties of MNPs, such as their large surface area, chemical stability, ease of functionalization, high saturation magnetization, and more, mean they have great potential for use in biosensors. Moreover, the unique characteristics of MNPs, such as their response to external magnetic fields, allow them to be easily manipulated (concentrated and redispersed) in fluidic media. As they are functionalized with biomolecules, MNPs bear high sensitivity and selectivity towards the detection of target biomolecules, which means they are advantageous in biosensor development and lead to a more sensitive, rapid, and accurate identification and quantification of target analytes. Due to the abovementioned properties of functionalized MNPs and their unique magnetic characteristics, they could be employed in the creation of new POC devices, molecular logic gates, and new biomolecular-based biocomputing interfaces, which would build on new ideas and principles. The current review outlines the synthesis, surface coverage, and functionalization of MNPs, as well as recent advancements in magnetite-based biosensors for POC diagnostics and some perspectives in molecular logic, and it also contains some of our own results regarding the topic, which include synthetic MNPs, their application for sample preparation, and the design of fluorescent-based molecular logic gates.
Collapse
Affiliation(s)
- Nataliia Dudchenko
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Shweta Pawar
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ilana Perelshtein
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
27
|
Nanocomposite Hydrogels as Functional Extracellular Matrices. Gels 2023; 9:gels9020153. [PMID: 36826323 PMCID: PMC9957407 DOI: 10.3390/gels9020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Over recent years, nano-engineered materials have become an important component of artificial extracellular matrices. On one hand, these materials enable static enhancement of the bulk properties of cell scaffolds, for instance, they can alter mechanical properties or electrical conductivity, in order to better mimic the in vivo cell environment. Yet, many nanomaterials also exhibit dynamic, remotely tunable optical, electrical, magnetic, or acoustic properties, and therefore, can be used to non-invasively deliver localized, dynamic stimuli to cells cultured in artificial ECMs in three dimensions. Vice versa, the same, functional nanomaterials, can also report changing environmental conditions-whether or not, as a result of a dynamically applied stimulus-and as such provide means for wireless, long-term monitoring of the cell status inside the culture. In this review article, we present an overview of the technological advances regarding the incorporation of functional nanomaterials in artificial extracellular matrices, highlighting both passive and dynamically tunable nano-engineered components.
Collapse
|
28
|
Analysis of residual monepantel sulfone in milk using icELISA based on a monoclonal antibody developed from an easy-synthesized and low-cost hapten. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Safenkova IV, Burkin KM, Bodulev OL, Razo SC, Ivanov AV, Zherdev AV, Dzantiev BB, Sakharov IY. Comparative study of magnetic beads and microplates as supports in heterogeneous amplified assay of miRNA-141 by using mismatched catalytic hairpin assembly reaction. Talanta 2022; 247:123535. [DOI: 10.1016/j.talanta.2022.123535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
|
30
|
Huang L, Wang X, Liu S, Liu B, Gao Z. Magnetic Relaxation Switch Sensor Based on Magnetophoresis and "T-Hg(II)-T" Signal Amplification. Anal Chem 2022; 94:12016-12023. [PMID: 35997203 DOI: 10.1021/acs.analchem.2c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we designed a magnetic relaxation switch (MRS) sensor combined with magnetophoresis technology (MS-MRS), which helps solve the problems of traditional MRS sensors. The sensor is based on a new combined magnet and is composed of small magnetic blocks and iron sheets that can rapidly separate magnetic nanoparticles of different sizes within 5 min. The MS-MRS sensor consists of aptamer-functionalized magnetic nanoparticles (diameter: 200 nm) (MNP200-Apt), complementary DNA-functionalized magnetic nanoparticles (diameter: 20 nm) (MNP20-cDNA), and a combined magnet ("M2" magnet). The MNP200-Apt probe could be separated by an "M2" magnet but the MNP20-cDNA probe could not. To further improve the sensitivity of the sensor, we successfully constructed an MS-MRS-Hg sensor based on the "T-Hg(II)-T" specific recognition that aggregated MNP20-cDNA probes to amplify the relaxation signal. The detection working range of the MS-MRS sensor is 0.5-100 ng/mL and that of the MS-MRS-Hg sensor is 0.05-100 ng/mL. Their limit of detection (LOD) values are 0.15 and 0.01 ng/mL, respectively. The relative recoveries of the MS-MRS and MS-MRS-Hg sensors are 95.2-119.5% and 93.1-113.1%, respectively. These results indicate that the proposed sensors have a high accuracy level.
