1
|
Laaboudi FZ, Rejdali M, Amhamdi H, Salhi A, Elyoussfi A, Ahari M. In the weeds: A comprehensive review of cannabis; its chemical complexity, biosynthesis, and healing abilities. Toxicol Rep 2024; 13:101685. [PMID: 39056093 PMCID: PMC11269304 DOI: 10.1016/j.toxrep.2024.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
For millennia, various cultures have utilized cannabis for food, textile fiber, ethno-medicines, and pharmacotherapy, owing to its medicinal potential and psychotropic effects. An in-depth exploration of its historical, chemical, and therapeutic dimensions provides context for its contemporary understanding. The criminalization of cannabis in many countries was influenced by the presence of psychoactive cannabinoids; however, scientific advances and growing public awareness have renewed interest in cannabis-related products, especially for medical use. Described as a 'treasure trove,' cannabis produces a diverse array of cannabinoids and non-cannabinoid compounds. Recent research focuses on cannabinoids for treating conditions such as anxiety, depression, chronic pain, Alzheimer's, Parkinson's, and epilepsy. Additionally, secondary metabolites like phenolic compounds, terpenes, and terpenoids are increasingly recognized for their therapeutic effects and their synergistic role with cannabinoids. These compounds show potential in treating neuro and non-neuro disorders, and studies suggest their promise as antitumoral agents. This comprehensive review integrates historical, chemical, and therapeutic perspectives on cannabis, highlighting contemporary research and its vast potential in medicine.
Collapse
Affiliation(s)
- Fatima-Zahrae Laaboudi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Mohamed Rejdali
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Hassan Amhamdi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Amin Salhi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Abedellah Elyoussfi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - M.’hamed Ahari
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| |
Collapse
|
2
|
Maly M, Benes F, Binova Z, Hajslova J. Tea Prepared from Dried Cannabis: What Do We Drink? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21254-21265. [PMID: 39264724 PMCID: PMC11440496 DOI: 10.1021/acs.jafc.4c05940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
Besides many other uses, dried Cannabis may be used for "tea" preparation. This study focused on a comprehensive characterization of an aqueous infusion prepared according to a common practice from three fairly different Cannabis cultivars. The transfer of 42 phytocannabinoids and 12 major bioactive compounds (flavonoids) into the infusion was investigated using UHPLC-HRMS/MS. Phytocannabinoid acids were transferred generally in a higher extent compared to their counterparts; in the case of Δ9-THC, it was only in the range of 0.4-1.9% of content in the Cannabis used. A dramatic increase of phytocannabinoids, mainly of the neutral species, occurred when cream was added during steeping, and the transfer of Δ9-THC into "tea" achieved a range of 53-64%. Under such conditions, drinking a 250 mL cup of such tea by a 70 kg person might lead to multiple exceedance of the Acute Reference Dose (ARfD), 1 μg/kg b.w., even in the case when using hemp with a Δ9-THC content below 1% in dry weight for preparation.
Collapse
Affiliation(s)
- Matej Maly
- Department of Food Analysis
and Nutrition, University of Chemistry and
Technology, Technická
5, 166 28 Prague 6, Czech Republic
| | - Frantisek Benes
- Department of Food Analysis
and Nutrition, University of Chemistry and
Technology, Technická
5, 166 28 Prague 6, Czech Republic
| | - Zuzana Binova
- Department of Food Analysis
and Nutrition, University of Chemistry and
Technology, Technická
5, 166 28 Prague 6, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis
and Nutrition, University of Chemistry and
Technology, Technická
5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
3
|
Sun J, Zhan X, Wang W, Yang X, Liu Y, Yang H, Deng J, Yang H. Natural aporphine alkaloids: A comprehensive review of phytochemistry, pharmacokinetics, anticancer activities, and clinical application. J Adv Res 2024; 63:231-253. [PMID: 37935346 PMCID: PMC11380034 DOI: 10.1016/j.jare.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Cancer is the most common cause of death and is still a serious public health problem. Alkaloids, a class of bioactive compounds widely diffused in plants, especially Chinese herbs, are used as functional ingredients, precursors, and lead compounds in food and clinical applications. Among them, aporphine alkaloids (AAs), as an important class of isoquinoline alkaloids, exert a strong anticancer effect on multiple cancer types. AIM OF REVIEW This review aims to comprehensively summarize the phytochemistry, pharmacokinetics, and bioavailability of seven subtypes of AAs and their derivatives from various plants and highlight their anticancer bioactivities and mechanisms of action. Key Scientific Concepts of Review. The chemical structures and botanical diversity of AAs are elucidated, and promising results are highlighted regarding the potent anticancer activities of AAs and their derivatives, contributing to their pharmacological benefits. This work provides a better understanding of AAs and combinational anticancer therapies involving them, thereby improving the development of functional food containing plant-derived AA and the clinical application of AAs.
Collapse
Affiliation(s)
- Jing Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingtian Zhan
- School of Public Administration and Policy, Renmin University of China, Beijing 100872, China.
| | - Weimin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaojie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yichen Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huanzhi Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Benes F, Binova Z, Zlechovcova M, Maly M, Stranska M, Hajslova J. Thermally induced changes in the profiles of phytocannabinoids and other bioactive compounds in Cannabis sativa L. inflorescences. Food Res Int 2024; 190:114487. [PMID: 38945557 DOI: 10.1016/j.foodres.2024.114487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 07/02/2024]
Abstract
Phytocannabinoids occurring in Cannabis Sativa L. are unique secondary metabolites possessing interesting pharmacological activities. In this study, the dynamics of thermally induced (60 and 120 °C) phytocannabinoid reactions in four cannabis varieties were investigated. Using UHPLC-HRMS/MS, 40 phytocannabinoids were involved in target analysis, and an additional 281 compounds with cannabinoid-like structures and 258 non-cannabinoid bioactive compounds were subjected to suspect screening. As expected, the key reaction was the decarboxylation of acidic phytocannabinoids. Nevertheless, the rate constants differed among cannabis varieties, documenting the matrix-dependence of this process. Besides neutral counterparts of acidic species, ́neẃ bioactive compounds such as hydroxyquinones were found in heated samples. In addition, changes in other bioactive compounds with both cannabinoid-like and non-cannabinoid structures were documented during cannabis heating at 120 °C. The data document the complexity of heat-induced processes and provide a further understanding of changes in bioactivities occurring under such conditions.
