1
|
Ameixa J, Sala L, Kocišek J, Bald I. Radiation and DNA Origami Nanotechnology: Probing Structural Integrity at the Nanoscale. Chemphyschem 2024:e202400863. [PMID: 39473163 DOI: 10.1002/cphc.202400863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Indexed: 11/21/2024]
Abstract
DNA nanotechnology has emerged as a groundbreaking field, using DNA as a scaffold to create nanostructures with customizable properties. These DNA nanostructures hold potential across various domains, from biomedicine to studying ionizing radiation-matter interactions at the nanoscale. This review explores how the various types of radiation, covering a spectrum from electrons and photons at sub-excitation energies to ion beams with high-linear energy transfer influence the structural integrity of DNA origami nanostructures. We discuss both direct effects and those mediated by secondary species like low-energy electrons (LEEs) and reactive oxygen species (ROS). Further we discuss the possibilities for applying radiation in modulating and controlling structural changes. Based on experimental insights, we identify current challenges in characterizing the responses of DNA nanostructures to radiation and outline further areas for investigation. This review not only clarifies the complex dynamics between ionizing radiation and DNA origami but also suggests new strategies for designing DNA nanostructures optimized for applications exposed to various qualities of ionizing radiation and their resulting byproducts.
Collapse
Affiliation(s)
- João Ameixa
- Hybrid Nanostructures, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
- Centre of Physics and Technological Research (CEFITEC), Department of Physics, NOVA School of Science and Technology, University NOVA of Lisbon, Campus de Caparica, 2829-516, Portugal
| | - Leo Sala
- Dynamics of Molecules and Clusters Department, J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, Prague, 182, 23, Czech Republic
| | - Jaroslav Kocišek
- Dynamics of Molecules and Clusters Department, J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, Prague, 182, 23, Czech Republic
| | - Ilko Bald
- Hybrid Nanostructures, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
- Dynamics of Molecules and Clusters Department, J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, Prague, 182, 23, Czech Republic
| |
Collapse
|
2
|
Marzano M, D'Errico S, Greco F, Falanga AP, Terracciano M, Di Prisco D, Piccialli G, Borbone N, Oliviero G. Polymorphism of G-quadruplexes formed by short oligonucleotides containing a 3'-3' inversion of polarity: From G:C:G:C tetrads to π-π stacked G-wires. Int J Biol Macromol 2023; 253:127062. [PMID: 37748594 DOI: 10.1016/j.ijbiomac.2023.127062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
G-wires are supramolecular DNA structures based on the G-quadruplex (G4) structural motif obtained by the self-assembly of interlocked slipped G-rich oligonucleotide (ON) strands, or by end-to-end stacking of G4 units. Despite the increasing interest towards G-wires due to their potential applications in DNA nanotechnologies, the self-assembly process to obtain G-wires having a predefined length and stability is still neither completely understood nor controlled. In our previous studies, we demonstrated that the d(5'CG2-3'-3'-G2C5') ON, characterized by the presence of a 3'-3'-inversion of polarity site self-assembles into a G-wire structure when annealed in the presence of K+ ions. Herein, by using CD, PAGE, HPLC size exclusion chromatography, and NMR investigations we studied the propensity of shorter analogues having sequences 5'CGn-3'-3'-GmC5' (with n = 1 and 1 ≤ m ≤ 3) to form the corresponding G-quadruplexes and stacked G-wires. The results revealed that the formation of G-wires starting from d(5'CGn-3'-3'-GmC5') ONs is possible only for the sequences having n and m > 1 in which both guanosines flanking the 5'-ending cytosines are not involved into the 3'-3' phosphodiester bond.
Collapse
Affiliation(s)
- Maria Marzano
- CESTEV, University of Naples Federico II, Via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Daria Di Prisco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy.
