1
|
Zhang K, Sun H, Wei L, Hu R, Liu H, Lai Y, Li X. Robust and sensitive colorimetric detection of glutathione with double-triggering MOF-Fe(DTNB). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125439. [PMID: 39561532 DOI: 10.1016/j.saa.2024.125439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Glutathione (GSH) levels have been well validated to correlate with a variety of physiological and pathological conditions, such as malignancy, cardiovascular disease and aging, making the development of accurate, robust and sensitive GSH detection methods highly desirable. In this study, a novel metal-organic framework (MOF-Fe(DTNB))-based colorimetric method with a favorable dual-triggering function was proposed. MOF-Fe(DTNB) exhibits high peroxidase activity, which can catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue ox-TMB by hydrogen peroxide (H2O2). This oxidation process of TMB can be inhibited not only by the reducing action of GSH, but also by the thiol exchange reaction between DTNB and GSH, in which the disulfide bond of DTNB in MOF-Fe(DTNB) is cleaved. Thus, with this dual triggering mechanism, the GSH concentration can be robustly measured in the MOF-Fe(DTNB)-derived colorimetric strategy. Significantly, this method is accurate (RSD < 6 %), selective and sensitive in biological plasma samples, with satisfactory recovery rates (96.7-103.3 %). It requires less instrumentation and has less interference from other substances. The linear range of the method is 0-80 µM, and the detection limit is as low as 0.28 µM. This dual-triggering MOF-Fe(DTNB)-derived colorimetric strategy has greatly simplified the GSH detection processes with improved accuracy, in both acidic and basic environments, which has potent applications in biochemical analysis and point-of-care testing.
Collapse
Affiliation(s)
- Kaining Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong 250021, PR China
| | - Hao Sun
- Shandong First Medical University affiliated Binzhou People's Hospital; School of Pharmaceutical Sciences & Institute of Materia Medica; State Key Laboratory of Advanced Drug Delivery and Release Systems; Shandong First Medical University, Ji'nan, 250117, Shandong, PR China
| | - Long Wei
- Shandong First Medical University affiliated Binzhou People's Hospital; School of Pharmaceutical Sciences & Institute of Materia Medica; State Key Laboratory of Advanced Drug Delivery and Release Systems; Shandong First Medical University, Ji'nan, 250117, Shandong, PR China
| | - Rui Hu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, PR China
| | - Hao Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, PR China
| | - Yongchao Lai
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, PR China
| | - Xun Li
- Shandong First Medical University affiliated Binzhou People's Hospital; School of Pharmaceutical Sciences & Institute of Materia Medica; State Key Laboratory of Advanced Drug Delivery and Release Systems; Shandong First Medical University, Ji'nan, 250117, Shandong, PR China.
| |
Collapse
|
2
|
Mool-Am-Kha P, Phetduang S, Phongsanam N, Surawanitkun C, Ngamdee K, Ngeontae W. A fluorescence biosensor for organophosphorus pesticide detection with a portable fluorescence device-based smartphone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125330. [PMID: 39486239 DOI: 10.1016/j.saa.2024.125330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
An innovative fluorescence biosensor was successfully developed to detect organophosphorus pesticide (OPs) by utilizing smartphone technology. The assay relied on the enzymatic activity of alkaline phosphatase (ALP), which facilitated the conversion of L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAP) into L-ascorbic acid (AA). The AA that generated was then reactedwith o-phenylenediamine (OPD) to yield a fluorescent marker identified as 3-(1,2-dihydroxyethyl)furo[3,4-b]quinoxalin-1(3H)-one (DFQ). A novel bandpass approach was specifically developed for a smartphone that was integrated with a customized portable fluorescence device to measure the fluorescence emission of DFQ. The device has a unique application that converts the fluorescence intensity into an RGB signal. In the presence of OPs, malathion was chosen as the representative of the OPs substance; the enzymatic activity of the ALP was inhibited, resulting in a decrease in fluorescence intensity, which was proportional to the concentration of malathion. Smartphones can be used to measure fluorescence emission, offering a calibration sensitivity more than 70 times higher than that of conventional spectrofluorometer. The recently developed methodology can be employed to identify malathion within the concentration range of 0.1-1 ppm, with a detection limit of 0.05 ppm. The practical applicability of the method was established using vegetable samples, and the acquired results were in good agreement with those obtained using the standard HPLC approach. This innovative method provides both portability and accuracy, while also exhibiting a notable degree of sensitivity in detecting traceamounts of OPs.
Collapse
Affiliation(s)
- Pijika Mool-Am-Kha
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Construction Materials Group, Engineering Materials Division, Department of Science Service, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Samuch Phetduang
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nopphakon Phongsanam
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chayada Surawanitkun
- Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Khai Campus, Nong Khai 43000, Thailand
| | - Kessarin Ngamdee
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wittaya Ngeontae
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
3
|
Liu X, Gong Q, Deng X, Li L, Luo R, Li X, Guo D, Deng F. UHPLC-Q/Orbitrap HRMS combined with spectrum-effect relationship and network pharmacology to discovery the gastrointestinal motility-promoting material basis in Citri Sarcodactylis Fructus. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118926. [PMID: 39393559 DOI: 10.1016/j.jep.2024.118926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of gastrointestinal motility disorders (GMD) is increasing and is characterized by long-term recurrence. Citri Sarcodactylis Fructus (CSF), as a traditional Chinese medicine (TCM) known in "regulating qi and harmonizing the stomach", has therapeutic effects on GMD. However, the material basis of its efficacy is not clear. AIM OF THE STUDY The aim of this study was to evaluate the gastrointestinal motility-promoting activity of CSF extracts and to screen their active ingredients and to perform a preliminary validation. METHODS The chemical composition spectrum of different extracts of CSF were established by ultra high-performance liquid chromatography coupled with quadrupole orbitrap high-resolution mass spectrometry (UHPLC-Q/Orbitrap HRMS). The gastrointestinal motility-promoting activities of CSF were investigated by determining the intestinal propulsion rate, gastric emptying rate, acetylcholinesterase activity, and motilin content in L-arginine-induced GMD mice. Spectrum-effect relationship and network pharmacology analysis were used for the screening of potential active ingredients. A zebrafish gastrointestinal motility model traced with Nile Red was established to validate the active ingredients. Molecular docking prediction was used to explore the mechanism of action of the active ingredient. Finally, Western blotting and TUNEL staining were performed to validate the molecular docking predictions. RESULTS In total, 42 shared components were identified. The main active fraction of CSF to promote gastrointestinal motility was 70% ethanol elution fraction. Eleven potential active ingredients were screened by grey correlation analysis, orthogonal partial least squares analysis, and "active ingredient-target" network. Six compounds were confirmed as the pharmacodynamic substances of CSF by zebrafish gastrointestinal motility model, namely, quercetin, kaempferol, isorhamnetin, diosmetin, hesperetin, and 5,7,3'-trihydroxy-6,4',5'-trimethoxyflavone. Molecular docking predictions and Western blotting assays indicated that CSF may act on AKT and MMP9 targets to exert gastrointestinal motility-promoting activity. CONCLUSION This study provided a foundation for elucidating the gastrointestinal motility-promoting activity of CSF and its material basis by integrating spectrum-effect relationship and network pharmacology. It also provided a theoretical basis for quality control of CSF and a new idea for the discovery and validation of pharmacodynamic substances in TCM.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qianqian Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianglan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruiyi Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dale Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fang Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Zhang F, Gao Y, Ren E, Fang L, Yang W, Zhang L, Wang Z. Paper-based multicolor sensor for on-site quantitative detection of organophosphate pesticides based on acetylcholinesterase-mediated paper-based Au 3+-etching of gold nanobipyramids and CIELab color space. Talanta 2025; 281:126925. [PMID: 39305765 DOI: 10.1016/j.talanta.2024.126925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
On-site quantitative detection of organophosphorus pesticides (OPs) is crucial for safeguarding food and public safety. This study presents a novel acetylcholinesterase (AChE)-mediated paper-based Au3+-etching of gold nanobipyramids (AuNBPs) system. The system employs a long-term storable AuNBPs-deposited nylon membrane embedded within a portable and temperature-controlled paper-based analytical device. This system, coupled with a colorimeter-based quantitative method, enables the development of a practical paper-based multicolor sensor (PMS) for on-site quantitative detection of three common OPs (paraoxon, dichlorvos, and trichlorfon). In the absence of OPs, AChE hydrolyzes acetylthiocholine to thiocholine, which reduces Au3+ to Au+. The presence of OPs inhibits AChE activity, thereby preserving Au3+ to etch AuNBPs on nylon membranes, accompanied by multicolor changes. These color changes can be simply quantified by measuring the a∗ parameter of the CIELab color space using a portable colorimeter. Under optimal conditions, the PMS displayed eight OPs-corresponding color changes with a minimum detectable concentration of 1.0-10 μg/L (visual observation) and limits of detection of 0.8-7.2 μg/L (colorimeter) and 0.2-3.4 μg/L (UV-vis spectrometry). The PMS successfully determined the OPs in vegetable and rice samples with recoveries of 89.0-109 % and RSDs (n = 5) of <6 %. These results were consistent with those obtained using the HPLC-MS method. The PMS demonstrates excellent portability, AuNBPs stability, detection sensitivity, and reproducibility, making it a promising tool for the on-site quantitative detection of OPs residues in food. Furthermore, the paper-based etching system coupled with the colorimeter-based quantitative method provides a valuable reference to develop practical PMSs for various targets in diverse fields.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yu Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Enxi Ren
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Ling Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Weijuan Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Liaoyuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Zongwen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
5
|
Qin Y, Xiao R, Xu W, Yu H, Liu M, Yang W, Tan R, Chen Y, Wen J, Peng X, Gu W, Zhu C, Hu L. Near-Infrared Light Driven Reversible Photoelectrochemical Bioassay by S-Scheme All-Polymer Blends for Acetylcholinesterase Activity Monitoring. NANO LETTERS 2024. [PMID: 39699343 DOI: 10.1021/acs.nanolett.4c05417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Photoelectrochemical (PEC) biosensing, recognized for its heightened sensitivity, faces limitations in its application for in vivo diagnosis due to the inefficiency of UV-visible light-driven photoactive materials in nontransparent biological samples. In this study, we investigate the potential of an S-scheme all-polymer heterojunction comprising a prototype nonfullerene polymeric acceptor (PYIT) and carbon nitride to develop a near-infrared (NIR) light-driven PEC biosensor for monitoring acetylcholinesterase activity in nontransparent human whole blood. The distinct molecular structure of PYIT enables efficient light absorption in the NIR region, enhancing sensitivity in nontransparent biological samples. The biosensor functions via a proton-dependent conversion mechanism between PYIT-OH and PYIT, leveraging the selective and reversible chemical reactivity of the moieties in backbone, eliminating the need for traditional and intricate integration of a biorecognition unit. Our findings demonstrate a direct correlation between variations in photoelectric performance and acetylcholinesterase concentration, showcasing exceptional sensitivity, selectivity, and reversibility.