Collapse
Affiliation(s)
- Frantisek Benes
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Zuzana Binova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Marie Zlechovcova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Matej Maly
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Milena Stranska
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
5
|
Chowdhury KU, Holden ME, Wiley MT, Suppiramaniam V, Reed MN. Effects of Cannabis on Glutamatergic Neurotransmission: The Interplay between Cannabinoids and Glutamate. Cells 2024; 13:1130. [PMID: 38994982 PMCID: PMC11240741 DOI: 10.3390/cells13131130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
There has been a significant increase in the consumption of cannabis for both recreational and medicinal purposes in recent years, and its use can have long-term consequences on cognitive functions, including memory. Here, we review the immediate and long-term effects of cannabis and its derivatives on glutamatergic neurotransmission, with a focus on both the presynaptic and postsynaptic alterations. Several factors can influence cannabinoid-mediated changes in glutamatergic neurotransmission, including dosage, sex, age, and frequency of use. Acute exposure to cannabis typically inhibits glutamate release, whereas chronic use tends to increase glutamate release. Conversely, the postsynaptic alterations are more complicated than the presynaptic effects, as cannabis can affect the glutamate receptor expression and the downstream signaling of glutamate. All these effects ultimately influence cognitive functions, particularly memory. This review will cover the current research on glutamate-cannabis interactions, as well as the future directions of research needed to understand cannabis-related health effects and neurological and psychological aspects of cannabis use.
Collapse
Affiliation(s)
- Kawsar U. Chowdhury
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA; (K.U.C.); (M.T.W.)
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA 30144, USA
| | | | - Miles T. Wiley
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA; (K.U.C.); (M.T.W.)
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA; (K.U.C.); (M.T.W.)
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA 30144, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
| | - Miranda N. Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA; (K.U.C.); (M.T.W.)
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
6
|
Wroński A, Jarocka-Karpowicz I, Surażyński A, Gęgotek A, Zarkovic N, Skrzydlewska E. Modulation of Redox and Inflammatory Signaling in Human Skin Cells Using Phytocannabinoids Applied after UVA Irradiation: In Vitro Studies. Cells 2024; 13:965. [PMID: 38891097 PMCID: PMC11171479 DOI: 10.3390/cells13110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
UVA exposure disturbs the metabolism of skin cells, often inducing oxidative stress and inflammation. Therefore, there is a need for bioactive compounds that limit such consequences without causing undesirable side effects. The aim of this study was to analyse in vitro the effects of the phytocannabinoids cannabigerol (CBG) and cannabidiol (CBD), which differ in terms of biological effects. Furthermore, the combined use of both compounds (CBG+CBD) has been analysed in order to increase their effectiveness in human skin fibroblasts and keratinocytes protection against UVA-induced alternation. The results obtained indicate that the effects of CBG and CBD on the redox balance might indeed be enhanced when both phytocannabinoids are applied concurrently. Those effects include a reduction in NOX activity, ROS levels, and a modification of thioredoxin-dependent antioxidant systems. The reduction in the UVA-induced lipid peroxidation and protein modification has been confirmed through lower levels of 4-HNE-protein adducts and protein carbonyl groups as well as through the recovery of collagen expression. Modification of antioxidant signalling (Nrf2/HO-1) through the administration of CBG+CBD has been proven to be associated with reduced proinflammatory signalling (NFκB/TNFα). Differential metabolic responses of keratinocytes and fibroblasts to the effects of the UVA and phytocannabinoids have indicated possible beneficial protective and regenerative effects of the phytocannabinoids, suggesting their possible application for the purpose of limiting the harmful impact of the UVA on skin cells.
Collapse
Affiliation(s)
- Adam Wroński
- Dermatological Specialized Center “DERMAL” NZOZ in Białystok, Nowy Swiat 17/5, 15-453 Bialystok, Poland;
| | - Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (I.J.-K.); (A.G.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland;
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (I.J.-K.); (A.G.)
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, HR-10000 Zagreb, Croatia;
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (I.J.-K.); (A.G.)
| |
Collapse
|
7
|
Czauderna M, Taubner T, Wojtak W. Comparative Study of Gas and Liquid Chromatography Methods for the Determination of Underivatised Neutral and Acidic Cannabinoids and Cholesterol. Molecules 2024; 29:2165. [PMID: 38792027 PMCID: PMC11124110 DOI: 10.3390/molecules29102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of our study was to develop a gas chromatographic method coupled with mass spectrometry (GC-MS) for the determination of underivatised neutral (CBDs-N) and acidic (CBDs-A) cannabinoids (CBDs) and cholesterol (Chol). Emphasis was also placed on comparing our original GC-MS method with the currently developed C18-high-performance liquid chromatography with photodiode detection (C18-HPLC-DAD). A combination of a long GC column, shallow temperature column programme, and mass-spectrometry was employed to avoid issues arising from the overlap between CBDs and Chol and background fluctuations. The pre-column procedure for CBDs and Chol in egg yolks consisted of hexane extractions, whereas the pre-column procedure for CBDs in non-animal samples involved methanol and hexane extractions. CBDs-A underwent decarboxylation to CBDs during GC-MS analyses, and pre-column extraction of the processed sample with NaOH solution allowed for CBD-A removal. No losses of CBDs-N were observed in the samples extracted with NaOH solution. GC-MS analyses of the samples before and after extraction with NaOH solution enabled the quantification of CBDs-A and CBDs-N. CBDs-A did not undergo decarboxylation to CBDs-N during C18-HPLC-DAD runs. The use of the C18-HPLC-DAD method allowed simultaneous determination of CBDs-N and CBDs-A. In comparison to the C18-HPLC-DAD method, our GC-MS technique offered improved sensitivity, precision, specificity, and satisfactory separation of underivatised CBDs and Chol from biological materials of endogenous species, especially in hemp and hen egg yolk. The scientific novelty of the present study is the application of the GC-MS method for quantifying underivatised CBDs-A, CBDs-N, and Chol in the samples of interest.