| | - Giorgia Oliviero
- ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
3
|
Kogikoski S, Ameixa J, Mostafa A, Bald I. Lab-on-a-DNA origami: nanoengineered single-molecule platforms. Chem Commun (Camb) 2023; 59:4726-4741. [PMID: 37000514 PMCID: PMC10111202 DOI: 10.1039/d3cc00718a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
DNA origami nanostructures are self-assembled into almost arbitrary two- and three-dimensional shapes from a long, single-stranded viral scaffold strand and a set of short artificial oligonucleotides. Each DNA strand can be functionalized individually using well-established DNA chemistry, representing addressable sites that allow for the nanometre precise placement of various chemical entities such as proteins, molecular chromophores, nanoparticles, or simply DNA motifs. By means of microscopic and spectroscopic techniques, these entities can be visualized or detected, and either their mutual interaction or their interaction with external stimuli such as radiation can be studied. This gives rise to the Lab-on-a-DNA origami approach, which is introduced in this Feature Article, and the state-of-the-art is summarized with a focus on light-harvesting nanoantennas and DNA platforms for single-molecule analysis either by optical spectroscopy or atomic force microscopy (AFM). Light-harvesting antennas can be generated by the precise arrangement of chromophores to channel and direct excitation energy. At the same time, plasmonic nanoparticles represent a complementary approach to focus light on the nanoscale. Plasmonic nanoantennas also allow for the observation of single molecules either by Raman scattering or fluorescence spectroscopy and DNA origami platforms provide unique opportunities to arrange nanoparticles and molecules to be studied. Finally, the analysis of single DNA motifs by AFM allows for an investigation of radiation-induced processes in DNA with unprecedented detail and accuracy.
Collapse
Affiliation(s)
- Sergio Kogikoski
- Institute of Chemistry, Hybrid Nanostructures, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - João Ameixa
- Institute of Chemistry, Hybrid Nanostructures, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Amr Mostafa
- Institute of Chemistry, Hybrid Nanostructures, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Ilko Bald
- Institute of Chemistry, Hybrid Nanostructures, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| |
Collapse
|
4
|
Zhao L, He X, Liu Y, Wei M, Jin H. Development of a simple and rapid fluorescent aptasensor based on
DNA
tweezer. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luyang Zhao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Xing He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Yong Liu
- College of Chemistry and Chemical Engineering Henan University Kaifeng People's Republic of China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| |
Collapse
|
5
|
Kogikoski S, Dutta A, Bald I. Spatial Separation of Plasmonic Hot-Electron Generation and a Hydrodehalogenation Reaction Center Using a DNA Wire. ACS NANO 2021; 15:20562-20573. [PMID: 34875168 PMCID: PMC8717627 DOI: 10.1021/acsnano.1c09176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Using hot charge carriers far from a plasmonic nanoparticle surface is very attractive for many applications in catalysis and nanomedicine and will lead to a better understanding of plasmon-induced processes, such as hot-charge-carrier- or heat-driven chemical reactions. Herein we show that DNA is able to transfer hot electrons generated by a silver nanoparticle over several nanometers to drive a chemical reaction in a molecule nonadsorbed on the surface. For this we use 8-bromo-adenosine introduced in different positions within a double-stranded DNA oligonucleotide. The DNA is also used to assemble the nanoparticles into nanoparticles ensembles enabling the use of surface-enhanced Raman scattering to track the decomposition reaction. To prove the DNA-mediated transfer, the probe molecule was insulated from the source of charge carriers, which hindered the reaction. The results indicate that DNA can be used to study the transfer of hot electrons and the mechanisms of advanced plasmonic catalysts.
Collapse
Affiliation(s)
- Sergio Kogikoski
- Institute
of Chemistry, Physical Chemistry, University
of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
- Department
of Analytical Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), P.O. Box 6154, 13083-970, Campinas São Paulo, Brazil
| | - Anushree Dutta
- Institute
of Chemistry, Physical Chemistry, University
of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Ilko Bald
- Institute
of Chemistry, Physical Chemistry, University
of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
6
|
Xin Y, Zargariantabrizi AA, Grundmeier G, Keller A. Magnesium-Free Immobilization of DNA Origami Nanostructures at Mica Surfaces for Atomic Force Microscopy. Molecules 2021; 26:4798. [PMID: 34443385 PMCID: PMC8399889 DOI: 10.3390/molecules26164798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
DNA origami nanostructures (DONs) are promising substrates for the single-molecule investigation of biomolecular reactions and dynamics by in situ atomic force microscopy (AFM). For this, they are typically immobilized on mica substrates by adding millimolar concentrations of Mg2+ ions to the sample solution, which enable the adsorption of the negatively charged DONs at the like-charged mica surface. These non-physiological Mg2+ concentrations, however, present a serious limitation in such experiments as they may interfere with the reactions and processes under investigation. Therefore, we here evaluate three approaches to efficiently immobilize DONs at mica surfaces under essentially Mg2+-free conditions. These approaches rely on the pre-adsorption of different multivalent cations, i.e., Ni2+, poly-l-lysine (PLL), and spermidine (Spdn). DON adsorption is studied in phosphate-buffered saline (PBS) and pure water. In general, Ni2+ shows the worst performance with heavily deformed DONs. For 2D DON triangles, adsorption at PLL- and in particular Spdn-modified mica may outperform even Mg2+-mediated adsorption in terms of surface coverage, depending on the employed solution. For 3D six-helix bundles, less pronounced differences between the individual strategies are observed. Our results provide some general guidance for the immobilization of DONs at mica surfaces under Mg2+-free conditions and may aid future in situ AFM studies.