Collapse
Affiliation(s)
- Lei Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sha Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
31
|
Huang Z, Li J, Zhong H, Tian B. Nucleic acid amplification strategies for volume-amplified magnetic nanoparticle detection assay. Front Bioeng Biotechnol 2022; 10:939807. [PMID: 36032733 PMCID: PMC9399362 DOI: 10.3389/fbioe.2022.939807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 12/26/2022] Open
Abstract
Magnetic nanoparticles (MNPs) can be quantified based on their magnetic relaxation properties by volumetric magnetic biosensing strategies, for example, alternating current susceptometry. Volume-amplified magnetic nanoparticle detection assays (VAMNDAs) employ analyte-initiated nucleic acid amplification (NAA) reactions to increase the hydrodynamic size of MNP labels for magnetic sensing, achieving attomolar to picomolar detection limits. VAMNDAs offer rapid and user-friendly analysis of nucleic acid targets but present inherence defects determined by the chosen amplification reactions and sensing principles. In this mini-review, we summarize more than 30 VAMNDA publications and classify their detection models for NAA-induced MNP size increases, highlighting the performances of different linear, cascade, and exponential NAA strategies. For some NAA strategies that have not yet been reported in VAMNDA, we predicted their performances based on the reaction kinetics and feasible detection models. Finally, challenges and perspectives are given, which may hopefully inspire and guide future VAMNDA studies.
Collapse
|
32
|
Dinani HS, Pourmadadi M, Yazdian F, Rashedi H, Ebrahimi SAS, Shayeh JS, Ghorbani M. Fabrication of Au/Fe 3O 4/RGO based aptasensor for measurement of miRNA-128, a biomarker for acute lymphoblastic leukemia (ALL). Eng Life Sci 2022; 22:519-534. [PMID: 35936072 PMCID: PMC9349134 DOI: 10.1002/elsc.202100170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 01/07/2023] Open
Abstract
Due to their high sensitivity, simplicity, portability, self-contained, and low cost, the development of electrochemical biosensors is a beneficial way to diagnose and anticipate many types of cancers. An electrochemical nanocomposite-based aptasensor is fabricated for the determination of miRNA-128 concentration as the acute lymphoblastic leukemia (ALL) biomarker for the first time. The aptamer chains were immobilized on the surface of the glassy carbon electrode (GCE) through gold nanoparticles/magnetite/reduced graphene oxide (AuNPs/Fe3O4/RGO). Fast Fourier transform infrared (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM) were used to characterize synthesized nanomaterials. Cyclic voltammetry (CV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS) were used to characterize the modified GCE in both label-free and labeled methods. The results indicate that the modified working electrode has high selectivity and for miRNA-128 over other biomolecules. The hexacyanoferrate redox system typically operated at around 0.3 V (vs. Ag/AgCl), and the methylene blue redox system ran at about 0 V, were used as an electrochemical probe. The detection limit and linear detection range for hexacyanoferrate and methylene blue are 0.05346 fM, 0.1-0.9 fM, and 0.005483 fM, 0.01-0.09 fM, respectively. The stability and diffusion control analyses were performed as well. In both label-free and labeled methods, the modified electron showed high selectivity for miRNA-128. The use of methylene blue as a safer redox mediator caused miRNA-128 to be detected with greater accuracy at low potentials in PBS media. The findings also show the substantial improvement in detection limit and linearity by using reduced graphene oxide-magnetite-gold nanoparticles that can be verified by comparing with previous studies on the detection of other miRNAs.
Collapse
Affiliation(s)
| | - Mehrab Pourmadadi
- School of Chemical EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | - Fatemeh Yazdian
- Department of Life Science EngineeringFaculty of New Science and TechnologiesUniversity of TehranTehranIran
| | - Hamid Rashedi
- School of Chemical EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | - Seyed Ali Seyed Ebrahimi
- School of Metallurgy and Materials EngineeringCollege of EngineeringUniversity of TehranTehranIran
| | | | - Mehdi Ghorbani
- Department of Chemical EngineeringMarvdasht BranchIslamic Azad UniversityMarvdashtIran
| |
Collapse
|
33
|
Xiao X, Yuan C, Li T, Fock J, Svedlindh P, Tian B. Optomagnetic biosensors: Volumetric sensing based on magnetic actuation-induced optical modulations. Biosens Bioelectron 2022; 215:114560. [PMID: 35841765 DOI: 10.1016/j.bios.2022.114560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022]
Abstract
In comparison to alternative nanomaterials, magnetic micron/nano-sized particles show unique advantages, e.g., easy manipulation, stable signal, and high contrast. By applying magnetic actuation, magnetic particles exert forces on target objects for highly selective operation even in non-purified samples. We herein describe a subgroup of magnetic biosensors, namely optomagnetic biosensors, which employ alternating magnetic fields to generate periodic movements of magnetic labels. The optical modulation induced by the dynamics of magnetic labels is then analyzed by photodetectors, providing information of, e.g., hydrodynamic size changes of the magnetic labels. Optomagnetic sensing mechanisms can suppress the noise (by performing lock-in detection), accelerate the reaction (by magnetic force-enhanced molecular collision), and facilitate homogeneous/volumetric detection. Moreover, optomagnetic sensing can be performed using a low magnetic field (<10 mT) without sophisticated light sources or pickup coils, further enhancing its applicability for point-of-care tests. This review concentrates on optomagnetic biosensing techniques of different concepts classified by the magnetic actuation strategy, i.e., magnetic field-enhanced agglutination, rotating magnetic field-based particle rotation, and oscillating magnetic field-induced Brownian relaxation. Optomagnetic sensing principles applied with different actuation strategies are introduced as well. For each representative optomagnetic biosensor, a simple immunoassay strategy-based application is introduced (if possible) for methodological comparison. Thereafter, challenges and perspectives are discussed, including minimization of nonspecific binding, on-chip integration, and multiplex detection, all of which are key requirements in point-of-care diagnostics.