Collapse
Affiliation(s)
- Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Tomáš Taubner
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, CZ-104 00 Praha, Czech Republic;
| | - Wiktoria Wojtak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| |
Collapse
|
8
|
Tzimas PS, Beteinakis S, Petrakis EA, Papastylianou PT, Kakabouki I, Small-Howard AL, Skaltsounis LA, Halabalaki M. Uncovering the metabolite complexity and variability of cultivated hemp (Cannabis sativa L.): A first phytochemical diversity mapping in Greece. PHYTOCHEMISTRY 2024; 222:114076. [PMID: 38570005 DOI: 10.1016/j.phytochem.2024.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The high value of fiber-type Cannabis sativa L. (hemp) due to its phytochemicals has yet to be fully recognized and leveraged. Besides cannabidiol (CBD), which is the most prevalent non-psychoactive cannabinoid, hemp contains numerous other cannabinoids with unexplored bioactivities, in addition to various compound classes. Previous works have aimed to correlate chemical profiles of C. sativa inflorescences with important parameters, mostly based on experiments under controlled conditions. However, mapping studies that explore the phytochemical diversity of hemp in a more realistic context are crucial to guide decisions at multiple levels, especially in areas where hemp cultivation was recently re-authorized, including Mediterranean countries. In this work, a powerful strategy was followed to map the phytochemical diversity of cultivated hemp in Greece, being the first study of its kind for this environment. A panel of 98 inflorescence samples, covering two harvesting years, eleven geographical regions and seven commonly used EU varieties, were studied using a combination of targeted and untargeted approaches. Quantitative results based on UPLC-PDA revealed relatively constant CBD/THC (total) ratios, while profiling by LC-HRMS effectively probed the phytochemical variability of samples, and led to the annotation of 88 metabolites, including a multitude of minor cannabinoids. Multivariate analysis substantiated a strong effect of harvesting year in sample discrimination and related biomarkers were revealed, belonging to fatty acids and flavonoids. The effect of geographical region and, especially, variety on chemical variation patterns was more intricate to interpret. The results of this work are envisioned to enhance our understanding of the real-world phytochemical complexity of C. sativa (hemp), with a view to maximized utilization of hemp for the promotion of human well-being.
Collapse
Affiliation(s)
- Petros S Tzimas
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Stavros Beteinakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Eleftherios A Petrakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Panayiota T Papastylianou
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Ioanna Kakabouki
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | | | - Leandros A Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
9
|
Wang Z, Guo S, Cai Y, Yang Q, Wang Y, Yu X, Sun W, Qiu S, Li X, Guo Y, Xie Y, Zhang A, Zheng S. Decoding active compounds and molecular targets of herbal medicine by high-throughput metabolomics technology: A systematic review. Bioorg Chem 2024; 144:107090. [PMID: 38218070 DOI: 10.1016/j.bioorg.2023.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/15/2024]
Abstract
Clinical experiences of herbal medicine (HM) have been used to treat a variety of human intractable diseases. As the treatment of diseases using HM is characterized by multi-components and multi-targets, it is difficult to determine the bio-active components, explore the molecular targets and reveal the mechanisms of action. Metabolomics is frequently used to characterize the effect of external disturbances on organisms because of its unique advantages on detecting changes in endogenous small-molecule metabolites. Its systematicity and integrity are consistent with the effective characteristics of HM. After HM intervention, metabolomics can accurately capture and describe the behavior of endogenous metabolites under the disturbance of functional compounds, which will be used to decode the bioactive ingredients of HM and expound the molecular targets. Metabolomics can provide an approach for explaining HM, addressing unclear clinical efficacy and undefined mechanisms of action. In this review, the metabolomics strategy and its applications in HM are systematically introduced, which offers valuable insights for metabolomics methods to characterizing the pharmacological effects and molecular targets of HM.
Collapse
Affiliation(s)
- Zhibo Wang
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Sifan Guo
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Ying Cai
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qiang Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yan Wang
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Xiaodan Yu
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Wanying Sun
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Shi Qiu
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| | - Xiancai Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China.
| | - Yu Guo
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| | - Yiqiang Xie
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| | - Aihua Zhang
- Scientific Experiment Center, Hainan General Hospital, International Advanced Functional Omics Platform, International Joint Research Center on Traditional Chinese and Modern Medicine, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Shaojiang Zheng
- Medical Research Center of The First Affiliated Hospital, Hainan Women and Children Medical Center, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
10
|
Michel T, Loyet C, Boulho R, Eveno M, Audo G. Investigation of alternative two-phase solvent systems for purification of natural products by centrifugal partition chromatography. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:401-408. [PMID: 37872711 DOI: 10.1002/pca.3298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Centrifugal partition chromatography (CPC) is a liquid-liquid chromatography characterised by its solvent flexibility. The compounds undergoing separation are subjected to a continuous partition process between two immiscible phases in a column space free of solid support. In the context of green chemistry, it is important to substitute halogenated and petroleum-based solvents commonly used in purification processes. OBJECTIVES The main goal of the current study was to replace classical solvents used in CPC (e.g., hexane and methanol) by green and renewable alternatives. METHODS Solvents were first selected based on literature. Their commercial availability, price, recyclability, toxicity and ability to form two phases were particularly sought after. KEY FINDINGS The new two-phase solvent systems were evaluated for the purification of two compounds of interest: piperine and cannabidiol. Using these alternative two-phase solvent systems allows us to isolate natural products with a high purity level (> 95%). CONCLUSION Substituting petroleum-based solvents with bio-sourced, renewable alternatives reduces the environmental impact of CPC. Herein, new biphasic solvent systems were built using hexamethyldisiloxane, ethyl isobutyrate and 2-methyl tetrahydrofuran in combination with ethanol and water. Furthermore, this research provides a scientific basis for developing new and sustainable solvent systems in CPC.
Collapse
|
11
|
Tzimas PS, Petrakis EA, Halabalaki M, Skaltsounis LA. Extraction solvent selection for Cannabis sativa L. by efficient exploration of cannabinoid selectivity and phytochemical diversity. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:163-183. [PMID: 37709551 DOI: 10.1002/pca.3282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Cannabis sativa L. is attracting worldwide attention due to various health-promoting effects. Extraction solvent type is critical for the recovery of bioactive compounds from the plant, especially cannabinoids. However, the choice of solvent is varied and not adequately warranted elsewhere, causing confusion in involved fields. OBJECTIVE The present work aimed to investigate the effect of extraction solvent on C. sativa (hemp) with regard to cannabinoid recovery and phytochemical profile of the extracts, considering most of the related solvents. METHODOLOGY The majority of solvents reported for C. sativa (n = 14) were compared using a representative hemp pool. Quantitative results for major and minor cannabinoids were rapidly and reliably obtained using ultrahigh-performance liquid chromatography coupled with photodiode array detection (UPLC-PDA). In parallel, high-performance thin-layer chromatographic (HPTLC) fingerprinting was employed, involving less toxic mobile phase than in relevant reports. Various derivatisation schemes were applied for more comprehensive comparison of extracts. RESULTS Differential selectivity towards cannabinoids was observed among solvents. MeOH was found particularly efficient for most cannabinoids, in addition to solvent systems such as n-Hex/EtOH 70:30 and ACN/EtOH 80:20, while EtOH was generally inferior. For tetrahydrocannabinol (THC)-type compounds, EtOAc and n-Hex/EtOAc 60:40 outperformed n-Hex, despite its use in the official EU method. Solvents that tend to extract more lipids or more polar compounds were revealed based on HPTLC results. CONCLUSION Combining the observations from UPLC quantitation and HPTLC fingerprinting, this work allowed comprehensive evaluation of extraction solvents, in view of robust quality assessment and maximised utilisation of C. sativa.