Collapse
Affiliation(s)
- Ying Qin
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Runshi Xiao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wentao Xu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Han Yu
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Mingwang Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wenhong Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Rong Tan
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yuanxing Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing Wen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xiang Peng
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
6
|
Gui Y, Wang J, Gou Q, Yu X, Yang Y, Wang C, Li L, Gao W, Liu W, Wang H, Shu X, Zhang Y, Shang J. A novel dicyanoisophorone-based fluorescent probe for rapid detection of acetylcholinesterase in biological systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 329:125587. [PMID: 39700554 DOI: 10.1016/j.saa.2024.125587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Acetylcholinesterase (AChE) plays a vital role in various neurological diseases including brain disorders, neurotransmission alterations, and cancer. Developing effective methods to image AChE in biological samples is essential for understanding its mechanisms in biosystems. Here, we introduce a novel fluorescent probe CNA, that enables detection of AChE at 520 nm with rapid response time of 60 s and a detection limit of 0.014 U/mL. We successfully applied CNA to image endogenous and exogenous AChE in PC12 cells and in living mice. These findings highlight the potential of CNA as an effective method to study the physiological and pathological roles of AChE in complex living systems.
Collapse
Affiliation(s)
- Yuran Gui
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Jingran Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Quan Gou
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China
| | - Xin Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Yang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Chen Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Liping Li
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wanxia Gao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Hua Wang
- Fuling Hospital, Chongqing University, Chongqing 408000, China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yibin Zhang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China.
| | - Jinting Shang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
7
|
Bai X, Deng W, Cai J, Xia H, Bai J, Zhou M. Advancing the Validation of the Enrichment-Enhanced Detection Strategy with Au Nanoclusters for AChE Detection. Anal Chem 2024; 96:19553-19559. [PMID: 39608793 DOI: 10.1021/acs.analchem.4c04328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
High-sensitivity fluorescent probes provide a powerful tool for understanding life processes and functioning mechanisms. Therefore, the development of a universal strategy to optimize probes holds substantial importance. Herein, we developed a novel strategy for common probe upgrades: rather than simply pursuing a higher fluorescence intensity of the probe itself, we tried to promote the detection sensitivity by enhancing the probe-substrate interactions. Fortified with polyionic polymers, self-assembled probes could be endowed with enhanced attractions to the substrate. In this work, we took the AChE-AuNCs detection system as a typical and important example to verify this concept of the "enrichment-enhanced detection" strategy (EED strategy). Two probes, AuNCs@GC and AuNCs@CMCS, with similar composing polymers (chitosan derivatives), microstructures, fluorescence profiles, and distinct charges were delicately designed and thoroughly studied. CMCS with an abundance of negatively charged carboxy groups plays an important role in the enrichment of thiocholine through electrostatic interactions. Thus, despite having similar composing components, structures, and almost identical fluorescence profiles, the negatively charged composite shows superior sensitivity (15.2-fold enhancement) and response time (2-fold faster) compared to the AuNCs@GC, thereby validating the feasibility of the EED strategy. Overall, our work validates the EED strategy and applies it to the accurate detection of AChE activity. We believe that this strategy offers substantial insights for the generalization and enhancement of advanced nanoprobes.
Collapse
Affiliation(s)
- Xilin Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Wei Deng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jian Cai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Haiying Xia
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jing Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
8
|
Zhang X, Xue C, Cao H, Wu Y, Yang B, Zhou T, Zhai W, Deng J. Ultra-small CuO x/GDYO nanozyme with boosting peroxidase-like activity via electrochemical strategy: Toward applicable colorimetric detection of organophosphate pesticides. Talanta 2024; 279:126639. [PMID: 39094531 DOI: 10.1016/j.talanta.2024.126639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
In this paper, an ultra-small-sized CuOx/GDYO nanozyme in situ grown on ITO glass was rationally synthesized from mixed precursors of graphdiyne oxide (GDYO) and copper based infinite coordination polymer (Cu-ICP, consisting of Cu ions and two organic ligands 3,5-di-tert-butylcatechol and 1,4-bis(imidazole-1-ylmethyl)benzene) via mild and simple electrochemical strategy. On one hand, the preferential electro-reduction of Cu-ICP enabled the formation of ultra-small CuOx with Cu(I) as the main component and avoided the loss of oxygen-containing functional groups and defects on the surface of GDYO; on the other hand, GDYO can also serve as electroless reductive species to facilitate the electrochemical deposition of CuOx and turn itself to a higher oxidation state with more exposed functional groups and defects. This one-stone-two-birds electrochemical strategy empowered CuOx/GDYO nanozyme with superior peroxidase-mimicking activity and robust anchoring stability on ITO glass, thus enabled further exploration of the portable device with availability for point-of-use applications. Based on the organophosphorus pesticides (OPs) blocked acetylcholinesterase (AChE) activity, the competitive redox reaction was regulated to initiate the chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB) catalyzed by CuOx/GDYO peroxidase-like nanozyme, which laid out a foundation for the detection of OPs (with chlorpyrifos as an example). With a detection of limit low to 0.57 nM, the OPs residues during agricultural production can be directly monitored by the portable device we developed.
Collapse
Affiliation(s)
- Xuefei Zhang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Chenyi Xue
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Huihan Cao
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Yuanyue Wu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Bowen Yang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China
| | - Wanying Zhai
- Changjiang Basin Ecology and Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, 13 Yongqing Road, Wuhan, 430019, China.
| | - Jingjing Deng
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
9
|
Zhou L, Zhao H, Zhang T, Li R, Cui Y, Liu Z, Wang L, Xie D. Apple polysaccharide stabilized palladium nanoparticles for sensitive detection of organophosphorus pesticide. Int J Biol Macromol 2024; 281:136056. [PMID: 39443178 DOI: 10.1016/j.ijbiomac.2024.136056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
The widespread application of organophosphorus pesticides (OPs) has inflicted significant damage on human well-being and food security. Hence, it is imperative to develop a friendly and accessible biosensor for the detection of OPs. Herein, apple polysaccharide (AP) stabilized palladium nanoparticles (AP-PdnNPs) with a particle size of 2.75-5.95 nm were prepared using AP as a stabilizer and reducing agent. AP-Pd30NPs exhibited good peroxidase-like activity and effectively decomposed H2O2 to ·OH, which catalyzed the 3,3',5,5'-tetramethylbenzidine system to become blue. The catalytic kinetics of AP-Pd30NPs conformed to the typical Michelis-Menten equation. Furthermore, OPs directly inhibited the peroxidase-like activity of AP-Pd30NPs. Thus, a highly effective colorimetric biosensor was developed for the detection of OPs. The detection range of the biosensor was 0.050 μg/L - 200 mg/L, and the limit of detection was extremely low to 0.010 μg/L. Compared with other nanomaterials, the detection platform based on AP-Pd30NPs can effectively detect organophosphorus pesticides without coupling natural enzymes;this method is more economical and practical. Therefore, this established method explores good perspective for the detection of OPs.
Collapse
Affiliation(s)
- Lijie Zhou
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Han Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Tingting Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Ruyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Yanshuai Cui
- Department of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China.
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| | - Danyang Xie
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
10
|
Yu ZJ, Yang TT, Liu G, Deng DH, Liu L. Gold Nanoparticles-Based Colorimetric Immunoassay of Carcinoembryonic Antigen with Metal-Organic Framework to Load Quinones for Catalytic Oxidation of Cysteine. SENSORS (BASEL, SWITZERLAND) 2024; 24:6701. [PMID: 39460180 PMCID: PMC11510933 DOI: 10.3390/s24206701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
This work reported gold nanoparticles (AuNPs)-based colorimetric immunoassay with the Cu-based metal-organic framework (MOF) to load pyrroloquinoline quinone (PQQ) for the catalytic oxidation of cysteine. In this method, both Cu2+ and PQQ in the MOF could promote the oxidation of inducer cysteine by redox cycling, thus limiting the cysteine-induced aggregation of AuNPs and achieving dual signal amplification. Specifically, the recombinant carcinoembryonic antigen (CEA) targets were anchored on the MOF through the metal coordination interactions between the hexahistidine (His6) tag in CEA and the unsaturated Cu2+ sites in MOF. The CEA/PQQ-loaded MOF could be captured by the antibody-coated ELISA plate to catalyze the oxidation of cysteine. However, once the target CEA in the samples bound to the antibody immobilized on the plate surface, the attachment of CEA/PQQ-loaded MOF would be limited. Cysteine remaining in the solution would trigger the aggregation of AuNPs and cause a color change from red to blue. The target concentration was positively related to the aggregation and color change of AuNPs. The signal-on competitive plasmonic immunoassay exhibited a low detection limit with a linear range of 0.01-1 ng/mL. Note that most of the proteins in commercial ELISA kits are recombinant with a His6 tag in the N- or C-terminal, so the work could provide a sensitive plasmonic platform for the detection of biomarkers.
Collapse
Affiliation(s)
| | | | | | | | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (T.-T.Y.); (G.L.); (D.-H.D.)
| |
Collapse
|
11
|
Khampieng T, Kewcharoen K, Parnklang T, Kladsomboon S, Chailapakul O, Apilux A. Bi-enzyme assay coupled with silver nanoplate transformation for insecticide detection. NANOSCALE ADVANCES 2024:d4na00585f. [PMID: 39415772 PMCID: PMC11474407 DOI: 10.1039/d4na00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
A novel colorimetric method utilizing a bi-enzyme assay using silver nanoplates (AgNPls) as a direct signal source was developed to enable rapid insecticide detection. This innovative system leverages the in situ generated H2O2 from the consecutive enzyme-catalyzed reactions of acetylcholine hydrolysis and choline oxidation to introduce oxidative etching of AgNPls, transforming them into aggregated silver nanospheres (AgNSs). The morphological transformation of silver nanoparticles could be observed with the naked eye due to the solution's color shifts from pink-violet to blue-violet. The presence of insecticide, i.e., dichlorvos (DDVP), could inhibit acetylcholinesterase activity, thereby limiting H2O2 production and affecting the transformation of AgNPls into aggregated AgNSs. Furthermore, the extent of AgNPl-to-aggregated AgNS transformation and the subsequent solution's color change was inversely proportional to the amount of DDVP. Under optimal conditions, the developed bi-enzyme assay enables the quantification of DDVP within 5 minutes, achieving detection limits of 0.5 ppm and 0.1 ppm by naked-eye detection and UV-visible spectrophotometry, respectively. Furthermore, the practical application of this assay was validated for detecting insecticides in real vegetable samples, demonstrating both accuracy and reliability.
Collapse
Affiliation(s)
- Thitikan Khampieng
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya Nakhon Pathom 73170 Thailand
| | - Kaneenard Kewcharoen
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya Nakhon Pathom 73170 Thailand
| | - Tewarak Parnklang
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok Bangkok 10800 Thailand
| | - Sumana Kladsomboon
- Department of Radiological Technology, Faculty of Medical Technology, Mahidol University 999 Phutthamonthon 4 Road, Salaya Nakhon Pathom 73170 Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Amara Apilux
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya Nakhon Pathom 73170 Thailand
| |
Collapse
|
12
|
Chen G, Zhang S, Wang X, Fan X, Wilson G, Sa Y, Ma X. A strategy for inhibitors screening of xanthine oxidase based on colorimetric sensor combined with affinity chromatography technology. Biosens Bioelectron 2024; 261:116510. [PMID: 38905859 DOI: 10.1016/j.bios.2024.116510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The discovery of enzyme inhibitors from natural products is a crucial aspect in the development of therapeutic drugs. However, the complexity of natural products presents a challenge in developing simple and efficient methods for inhibitor screening. Herein, we have developed an integrated analytical model for screening xanthine oxidase (XOD) inhibitors that combines simplicity, accuracy, and efficiency. This model utilizes a colorimetric sensor and affinity chromatography technology with immobilized XOD. The colorimetric sensor procedure can quickly identify whether there are active components in complex samples. Subsequently, the active components in the samples identified by the colorimetric sensor procedure were further captured, separated, and identified through affinity chromatography. The integrated analytical model can significantly enhance the efficiency and accuracy of inhibitor screening. The proposed method was applied to screen for an activity inhibitor of XOD in five natural medicines. As a result, a potential active ingredient for XOD, polydatin, was successfully identified from Polygoni Cuspidati Rhizoma et Radix. This work is anticipated to offer new insights for the screening of enzyme inhibitors from natural medicines.