Collapse
Affiliation(s)
| | | | | | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (Y.X.); (A.A.Z.); (G.G.)
| |
Collapse
|
7
|
Bellassai N, D'Agata R, Spoto G. Novel nucleic acid origami structures and conventional molecular beacon-based platforms: a comparison in biosensing applications. Anal Bioanal Chem 2021; 413:6063-6077. [PMID: 33825006 PMCID: PMC8440263 DOI: 10.1007/s00216-021-03309-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Nucleic acid nanotechnology designs and develops synthetic nucleic acid strands to fabricate nanosized functional systems. Structural properties and the conformational polymorphism of nucleic acid sequences are inherent characteristics that make nucleic acid nanostructures attractive systems in biosensing. This review critically discusses recent advances in biosensing derived from molecular beacon and DNA origami structures. Molecular beacons belong to a conventional class of nucleic acid structures used in biosensing, whereas DNA origami nanostructures are fabricated by fully exploiting possibilities offered by nucleic acid nanotechnology. We present nucleic acid scaffolds divided into conventional hairpin molecular beacons and DNA origami, and discuss some relevant examples by focusing on peculiar aspects exploited in biosensing applications. We also critically evaluate analytical uses of the synthetic nucleic acid structures in biosensing to point out similarities and differences between traditional hairpin nucleic acid sequences and DNA origami.
Collapse
Affiliation(s)
- Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
8
|
Kogikoski S, Tapio K, von Zander RE, Saalfrank P, Bald I. Raman Enhancement of Nanoparticle Dimers Self-Assembled Using DNA Origami Nanotriangles. Molecules 2021; 26:1684. [PMID: 33802892 PMCID: PMC8002687 DOI: 10.3390/molecules26061684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Surface-enhanced Raman scattering is a powerful approach to detect molecules at very low concentrations, even up to the single-molecule level. One important aspect of the materials used in such a technique is how much the signal is intensified, quantified by the enhancement factor (EF). Herein we obtained the EFs for gold nanoparticle dimers of 60 and 80 nm diameter, respectively, self-assembled using DNA origami nanotriangles. Cy5 and TAMRA were used as surface-enhanced Raman scattering (SERS) probes, which enable the observation of individual nanoparticles and dimers. EF distributions are determined at four distinct wavelengths based on the measurements of around 1000 individual dimer structures. The obtained results show that the EFs for the dimeric assemblies follow a log-normal distribution and are in the range of 106 at 633 nm and that the contribution of the molecular resonance effect to the EF is around 2, also showing that the plasmonic resonance is the main source of the observed signal. To support our studies, FDTD simulations of the nanoparticle's electromagnetic field enhancement has been carried out, as well as calculations of the resonance Raman spectra of the dyes using DFT. We observe a very close agreement between the experimental EF distribution and the simulated values.
Collapse
Affiliation(s)
- Sergio Kogikoski
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
- Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas—UNICAMP, P.O. Box 6154, Campinas 13084-974, SP, Brazil
| | - Kosti Tapio
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| | - Robert Edler von Zander
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| | - Peter Saalfrank
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| | - Ilko Bald
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany; (S.K.); (K.T.); (R.E.v.Z.); (P.S.)