Collapse
Affiliation(s)
- Petros S Tzimas
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios A Petrakis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Leandros A Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Maly M, Benes F, Binova Z, Zlechovcova M, Kastanek P, Hajslova J. Effective isolation of cannabidiol and cannabidiolic acid free of psychotropic phytocannabinoids from hemp extract by fast centrifugal partition chromatography. Anal Bioanal Chem 2023:10.1007/s00216-023-04782-9. [PMID: 37382652 DOI: 10.1007/s00216-023-04782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
Cannabidiol (CBD), together with its precursor cannabidiolic acid (CBDA), is the major phytocannabinoid occurring in most hemp cultivars. To ensure the safe use of these compounds, their effective isolation from hemp extract is required, with special emphasis on the elimination of ∆9-tetrahydrocannabinol (∆9-THC) and ∆9-tetrahydrocannabinolic acid (∆9-THCA-A). In this study, we demonstrate the applicability of fast centrifugal partition chromatography (FCPC) as a challenging format of counter-current preparative chromatography for the isolation of CBD and CBDA free of psychotropic compounds that may occur in Cannabis sativa L. plant extracts. Thirty-eight solvent mixtures were tested to identify a suitable two-phase system for this purpose. Based on the measured partition coefficients (KD) and separation factors (α), the two-phase system consisting of n-heptane:ethyl acetate:ethanol:water (1.5:0.5:1.5:0.5; v:v:v:v) was selected as an optimal solvent mixture. Employing UHPLC-HRMS/MS for target analysis of collected fractions, the elution profiles of 17 most common phytocannabinoids were determined. Under experimental conditions, the purity of isolated CBD and CBDA was 98.9 and 95.1% (w/w), respectively. Neither of ∆9-THC nor of ∆9-THCA-A were present; only trace amounts of other biologically active compounds contained in hemp extract were detected by screening against in-house spectral library using UHPLC-HRMS.
Collapse
Affiliation(s)
- Matej Maly
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Frantisek Benes
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Zuzana Binova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Marie Zlechovcova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Petr Kastanek
- Ecofuel Laboratories s.r.o., Ocelářská 9, 190 00, Prague 9, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
13
|
Judžentienė A, Garjonytė R, Būdienė J. Phytochemical Composition and Antioxidant Activity of Various Extracts of Fibre Hemp ( Cannabis sativa L.) Cultivated in Lithuania. Molecules 2023; 28:4928. [PMID: 37446590 DOI: 10.3390/molecules28134928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The phytochemistry of fibre hemp (Cannabis sativa L., cv. Futura 75 and Felina 32) cultivated in Lithuania was investigated. The soil characteristics (conductivity, pH and major elements) of the cultivation field were determined. The chemical composition of hemp extracts and essential oils (EOs) from different plant parts was determined by the HPLC/DAD/TOF and GC/MS techniques. Among the major constituents, β-caryophyllene (≤46.64%) and its oxide (≤14.53%), α-pinene (≤20.25%) or α-humulene (≤11.48) were determined in EOs. Cannabidiol (CBD) was a predominant compound (≤64.56%) among the volatile constituents of the methanolic extracts of hemp leaves and inflorescences. Appreciable quantities of 2-monolinolein (11.31%), methyl eicosatetraenoate (9.70%) and γ-sitosterol (8.99%) were detected in hemp seed extracts. The octadecenyl ester of hexadecenoic acid (≤31.27%), friedelan-3-one (≤21.49%), dihydrobenzofuran (≤17.07%) and γ-sitosterol (14.03%) were major constituents of the methanolic extracts of hemp roots, collected during various growth stages. The CBD quantity was the highest in hemp flower extracts in pentane (32.73%). The amounts of cannabidiolic acid (CBDA) were up to 24.21% in hemp leaf extracts. The total content of tetrahydrocannabinol (THC) isomers was the highest in hemp flower pentane extracts (≤22.43%). The total phenolic content (TPC) varied from 187.9 to 924.7 (average means, mg/L of gallic acid equivalent (GAE)) in aqueous unshelled hemp seed and flower extracts, respectively. The TPC was determined to be up to 321.0 (mg/L GAE) in root extracts. The antioxidant activity (AA) of hemp extracts and Eos was tested by the spectrophotometric DPPH● scavenging activity method. The highest AA was recorded for hemp leaf EOs (from 15.034 to 35.036 mmol/L, TROLOX equivalent). In the case of roots, the highest AA (1.556 mmol/L, TROLOX) was found in the extracts of roots collected at the seed maturation stage. The electrochemical (cyclic and square wave voltammetry) assays correlated with the TPC. The hydrogen-peroxide-scavenging activity of extracts was independent of the TPC.
Collapse
Affiliation(s)
- Asta Judžentienė
- Center for Physical Sciences and Technology, Department of Organic Chemistry, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Rasa Garjonytė
- Center for Physical Sciences and Technology, Department of Organic Chemistry, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Jurga Būdienė
- Center for Physical Sciences and Technology, Department of Organic Chemistry, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
14
|
Silva-Reis R, Silva AMS, Oliveira PA, Cardoso SM. Antitumor Effects of Cannabis sativa Bioactive Compounds on Colorectal Carcinogenesis. Biomolecules 2023; 13:764. [PMID: 37238634 PMCID: PMC10216468 DOI: 10.3390/biom13050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Cannabis sativa is a multipurpose plant that has been used in medicine for centuries. Recently, considerable research has focused on the bioactive compounds of this plant, particularly cannabinoids and terpenes. Among other properties, these compounds exhibit antitumor effects in several cancer types, including colorectal cancer (CRC). Cannabinoids show positive effects in the treatment of CRC by inducing apoptosis, proliferation, metastasis, inflammation, angiogenesis, oxidative stress, and autophagy. Terpenes, such as β-caryophyllene, limonene, and myrcene, have also been reported to have potential antitumor effects on CRC through the induction of apoptosis, the inhibition of cell proliferation, and angiogenesis. In addition, synergy effects between cannabinoids and terpenes are believed to be important factors in the treatment of CRC. This review focuses on the current knowledge about the potential of cannabinoids and terpenoids from C. sativa to serve as bioactive agents for the treatment of CRC while evidencing the need for further research to fully elucidate the mechanisms of action and the safety of these compounds.
Collapse
Affiliation(s)
- Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.S.-R.); (A.M.S.S.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.S.-R.); (A.M.S.S.)