Collapse
Affiliation(s)
- Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| | - Shuxian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaofei Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaoxuan Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Gidion Wilson
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Yuping Sa
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
13
|
Wu D, Zhao Q, Wang Y, Zhang B, Tang X, Talap J, Sun J, Yang X. Fluorescent Iron-Doped Polymer Dot Nanozyme-Based Cascade System for Dual-Mode Detection of Acetylcholinesterase Activity and Its Inhibitors. Anal Chem 2024; 96:15682-15691. [PMID: 39292617 DOI: 10.1021/acs.analchem.4c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The advancement of acetylcholinesterase (AChE) activity and its inhibitor assays is crucial for clinical diagnosis, drug screening, and environmental monitoring. A nanozyme-mediated cascade reaction system could offer promising prospects for a wide range of applications in such biosensing; however, the creation of nanozyme catalysts with diverse functionalities remains a significant challenge. Herein, we have proposed a multifunctional iron-doped polymer dots (Fe-PDs) nanozyme possessing excellent fluorescence and peroxidase (POD)-mimicking activity. Notably, the Fe-PDs nanozyme is capable of catalyzing H2O2 to produce a series of reactive oxygen species, which can simultaneously quench the fluorescence of Fe-PDs and induce a chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB), enabling the dual-mode detection of H2O2 through both fluorescence turn-off and absorbance turn-on signals. Furthermore, by integrating acetylcholine (ACh) and choline oxidase (ChOx), we have developed a three-enzyme (AChE-ChOx-POD) cascade-based fluorometric and colorimetric dual-mode sensing platform for monitoring AChE activity and its inhibitors. The sensitive and convenient dual-mode sensor has achieved low limits of detection with 0.5 mU/mL (fluorometry) and 0.014 mU/mL (colorimetry) for AChE, respectively, which are superior to the traditional Ellman's assay. More significantly, this sensor can also be extended to detect the reversible and irreversible inhibitors of AChE, such as tacrine (IC50 = 23.3 nM) and carbaryl (LOD = 0.8 nM). We firmly believe that this innovative dual-mode nanozyme-involved multienzyme cascade system-based sensing strategy will stimulate further exploration and serve as a versatile and practical tool for biochemical sensing applications.
Collapse
Affiliation(s)
- Donghui Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qilin Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Wang
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi 830017, China
| | - Bing Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianqing Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jadera Talap
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi 830017, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi 830017, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
14
|
Upadhyay S, Kumar A, Srivastava M, Srivastava A, Dwivedi A, Singh RK, Srivastava SK. Recent advancements of smartphone-based sensing technology for diagnosis, food safety analysis, and environmental monitoring. Talanta 2024; 275:126080. [PMID: 38615454 DOI: 10.1016/j.talanta.2024.126080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
The emergence of computationally powerful smartphones, relatively affordable high-resolution camera, drones, and robotic sensors have ushered in a new age of advanced sensible monitoring tools. The present review article investigates the burgeoning smartphone-based sensing paradigms, including surface plasmon resonance (SPR) biosensors, electrochemical biosensors, colorimetric biosensors, and other innovations for modern healthcare. Despite the significant advancements, there are still scarcity of commercially available smart biosensors and hence need to accelerate the rates of technology transfer, application, and user acceptability. The application/necessity of smartphone-based biosensors for Point of Care (POC) testing, such as prognosis, self-diagnosis, monitoring, and treatment selection, have brought remarkable innovations which eventually eliminate sample transportation, sample processing time, and result in rapid findings. Additionally, it articulates recent advances in various smartphone-based multiplexed bio sensors as affordable and portable sensing platforms for point-of-care devices, together with statistics for point-of-care health monitoring and their prospective commercial viability.
Collapse
Affiliation(s)
- Satyam Upadhyay
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anil Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur, 222001, India
| | - Arpita Dwivedi
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajesh Kumar Singh
- School of Physical and Material Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra, 176215, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
15
|
Wen Y, Xu W, Wu Y, Tang Y, Liu M, Sha M, Li J, Xiao R, Hu L, Lin Y, Zhu C, Gu W. Bifunctional enzyme-mimicking metal-organic frameworks for sensitive acetylcholine analysis. Talanta 2024; 275:126112. [PMID: 38677169 DOI: 10.1016/j.talanta.2024.126112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
The development of nanomaterials with multi-enzyme-like activity is crucial for addressing challenges in multi-enzyme-based biosensing systems, including cross-talk between different enzymes and the complexities and costs associated with detection. In this study, Pt nanoparticles (Pt NPs) were successfully supported on a Zr-based metal-organic framework (MOF-808) to create a composite catalyst named MOF-808/Pt NPs. This composite catalyst effectively mimics the functions of acetylcholinesterase (AChE) and peroxidase (POD). Leveraging this capability, we replaced AChE and POD with MOF-808/Pt NPs and constructed a biosensor for sensitive detection of acetylcholine (ACh). The MOF-808/Pt NPs catalyze the hydrolysis of ACh, resulting in the production of acetic acid. The subsequent reduction in pH value further enhances the POD-like activity of the MOFs, enabling signal amplification through the oxidation of a colorimetric substrate. This biosensor capitalizes on pH variations during the reaction to modulate the different enzyme-like activities of the MOFs, simplifying the detection process and eliminating cross-talk between different enzymes. The developed biosensor holds great promise for clinical diagnostic analysis and offers significant application value in the field.
Collapse
Affiliation(s)
- Yating Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Yinjun Tang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Mingwang Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Meng Sha
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Jinli Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Runshi Xiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Yongxin Lin
- Department of Thyroid Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, PR China.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China; College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao, 266042, PR China.
| |
Collapse
|
16
|
Chen Z, Li M, Chen W, Zhou J, Gu X, Ding C, Huang Y. Cascade reaction triggered colorimetric array for identification of organophosphorus pesticides congeners. Biosens Bioelectron 2024; 253:116143. [PMID: 38452567 DOI: 10.1016/j.bios.2024.116143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024]
Abstract
A modern agriculture uses alternative pest control methods to boost productivity, leading to an accumulation of organophosphorus (OPPs) congeners. This necessitates an intuitive and quick way to identify OPPs congeners. A colorimetric sensor for detecting OPPs congeners using a double-enzyme cascade reaction has been successfully designed and constructed in this study. The OPPs regulate the color changes induced by manganese dioxide nanoflowers (MnO2 NFs) and specific alkaline phosphatases (ALP) during the etching of gold nanopyramids (Au NBPs). The ascorbic acid (AA) produced by ALP hydrolysis inhibits Au NBPs etching by MnO2 NFs oxidized 3, 3', 5, 5'-tetramethylbenzidine (TMB). By inhibiting ALP catalytic activity, OPPs prevent AA formation. In this process, Au NBPs will undergo further etching, resulting in various colors so they can be analyzed semi-quantitatively with the naked eye. It has been found that different types of OPPs inhibit enzymes differently and therefore result in varying degrees of etching of Au NBPs. Principal Component Analysis (PCA) is performed by smart devices that convert R, G, and B signals into digital signals. This colorimetric array tests various foods (tea, apple, and cabbage). Colorimetric visualization sensors combined with data analysis will be used in real-life product development.
Collapse
Affiliation(s)
- Zikang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Ming Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Weiwei Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jingyi Zhou
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xungang Gu
- Anhui Aochuang Environment Testing Co., Ltd., Administrative Business Building, Weisan Road, Fuyang Economic and Technological Development Zone, 242000, Anhui, China
| | - Caiping Ding
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
17
|
Ramachandran L, Abul Rub F, Hajja A, Alodhaibi I, Arai M, Alfuwais M, Makhzoum T, Yaqinuddin A, Al-Kattan K, Assiri AM, Broering DC, Chinnappan R, Mir TA, Mani NK. Biosensing of Alpha-Fetoprotein: A Key Direction toward the Early Detection and Management of Hepatocellular Carcinoma. BIOSENSORS 2024; 14:235. [PMID: 38785709 PMCID: PMC11117836 DOI: 10.3390/bios14050235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Hepatocellular carcinoma (HCC) is currently one of the most prevalent cancers worldwide. Associated risk factors include, but are not limited to, cirrhosis and underlying liver diseases, including chronic hepatitis B or C infections, excessive alcohol consumption, nonalcoholic fatty liver disease (NAFLD), and exposure to chemical carcinogens. It is crucial to detect this disease early on before it metastasizes to adjoining parts of the body, worsening the prognosis. Serum biomarkers have proven to be a more accurate diagnostic tool compared to imaging. Among various markers such as nucleic acids, circulating genetic material, proteins, enzymes, and other metabolites, alpha-fetoprotein (AFP) is a protein marker primarily used to diagnose HCC. However, current methods need a large sample and carry a high cost, among other challenges, which can be improved using biosensing technology. Early and accurate detection of AFP can prevent severe progression of the disease and ensure better management of HCC patients. This review sheds light on HCC development in the human body. Afterward, we outline various types of biosensors (optical, electrochemical, and mass-based), as well as the most relevant studies of biosensing modalities for non-invasive monitoring of AFP. The review also explains these sensing platforms, detection substrates, surface modification agents, and fluorescent probes used to develop such biosensors. Finally, the challenges and future trends in routine clinical analysis are discussed to motivate further developments.
Collapse
Affiliation(s)
- Lohit Ramachandran
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Farah Abul Rub
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Amro Hajja
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Ibrahim Alodhaibi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Momo Arai
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Mohammed Alfuwais
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Lung Health Center Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Abdullah M. Assiri
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Dieter C. Broering
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| |
Collapse
|
18
|
Lei M, Ding X, Liu J, Tang Y, Chen H, Zhou Y, Zhu C, Yan H. Trace Amount of Bi-Doped Core-Shell Pd@Pt Mesoporous Nanospheres with Specifically Enhanced Peroxidase-Like Activity Enable Sensitive and Accurate Detection of Acetylcholinesterase and Organophosphorus Nerve Agents. Anal Chem 2024; 96:6072-6078. [PMID: 38577757 DOI: 10.1021/acs.analchem.4c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The urgent need for sensitive and accurate assays to monitor acetylcholinesterase (AChE) activity and organophosphorus pesticides (OPs) arises from the imperative to safeguard human health and protect the ecosystem. Due to its cost-effectiveness, ease of operation, and rapid response, nanozyme-based colorimetry has been widely utilized in the determination of AChE activity and OPs. However, the rational design of nanozymes with high activity and specificity remains a great challenge. Herein, trace amount of Bi-doped core-shell Pd@Pt mesoporous nanospheres (Pd@PtBi2) have been successfully synthesized, exhibiting good peroxidase-like activity and specificity. With the incorporation of trace bismuth, there is a more than 4-fold enhancement in the peroxidase-like performance of Pd@PtBi2 compared to that of Pd@Pt. Besides, no significant improvement of oxidase-like and catalase-like activities of Pd@PtBi2 was found, which prevents interference from O2 and undesirable consumption of substrate H2O2. Based on the blocking impact of thiocholine, a colorimetric detection platform utilizing Pd@PtBi2 was constructed to monitor AChE activity with sensitivity and selectivity. Given the inhibition of OPs on AChE activity, a biosensor was further developed by integrating Pd@PtBi2 with AChE to detect OPs, capitalizing on the cascade amplification strategy. The OP biosensor achieved a detection limit as low as 0.06 ng mL-1, exhibiting high sensitivity and anti-interference ability. This work is promising for the construction of nanozymes with high activity and specificity, as well as the development of nanozyme-based colorimetric biosensors.