| |
Collapse
|
9
|
Brazaca LC, Dos Santos PL, de Oliveira PR, Rocha DP, Stefano JS, Kalinke C, Abarza Muñoz RA, Bonacin JA, Janegitz BC, Carrilho E. Biosensing strategies for the electrochemical detection of viruses and viral diseases - A review. Anal Chim Acta 2021; 1159:338384. [PMID: 33867035 PMCID: PMC9186435 DOI: 10.1016/j.aca.2021.338384] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Viruses are the causing agents for many relevant diseases, including influenza, Ebola, HIV/AIDS, and COVID-19. Its rapid replication and high transmissibility can lead to serious consequences not only to the individual but also to collective health, causing deep economic impacts. In this scenario, diagnosis tools are of significant importance, allowing the rapid, precise, and low-cost testing of a substantial number of individuals. Currently, PCR-based techniques are the gold standard for the diagnosis of viral diseases. Although these allow the diagnosis of different illnesses with high precision, they still present significant drawbacks. Their main disadvantages include long periods for obtaining results and the need for specialized professionals and equipment, requiring the tests to be performed in research centers. In this scenario, biosensors have been presented as promising alternatives for the rapid, precise, low-cost, and on-site diagnosis of viral diseases. This critical review article describes the advancements achieved in the last five years regarding electrochemical biosensors for the diagnosis of viral infections. First, genosensors and aptasensors for the detection of virus and the diagnosis of viral diseases are presented in detail regarding probe immobilization approaches, detection methods (label-free and sandwich), and amplification strategies. Following, immunosensors are highlighted, including many different construction strategies such as label-free, sandwich, competitive, and lateral-flow assays. Then, biosensors for the detection of viral-diseases-related biomarkers are presented and discussed, as well as point of care systems and their advantages when compared to traditional techniques. Last, the difficulties of commercializing electrochemical devices are critically discussed in conjunction with future trends such as lab-on-a-chip and flexible sensors.
Collapse
Affiliation(s)
- Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| | - Pãmyla Layene Dos Santos
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Paulo Roberto de Oliveira
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Diego Pessoa Rocha
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Jéssica Santos Stefano
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil; Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Cristiane Kalinke
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, 13083-859, Brazil
| | - Rodrigo Alejandro Abarza Muñoz
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil; Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Juliano Alves Bonacin
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, 13083-859, Brazil
| | - Bruno Campos Janegitz
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil.
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
10
|
Ruan YF, Wang HY, Shi XM, Xu YT, Yu XD, Zhao WW, Chen HY, Xu JJ. Target-Triggered Assembly in a Nanopipette for Electrochemical Single-Cell Analysis. Anal Chem 2020; 93:1200-1208. [PMID: 33301293 DOI: 10.1021/acs.analchem.0c04628] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Engineered nanopipette tools have recently emerged as a powerful approach for electrochemical nanosensing, which has major implications in both fundamental biological research and biomedical applications. Herein, we describe a generic method of target-triggered assembly of aptamers in a nanopipette for nanosensing, which is exemplified by sensitive and rapid electrochemical single-cell analysis of adenosine triphosphate (ATP), a ubiquitous energy source in life and important signaling molecules in many physiological processes. Specifically, a layer of thiolated aptamers is immobilized onto a Au-coated interior wall of a nanopipette tip. With backfilled pairing aptamers, the engineered nanopipette is then used for probing intracellular ATP via the ATP-dependent linkage of the split aptamers. Due to the higher surface charge density from the aptamer assembly, the nanosensor would exhibit an enhanced rectification signal. Besides, this ATP-responsive nanopipette tool possesses excellent selectivity and stability as well as high recyclability. This work provides a practical single-cell nanosensor capable of intracellular ATP analysis. More generally, integrated with other split recognition elements, the proposed mechanism could serve as a viable basis for addressing many other important biological species.
Collapse
Affiliation(s)
- Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Mei Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Dong Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Marzano M, Falanga AP, Dardano P, D'Errico S, Rea I, Terracciano M, De Stefano L, Piccialli G, Borbone N, Oliviero G. π–π stacked DNA G-wire nanostructures formed by a short G-rich oligonucleotide containing a 3′–3′ inversion of polarity site. Org Chem Front 2020. [DOI: 10.1039/d0qo00561d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rod-shaped G-wire assemblies potentially useful to obtain new hybrid and conducting materials were obtained by annealing short G-rich oligonucleotides incorporating a 3′–3′ inversion of polarity site in the presence of potassium or ammonium ions.