Collapse
Affiliation(s)
- Xiaozhou Xiao
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China
| | - Chuqi Yuan
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China
| | - Tingting Li
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China
| | - Jeppe Fock
- Blusense Diagnostics ApS, Fruebjergvej 3, DK-2100, Copenhagen, Denmark
| | - Peter Svedlindh
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-751 03, Uppsala, Sweden
| | - Bo Tian
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China.
| |
Collapse
|
34
|
Uddin SM, Sayad A, Chan J, Skafidas E, Kwan P. Design and Optimisation of Elliptical-Shaped Planar Hall Sensor for Biomedical Applications. BIOSENSORS 2022; 12:108. [PMID: 35200368 PMCID: PMC8869978 DOI: 10.3390/bios12020108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The magnetic beads detection-based immunoassay, also called magneto-immunoassay, has potential applications in point-of-care testing (POCT) due to its unique advantage of minimal background interference from the biological sample and associated reagents. While magnetic field detection technologies are well established for numerous applications in the military, as well as in geology, archaeology, mining, spacecraft, and mobile phones, adaptation into magneto-immunoassay is yet to be explored. The magnetic field biosensors under development tend to be multilayered and require an expensive fabrication process. A low-cost and affordable biosensing platform is required for an effective point-of-care diagnosis in a resource-limited environment. Therefore, we evaluated a single-layered magnetic biosensor in this study to overcome this limitation. The shape-induced magnetic anisotropy-based planar hall effect sensor was recently developed to detect a low-level magnetic field, but was not explored for medical application. In this study, the elliptical-shaped planar hall effect (EPHE) sensor was designed, fabricated, characterized, and optimized for the magneto-immunoassay, specifically. Nine sensor variants were designed and fabricated. A customized measurement setup incorporating a lock-in amplifier was used to quantify 4.5 µm magnetic beads in a droplet. The result indicated that the single-domain behaviour of the magnetic film and larger sensing area with a thinner magnetic film had the highest sensitivity. The developed sensor was tested with a range of magnetic bead concentrations, demonstrating a limit of detection of 200 beads/μL. The sensor performance encourages employing magneto-immunoassay towards developing a low-cost POCT device in the future.
Collapse
Affiliation(s)
- Shah Mukim Uddin
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3050, Australia; (S.M.U.); (J.C.); (E.S.)
| | - Abkar Sayad
- Department of Neuroscience, The Alfred Centre, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
| | - Jianxiong Chan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3050, Australia; (S.M.U.); (J.C.); (E.S.)
- Department of Neuroscience, The Alfred Centre, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
| | - Efstratios Skafidas
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3050, Australia; (S.M.U.); (J.C.); (E.S.)
- Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Patrick Kwan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3050, Australia; (S.M.U.); (J.C.); (E.S.)
- Department of Neuroscience, The Alfred Centre, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
- Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
35
|
Dao TNT, Kim MG, Koo B, Liu H, Jang YO, Lee HJ, Kim Y, Park Y, Kim HS, Kim C, Shin Y. Chimeric nanocomposites for the rapid and simple isolation of urinary extracellular vesicles. J Extracell Vesicles 2022; 11:e12195. [PMID: 35188341 PMCID: PMC8859916 DOI: 10.1002/jev2.12195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/03/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer cell-derived extracellular vesicles (EVs) are promising biomarkers for cancer diagnosis and prognosis. However, the lack of rapid and sensitive isolation techniques to obtain EVs from clinical samples at a sufficiently high yield limits their practicability. Chimeric nanocomposites of lactoferrin conjugated 2,2-bis(methylol)propionic acid dendrimer-modified magnetic nanoparticles (LF-bis-MPA-MNPs) are fabricated and used for simple and sensitive EV isolation from various biological samples via a combination of electrostatic interaction, physically absorption, and biorecognition between the surfaces of the EVs and the LF-bis-MPA-MNPs. The speed, efficiency, recovery rate, and purity of EV isolation by the LF-bis-MPA-MNPs are superior to those obtained by using established methods. The relative expressions of exosomal microRNAs (miRNAs) from isolated EVs in cancerous cell-derived exosomes are verified as significantly higher than those from noncancerous ones. Finally, the chimeric nanocomposites are used to assess urinary exosomal miRNAs from urine specimens from 20 prostate cancer (PCa), 10 benign prostatic hyperplasia (BPH), patients and 10 healthy controls. Significant up-regulation of miR-21 and miR-346 and down-regulation of miR-23a and miR-122-5p occurs in both groups compared to healthy controls. LF-bis-MPA-MNPs provide a rapid, simple, and high yield method for human excreta analysis in clinical applications.