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Clinical Academic Center of Trás-os-Montes and Alto Douro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.S.-R.); (A.M.S.S.)
| |
Collapse
|
15
|
Siracusa L, Ruberto G, Cristino L. Recent Research on Cannabis sativa L.: Phytochemistry, New Matrices, Cultivation Techniques, and Recent Updates on Its Brain-Related Effects (2018-2023). Molecules 2023; 28:molecules28083387. [PMID: 37110621 PMCID: PMC10146690 DOI: 10.3390/molecules28083387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Cannabis sativa L. is a plant that humankind has been using for millennia. The basis of its widespread utilization is its adaptability to so many different climatic conditions, with easy cultivability in numerous diverse environments. Because of its variegate phytochemistry, C. sativa has been used in many sectors, although the discovery of the presence in the plant of several psychotropic substances (e.g., Δ9-tetrahydrocannabinol, THC) caused a drastic reduction of its cultivation and use together with its official ban from pharmacopeias. Fortunately, the discovery of Cannabis varieties with low content of THC as well as the biotechnological development of new clones rich in many phytochemical components endorsed with peculiar and many important bioactivities has demanded the reassessment of these species, the study and use of which are currently experiencing new and important developments. In this review we focus our attention on the phytochemistry, new matrices, suitable agronomic techniques, and new biological activities developed in the five last years.
Collapse
Affiliation(s)
- Laura Siracusa
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami, 18, 95126 Catania, CT, Italy
| | - Giuseppe Ruberto
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami, 18, 95126 Catania, CT, Italy
| | - Luigia Cristino
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy
| |
Collapse
|
16
|
Suárez-Jacobo Á, Díaz Pacheco A, Bonales-Alatorre E, Castillo-Herrera GA, García-Fajardo JA. Cannabis Extraction Technologies: Impact of Research and Value Addition in Latin America. Molecules 2023; 28:molecules28072895. [PMID: 37049659 PMCID: PMC10095677 DOI: 10.3390/molecules28072895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
The Cannabis genus of plants has been widely used in different cultures for various purposes. It is separated into three main species: sativa, indica, and ruderalis. In ancient practices, the plant was used as a multipurpose crop and valued for its fiber, food, and medicinal uses. Since methodologies for the extraction, processing, and identification of components have become available, medical, and food applications have been increasing, allowing potential development in the pharmaceutical and healthy functional food industries. Although the growing legalization and adoption of cannabis for the treatment of diseases are key factors pushing the growth of its market, the biggest challenge is to obtain higher-quality products in a time- and cost-effective fashion, making the process of extraction and separation an essential step. Latin American countries exhibit great knowledge of extraction technologies; nevertheless, it is still necessary to verify whether production costs are economically profitable. In addition, there has been an increase in commercial cannabis products that may or may not be allowed, with or without quality fact sheets, which can pose health risks. Hence, legalization is mandatory and urgent for the rest of Latin American countries. In this article, the phytochemical compounds (cannabinoids, terpenes, and phenolic compounds), the current status of legalization, extraction techniques, and research advances in cannabis in Latin America are reviewed.
Collapse
Affiliation(s)
- Ángela Suárez-Jacobo
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan 45019, Mexico
| | - Adrián Díaz Pacheco
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala del Instituto Politécnico Nacional, Tlaxcala 90000, Mexico
| | - Edgar Bonales-Alatorre
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico
| | - Gustavo Adolfo Castillo-Herrera
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan 45019, Mexico
| | - Jorge Alberto García-Fajardo
- Subsede Noreste, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Parque de Investigación e Innovación Tecnológica, Apodaca 66628, Mexico
| |
Collapse
|
17
|
Kitdumrongthum S, Trachootham D. An Individuality of Response to Cannabinoids: Challenges in Safety and Efficacy of Cannabis Products. Molecules 2023; 28:molecules28062791. [PMID: 36985763 PMCID: PMC10058560 DOI: 10.3390/molecules28062791] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Since legalization, cannabis/marijuana has been gaining considerable attention as a functional ingredient in food. ∆-9 tetrahydrocannabinol (THC), cannabidiol (CBD), and other cannabinoids are key bioactive compounds with health benefits. The oral consumption of cannabis transports much less hazardous chemicals than smoking. Nevertheless, the response to cannabis is biphasically dose-dependent (hormesis; a low-dose stimulation and a high-dose inhibition) with wide individuality in responses. Thus, the exact same dose and preparation of cannabis may be beneficial for some but toxic to others. The purpose of this review is to highlight the concept of individual variations in response to cannabinoids, which leads to the challenge of establishing standard safe doses of cannabis products for the general population. The mechanisms of actions, acute and chronic toxicities, and factors affecting responses to cannabis products are updated. Based on the literature review, we found that the response to cannabis products depends on exposure factors (delivery route, duration, frequency, and interactions with food and drugs), individual factors (age, sex), and susceptibility factors (genetic polymorphisms of cannabinoid receptor gene, N-acylethanolamine-hydrolyzing enzymes, THC-metabolizing enzymes, and epigenetic regulations). Owing to the individuality of responses, the safest way to use cannabis-containing food products is to start low, go slow, and stay low.
Collapse
|
18
|
Jornet-Martínez N, Biosca-Micó J, Campíns-Falcó P, Herráez-Hernández R. A Colorimetric Method for the Rapid Estimation of the Total Cannabinoid Content in Cannabis Samples. Molecules 2023; 28:molecules28031303. [PMID: 36770970 PMCID: PMC9921926 DOI: 10.3390/molecules28031303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
A colorimetric method for the estimation of the total content of cannabinoids in cannabis samples is proposed. The assay is based on the reaction of these compounds with the reagent Fast Blue B (FBB), which has been immobilized into polydimethylsiloxane (PDMS). The reaction and detection conditions have been established according to the results obtained for the individual cannabinoids Δ9-tetrahydrocannabidiol (THC), cannabidiol (CBD), and cannabinol (CBN), as well as for ethanolic extracts obtained from cannabis samples after ultrasonication. In contact with the extract and under basic conditions, the reagent diffuses from the PDMS device, producing a red-brown solution. The absorbances measured at 500 nm after only 1 min of exposure to the FBB/PDMS composites led to responses proportional to the amounts of the cannabinoids in the reaction media. Those absorbances have been then transformed in total cannabinoid content using CBD as a reference compound. The potential utility of the proposed conditions has been tested by analyzing different cannabis samples. The selectivity towards other plants and drugs has been also evaluated. The present method is proposed as a simple and rapid alternative to chromatographic methods for the estimation of the total content of cannabinoids.