Collapse
Affiliation(s)
- Mengdie Lei
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xilin Ding
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jin Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yinjun Tang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hongxiang Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yu Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Hongye Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
19
|
Zhao F, Guo H, Yang W, Guo L, Li J, Chen H. Determination of Acetylcholinesterase Activity Based on Ratiometric Fluorescence Signal Sensing. J Fluoresc 2024:10.1007/s10895-024-03703-y. [PMID: 38613708 DOI: 10.1007/s10895-024-03703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Acetylcholinesterase (AChE) plays an important role in the treatment of human diseases, environmental security and global food supply. In this study, the simple fluorescent indicators and MnO2 nanosheets were developed and integrated to establish a ratiometric fluorescence sensing system for the detection of AChE activity. Two fluorescence signals could be recorded independently at the same excitation wavelength, which extended the detection range and enhanced the visibility of results. Fluorescence of F-PDA was quenched by MnO2 nanosheets on account of inner filtering effect. Meanwhile, the nonfluorescent OPD was catalytically oxidized to 2,3-diaminophenazine by MnO2 nanosheets. The acetylcholine (ATCh) was catalytically hydrolyzed by AChE to enzymatic thiocholine, which decomposed MnO2 to Mn2+, recovered the fluorescence of F-PDA and reduced the emission of ox-OPD. Utilizing the fluorescence intensity ratio F468/F558 as the signal readout, the ratiometric fluorescence method was established to detect AChE activity. Under the excitation wavelength of 410 nm, the ratio F460/F558 against the AChE concentration demonstrated two linear relationships in the range 0.05 -1.0 and 1.0-50 U·L- 1 with a limit of detection (LOD) of 0.073 U·L- 1. The method was applied to the detection of AChE activity and the analysis of the inhibitor Huperzine-A. Due to the advantages of high sensitivity and favorable selectivity, the method possesses an application prospect in the activity deteceion of AChE and the screening of inhibitors.
Collapse
Affiliation(s)
- Fengju Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China
| | - Hui Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China.
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China.
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China.
| | - Wei Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China
| | - Lili Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China
| | - Jiaxin Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China
| | - Hanqi Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang Province, 310014, P.R. China
| |
Collapse
|
20
|
Xing L, Ma P, Chen F. A novel turn-on near-infrared fluorescent probe for highly sensitive in vitro and in vivo detection of acetylcholinesterase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123954. [PMID: 38290281 DOI: 10.1016/j.saa.2024.123954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
Acetylcholinesterase (AChE) is a key enzyme in the cholinergic pathway of the nervous systems, with its aberrant expression linked to various diseases. In this study, we have developed a novel Turn-On near-infrared fluorescent probe, TQ-AChE, for the sensitive and selective detection of AChE activity. Characterized by its near-infrared emission at 740 nm, TQ-AChE effectively overcomes the limitations of traditional fluorescent probes, such as short excitation wavelengths and limited tissue penetration, crucial for both in vitro and in vivo applications. The probe's low limit of detection (LOD) of 0.02 U/mL for AChE makes it highly sensitive, enabling rapid quantification of AChE activity in serum effectively. Cell imaging studies demonstrate that TQ-AChE can confirm higher AChE activity expression in normal liver cells compared to liver cancer cells. TQ-AChE can also monitor AChE fluctuations in APAP-induced acute effectively, facilitating the evaluation of the efficacy of liver detoxifying agents. Additionally, in vivo studies in mouse models validate the potential of the probe in real-time monitoring of AChE expression in liver injury. The ability of TQ-AChE to visualize AChE expression signifies its potential as a promising tool for early liver disease diagnosis and therapeutic monitoring, opening new possibilities in hepatological research and clinical diagnostics.
Collapse
Affiliation(s)
- Lei Xing
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130030, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130030, China.
| |
Collapse
|
21
|
Zhang R, Mao YW, Li JQ, Ni LJ, Lin L, Wang AJ, Feng JJ, Cheang TY, Zhou H. Fe single atoms encapsulated in N, P-codoped carbon nanosheets with enhanced peroxidase-like activity for colorimetric detection of methimazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123934. [PMID: 38266603 DOI: 10.1016/j.saa.2024.123934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Excessive use of antithyroid drug methimazole (MMI) in pharmaceutical samples can cause hypothyroidism and symptoms of metabolic decline. Hence, it is urgent to develop rapid, low cost and accurate colorimetric method with peroxidase-like nanozymes for determination of MMI in medical, nutrition and pharmaceutical studies. Herein, Fe single atoms were facilely encapsulated into N, P-codoped carbon nanosheets (Fe SAs/NP-CSs) by a simple pyrolysis strategy, as certified by a series of characterizations. UV-vis absorption spectroscopy was employed to illustrate the high peroxidase-mimicking activity of the resultant Fe SAs/NP-CSs nanozyme through the typical catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation. The catalytic mechanism was scrutionously investigated by the fluorescence spectroscopy and electron paramagnetic resonance (EPR) tests. Additionally, the introduced MMI had the ability to reduce the oxidation of TMB (termed oxTMB) as a peroxidase inhibitor, coupled by fading the blue color. By virtue of the above findings, a visual colorimetric sensor was established for dual detection of methimazole (MMI) with a linear scope of 5-50 mM and a LOD of 1.57 mM, coupled by assay of H2O2 at a linear range of 3-50 mM. According to the irreversible oxidation of the drug, its screening with acceptable results was achieved on the sensing platform even in commercial tablets The Fe SAs/NP-CSs nanozyme holds great potential for clinical diagnosis and drug analysis.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yan-Wen Mao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Qi Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ling-Jie Ni
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Tuck Yun Cheang
- Department of Breast Care Centre, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
| | - Hongyan Zhou
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
22
|
Li DY, Chen L, Li CY, Zhang J, Zhao Y, Yang YH, Yang T. Nanoplasmonic biosensors for multicolor visual analysis of acetylcholinesterase activity and drug inhibitor screening in point-of-care testing. Biosens Bioelectron 2024; 247:115912. [PMID: 38096721 DOI: 10.1016/j.bios.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
The monitoring of acetylcholinesterase (AChE) activity and the screening of its inhibitors are significance of the diagnosis and drug therapy of nervous diseases. A metal ions-mediated signal amplification strategy was developed for the highly sensitive and multicolor assay of AChE activity and visually screening its drug inhibitors. After the specific reaction between AChE and acetylthiocholine (ATCh), the hydrolysis product thiocholine (TCh) can directly and decompose the α-FeOOH nanorods (NRs) to release amounts of Fe2+, which was regarded as Fenton reagent to efficiently catalyze H2O2 to produce ·OH. Then, the as-formed ·OH can further largely shorten the gold nanobipyramids (Au NBPs), generating a series of palpable color variations. The linear range for AChE activity was 0.01-500.0 U/L with the limit of detection as low as 0.0074 U/L. The vivid visual effects could be easily distinguished for the multicolor assay of AChE activity by naked eye in visible light. To achieve the point-of-care testing, Au NBPs were further assembled on polymeric electrospun nanofibrous films (ENFs) surface as test strips for the easy-to-use test of AChE activity by RGB values with a smartphone. Fascinatingly, this proposed strategy can be used for the visual screening AChE inhibitors or non-inhibitors. Comparing with the clinical drugs (rivastigmine tartrate, and donepezil), some natural alkaloids such as evodiamine, caffeine, camptothecin, and berberine hydrochloride were selected as inhibitor modes to confirm the drug screening capability of this method. This proposed strategy may have great potential in the other disease-related enzymatic biomarkers assay and the rapid screening of drug therapy.
Collapse
Affiliation(s)
- De Yan Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Lu Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Cai Yan Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Yun Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China.
| |
Collapse
|
23
|
Liu Y, Zhao W, Gao Y, Zhuo Q, Chu T, Zhou C, Huang W, Zheng Y, Li Y. Colorimetric and electrochemical dual-mode uric acid determination utilizing peroxidase-mimicking activity of CoCu bimetallic nanoclusters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1102-1110. [PMID: 38289093 DOI: 10.1039/d3ay02026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We present the preparation of CoCu bimetallic nanoclusters (Co@Cu-BNCs) by a hydrothermal and one-step pyrolysis method to build a colorimetric and electrochemical dual-mode sensing platform for uric acid (UA) detection. In the presence of H2O2, Co@Cu-BNCs with peroxidase-mimicking activity may convert colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue-colored oxidized TMB (oxTMB). However, due to the inhibitory effect of uric acid (UA) on the oxidation process of TMB, the characteristic absorption peak intensity of oxTMB decreased when UA was added into a mixed solution. In this approach, a colorimetric assay platform for the detection of UA was demonstrated, with a linear range of 0.1-195 μM and a low limit of detection of 0.06 μM (S/N ratio of 3). In addition, an even wider detection range is achieved in the electrochemical method, due to the pronounced electrocatalytic activity of Co@Cu-BNCs. The surface of the glassy carbon electrode was modified with Co@Cu-BNCs to build an electrochemical sensor for detecting UA. The sensor achieves a wider linear range from 2 to 1000 μM and a limit of detection of 0.61 μM (S/N ratio of 3). Moreover, the detection of UA in a human serum sample showed satisfactory results. The results proved that the colorimetric and electrochemical dual-mode detection platform was sensitive, convenient and accurate.
Collapse
Affiliation(s)
- Yaopeng Liu
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Wei Zhao
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Yi Gao
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Qing Zhuo
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Tingting Chu
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Chengyu Zhou
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Wensheng Huang
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Yin Zheng
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Yingru Li
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| |
Collapse
|
24
|
Durgun M, Akocak S, Lolak N, Topal F, Koçyiğit ÜM, Türkeş C, Işık M, Beydemir Ş. Design and Synthesis of Pyrazole Carboxamide Derivatives as Selective Cholinesterase and Carbonic Anhydrase Inhibitors: Molecular Docking and Biological Evaluation. Chem Biodivers 2024; 21:e202301824. [PMID: 38149720 DOI: 10.1002/cbdv.202301824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 12/28/2023]
Abstract
The present study focused on the synthesis and characterization of novel pyrazole carboxamide derivatives (SA1-12). The inhibitory effect of the compounds on cholinesterases (ChEs; AChE and BChE) and carbonic anhydrases (hCAs; hCA I and hCA II) isoenzymes were screened as in vitro. These series compounds have been identified as potential inhibitors with a KI values in the range of 10.69±1.27-70.87±8.11 nM for hCA I, 20.01±3.48-56.63±6.41 nM for hCA II, 6.60±0.62-14.15±1.09 nM for acetylcholinesterase (AChE) and 54.87±7.76-137.20 ±9.61 nM for butyrylcholinesterase (BChE). These compounds have a more effective inhibition effect when compared to the reference compounds. In addition, the potential binding positions of the compounds with high affinity for ChE and hCAs were demonstrated by in silico methods. The results of in silico and in vitro studies support each other. As a result of the present study, the compounds with high inhibitory activity for metabolic enzymes, such as ChE and hCA were designed. The compounds may be potential alternative agents used as selective ChE and hCA inhibitors in the treatment of Alzheimer's disease and glaucoma.