Collapse
Affiliation(s)
- Maria Marzano
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Andrea P. Falanga
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems
- National Council Research of Italy
- 80131 – Naples
- Italy
| | | | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems
- National Council Research of Italy
- 80131 – Naples
- Italy
| | - Monica Terracciano
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems
- National Council Research of Italy
- 80131 – Naples
- Italy
| | - Gennaro Piccialli
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Nicola Borbone
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies
- University of Naples Federico II
- 80131 – Naples
- Italy
| |
Collapse
|
12
|
Bortolus M, Ribaudo G, Toffoletti A, Carbonera D, Zagotto G. Photo-induced spin switching in a modified anthraquinone modulated by DNA binding. Photochem Photobiol Sci 2019; 18:2199-2207. [PMID: 30838367 DOI: 10.1039/c8pp00586a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An anthraquinone modified with a nitroxide radical and able to intercalate into DNA has been synthesized to obtain a molecule the spin state of which can be manipulated by visible light and DNA binding. The doublet ground state of the molecule can be photo-switched to either a strongly coupled spin state (quartet + doublet), when isolated, or to an uncoupled spin state (triplet and doublet), when bound to DNA. The different spin state that is obtained upon photoexcitation depends on the intercalation of the quinonic core into double-stranded DNA which changes the conformation of the molecule, thereby altering the exchange interaction between the excited state localized on the quinonic core and the nitroxide radical. The spin state of the system has been investigated using both continuous-wave and time-resolved EPR spectroscopy.
Collapse
Affiliation(s)
- Marco Bortolus
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Giovanni Ribaudo
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Antonio Toffoletti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Giuseppe Zagotto
- Department of Pharmaceutical Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| |
Collapse
|
13
|
Kogikoski S, Paschoalino WJ, Cantelli L, Silva W, Kubota LT. Electrochemical sensing based on DNA nanotechnology. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Panciera M, González‐Freire E, Calvelo M, Amorín M, Granja JR. Induced α,γ‐cyclic peptide rotodimer recognition by nucleobase scaffolds. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michele Panciera
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry DepartmentUniversidade de Santiago de Compostela (USC) Santiago de Compostela Spain
| | - Eva González‐Freire
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry DepartmentUniversidade de Santiago de Compostela (USC) Santiago de Compostela Spain
| | - Martín Calvelo
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry DepartmentUniversidade de Santiago de Compostela (USC) Santiago de Compostela Spain
| | - Manuel Amorín
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry DepartmentUniversidade de Santiago de Compostela (USC) Santiago de Compostela Spain
| | - Juan R. Granja
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry DepartmentUniversidade de Santiago de Compostela (USC) Santiago de Compostela Spain
| |
Collapse
|
15
|
Tang Z, Yin ZX, Sun X, Cui JZ, Yang J, Wang RS. Dynamically NAND gate system on DNA origami template. Comput Biol Med 2019; 109:112-120. [PMID: 31054386 DOI: 10.1016/j.compbiomed.2019.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/21/2019] [Accepted: 04/21/2019] [Indexed: 12/22/2022]
Abstract
Molecular logic gates play an important role in many fields and DNA-based logic gates are the basis of DNA computers. A dynamically NAND gate system on the DNA origami template is established in this paper. Naturally, the system is stable in solution without any reaction. Different logical values are mapped into different DNA input strands. When logical values are entered into the system, the corresponding DNA input strands undergo a directed hybridization chain reaction (HCR) at corresponding positions on the DNA origami template. The operation results are identified by disassembly between the nanogold particles (AuNPs) and DNA origami template. The nanogold particles remain on the DNA origami template, indicating that the result is true; The nanogold particles are dynamically separated from the DNA origami template, indicating that the result is false. The simulation of the system through Visual DSD shows that the reaction strictly followed the designed direction, and no error products are generated during the reaction. These simulation results show that the system has the advantages of feasibility, stability and intelligence.
Collapse
Affiliation(s)
- Zhen Tang
- School of Mathematics and Big Data, AnHui University of Science&Technology, Huainan, 232001, AnHui, China
| | - Zhi-Xiang Yin
- School of Mathematics and Big Data, AnHui University of Science&Technology, Huainan, 232001, AnHui, China.
| | - Xia Sun
- School of Mathematics and Big Data, AnHui University of Science&Technology, Huainan, 232001, AnHui, China
| | - Jian-Zhong Cui
- School of Electronic and Information Engineering, AnHui University of Science&Technology, Huainan, 232001, AnHui, China
| | - Jing Yang
- School of Mathematics and Big Data, AnHui University of Science&Technology, Huainan, 232001, AnHui, China
| | - Ri-Sheng Wang
- School of Mathematics and Big Data, AnHui University of Science&Technology, Huainan, 232001, AnHui, China
| |
Collapse
|
16
|
Affiliation(s)
- Simona Ranallo
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Alessandro Porchetta
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| |
Collapse
|