Collapse
|
19
|
Khavandi M, Rao PPN, Beazely MA. Differential Effects of Endocannabinoids on Amyloid-Beta Aggregation and Toxicity. Int J Mol Sci 2023; 24:911. [PMID: 36674424 PMCID: PMC9861930 DOI: 10.3390/ijms24020911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
The regulation and metabolism of the endocannabinoid system has received extensive attention for their potential neuroprotective effect in neurodegenerative diseases such as Alzheimer's disease (AD), which is characterized by amyloid β (Aβ) -induced cell toxicity, inflammation, and oxidative stress. Using in vitro techniques and two cell lines, the mouse hippocampus-derived HT22 cells and Chinese hamster ovary (CHO) cells expressing human cannabinoid receptor type 1 (CB1), we investigated the ability of endocannabinoids to inhibit Aβ aggregation and protect cells against Aβ toxicity. The present study provides evidence that endocannabinoids N-arachidonoyl ethanol amide (AEA), noladin and O-arachidonoyl ethanolamine (OAE) inhibit Aβ42 aggregation. They were able to provide protection against Aβ42 induced cytotoxicity via receptor-mediated and non-receptor-mediated mechanisms in CB1-CHO and HT22 cells, respectively. The aggregation kinetic experiments demonstrate the anti-Aβ aggregation activity of some endocannabinoids (AEA, noladin). These data demonstrate the potential role and application of endocannabinoids in AD pathology and treatment.
Collapse
Affiliation(s)
| | | | - Michael A. Beazely
- School of Pharmacy, Health Sciences Campus, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
20
|
Araujo dos Santos N, Romão W. Cannabis - a state of the art about the millenary plant: Part I. Forensic Chem 2023. [DOI: 10.1016/j.forc.2023.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Green extraction, chemical composition, and in vitro antioxidant activity of theabrownins from Kangzhuan dark tea. Curr Res Food Sci 2022; 5:1944-1954. [PMID: 36300163 PMCID: PMC9589173 DOI: 10.1016/j.crfs.2022.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Theabrownins (TBs) in dark tea have received increasing attention for their multiple health benefits. In this study, ultrasound assisted extraction with deep eutectic solvent (UAE-DES) was developed for the extraction of TBs from Kangzhuan dark tea (KZDT). The highest yield (12.59%) of TBs was obtained using UAE-choline (ChCl)/malic acid (MA) with a liquid to solid ratio of 20:1 (v/w), ultrasonic power of 577 W, ultrasonic time of 25 min, and water content of 30%. TBs were further eluded by silica gel to obtain six theabrownine fractions (TBFs), namely, TBFs1, TBFs2, TBFs3, TBFs4, TBFs5, and TBFs6. LC-MS/MS revealed that flavonoids, terpenes, phenolic acids, alkaloids, lipids, and amino acids are the leading components of TBFs. The TBFs4, with the DPPH, ABTS, and FRAP values of 45.08 ± 0.42 μM Ascorbic acid/g DW, 178.52 ± 0.29 μM Trolox/g DW, and 370.85 ± 6.00 μM Fe(II)/g DW, respectively, showed the highest antioxidant activity among all the TBFs. Overall, this study first provided the evidence that UAE-ChCl/MA combining with silica gel was effective to extract TBs from KZDT, and the 6,7-dihydroxycoumarin-6-glucoside and neohesperidin were found as the leading compounds in the TBFs, providing a guidance for the chemical research and further utilization of dark tea and its TBs. Yield of TBs of 12.59% from KZDT was achieved by UAE-ChCl/MA. Silica gel powder with methanol (100%–0%) as a mobile phase was used for TBs separation. The chemical component of TBFs was revealed. Flavonoids are among the leading compounds in the TBFs. TBFs4 displayed the highest in vitro antioxidant activity.
Collapse
|
22
|
Yue X, Chen Z, Zhang J, Huang C, Zhao S, Li X, Qu Y, Zhang C. Extraction, purification, structural features and biological activities of longan fruit pulp (Longyan) polysaccharides: A review. Front Nutr 2022; 9:914679. [PMID: 35958258 PMCID: PMC9358249 DOI: 10.3389/fnut.2022.914679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Dimocarpus longan Lour. (also called as longan) is a subtropical and tropical evergreen tree belonging to the Sapindaceae family and is widely distributed in China, Southeast Asia and South Asia. The pulp of longan fruit is a time-honored traditional medicinal and edible raw material in China and some Asian countries. With the advancement of food therapy in modern medicine, longan fruit pulp as an edible medicinal material is expected to usher in its rapid development as a functional nutrient. As one of the main constituents of longan fruit pulp, longan fruit pulp polysaccharides (LPs) play an indispensable role in longan fruit pulp-based functional utilization. This review aims to outline the extraction and purification methods, structural characteristics and biological activities (such as immunoregulatory, anti-tumor, prebiotic, anti-oxidant, anti-inflammatory and inhibition of AChE activity) of LPs. Besides, the structure-activity relationship, application prospect and patent application of LPs were analyzed and summarized. Through the systematic summary, this review attempts to provide a theoretical basis for further research of LPs, and promote the industrial development of this class of polysaccharides.