Collapse
Affiliation(s)
- Thuy Nguyen Thi Dao
- Department of BiotechnologyCollege of Life Science and BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Myoung Gyu Kim
- Department of BiotechnologyCollege of Life Science and BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Bonhan Koo
- Department of BiotechnologyCollege of Life Science and BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Huifang Liu
- Department of BiotechnologyCollege of Life Science and BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Yoon Ok Jang
- Department of BiotechnologyCollege of Life Science and BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Hyo Joo Lee
- Department of BiotechnologyCollege of Life Science and BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Yunlim Kim
- Department of UrologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Yun‐Yong Park
- Department of Life ScienceChung‐Ang UniversitySeoulRepublic of Korea
| | - Hyun Soo Kim
- INFUSIONTECH38, Heungan‐daero 427 beon‐gilDongan‐guAnyang‐si14059Korea
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwon16419South Korea
| | - Choung‐Soo Kim
- Department of UrologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Yong Shin
- Department of BiotechnologyCollege of Life Science and BiotechnologyYonsei UniversitySeoulRepublic of Korea
| |
Collapse
|
36
|
O’Reilly CS, Elbadawi M, Desai N, Gaisford S, Basit AW, Orlu M. Machine Learning and Machine Vision Accelerate 3D Printed Orodispersible Film Development. Pharmaceutics 2021; 13:2187. [PMID: 34959468 PMCID: PMC8706962 DOI: 10.3390/pharmaceutics13122187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
Orodispersible films (ODFs) are an attractive delivery system for a myriad of clinical applications and possess both large economical and clinical rewards. However, the manufacturing of ODFs does not adhere to contemporary paradigms of personalised, on-demand medicine, nor sustainable manufacturing. To address these shortcomings, both three-dimensional (3D) printing and machine learning (ML) were employed to provide on-demand manufacturing and quality control checks of ODFs. Direct ink writing (DIW) was able to fabricate complex ODF shapes, with thicknesses of less than 100 µm. ML algorithms were explored to classify the ODFs according to their active ingredient, by using their near-infrared (NIR) spectrums. A supervised model of linear discriminant analysis was found to provide 100% accuracy in classifying ODFs. A subsequent partial least square algorithm was applied to verify the dose, where a coefficient of determination of 0.96, 0.99 and 0.98 was obtained for ODFs of paracetamol, caffeine, and theophylline, respectively. Therefore, it was concluded that the combination of 3D printing, NIR and ML can result in a rapid production and verification of ODFs. Additionally, a machine vision tool was used to automate the in vitro testing. These collective digital technologies demonstrate the potential to automate the ODF workflow.
Collapse
Affiliation(s)
| | | | | | | | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK (M.E.); (N.D.); (S.G.)
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK (M.E.); (N.D.); (S.G.)
| |
Collapse
|
37
|
Xu J, Khan H, Yang L. Hydrogel Paper-Based Analytical Devices: Separation-Free In Situ Assay of Small-Molecule Targets in Whole Blood. Anal Chem 2021; 93:14755-14763. [PMID: 34709797 DOI: 10.1021/acs.analchem.1c03347] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While colorimetric-based assays are very convenient to determine biomarkers in point-of-care testing (POCT), they often suffer from pretreatment procedures for separation of plasma or serum from whole blood samples. Here, we report a simple colorimetric paper-based analytical device (c-PAD) that is capable of performing sample-to-answer analysis by directly dropping the whole blood sample on paper. This is accomplished by utilizing sodium alginate hydrogel, which exhibits a nanometer-scale porous structure to effectively prevent the passage of large red blood cells and hemoglobin molecules, to encapsulate enzymes and chromogenic reagents. As the small targets in the blood sample enter the sensing region to trigger a chromogenic reaction, the resulting color signal is recorded by a smartphone. The interference from the red blood to the color signal can be completely avoided without the requirement of any separation process. The analytical performance of the method is evaluated by assaying glucose in real blood samples. The results show that rapid and accurate analysis can be achieved with the limit of detection as low as 0.12 mM. In addition, simultaneous detection of different targets (glucose, cholesterol, and triglycerides) in whole blood can be achieved by fabricating c-PAD with multiple sensing regions. Owing to its several essential advantages including an extremely simple procedure for fabrication, sample-to-answer analysis without tedious pretreatment, and capability to perform high-throughput analysis, the proposed c-PAD will be of great value in POCT applications of whole blood samples.