Collapse
Affiliation(s)
- Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, 63290, Şanlıurfa, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Turkey
| | - Fevzi Topal
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Gümüşhane University, 29100, Gümüşhane, Turkey
- Department of Chemical and Chemical Processing Technologies, Gümüşhane Vocational School, Gümüşhane University, 29100, Gümüşhane, Turkey
| | - Ümit Muhammet Koçyiğit
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
25
|
Dos Santos Arraes DR, Rodrigues ABL, Sanches PR, Costa Campos CE, Moreira da Silva de Almeida SS, Reis Ferreira Lima J, Dias Lima J, da Silva GA. Bioactive alkaloids from the venom of Dendrobatoidea Cope, 1865: a scoping review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:1-20. [PMID: 37889647 DOI: 10.1080/10937404.2023.2270408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Bioactive compounds derived from secondary metabolism in animals have refined selectivity and potency for certain biological targets. The superfamily Dendrobatoidea is adapted to the dietary sequestration and secretion of toxic alkaloids, which play a role in several biological activities, and thus serve as a potential source for pharmacological and biotechnological applications. This article constitutes a scoping review to understand the trends in experimental research involving bioactive alkaloids derived from Dendrobatoidea based upon scientometric approaches. Forty-eight (48) publications were found in 30 journals in the period of 60 years, between 1962 and 2022. More than 23 structural classes of alkaloids were cited, with 27.63% for batrachotoxins, 13.64% for pyridinics, with an emphasis on epibatidine, 16.36% for pumiliotoxins, and 11.82% for histrionicotoxins. These tests included in vivo (54.9%), in vitro (39.4%), and in silico simulations (5.6%). Most compounds (54.8%) were isolated from skin extracts, whereas the remainder were obtained through molecular synthesis. Thirteen main biological activities were identified, including acetylcholinesterase inhibitors (27.59%), sodium channel inhibitors (12.07%), cardiac (12.07%), analgesic (8.62%), and neuromuscular effects (8.62%). The substances were cited as being of natural origin in the "Dendrobatidae" family, genus "Phyllobates," "Dendrobates," and seven species: Epipedobates tricolor, Phyllobates aurotaenia, Oophaga histrionica, Oophaga pumilio, Phyllobates terribilis, Epipedobates anthonyi, and Ameerega flavopicta. To date, only a few biological activities have been experimentally tested; hence, further studies on the bioprospecting of animal compounds and ecological approaches are needed.
Collapse
Affiliation(s)
| | | | | | | | | | - Janaina Reis Ferreira Lima
- Herpetology Laboratory, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | - Jucivaldo Dias Lima
- Herpetology Laboratory, Institute of Scientific and Technological Research of the State of Amapá, Macapá, Amapá, Brazil
| | | |
Collapse
|
26
|
Ayaz S, Uluçay S, Üzer A, Dilgin Y, Apak R. A novel acetylcholinesterase inhibition based colorimetric biosensor for the detection of paraoxon ethyl using CUPRAC reagent as chromogenic oxidant. Talanta 2024; 266:124962. [PMID: 37499364 DOI: 10.1016/j.talanta.2023.124962] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
A novel colorimetric biosensor for the sensitive and selective detection of an organophosphate pesticide, paraoxon ethyl (POE), was developed based on its inhibitory effect on the acetylcholine esterase (AChE) enzyme. The bis-neocuproine copper (II) complex ([Cu(Nc)2]2+) known as the CUPRAC reagent, was used as a chromogenic oxidant in the AChE inhibition-based biosensors for the first time. To initiate the biosensor, an enzymatic reaction takes place between AChE and its substrate acetylthiocholine (ATCh). Then, enzymatically produced thiocholine (TCh) reacts with the light blue [Cu(Nc)2]2+ complex, resulting in the oxidation of TCh to its disulfide form. On the other hand, [Cu(Nc)2]2+ reduces to a yellow-orange cuprous complex ([Cu(Nc)2]+) which gives maximum absorbance at 450 nm. However, the absorbance of [Cu(Nc)2]+ proportionally decreased with the addition of POE because the inhibition of AChE by the organophosphate pesticide reduced the amount of TCh that would give a colorimetric reaction with the CUPRAC reagent. Based on this strategy, the linear response range of a colorimetric biosensor was found to be between 0.15 and 1.25 μM with a detection limit of 0.045 μM. The fabricated biosensor enabled the selective determination of POE in the presence of some other pesticides and metal ions. The recovery results between 92% and 104% were obtained from water and soil samples spiked with POE, indicating that the determination of POE in real water and soil samples can be performed with this simple, accurate, sensitive, and low-cost colorimetric biosensor.
Collapse
Affiliation(s)
- Selen Ayaz
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Chemistry, Canakkale, Turkey
| | - Sude Uluçay
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Department of Chemistry Engineering, Canakkale, Turkey
| | - Ayşem Üzer
- İstanbul University -Cerrahpaşa, Faculty of Engineering, Department of Chemistry, İstanbul-Avcılar, Turkey
| | - Yusuf Dilgin
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Chemistry, Canakkale, Turkey.
| | - Reşat Apak
- İstanbul University -Cerrahpaşa, Faculty of Engineering, Department of Chemistry, İstanbul-Avcılar, Turkey.
| |
Collapse
|
27
|
Khairnar P, Singh A, Ahirwar K, Shukla R. ApoE3 Anchored Liposomal Delivery of Rivastigmine for Brain Delivery: Formulation, Characterization, and In Vivo Pharmacokinetic Evaluation. AAPS PharmSciTech 2023; 24:223. [PMID: 37945928 DOI: 10.1208/s12249-023-02684-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Rivastigmine hydrogen tartrate (RHT) is an acetylcholinesterase (AChE) inhibitor used in the management of Alzheimer's disease (AD). RHT is a BCS class-I drug that undergoes significant first-pass metabolism. Permeating a hydrophilic drug through the brain remains a major challenge in brain delivery. In this study, the RHT was incorporated inside the hydrophilic core of liposomes (LPS) and then coated with the ApoE3. ApoE3-coated RHT-loaded liposomes (ApoE3-RHT-LPS) were fabricated through the thin film hydration method using DSPE-PEG. The coating of LPS with ApoE3 enhances brain uptake and improves Aβ clearance. The results obtained from the physicochemical characterization demonstrated that ApoE3-RHT-LPS shows a particle size of 128.6 ± 2.16 nm and a zeta potential of 16.6 ± 1.19. The % entrapment efficiency and % drug loading were found to be 75% and 17.84%, respectively. The data obtained from TEM and SEM studies revealed that the particle size of the LPS was less than 200 nm. An in vitro AChE assay was performed, and the results demonstrated the AChE inhibitory potential of ApoE3-RHT-LPS. Through the intravenous route, an in vivo pharmacokinetic study of formulation displayed improved brain uptake of RHT by ~ 1.3-fold than pure RHT due to ApoE3 coating. In vivo, biodistribution studies in vital organs suggested that the biodistribution of RHT to the liver was significantly reduced (p < 0.001), signifying an increase in the drug's half-life and blood circulation time. All research findings suggested that ApoE3 coating and LPS strategy are proven effective for improving the brain uptake of RHT designed for the management of AD.
Collapse
Affiliation(s)
- Pooja Khairnar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, 226002, India
| | - Ajit Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, 226002, India
| | - Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, 226002, India.
| |
Collapse
|
28
|
Sudarsan S, Shetty P, Chinnappan R, Mani NK. Tuning Hydrophobicity of Paper Substrates for Effective Colorimetric detection of Glucose and Nucleic acids. Anal Bioanal Chem 2023; 415:6449-6460. [PMID: 37665340 PMCID: PMC10567893 DOI: 10.1007/s00216-023-04921-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
This study investigated the colorimetric response of standard glucose, serum glucose, and nucleic acid assays on various paper surfaces with different wettability, including hydrophilic, hydrophobic, and nearly superhydrophobic surfaces. Water contact angles (WCA) formed by water droplets on each surface were measured using ImageJ software. The hydrophilic surface showed no contact angle, while the hydrophobic and nearly superhydrophobic surfaces exhibited contact angles of 115.667° and 133.933°, respectively. The colorimetric sensitivity of the standard glucose assay was analyzed on these surfaces, revealing enhanced sensitivity on the nearly superhydrophobic surface due to the high molecular crowding effect owing to its non-wetting behavior and eventually confined reaction product at the sample loading zone. The hydrophobic nature of the surface restricts the spreading and diffusion of the reaction product, leading to a controlled and localized concentration of the assay product leading to moderate colorimetric intensity. On the other hand, the hydrophilic surface showed the least enhancement in colorimetric sensitivity; this is attributed to the high wettability of the hydrophilic surface causing the reaction product to spread extensively, resulting in a larger area of dispersion and consequently a lower colorimetric intensity. The measured limit of detection (LOD) for nucleic acid on nearly superhydrophobic surfaces was found to be 16.15 ng/µL, which was almost four-fold lower than on hydrophilic surfaces (60.08 ng/µL). Additionally, the LODs of standard glucose and clinical serum samples were two-fold lower on nearly superhydrophobic surfaces compared to hydrophilic surfaces. Our findings clearly highlight the promising potential of utilizing superhydrophobic surfaces to significantly enhance colorimetric sensitivity in paper-based diagnostic applications. This innovative approach holds promise for advancing point-of-care diagnostics and improving disease detection in resource-limited settings.
Collapse
Affiliation(s)
- Sujesh Sudarsan
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Prashil Shetty
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
29
|
Ju J, Li L, Li B, Regmi S, Wang T, Xu J, Li C, Tang S. Surface-Enhanced Raman Scattering Active Core-Shell Ag NPs@Carbon Dots with Enzyme-Mimicking Activities for Label-Free Measurement Cholesterol. BIOSENSORS 2023; 13:927. [PMID: 37887120 PMCID: PMC10605028 DOI: 10.3390/bios13100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Serological-sensitive testing of cholesterol holds significant value in the fields of healthcare and clinical diagnosis. This study reports on the preparation of peroxidase-mimicking nanozymes through the wrapping of N, S-doped carbon dots (DCDs) on the surface of silver nanoparticles (Ag NPs@DCD). The shell-core structure of Ag NPs@DCD displays peroxidase-mimicking capability, with the potential to catalyze inactive Raman probe molecules into the Raman reporters. Furthermore, a "shell-isolated nanoparticles-enhanced Raman spectroscopy" structure exhibited an enhanced Raman signal of reporter molecules. Ag NPs@DCD were utilized to create a label-free SERS sensing system for high-performance detection of cholesterol in serum samples. These results demonstrate the potential of the novel nanozyme-based SERS approach for clinical diagnosis.
Collapse
Affiliation(s)
- Jian Ju
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; (L.L.); (T.W.); (J.X.); (C.L.)
- Oujiang Lab, Wenzhou 325001, China
| | - Lin Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; (L.L.); (T.W.); (J.X.); (C.L.)
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325035, China;
| | - Bei Li
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325035, China;
- The State Key Lab of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Sagar Regmi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Tingting Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; (L.L.); (T.W.); (J.X.); (C.L.)
| | - Jiao Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; (L.L.); (T.W.); (J.X.); (C.L.)
| | - Chaojie Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; (L.L.); (T.W.); (J.X.); (C.L.)
| | - Shixing Tang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; (L.L.); (T.W.); (J.X.); (C.L.)