Collapse
Affiliation(s)
- Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Sakarin S, Meesiripan N, Sangrajrang S, Suwanpidokkul N, Prayakprom P, Bodhibukkana C, Khaowroongrueng V, Suriyachan K, Thanasittichai S, Srisubat A, Surawongsin P, Rattanapinyopituk K. Antitumor Effects of Cannabinoids in Human Pancreatic Ductal Adenocarcinoma Cell Line (Capan-2)-Derived Xenograft Mouse Model. Front Vet Sci 2022; 9:867575. [PMID: 35937289 PMCID: PMC9353045 DOI: 10.3389/fvets.2022.867575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Background Pancreatic cancer is considered a rare type of cancer, but the mortality rate is high. Cannabinoids extracted from the cannabis plant have been interested as an alternative treatment in cancer patients. Only a few studies are available on the antitumor effects of cannabinoids in pancreatic cancer. Therefore, this study aims to evaluate the antitumor effects of cannabinoids in pancreatic cancer xenografted mouse model. Materials and Methods Twenty-five nude mice were subcutaneously transplanted with a human pancreatic ductal adenocarcinoma cell line (Capan-2). All mice were randomly assigned into 5 groups including negative control (gavage with sesame oil), positive control (5 mg/kg 5-fluorouracil intraperitoneal administration), and cannabinoids groups that daily received THC:CBD, 1:6 at 1, 5, or 10 mg/kg body weight for 30 days, respectively. Xenograft tumors and internal organs were collected for histopathological examination and immunohistochemistry. Results The average tumor volume was increased in all groups with no significant difference. The average apoptotic cells and caspase-3 positive cells were significantly increased in cannabinoid groups compared with the negative control group. The expression score of proliferating cell nuclear antigen in positive control and cannabinoids groups was decreased compared with the negative control group. Conclusions Cannabinoids have an antitumor effect on the Capan-2-derived xenograft mouse model though induce apoptosis and inhibit proliferation of tumor cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Siriwan Sakarin
- Division of Research and Academic Support, National Cancer Institute, Bangkok, Thailand
| | - Nuntana Meesiripan
- Division of Research and Academic Support, National Cancer Institute, Bangkok, Thailand
| | - Suleeporn Sangrajrang
- Division of Research and Academic Support, National Cancer Institute, Bangkok, Thailand
| | | | | | | | | | - Kankanit Suriyachan
- Institute of Medical Research and Technology Assessment, Ministry of Public Health, Nonthaburi, Thailand
| | - Somchai Thanasittichai
- Institute of Medical Research and Technology Assessment, Ministry of Public Health, Nonthaburi, Thailand
| | - Attasit Srisubat
- Division of Medical Technical and Academic Affairs, Ministry of Public Health, Nonthaburi, Thailand
| | - Pattamaporn Surawongsin
- Research and Technology Assessment Department, Ophthalmology Department, Lerdsin Hospital, Bangkok, Thailand
| | - Kasem Rattanapinyopituk
- Center of Excellent for Companion Animal Cancer, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Kasem Rattanapinyopituk
| |
Collapse
|
24
|
Liu Y, Xiao AP, Cheng H, Liu LL, Kong KW, Liu HY, Wu DT, Li HB, Gan RY. Phytochemical differences of hemp (Cannabis sativa L.) leaves from different germplasms and their regulatory effects on lipopolysaccharide-induced inflammation in Matin-Darby canine kidney cell lines. Front Nutr 2022; 9:902625. [PMID: 35938104 PMCID: PMC9355258 DOI: 10.3389/fnut.2022.902625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/05/2022] [Indexed: 12/05/2022] Open
Abstract
The increasing demand of hemp (Cannabis sativa L.) has attracted more interest in exploring its phytochemical profile and bioactivities, such as anti-inflammatory effect. In this study, the phytochemicals of different hemp leaves were investigated, with the content order: total saponins content (TSC) > total alkaloids content (TAC) > total phenolics content (TPC) > total flavonoids content (TFC) > cannabinoids. Hemp leaves from Shanxi accumulated higher flavonoids and cannabinoids (i.e., THC, CBD, and CBN), while phenolics were more abundant in those from Hunan. A lipopolysaccharide (LPS)-induced inflammatory Matin-Darby canine kidney (MDCK) cell model was established to evaluate the anti-inflammatory effects of hemp leaf extracts. Hemp leaf extracts, especially the D129 and c7, significantly increased cell viability of LPS-induced inflammatory MDCK cells, and D132 significantly decreased the secretion of pro-inflammatory cytokines (TNF-α and IL-6) and the lactate dehydrogenase (LDH) activity. Except for c12, other hemp leaf extracts obviously decreased the cell morphological damage of LPS-induced inflammatory MDCK cells. The correlation analysis revealed that cannabinol (CBN) and TPC showed the strongest correlation with anti-inflammatory activities, and hierarchical clustering analysis also showed that hemp germplasms from Shanxi might be good alternatives to the common cultivar Ym7 due to their better anti-inflammatory activities. These results indicated that hemp leaves were effective in LPS-induced inflammatory MDCK cells, and flavonoids and cannabinoids were potential geographical markers for distinguishing them, which can provide new insights into the anti-inflammatory effect of hemp leaves and facilitate the application of hemp leaves as functional ingredients against inflammatory-related disorders.
Collapse
Affiliation(s)
- Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chengdu National Agricultural Science and Technology Center, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ai-Ping Xiao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Hao Cheng
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chengdu National Agricultural Science and Technology Center, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Liang-Liang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Kin Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chengdu National Agricultural Science and Technology Center, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chengdu National Agricultural Science and Technology Center, Chinese Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Ren-You Gan,
| |
Collapse
|
25
|
Noppawan P, Bainier C, Lanot A, McQueen-Mason S, Supanchaiyamat N, Attard TM, Hunt AJ. Effect of harvest time on the compositional changes in essential oils, cannabinoids, and waxes of hemp ( Cannabis sativa L.). ROYAL SOCIETY OPEN SCIENCE 2022; 9:211699. [PMID: 35719880 PMCID: PMC9198500 DOI: 10.1098/rsos.211699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
Demand for cannabinoid is growing, with the global market expected to reach $9.69 billion by 2025. Understanding how chemical composition changes in hemp at different harvest times is crucial to maximizing this industrial crop value. Important compositional changes in three different compound classes (essential oils, cannabinoids, and lipids) from inflorescences (tops), leaves, and stems of hemp (Cannabis sativa L., Finola variety) at different harvesting stages have been investigated. Over 85% of the total extracts from the tops were cannabinoids, while leaves demonstrated the greatest quantities of wax ester and sterols. Essential oil and cannabinoid increased in tops until full flowering (third harvest), reaching 2030 µg g-1 and 39 475 µg g-1, respectively. Cannabinoids decreased at seed maturity (final harvest) to 26 969 µg g-1. This demonstrates the importance of early harvesting to maximize cannabidiol (CBD), which is highly sought after for its therapeutic and pharmacological properties. A total of 21 161 µg g-1 of CBD was extracted from the tops at full flowering (third harvest); however, a significant increase (63%) in the banned psychoactive tetrahydrocannabinol (THC) was observed from budding (157 µg g-1 of biomass) to the full flowering (9873 µg g-1 of biomass). Harvesting the tops after budding is preferable due to the high CBD content and low amounts of THC.