Collapse
Affiliation(s)
- Jia Xu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin130024, China
| | - Habib Khan
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin130024, China
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin130024, China
| |
Collapse
|
38
|
Kim E, Lim EK, Park G, Park C, Lim JW, Lee H, Na W, Yeom M, Kim J, Song D, Haam S. Advanced Nanomaterials for Preparedness Against (Re-)Emerging Viral Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005927. [PMID: 33586180 DOI: 10.1002/adma.202005927] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 05/24/2023]
Abstract
While the coronavirus disease (COVID-19) accounts for the current global pandemic, the emergence of other unknown pathogens, named "Disease X," remains a serious concern in the future. Emerging or re-emerging pathogens continue to pose significant challenges to global public health. In response, the scientific community has been urged to create advanced platform technologies to meet the ever-increasing needs presented by these devastating diseases with pandemic potential. This review aims to bring new insights to allow for the application of advanced nanomaterials in future diagnostics, vaccines, and antiviral therapies, thereby addressing the challenges associated with the current preparedness strategies in clinical settings against viruses. The application of nanomaterials has advanced medicine and provided cutting-edge solutions for unmet needs. Herein, an overview of the currently available nanotechnologies is presented, highlighting the significant features that enable them to control infectious diseases, and identifying the challenges that remain to be addressed for the commercial production of nano-based products is presented. Finally, to conclude, the development of a nanomaterial-based system using a "One Health" approach is suggested. This strategy would require a transdisciplinary collaboration and communication between all stakeholders throughout the entire process spanning across research and development, as well as the preclinical, clinical, and manufacturing phases.
Collapse
Affiliation(s)
- Eunjung Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| |
Collapse
|
39
|
G A, T T, Ramakrishnan S. Fluorescence Nano Particle Detection in a Liquid Sample Using the Smartphone for Biomedical Application. J Fluoresc 2021; 32:135-143. [PMID: 34633596 DOI: 10.1007/s10895-021-02799-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022]
Abstract
In this paper, we present a Smartphone-based Fluorescence Nanoparticle Detector (SPF-NPD) that can be used for identifying biological agents in biomedical applications. The experimental setup consists of an LED light source and an Eppendorf tube holder placed inside a dark chamber with an optimally located slit for aligning the camera of a smartphone. The camera acquires the fluorescence intensity variations in the target liquid sample placed in the Eppendorf tube and passes it to a dedicated android application running in the smartphone. Using the principle of fluorescence-based pathogen detection, the android application detects the pathogens and displays the results within a few seconds. Since, all smartphones are equipped with high-resolution cameras, the proposed SPF-NPD provides a simple and elegant solution for instantaneous detection of fluorescence nano particles and has a great potential for healthcare applications for live detection of pathogens. The intensity measurement in SPF-NPD algorithm uses 5-pixel method, that is, the center pixel followed by four immediate neighbor pixels, because of which, minimal sample quantity is sufficient for precise measurements. We establish the robustness of SPF-NPD through exhaustive experiments with various smartphone cameras having different resolutions ranging from 8 to 20 Megapixels. The results of the proposed SPF-NPD method are validated against those obtained from standard devices such as Perkin-Elmer Picoflor and Perkin-Elmer Enspire. The advantages of the proposed method are highlighted.
Collapse
Affiliation(s)
- Anand G
- Department of Instrumentation Engineering, Madras Institute of Technology Campus, Anna University, Chennai, India.
| | - Thyagarajan T
- Department of Instrumentation Engineering, Madras Institute of Technology Campus, Anna University, Chennai, India
| | - Sabitha Ramakrishnan
- Department of Instrumentation Engineering, Madras Institute of Technology Campus, Anna University, Chennai, India
| |
Collapse
|
40
|
Teepoo S, Laochai T. Reusable Optical Biosensor Based on Poly (Vinyl) Alcohol - Chitosan Cryogel with Incorporated Magnetic Nanoparticles for the Determination of Sucrose in Sugar Cane and Sugar. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1968889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| | - Thidarut Laochai
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| |
Collapse
|
41
|
Chugh VK, Wu K, Krishna VD, di Girolamo A, Bloom RP, Wang YA, Saha R, Liang S, Cheeran MCJ, Wang JP. Magnetic Particle Spectroscopy with One-Stage Lock-In Implementation for Magnetic Bioassays with Improved Sensitivities. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:17221-17231. [PMID: 36199678 PMCID: PMC9531866 DOI: 10.1021/acs.jpcc.1c05126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In recent years, magnetic particle spectroscopy (MPS) has become a highly sensitive and versatile sensing technique for quantitative bioassays. It relies on the dynamic magnetic responses of magnetic nanoparticles (MNPs) for the detection of target analytes in the liquid phase. There are many research studies reporting the application of MPS for detecting a variety of analytes including viruses, toxins, nucleic acids, and so forth. Herein, we report a modified version of the MPS platform with the addition of a one-stage lock-in design to remove the feedthrough signals induced by external driving magnetic fields, thus capturing only MNP responses for improved system sensitivity. This one-stage lock-in MPS system is able to detect as low as 781 ng multi-core Nanomag50 iron oxide MNPs (micromod Partikeltechnologie GmbH) and 78 ng single-core SHB30 iron oxide MNPs (Ocean NanoTech). We first demonstrated the performance of this MPS system for bioassay-related applications. Using the SARS-CoV-2 spike protein as a model, we have achieved a detection limit of 125 nM (equal to 5 pmole) for detecting spike protein molecules in the liquid phase. In addition, using a streptavidin-biotin binding system as a proof-of-concept, we show that these single-core SHB30 MNPs can be used for Brownian relaxation-based bioassays while the multi-core Nanomag50 cannot be used. The effects of MNP amount on the concentration-dependent response profiles for detecting streptavidin were also investigated. Results show that by using a lower concentration/ amount of MNPs, concentration-response curves shift to a lower concentration/amount of target analytes. This lower concentration-response indicates the possibility of improved bioassay sensitivities by using lower amounts of MNPs.