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
30
|
Abdullah IH, Wilson DJ, Mora AC, Parker RW, Mace CR. Generating signals at converging liquid fronts to create line-format readouts of soluble assay products in three-dimensional paper-based devices. LAB ON A CHIP 2023; 23:4010-4018. [PMID: 37581363 DOI: 10.1039/d3lc00511a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The correct interpretation of the result from a point-of-care device is crucial for an accurate and rapid diagnosis to guide subsequent treatment. Lateral flow tests (LFTs) use a well-established format that was designed to simplify the user experience. However, the LFT device architecture is inherently limited to detecting analytes that can be captured by molecular recognition. Microfluidic paper-based analytical devices (μPADs), like LFTs, have the potential to be used in diagnostic applications at the point of care. However, μPADs have not gained significant traction outside of academic laboratories, in part, because they have often demonstrated a lack of homogeneous shape or color in signal outputs, which consequently can lead to inaccurate interpretation of results by users. Here, we demonstrate a new class of μPADs that form colorimetric signals at the interfaces of converging liquid fronts (i.e., lines) to control where colorimetric signals are formed without relying on capture techniques. We demonstrate our approach by developing assays for three classes of analytes-an ion, an enzyme, and a small molecule-to measure using iron(III), acetylcholinesterase, and lactate, respectively. Additionally, we show these devices have the potential to support multiplexed assays by generating multiple lines in a common readout zone. These results highlight the ability of this new paper-based device architecture to aid the interpretation of assays that create soluble products by using flow to constrain those colorimetric products in a familiar, line-format output.
Collapse
Affiliation(s)
| | - Daniel J Wilson
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| | - Andrea C Mora
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| | | | - Charles R Mace
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
31
|
Yi Y, Zhou X, Liao D, Hou J, Liu H, Zhu G. High Peroxidase-Mimicking Metal-Organic Frameworks Decorated with Platinum Nanozymes for the Colorimetric Detection of Acetylcholine Chloride and Organophosphorus Pesticides via Enzyme Cascade Reaction. Inorg Chem 2023; 62:13929-13936. [PMID: 37583283 DOI: 10.1021/acs.inorgchem.3c01844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The sensitive detection of acetylcholinesterase (AChE) and organophosphorus pesticides (OPs) is very important for the protection of human health. Herein, a hybrid material, Pt NPs/Fe-MOF, consisting of a metal-organic framework (MIL-88B-NH2, Fe-MOF) decorated with platinum nanoparticles (Pt NPs), was prepared first and exhibited remarkably improved and excellent peroxidase-mimicking activity compared to the Fe-MOF material resulting from the synergistic catalysis effect between Fe-MOF and Pt NPs, which can effectively catalyze 3,3',5,5'-tetramethylbenzidine (TMB) oxidation to generate a blue product (oxidized TMB, oxTMB). Interestingly, in the presence of AChE and acetylcholinesterase, the peroxidase-mimicking activity from Pt NPs/Fe-MOF was inhibited obviously, and thus, a colorimetric sensing platform for AChE can be constructed; more importantly, after the addition of OPs, this nanozyme activity can be recovered, inducing the further successful construction of a sensitive colorimetric sensing platform for OPs. The related sensing mechanism and condition optimization were studied, and the as-prepared Pt NPs/Fe-MOF nanozyme-based colorimetric method for AChE and OP detection displayed superior analytical performances with wide linearities and low detection limits. Furthermore, the designed method offers satisfactory real application ability. We expect the as-proposed Pt NPs/Fe-MOF nanozyme-based colorimetric sensing platform for AChE and OPs via the enzyme cascade reaction to show great potential application.
Collapse
Affiliation(s)
- Yinhui Yi
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
- Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural Affairs, Beijing 100125, P. R. China
- Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xun Zhou
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Diyan Liao
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jieling Hou
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hongde Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Gangbing Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
32
|
Zhang J, Wang M, Liu J, Lv Y, Su X. Construction of a Label-Free Ratiometric Biosensor Based on Target Recycling Amplification and Hg-ZnSe QDs for Assay of BChE and OPs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11884-11891. [PMID: 37554068 DOI: 10.1021/acs.jafc.3c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Herein, we constructed a label-free ratiometric fluorescence biosensing strategy for the determination of butyrylcholinesterase (BChE) activity and organophosphorus (OPs) concentration. BChE promoted the hydrolysis of iodized s-butyrylthiocholine (BTCh) into a reducing substance thiocholine, which can decompose CoOOH nanosheets (CoOOH NSs) to Co2+. Subsequently, the single-stranded DNA (ssDNA) on the surface of CoOOH NSs was released. Then, ssDNA hybridized with hairpin DNA (h-DNA) and triggered the target recycling amplification process, producing large amounts of G-quadruplex. After adding thioflavin T (ThT), the target BChE was converted into activatable G-quadruplex/ThT with an amplified yellow fluorescence signal. The addition of OPs could significantly inhibit the hydrolysis of BTCh by BChE and thus unable to produce the yellow fluorescence G-quadruplex/ThT complex. Throughout the entire process, the fluorescence intensity of Hg-ZnSe QDs as a reference signal remained unchanged at 630 nm. Furthermore, this work provided an effective approach for detecting the BChE activity in serum samples and OPs in fruits and vegetables.
Collapse
Affiliation(s)
- Jiabao Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Mengke Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, China
| | - Jinying Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
33
|
Chen T, Qin Y, Wang B, Lai R, Tan G, Liu JW. Enzymatic reaction modulated DNA assembly on graphitic carbon nitride nanosheets for sensitive fluorescence detection of acetylcholinesterase activity and inhibition. Mikrochim Acta 2023; 190:268. [PMID: 37338607 DOI: 10.1007/s00604-023-05850-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
A novel fluorescent strategy has been developed by using an enzymatic reaction modulated DNA assembly on graphitic carbon nitride nanosheets (CNNS) for the detection of acetylcholinesterase (AChE) activity and its inhibitors. The two-dimensional and ultrathin-layer CNNS-material was successfully synthesized through a chemical oxidation and ultrasound exfoliation method. Because of its excellent adsorption selectivity to ssDNA over dsDNA and superior quenching ability toward the fluorophore labels, CNNS were employed to construct a sensitive fluorescence sensing platform for the detection of AChE activity and inhibition. The detection was based on enzymatic reaction modulated DNA assembly on CNNS, which involved the specific AChE-catalyzed reaction-mediated DNA/Hg2+ conformational change and subsequent signal transduction and amplification via hybridization chain reaction (HCR). Under the excitation at 485 nm, the fluorescence signal from 500 to 650 nm (λmax = 518 nm) of the developed sensing system was gradually increased with increasing concentration of AChE. The quantitative determination range of AChE is from 0.02 to 1 mU/mL and the detection limit was 0.006 mU/mL. The developed strategy was successfully applied to the assay of AChE in human serum samples, and can also be used to effectively screen AChE inhibitors, showing great promise providing a robust and effective platform for AChE-related diagnosis, drug screening, and therapy.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Yingfeng Qin
- Key Laboratory of Biological Molecular Medicine Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China.
| | - Beibei Wang
- Key Laboratory of Biological Molecular Medicine Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Rongji Lai
- Key Laboratory of Biological Molecular Medicine Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Guohe Tan
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, 530021, Guangxi, People's Republic of China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Nanning, 530021, Guangxi, People's Republic of China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Nanning, 530021, People's Republic of China.
| | - Jin-Wen Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, 530021, Guangxi, People's Republic of China.
- Key Laboratory of Biological Molecular Medicine Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
34
|
Rajagopalan V, Venkataraman S, Rajendran DS, Vinoth Kumar V, Kumar VV, Rangasamy G. Acetylcholinesterase biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine neurotransmitter: A literature review. ENVIRONMENTAL RESEARCH 2023; 227:115724. [PMID: 36948285 DOI: 10.1016/j.envres.2023.115724] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Neurotoxic pesticides are a group of chemicals that pose a severe threat to both human health and the environment. These molecules are also known to accumulate in the food chain and persist in the environment, which can lead to long-term exposure and adverse effects on non-target organisms. The detrimental effects of these pesticides on neurotransmitter levels and function can lead to a range of neurological and behavioral symptoms, which are closely associated with neurodegenerative diseases. Hence, the accurate and reliable detection of these neurotoxic pesticides and associated neurotransmitters is essential for clinical applications, such as diagnosis and treatment. Over the past few decades, acetylcholinesterase (AchE) biosensors have emerged as a sensitive and reliable tool for the electrochemical detection of neurotoxic pesticides and acetylcholine. These biosensors can be tailored to utilize the high specificity and sensitivity of AchE, enabling the detection of these chemicals. Additionally, enzyme immobilization and the incorporation of nanoparticles have further improved the detection capabilities of these biosensors. AchE biosensors have shown tremendous potential in various fields, including environmental monitoring, clinical diagnosis, and pesticide residue analysis. This review summarizes the advancements in AchE biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine over the past two decades.
Collapse
Affiliation(s)
- Vahulabaranan Rajagopalan
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India.
| | - Vaithyanathan Vasanth Kumar
- Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
35
|
Keresteš O, Pohanka M. Affordable Portable Platform for Classic Photometry and Low-Cost Determination of Cholinesterase Activity. BIOSENSORS 2023; 13:599. [PMID: 37366964 DOI: 10.3390/bios13060599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Excessive use of pesticides could potentially harm the environment for a long time. The reason for this is that the banned pesticide is still likely to be used incorrectly. Carbofuran and other banned pesticides that remain in the environment may also have a negative effect on human beings. In order to provide a better chance for effective environmental screening, this thesis describes a prototype of a photometer tested with cholinesterase to potentially detect pesticides in the environment. The open-source portable photodetection platform uses a color-programmable red, green and blue light-emitting diode (RGB LED) as a light source and a TSL230R light frequency sensor. Acetylcholinesterase from Electrophorus electricus (AChE) with high similarity to human AChE was used for biorecognition. The Ellman method was selected as a standard method. Two analytical approaches were applied: (1) subtraction of the output values after a certain period of time and (2) comparison of the slope values of the linear trend. The optimal preincubation time for carbofuran with AChE was 7 min. The limits of detection for carbofuran were 6.3 nmol/L for the kinetic assay and 13.5 nmol/L for the endpoint assay. The paper demonstrates that the open alternative for commercial photometry is equivalent. The concept based on the OS3P/OS3P could be used as a large-scale screening system.
Collapse
Affiliation(s)
- Ondřej Keresteš
- Faculty of Military Health Sciences, University of Defence, CZ-50001 Hradec Kralove, Czech Republic
| | - Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, CZ-50001 Hradec Kralove, Czech Republic
| |
Collapse
|
36
|
Alex A V, Mukherjee A. An ultrasensitive "mix-and-detect" kind of fluorescent biosensor for malaoxon detection using the AChE-ATCh-Ag-GO system. RSC Adv 2023; 13:14159-14170. [PMID: 37180011 PMCID: PMC10167908 DOI: 10.1039/d3ra02253f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Malaoxon, a highly toxic metabolite of malathion, can lead to severe harm or death if ingested. This study introduces a rapid and innovative fluorescent biosensor that relies on acetylcholinesterase (AChE) inhibition for detecting malaoxon using Ag-GO nanohybrid. The synthesized nanomaterials (GO, Ag-GO) were evaluated with multiple characterization methods to confirm their elemental composition, morphology, and crystalline structure. The fabricated biosensor works by utilizing AChE to catalyze the substrate acetylthiocholine (ATCh), which generates positively charged thiocholine (TCh) and triggers citrate-coated AgNP aggregation on the GO sheet, leading to an increase in fluorescence emission at 423 nm. However, the presence of malaoxon inhibits the AChE action and reduces the production of TCh, resulting in a decrease in fluorescence emission intensity. This mechanism allows the biosensor to detect a wide range of malaoxon concentrations with excellent linearity and low LOD and LOQ values of 0.001 pM to 1000 pM, 0.9 fM, and 3 fM, respectively. The biosensor also demonstrated superior inhibitory efficacy towards malaoxon compared to other OP pesticides, indicating its resistance to external influences. In practical sample testing, the biosensor displayed recoveries of over 98% with extremely low RSD% values. Based on the results obtained from the study, it can be concluded that the developed biosensor has the potential to be used in various real-world applications for detecting malaoxon in food, and water samples, with high sensitivity, accuracy, and reliability.