Collapse
Affiliation(s)
- Pakin Noppawan
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Camille Bainier
- Department of Chemistry, Green Chemistry Centre of Excellence, University of York, Wentworth Way, York YO10 5DD, UK
| | - Alexandra Lanot
- Department of Biology, Centre for Novel Agricultural Products, University of York, Wentworth Way, York YO10 5DD, UK
| | - Simon McQueen-Mason
- Department of Biology, Centre for Novel Agricultural Products, University of York, Wentworth Way, York YO10 5DD, UK
| | - Nontipa Supanchaiyamat
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thomas M. Attard
- RX Extraction Ltd., Unit 10, Rowen Trade Estate, Neville Road, Bradford BD4 8TQ, UK
| | - Andrew J. Hunt
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
26
|
Colella MF, Salvino RA, Gaglianò M, Litrenta F, Oliviero Rossi C, Le Pera A, De Luca G. NMR Spectroscopy Applied to the Metabolic Analysis of Natural Extracts of Cannabis sativa. Molecules 2022; 27:3509. [PMID: 35684451 PMCID: PMC9182145 DOI: 10.3390/molecules27113509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022] Open
Abstract
Cannabis sativa is a herbaceous multiple-use species commonly employed to produce fiber, oil, and medicine. It is now becoming popular for the high nutritional properties of its seed oil and for the pharmacological activity of its cannabinoid fraction in inflorescences. The present study aims to apply nuclear magnetic resonance (NMR) spectroscopy to provide useful qualitative and quantitative information on the chemical composition of seed and flower Cannabis extracts obtained by ultra-sound-assisted extraction, and to evaluate NMR as an alternative to the official procedure for the quantification of cannabinoids. The estimation of the optimal ω-6/ω-3 ratio from the 1H NMR spectrum for the seed extracts of the Futura 75 variety and the quantitative results from the 1H and 13C NMR spectra for the inflorescence extracts of the Tiborszallasi and Kompolti varieties demonstrate that NMR technology represents a good alternative to classical chromatography, supplying sufficiently precise, sensitive, rapid, and informative data without any sample pre-treatment. In addition, different extraction procedures were tested and evaluated to compare the elaboration of spectral data with the principal component analysis (PCA) statistical method and the quantitative NMR results: the extracts obtained with higher polarity solvents (acetone or ethanol) were poor in psychotropic agents (THC < LOD) but had an appreciable percentage of both cannabinoids and triacylgliceroles (TAGs). These bioactive-rich extracts could be used in the food and pharmaceutical industries, opening new pathways for the production of functional foods and supplements.
Collapse
Affiliation(s)
- Maria Francesca Colella
- Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci 14C, 87036 Arcavacata di Rende, Italy; (M.F.C.); (R.A.S.); (M.G.); (C.O.R.)
| | - Rosachiara Antonia Salvino
- Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci 14C, 87036 Arcavacata di Rende, Italy; (M.F.C.); (R.A.S.); (M.G.); (C.O.R.)
| | - Martina Gaglianò
- Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci 14C, 87036 Arcavacata di Rende, Italy; (M.F.C.); (R.A.S.); (M.G.); (C.O.R.)
| | - Federica Litrenta
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (Biomorf), University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy;
| | - Cesare Oliviero Rossi
- Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci 14C, 87036 Arcavacata di Rende, Italy; (M.F.C.); (R.A.S.); (M.G.); (C.O.R.)
| | - Adolfo Le Pera
- Calabra Maceri e Servizi s.p.a., Via M. Polo 54, 87036 Rende, Italy;
| | - Giuseppina De Luca
- Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci 14C, 87036 Arcavacata di Rende, Italy; (M.F.C.); (R.A.S.); (M.G.); (C.O.R.)
| |
Collapse
|
27
|
Isotopic Characterization of Italian Industrial Hemp (Cannabis sativa L.) Intended for Food Use: A First Exploratory Study. SEPARATIONS 2022. [DOI: 10.3390/separations9060136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, Italian industrial hemp (Cannabis sativa L.) intended for food use was isotopically characterized for the first time. The stable isotope ratios of five bioelements were analyzed in different parts of the plant (i.e., roots, stems, inflorescences, and seeds) sampled in eight different regions of Italy, and in five hemp seed oils. The values of δ2H, δ13C, δ18O, and δ34S differed according to the latitude and, therefore, to the geographical origin of the samples and the climate conditions of plant growth, while the δ15N values allowed us to distinguish between crops grown under conventional and organic fertilization. The findings from this preliminary study corroborate the reliability of using light stable isotope ratios to characterize hemp and its derived food products and contribute to the creation of a first isotopic database for this plant, paving the way for future studies on authentication, traceability, and verification of organic labeling.
Collapse
|
28
|
Mai YH, Zhuang QG, Li QH, Du K, Wu DT, Li HB, Xia Y, Zhu F, Gan RY. Ultrasound-Assisted Extraction, Identification, and Quantification of Antioxidants from 'Jinfeng' Kiwifruit. Foods 2022; 11:827. [PMID: 35327254 PMCID: PMC8949384 DOI: 10.3390/foods11060827] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 12/17/2022] Open
Abstract
Kiwifruit (Actinidia chinensis) is a nutrient-dense fruit abundant in vitamin C and phenolic compounds, and it exhibits strong antioxidant capacity. However, the antioxidants in 'Jinfeng' kiwifruit have seldom been extracted and analyzed, and the conditions for the extraction of kiwifruit antioxidants by ultrasound-assisted extraction (UAE) have seldom been investigated. In this study, response surface methodology (RSM) was used to optimize UAE conditions to extract antioxidants from 'Jinfeng' kiwifruit. In addition, the antioxidant capacity, contents of total phenolics and total flavonoids, ascorbic acid, and the profiles of antioxidants were also analyzed. The results showed that the optimal UAE conditions included 68% ethanol, liquid/solid ratio at 20 mL/g, extraction time at 30 min, extraction temperature at 42 °C, and ultrasonic power at 420 W. Under these conditions, the ABTS value of kiwifruit was 70.38 ± 1.38 μM TE/g DW, which was 18.5% higher than that of the extract obtained by conventional solvent extraction. The total phenolic and flavonoid contents were 15.50 ± 0.08 mg GAE/g DW and 5.10 ± 0.09 mg CE/g DW, respectively. Moreover, 20 compounds were tentatively identified by UPLC-MS/MS, and the content of main compounds, such as procyanidin B2, neochlorogenic acid, and epicatechin, were determined by HPLC-DAD. This research revealed the profiles of antioxidant phytochemicals in 'Jinfeng' kiwifruit, which can be a good dietary source of natural antioxidants with potential health functions.
Collapse
Affiliation(s)
- Ying-Hui Mai
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China; (Y.-H.M.); (Q.-H.L.); (K.D.)
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand;
| | - Qi-Guo Zhuang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China; (Y.-H.M.); (Q.-H.L.); (K.D.)
- Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China
| | - Qiao-Hong Li
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China; (Y.-H.M.); (Q.-H.L.); (K.D.)
- Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China
| | - Kui Du
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China; (Y.-H.M.); (Q.-H.L.); (K.D.)
- Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
| | - Yu Xia
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand;
| | - Ren-You Gan
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China; (Y.-H.M.); (Q.-H.L.); (K.D.)
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China
| |
Collapse
|