Collapse
Affiliation(s)
| | | | - Venkatramana D. Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Arturo di Girolamo
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert P. Bloom
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shuang Liang
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
42
|
Zhang Y, Wei Y, Liu P, Zhang X, Xu Z, Tan X, Chen M, Wang J. ICP-MS and Photothermal Dual-Readout Assay for Ultrasensitive and Point-of-Care Detection of Pancreatic Cancer Exosomes. Anal Chem 2021; 93:11540-11546. [PMID: 34369746 DOI: 10.1021/acs.analchem.1c02004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pancreatic cancer is known to have a high mortality rate, and its early diagnosis remains challenging due to the occult location of the pancreas. Exosomes derived from pancreatic cancer cells specifically express glypican-1, which may provide a liquid biopsy opportunity for the early diagnosis of pancreatic cancer. Herein, an inductively coupled plasma mass spectrometry (ICP-MS) and photothermal dual-readout platform was proposed for the ultrasensitive and point-of-care analysis of pancreatic cancer exosomes. In our design, exosomes were specifically captured by the sandwich immunoassay, and simultaneously, alkaline phosphatase was introduced in a low-background manner. The alkaline phosphatase triggered the hydrolysis of l-ascorbic acid 2-phosphate to produce ascorbic acid, followed by the etching of Fe3O4@MnO2 nanoflowers. As a result, the Mn2+ generated by etching stripped off the Fe3O4 and was quantified using ICP-MS. Meanwhile, the reduced Fe3O4@MnO2 was applied for the photothermal assay by oxidizing dopamine with MnO2. The protocol exhibits a detection limit down to 19.1 particles mL-1, which is the most sensitive protocol reported so far. To our knowledge, this is the first endeavor for exosome quantification using ICP-MS and photothermal methods. The developed dual-readout platform not only is capable of distinguishing pancreatic cancer patients from healthy people, but also shows excellent discernibility of individual differences at low concentrations of exosomes. This dual-readout assay is a promising platform for the ultrasensitive and point-of-care detection of exosomes in liquid biopsy-based early cancer diagnosis.
Collapse
Affiliation(s)
- Yingzhi Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yunyun Wei
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Peng Liu
- First Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xiaodong Tan
- First Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Mingli Chen
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
43
|
Bazsefidpar S, Moyano A, Gutiérrez G, Matos M, Blanco-López MC. Lipid-Polymer Hybrids Encapsulating Iron-Oxide Nanoparticles as a Label for Lateral Flow Immunoassays. BIOSENSORS-BASEL 2021; 11:bios11070218. [PMID: 34356689 PMCID: PMC8301895 DOI: 10.3390/bios11070218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022]
Abstract
The feasibility of using Superparamagnetic Iron Oxide Nanoparticles (SPIONs) encapsulated by lipid–polymer nanoparticles as labels in lateral flow immunoassays (LFIA) was studied. First, nanoparticles were synthesized with average diameters between 4 and 7 (nm) through precipitation in W/O microemulsion and further encapsulated using lipid–polymer nanoparticles. Systems formulated were characterized in terms of size and shape by DLS (Nanozetasizer from Malvern) and TEM. After encapsulation, the average size was around (≈20 and 50 nm). These controlled size agglomerates were tested as labels with a model system based on the biotin–neutravidin interaction. For this purpose, the encapsulated nanoparticles were conjugated to neutravidin using the carbodiimide chemistry, and the LFIA was carried out with a biotin test line. The encapsulated SPIONs showed that they could be promising candidates as labels in LFIA test. They would be useful for immunomagnetic separations, that could improve the limits of detection by means of preconcentration.
Collapse
Affiliation(s)
- Shayesteh Bazsefidpar
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (S.B.); (A.M.)
| | - Amanda Moyano
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (S.B.); (A.M.)
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering & Institute of Biotechnology of Asturias, University of Oviedo, 33006 Oviedo, Spain;
| | - María Matos
- Department of Chemical and Environmental Engineering & Institute of Biotechnology of Asturias, University of Oviedo, 33006 Oviedo, Spain;
- Correspondence: (M.M.); (M.C.B.-L.)
| | - María Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (S.B.); (A.M.)