Collapse
Affiliation(s)
- Vinotha Alex A
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India +91 416 2202620
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India +91 416 2202620
| |
Collapse
|
37
|
Zhang M, Wang C, Wang Y, Li F, Zhu D. Visual evaluation of acetylcholinesterase inhibition by an easy-to-operate assay based on N-doped carbon nanozyme with high stability and oxidase-like activity. J Mater Chem B 2023; 11:4014-4019. [PMID: 37067450 DOI: 10.1039/d3tb00238a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Acetylcholinesterase (AChE) is the key enzyme associated with neurotransmission, and thus many drugs have been explored for their inhibitory effect on AChE, such as donepezil for Alzheimer's disease and organophosphorus pesticides (OPs). Compared with clinical trials, in vitro screening bioassays for AChE inhibitors are preferable in terms of operability and cost. Herein, we developed an easy-to-operate nanozyme-based colorimetric assay for the evaluation of AChE inhibitory strength with excellent anti-interference ability and low dependence on professional equipment. The metal-free carbon nanozyme NC900 played an important role in the signal output due to its features of efficient oxidase-like activity, excellent water dispersibility, high stability and low color interference. Employing various AChE-targeted or non-targeted pesticides as examples, the as-proposed assay exhibited excellent distinguishing ability for different chemicals. The higher absorption intensity at 652 nm represents a stronger inhibitory effect, as well as blue color. In addition, this method was used to study the influence of pH on the degradation of prodrugs, and the efficiency of mixed pesticides. This work provides a simple and reliable assay to screen AChE inhibitors, which is promising for the preliminary evaluation of a large number of potential candidates.
Collapse
Affiliation(s)
- Mengli Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Cui Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Yongqi Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Dangqiang Zhu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| |
Collapse
|
38
|
Chen Y, Zhang X, Luo X. Enzyme colorimetric cellulose membrane bioactivity strips based on acetylcholinesterase immobilization for inhibitors preliminary screening. Colloids Surf B Biointerfaces 2023; 223:113184. [PMID: 36739673 DOI: 10.1016/j.colsurfb.2023.113184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
Abstract
To quickly screen the active pharmaceutical ingredient that can be used as acetylcholinesterase inhibitors (AChEIs) to treat Alzheimer's disease, an enzyme colorimetric cellulose membrane bioactivity strip (CBS) was developed for simple and rapid screening of AChEIs. The amino group of acetylcholinesterase (AChE) undergoes Schiff base reaction with the aldehyde group on the oxidized cellulose membranes, then the AChE was covalently cross-linking on the surface of cellulose membranes, enabling the screening based on Ellman's enzyme colorimetric method. When the enzyme activity of AChE was inhibited after incubation with inhibitors, the hydrolysis of S-Acetylthiocholine iodide decreased, consequently, the 5-thio-2-nitrobenzoic acid generated by the reaction with 5,5'-dithiobis (2-nitrobenzoic acid) also decreased, leading to a decreased color intensity. In addition, CBSs had fast chromogenic time, excellent specificity, and extraordinary storage stability. Tacrine and Donepezil were used as representative inhibitors during the detection, while their IC50 and limit of detection were determined. Therefore, our work not only established a platform for effective preliminary screening of AChEIs but also inspired the further development of other cellulose membrane-based biosensors.
Collapse
Affiliation(s)
- Yuqing Chen
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China
| | - Xinyi Zhang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, PR China; School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
39
|
Chi Z, Wang Q, Gu J. Recent advances in colorimetric sensors based on nanozymes with peroxidase-like activity. Analyst 2023; 148:487-506. [PMID: 36484756 DOI: 10.1039/d2an01850k] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nanozymes have been widely used to construct colorimetric sensors due to their advantages of cost-effectiveness, high stability, good biocompatibility, and ease of modification. The emergence of nanozymes greatly enhanced the detection sensitivity and stability of the colorimetric sensing platform. Recent significant research has focused on designing various sensors based on nanozymes with peroxidase-like activity for colorimetric analysis. However, with the deepening of research, nanozymes with peroxidase-like activity has also exposed some problems, such as weak affinity and low catalytic activity. In view of the above issues, existing investigations have shown that the catalytic properties of nanozymes can be improved by adding surface modification and changing the structure of nanomaterials. In this review, we summarize the recent trends and advances of colorimetric sensors based on several typical nanozymes with peroxidase-like activities, including noble metals, metal oxides, metal sulfides/metal selenides, and carbon and metal-organic frameworks (MOF). Finally, the current challenges and prospects of colorimetric sensors based on nanozymes with peroxidase-like activity are summarized and discussed to provide a reference for researchers in related fields.
Collapse
Affiliation(s)
- Zhongmei Chi
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Qiong Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Jiali Gu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| |
Collapse
|
40
|
Shafqat O, Rehman Z, Shah MM, Ali SHB, Jabeen Z, Rehman S. Synthesis, structural characterization and in vitro pharmacological properties of betanin-encapsulated chitosan nanoparticles. Chem Biol Interact 2023; 370:110291. [PMID: 36513144 DOI: 10.1016/j.cbi.2022.110291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Betanin, a natural food color and the only betalain, is approved for use in pharmaceutical and food industries as natural antioxidative and preservative agent, respectively. However, the antioxidant power and health-promoting properties of betanin have been disregarded due to its low stability in physiological conditions. Therefore, this study is designed to synthesize and evaluate in vitro pharmacological characteristics of betanin-encapsulated chitosan nanoparticles (ChBetNPs). ChBetNPs were synthesized by ionic gelation method and characterized by DLS, UV, FTIR, SEM and zeta potential analysis. The encapsulation efficiency (EE) and in vitro release kinetics were analyzed using spectrophotometric technique for quantifying the encapsulated amount of betanin in ChBetNPs as a function of time. The antioxidant activity of ChBetNPs was analyzed by DPPH and H2O2 radical scavenging assays, anti-inflammatory activity by protein denaturation and human RBCs stabilization assays, and anti-acetylcholinesterase activity using standard protocol with minor modifications. Unloaded chitosan nanoparticles (CSNPs) were found to be sized at 161.4 ± 5.75 nm while an increase in the size to 270.3 ± 8.50 nm was noticed upon encapsulating betanin. EE of ChBetNPs was measured to be ∼87.5%. The IC50 of ChBetNPs depicted significant free radical scavenging activities as compared to CSNPs. Similarly, a strong anti-inflammatory activity of ChBetNPs was noted. Significant decrease in acetylcholinesterase activity by ChBetNPs was measured (IC50 0.5255 μg/mL vs. control 26.09 μg/mL). The vegetables coated with 3% ChBetNPs showed decreased weight loss as compared to uncoated control. ChBetNPs was shown to exhibit strong antioxidant, anti-inflammatory and anti-acetylcholinesterase activities thus making it a significant therapeutic agent for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Omayya Shafqat
- Department of Biosciences, COMSATS University Islamabad CUI, 45550, Pakistan
| | - Zartasha Rehman
- Department of Biosciences, COMSATS University Islamabad CUI, 45550, Pakistan
| | | | | | - Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad CUI, 45550, Pakistan
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad CUI, 45550, Pakistan.
| |
Collapse
|
41
|
Sadiq Z, Safiabadi Tali SH, Hajimiri H, Al-Kassawneh M, Jahanshahi-Anbuhi S. Gold Nanoparticles-Based Colorimetric Assays for Environmental Monitoring and Food Safety Evaluation. Crit Rev Anal Chem 2023; 54:2209-2244. [PMID: 36629748 DOI: 10.1080/10408347.2022.2162331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent years have witnessed an exponential increase in the research on gold nanoparticles (AuNPs)-based colorimetric sensors to revolutionize point-of-use sensing devices. Hence, this review is compiled focused on current progress in the design and performance parameters of AuNPs-based sensors. The review begins with the characteristics of AuNPs, followed by a brief explanation of synthesis and functionalization methods. Then, the mechanisms of AuNPs-based sensors are comprehensively explained in two broad categories based on the surface plasmon resonance (SPR) characteristics of AuNPs and their peroxidase-like catalytic properties (nanozyme). SPR-based colorimetric sensors further categorize into aggregation, anti-aggregation, etching, growth-mediated, and accumulation-based methods depending on their sensing mechanisms. On the other hand, peroxidase activity-based colorimetric sensors are divided into two methods based on the expression or inhibition of peroxidase-like activity. Next, the analytes in environmental and food samples are classified as inorganic, organic, and biological pollutants, and recent progress in detection of these analytes are reviewed in detail. Finally, conclusions are provided, and future directions are highlighted. Improving the sensitivity, reproducibility, multiplexing capabilities, and cost-effectiveness for colorimetric detection of various analytes in environment and food matrices will have significant impact on fast testing of hazardous substances, hence reducing the pollution load in environment as well as rendering food contamination to ensure food safety.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Hasti Hajimiri
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
42
|
Chen Y, Zhao W, Si J, Zheng Y, Tan H, Meng F, Yang G, Gu Y, Qu L. Highly selective SERS detection of acetylcholinesterase in human blood based on catalytic reaction. Anal Chim Acta 2022; 1232:340495. [DOI: 10.1016/j.aca.2022.340495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/05/2022] [Indexed: 11/01/2022]
|
43
|
Asen ND, Aluko RE. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of antioxidant peptides obtained from enzymatic pea protein hydrolysates and their ultrafiltration peptide fractions. J Food Biochem 2022; 46:e14289. [PMID: 35758753 DOI: 10.1111/jfbc.14289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/18/2022] [Indexed: 12/29/2022]
Abstract
This study optimized the enzymatic hydrolysis of yellow field pea proteins using alcalase (ACH), chymotrypsin (CHH), flavourzyme (FZH), pancreatin (PCH), pepsin (PEH), and trypsin (TPH) to obtain hydrolysates and ultrafiltered fractions (<1, 1-3, 3-5 and 5-10 kDa) that possess antioxidant plus acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities. The hydrolysates exhibited varying degrees of radical scavenging and inhibition of linoleic acid peroxidation, as well as cholinesterase inhibition activities but the potency generally improved by >10% after UF separation into peptide fractions. ACH, FZH, and PEH exhibited significantly (p < .05) higher (20%-30% increases) radical scavenging activities than the other hydrolysates. The 1 and 3 kDa UF fractions of ACH, FZH, and PEH inhibited ~20%-30% AChE activity, while ACH, PCH, TPH, and PEH inhibited ~20%-40% BuChE activity. We conclude that the pea protein hydrolysates and their peptide fractions possess multifunctional properties with potential use against neurodegenerative disorders. PRACTICAL APPLICATIONS: Alzheimer's disease (AD) has multiple pathological pathways in addition to the loss of acetylcholine (ACh) catalyzed by acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The presence of severe oxidative stress triggered by lipid peroxidation and formation of free radicals is a common trait in AD patients. The concept of AChE and BuChE inhibition as an approach toward AD amelioration involves the use of compounds with a similar structure to ACh, the natural substrate. Peptides derived from food proteins consist of ester bonds with structural similarity to ACh and theoretically possess the ability to interact with AChE and BuChE. Results from the present study imply that pea protein-derived peptides are potential candidates for use as inhibitors of AChE and BuChE activities, with application in the prevention and management of AD.
Collapse
Affiliation(s)
- Nancy D Asen
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
44
|
Lu L, Hu X, Zeng R, Lin Q, Huang X, Li M, Tang D. Dual-mode colorimetric-photothermal sensing platform of acetylcholinesterase activity based on the peroxidase-like activity of Fe-N-C nanozyme. Anal Chim Acta 2022; 1229:340383. [PMID: 36156227 DOI: 10.1016/j.aca.2022.340383] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Sensors based on colorimetry, fluorescence, and electrochemistry have been widely employed to detect acetylcholinesterase and its inhibitors, however, there are only a minority of strategies for AChE detection based on photothermal method. This work reports a versatile dual-mode colorimetric and photothermal biosensing platform for acetylcholinesterase (AChE) detection and its inhibitor (paraoxon-ethyl, a model of AChE inhibitors) monitor based on Fe-N-C/H2O2/3,3',5,5'-tetramethylbenzidine (TMB) system. The Fe-N-C with abundant active Fe-Nx sites shows outstanding peroxidase-mimicking activity and can be used to promote the generation of •OH by H2O2 to oxidize TMB. However, the introduction of mercapto molecules tending to coordinate with metal atoms result in the block of action site in Fe-N-C, thereby decrease its peroxidase-mimetic activity. The designed biosensor principle is based on the block of active sites of Fe-N-C by thiocholine (TCh, one kind of mercapto molecules) that can be produced by acetylthiocholine (ATCh) in the presence of AChE. Under optimum conditions, the limit of detection (LOD) for AChE activity is 1.9 mU mL-1 (colorimetric) and 2.2 mU mL-1 (photothermal), while for paraoxon-ethyl is 0.012 μg mL-1 (colorimetric) and 0.013 μg mL-1 (photothermal), respectively. The assay we proposed not only can be designed to monitor AChE detection and its inhibitors, but also can be easily extended for the detection of other biomolecules relate to the generation or consumption of H2O2.
Collapse
Affiliation(s)
- Liling Lu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xuehan Hu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Ruijin Zeng
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Qianyun Lin
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xue Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| |
Collapse
|
45
|
Gupta R, Rahi Alhachami F, Khalid I, Majdi HS, Nisar N, Mohamed Hasan Y, Sivaraman R, Romero Parra RM, Al Mashhadani ZI, Fakri Mustafa Y. Recent Progress in Aptamer-Functionalized Metal-Organic Frameworks-Based Optical and Electrochemical Sensors for Detection of Mycotoxins. Crit Rev Anal Chem 2022; 54:1707-1728. [PMID: 36197710 DOI: 10.1080/10408347.2022.2128634] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mycotoxin contamination in foodstuffs and agricultural products has posed a serious hazard to human health and raised international concern. The progress of cost-effective, facile, rapid and reliable analytical tools for mycotoxin determination is in urgent need. In this regard, the potential utility of metal-organic frameworks (MOFs) as a class of crystalline porous materials has sparked immense attention due to their large specific surface area, adjustable pore size, nanoscale framework structure and good chemical stability. The amalgamation of MOFs with high-affinity aptamers has resulted in the progress of advanced aptasensing methods for clinical and food/water safety diagnosis. Aptamers have many advantages over classical approaches as exceptional molecular recognition constituents for versatile bioassays tools. The excellent sensitivity and selectivity of the MOF-aptamer biocomposite nominate them as efficient lab-on-chip tools for portable, label-free, cost-effective and real-time screening of mycotoxins. Current breakthroughs in the concept, progress and biosensing applications of aptamer functionalized MOFs-derived electrochemical and optical sensors for mycotoxins have been discussed in this study. We first highlighted an overview part, which provides some insights into the functionalization mechanisms of MOFs with aptamers, offering a foundation to create MOFs-based aptasensors. Then, we discuss various strategies to design high-performance MOFs-based aptamer scaffolds, which serve as either signal nanoprobe carriers or signal nanoprobes and their applications. We perceived that applications of optical aptamers are in their infancy in comparison with electrochemical MOFs-derived aptasensors. Finally, current challenges and prospective trends of MOFs-aptamer sensors are discussed.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Imran Khalid
- Department of Agriculture Extension Education, The Islamia University of Bahawalpur, Pakistan
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Hilla, Iraq
| | - Nazima Nisar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - R Sivaraman
- Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras Chennai, Arumbakkam, India
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
46
|
Ahmad Faris AN, Ahmad Najib M, Mohd Nazri MN, Hamzah ASA, Aziah I, Yusof NY, Mohamud R, Ismail I, Mustafa FH. Colorimetric Approach for Nucleic Acid Salmonella spp. Detection: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10570. [PMID: 36078284 PMCID: PMC9518084 DOI: 10.3390/ijerph191710570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Water- and food-related health issues have received a lot of attention recently because food-poisoning bacteria, in particular, are becoming serious threats to human health. Currently, techniques used to detect these bacteria are time-consuming and laborious. To overcome these challenges, the colorimetric strategy is attractive because it provides simple, rapid and accurate sensing for the detection of Salmonella spp. bacteria. The aim of this study is to review the progress regarding the colorimetric method of nucleic acid for Salmonella detection. A literature search was conducted using three databases (PubMed, Scopus and ScienceDirect). Of the 88 studies identified in our search, 15 were included for further analysis. Salmonella bacteria from different species, such as S. Typhimurium, S. Enteritidis, S. Typhi and S. Paratyphi A, were identified using the colorimetric method. The limit of detection (LoD) was evaluated in two types of concentrations, which were colony-forming unit (CFU) and CFU per mL. The majority of the studies used spiked samples (53%) rather than real samples (33%) to determine the LoDs. More research is needed to assess the sensitivity and specificity of colorimetric nucleic acid in bacterial detection, as well as its potential use in routine diagnosis.
Collapse
Affiliation(s)
- Asma Nadia Ahmad Faris
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mohamad Ahmad Najib
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Muhammad Najmi Mohd Nazri
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Amir Syahir Amir Hamzah
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Irneza Ismail
- Advanced Devices & System (ADS) Research Group, Department of Electrical & Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Fatin Hamimi Mustafa
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
47
|
Zhang F, Li S, Liu C, Fang K, Jiang Y, Zhang J, Lan J, Zhu L, Pang H, Wang G. Rapid screening for acetylcholinesterase inhibitors in Selaginella doederleinii Hieron by using functionalized magnetic Fe3O4 nanoparticles. Talanta 2022; 243:123284. [DOI: 10.1016/j.talanta.2022.123284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022]
|
48
|
Ghosh S, AlKafaas SS, Bornman C, Apollon W, Hussien AM, Badawy AE, Amer MH, Kamel MB, Mekawy EA, Bedair H. The application of rapid test paper technology for pesticide detection in horticulture crops: a comprehensive review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00248-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
The ever increasing pests and diseases occurring during vegetable crop production is a challenge for agronomists and farmers. One of the practices to avoid or control the attack of the causal agents is the use of pesticides, including herbicides, insecticides nematicides, and molluscicides. However, the use of these products can result in the presence of harmful residues in horticultural crops, which cause several human diseases such as weakened immunity, splenomegaly, renal failure, hepatitis, respiratory diseases, and cancer. Therefore, it was necessary to find safe and effective techniques to detect these residues in horticultural crops and to monitor food security.
Main body
The review discusses the use of conventional methods to detect pesticide residues on horticultural crops, explain the sensitivity of nanoparticle markers to detect a variety of pesticides, discuss the different methods of rapid test paper technology and highlight recent research on rapid test paper detection of pesticides.
Conclusions
The methodologies discussed in the current review can be used in a certain situation, and the variety of methods enable detection of different types of pesticides in the environment. Notably, the highly sensitive immunoassay, which offers the advantages of being low cost, highly specific and sensitive, allows it to be integrated into many detection fields to accurately detect pesticides.
Collapse
|
49
|
Ning K, Sun Y, Liu J, Fu Y, Ye K, Liang J, Wu Y. Research Update of Emergent Sulfur Quantum Dots in Synthesis and Sensing/Bioimaging Applications. Molecules 2022; 27:2822. [PMID: 35566170 PMCID: PMC9100340 DOI: 10.3390/molecules27092822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Due to their unique optical property, low toxicity, high hydrophilicity, and low cost, sulfur quantum dots (SQDs), an emerging luminescent nanomaterial, have shown great potential in various application fields, such as sensing, bioimaging, light emitting diode, catalysis, and anti-bacteria. This minireview updates the synthetic methods and sensing/bioimaging applications of SQDs in the last few years, followed by discussion of the potential challenges and prospects in their synthesis and sensing/bioimaging applications, with the purpose to provide some useful information for researchers in this field.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiangong Liang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China; (K.N.); (Y.S.); (J.L.); (Y.F.); (K.Y.)
| | - Yuan Wu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China; (K.N.); (Y.S.); (J.L.); (Y.F.); (K.Y.)
| |
Collapse
|
50
|
Tsagkaris AS, Uttl L, Dzuman Z, Pulkrabova J, Hajslova J. A critical comparison between an ultra-high-performance liquid chromatography triple quadrupole mass spectrometry (UHPLC-QqQ-MS) method and an enzyme assay for anti-cholinesterase pesticide residue detection in cereal matrices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1479-1489. [PMID: 35343530 DOI: 10.1039/d2ay00355d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Analytical method development for the control of pesticide residues occurring in significant dietary foodstuffs is of utmost importance considering their potential impact on consumer health and food market sustainability. Depending on the purpose, either instrumental analysis, mainly chromatographic methods, or screening assays, mostly using biorecognition affinity, are commonly used, featuring different advantages and drawbacks. To practically compare these two different types of analytical strategies, we applied them for the detection of (i) 97 organophosphate (OP) and carbamate (CM) pesticide residues in wheat flour and (ii) carbofuran (a carbamate insecticide) in wheat, rye and maize flour samples. Regarding high-end analysis, an ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS) method was developed and validated achieving low limits of quantification (LOQs, from 0.002 to 0.040 mg kg-1) and a short chromatographic run (12 min). In terms of bioanalytical methods, a fast (17 min) and cost-efficient (∼0.01€ per sample) acetylcholinesterase (AChE) microplate assay for carbofuran screening was utilized. Importantly, carbofuran was the strongest of the 11 OP and CM tested pesticides achieving a half maximal inhibitory concentration (IC50) of 0.021 μM whilst the assay detectability was at the parts per billion level in all three cereal matrices. Based on the attained results, a critical discussion is presented providing the analytical merits and bottlenecks for each case and a wider outlook related to the application of analytical methods in the food safety control analytical scheme.
Collapse
Affiliation(s)
- A S Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| | - L Uttl
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| | - Z Dzuman
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| | - J Pulkrabova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| | - J Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 - Dejvice, Prague, Czech Republic.
| |
Collapse
|