- Correspondence: (M.M.); (M.C.B.-L.)
| |
Collapse
|
44
|
Pohanka M. Biosensors and Bioanalytical Devices based on Magnetic Particles: A Review. Curr Med Chem 2021; 28:2828-2841. [PMID: 32744958 DOI: 10.2174/0929867327666200730213721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 11/22/2022]
Abstract
Magnetic particles play an important role in current technology, and this field of technology extends to a broader progression. The term magnetic particles typically cover the paramagnetic particles and super-paramagnetic particles. Various materials like iron oxide are common, but other materials are available as well; a survey of such materials has been included in this work. They can serve for technological purposes like separation and isolation of chemical products or toxic waste, their use in the diagnosis of pathologies, drug delivery and other similar applications. In this review, biosensors, bioanalytical devices and bioassays, have been discussed. Materials for magnetic particles preparation, methods of assay, biosensors and bioassays working in stationary as well as flow-through arrangements are described here. A survey of actual literature has been provided as well.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic
| |
Collapse
|
45
|
Xianyu Y, Su S, Hu J, Yu T. Plasmonic sensing of β-glucuronidase activity via silver mirror reaction on gold nanostars. Biosens Bioelectron 2021; 190:113430. [PMID: 34147947 DOI: 10.1016/j.bios.2021.113430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022]
Abstract
We outline a novel approach for the plasmonic detection of β-glucuronidase activity by modulating the silver mirror reaction at the nanoscale on gold nanostars. β-glucuronidase catalyzes the hydrolysis of a non-reducing substrate to generate reducing products that trigger the silver mirror reaction on gold nanostars to alter their surface plasmon resonance. By modulating the silver deposition on gold nanostars, the unique plasmonic property of silver-coated gold nanostars enables a significant change in the surface plasmon resonance that allows for a plasmonic readout for detecting the enzymatic activity. This plasmonic nanosensor enables a detection of the β-glucuronidase activity as low as 0.1 U/L, showing great promise as a plasmonic approach for enzyme detection.
Collapse
Affiliation(s)
- Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, Zhejiang, China.
| | - Shixuan Su
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
46
|
Naseri M, Ziora ZM, Simon GP, Batchelor W. ASSURED‐compliant point‐of‐care diagnostics for the detection of human viral infections. Rev Med Virol 2021. [DOI: 10.1002/rmv.2263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahdi Naseri
- Department of Chemical Engineering Bioresource Processing Research Institute of Australia (BioPRIA) Monash University Clayton VIC Australia
| | - Zyta M Ziora
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - George P Simon
- Department of Materials Science and Engineering Monash University Clayton VIC Australia
| | - Warren Batchelor
- Department of Chemical Engineering Bioresource Processing Research Institute of Australia (BioPRIA) Monash University Clayton VIC Australia
| |
Collapse
|
47
|
Lee J, Jeon C, Jeon T, Das PT, Lee Y, Lim B, Kim C. Bridge Resistance Compensation for Noise Reduction in a Self-Balanced PHMR Sensor. SENSORS (BASEL, SWITZERLAND) 2021; 21:3585. [PMID: 34064121 PMCID: PMC8196689 DOI: 10.3390/s21113585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/03/2022]
Abstract
Advanced microelectromechanical system (MEMS) magnetic field sensor applications demand ultra-high detectivity down to the low magnetic fields. To enhance the detection limit of the magnetic sensor, a resistance compensator integrated self-balanced bridge type sensor was devised for low-frequency noise reduction in the frequency range of 0.5 Hz to 200 Hz. The self-balanced bridge sensor was a NiFe (10 nm)/IrMn (10 nm) bilayer structure in the framework of planar Hall magnetoresistance (PHMR) technology. The proposed resistance compensator integrated with a self-bridge sensor architecture presented a compact and cheaper alternative to marketable MEMS MR sensors, adjusting the offset voltage compensation at the wafer level, and led to substantial improvement in the sensor noise level. Moreover, the sensor noise components of electronic and magnetic origin were identified by measuring the sensor noise spectral density as a function of temperature and operating power. The lowest achievable noise in this device architecture was estimated at ~3.34 nV/Hz at 100 Hz.
Collapse
Affiliation(s)
- Jaehoon Lee
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea; (J.L.); (C.J.); (T.J.)
| | - Changyeop Jeon
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea; (J.L.); (C.J.); (T.J.)
| | - Taehyeong Jeon
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea; (J.L.); (C.J.); (T.J.)
| | - Proloy Taran Das
- Magnetics Initiative Life Care Research Center, DGIST, Daegu 42988, Korea;
| | - Yongho Lee
- Quantum Magnetic Measurement Team, KRISS, Daejeon 34113, Korea;
| | - Byeonghwa Lim
- Magnetics Initiative Life Care Research Center, DGIST, Daegu 42988, Korea;
| | - CheolGi Kim
- Department of Emerging Materials Science, DGIST, Daegu 42988, Korea; (J.L.); (C.J.); (T.J.)
- Magnetics Initiative Life Care Research Center, DGIST, Daegu 42988, Korea;
| |
Collapse
|
48
|
Bayin Q, Huang L, Ren C, Fu Y, Ma X, Guo J. Anti-SARS-CoV-2 IgG and IgM detection with a GMR based LFIA system. Talanta 2021; 227:122207. [PMID: 33714475 PMCID: PMC7874965 DOI: 10.1016/j.talanta.2021.122207] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022]
Abstract
Since December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused millions of deaths and seriously threatened the safety of human life; indeed, this situation is worsening and many people are infected with the new coronavirus every day. Therefore, it is very important to understand patients' degree of infection and infection history through antibody testing. Such information is useful also for the government and hospitals to formulate reasonable prevention policies and treatment plans. In this paper, we develop a lateral flow immunoassay (LFIA) method based on superparamagnetic nanoparticles (SMNPs) and a giant magnetoresistance (GMR) sensing system for the simultaneously quantitative detection of anti-SARS-CoV-2 immunoglobulin M (IgM) and G (IgG). A simple and time-effective co-precipitation method was utilized to prepare the SMNPs, which have good dispersibility and magnetic property, with an average diameter of 68 nm. The Internet of Medical Things-supported GMR could transmit medical data to a smartphone through the Bluetooth protocol, making patient information available for medical staff. The proposed GMR system, based on SMNP-supported LFIA, has an outstanding advantage in cost-effectiveness and time-efficiency, and is easy to operate. We believe that the suggested GMR based LFIA system will be very useful for medical staff to analyze and to preserve as a record of infection in COVID-19 patients.
Collapse
Affiliation(s)
- Qiaoge Bayin
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Lei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Chunhui Ren
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Yusheng Fu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xing Ma
- State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China,Ministry of Education Key Lab of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150001, PR China,Corresponding author. State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China,Corresponding author
| |
Collapse
|
49
|
Zheng H, Lin H, Chen X, Sui J, Ullah Khan M, Ramesh Pavase T, Han X, Cao L. Tailor-made magnetic nanocomposite with pH and thermo-dual responsive copolymer brush for bacterial separation. Food Chem 2021; 358:129907. [PMID: 33930712 DOI: 10.1016/j.foodchem.2021.129907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 12/17/2022]
Abstract
Rapid detection of pathogenic bacteria particularly in food samples demands efficient separation and enrichment strategies. Here, hydrophilic temperature-responsive boronate affinity magnetic nanocomposites were established for selective enrichment of bacteria. The thermo-responsive polymer brushes were developed by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide (NIPAm) and allyl glycidyl ether (AGE), followed by a reaction of epoxy groups, and incorporation of fluorophenylboronic acid. The physical and chemical characteristics of the magnetic nanocomposites were analyzed systematically. After optimization, S. aureus and Salmonella spp. showed high binding capacities of 32.14 × 106 CFU/mg and 50.98 × 106 CFU/mg in 0.01 M PBS (pH 7.4) without bacteria death. Bacterial bindings can be controlled by altering temperature and the application of competing monosaccharides. The nanocomposite was then utilized to enrich S. aureus and Salmonella spp. from the spiked tap water, 25% milk, and turbot extraction samples followed by multiplex polymerase chain reaction (mPCR), which resulted in high bacteria enrichment, and demonstrated great potential in separation of bacteria from food samples.
Collapse
Affiliation(s)
- Hongwei Zheng
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiangfeng Chen
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Centre, Jinan, Shandong 250014, China
| | - Jianxin Sui
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Mati Ullah Khan
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Tushar Ramesh Pavase
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiangning Han
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Limin Cao
- Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
50
|
Fortunati S, Giannetto M, Rozzi A, Corradini R, Careri M. PNA-functionalized magnetic microbeads as substrates for enzyme-labelled voltammetric genoassay for DNA sensing applied to identification of GMO in food. Anal Chim Acta 2021; 1153:338297. [PMID: 33714443 DOI: 10.1016/j.aca.2021.338297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/21/2022]
Abstract
A novel enzyme-labelled voltammetric magnetogenoassay for DNA sensing based on the use of carboxyl-surface coated magnetic microbeads functionalized with PNA probes and subsequent read-out on screen-printed electrode (SPE) substrates was developed. The assay was validated for determination of non-amplified genomic DNA from genetically modified Roundup Ready soy. Outstanding performance with respect to other genoassays requiring preliminary amplification of target DNA via PCR was demonstrated. The analytical performance was also improved compared to previous methods based on the immobilization of the same PNA probes on SPE substrates, since the method was found capable of achieving LOD and LOQ of 415 fM and 995 fM, respectively. The ability of the magnetogenoassay to detect the presence of Roundup Ready soy DNA sequence was tested on genomic DNA extract from European Reference Material soy flours, demonstrating the capability of the method to match the European Union regulation for labelling of food containing a percentage of GM products greater than 0,9%.
Collapse
Affiliation(s)
- Simone Fortunati
- Dipartimento di Scienze Chimiche, Della Vita e Della Sostenibilità Ambientale, Università di Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - Marco Giannetto
- Dipartimento di Scienze Chimiche, Della Vita e Della Sostenibilità Ambientale, Università di Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy.
| | - Andrea Rozzi
- Dipartimento di Scienze Chimiche, Della Vita e Della Sostenibilità Ambientale, Università di Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - Roberto Corradini
- Dipartimento di Scienze Chimiche, Della Vita e Della Sostenibilità Ambientale, Università di Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - Maria Careri
- Dipartimento di Scienze Chimiche, Della Vita e Della Sostenibilità Ambientale, Università di Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|